 94765b9e4c
			
		
	
	
	94765b9e4c
	
	
	
		
			
			When setting the digest size xcbc tests to see if the underlying algorithm is a hash. This is silly because we don't allow it to be a hash and we've specifically requested for a cipher. This patch removes the bogus test. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			368 lines
		
	
	
	
		
			9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			368 lines
		
	
	
	
		
			9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C)2006 USAGI/WIDE Project
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  *
 | |
|  * Author:
 | |
|  * 	Kazunori Miyazawa <miyazawa@linux-ipv6.org>
 | |
|  */
 | |
| 
 | |
| #include <crypto/scatterwalk.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/rtnetlink.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/scatterlist.h>
 | |
| 
 | |
| static u_int32_t ks[12] = {0x01010101, 0x01010101, 0x01010101, 0x01010101,
 | |
| 			   0x02020202, 0x02020202, 0x02020202, 0x02020202,
 | |
| 			   0x03030303, 0x03030303, 0x03030303, 0x03030303};
 | |
| /*
 | |
|  * +------------------------
 | |
|  * | <parent tfm>
 | |
|  * +------------------------
 | |
|  * | crypto_xcbc_ctx
 | |
|  * +------------------------
 | |
|  * | odds (block size)
 | |
|  * +------------------------
 | |
|  * | prev (block size)
 | |
|  * +------------------------
 | |
|  * | key (block size)
 | |
|  * +------------------------
 | |
|  * | consts (block size * 3)
 | |
|  * +------------------------
 | |
|  */
 | |
| struct crypto_xcbc_ctx {
 | |
| 	struct crypto_cipher *child;
 | |
| 	u8 *odds;
 | |
| 	u8 *prev;
 | |
| 	u8 *key;
 | |
| 	u8 *consts;
 | |
| 	void (*xor)(u8 *a, const u8 *b, unsigned int bs);
 | |
| 	unsigned int keylen;
 | |
| 	unsigned int len;
 | |
| };
 | |
| 
 | |
| static void xor_128(u8 *a, const u8 *b, unsigned int bs)
 | |
| {
 | |
| 	((u32 *)a)[0] ^= ((u32 *)b)[0];
 | |
| 	((u32 *)a)[1] ^= ((u32 *)b)[1];
 | |
| 	((u32 *)a)[2] ^= ((u32 *)b)[2];
 | |
| 	((u32 *)a)[3] ^= ((u32 *)b)[3];
 | |
| }
 | |
| 
 | |
| static int _crypto_xcbc_digest_setkey(struct crypto_hash *parent,
 | |
| 				      struct crypto_xcbc_ctx *ctx)
 | |
| {
 | |
| 	int bs = crypto_hash_blocksize(parent);
 | |
| 	int err = 0;
 | |
| 	u8 key1[bs];
 | |
| 
 | |
| 	if ((err = crypto_cipher_setkey(ctx->child, ctx->key, ctx->keylen)))
 | |
| 	    return err;
 | |
| 
 | |
| 	crypto_cipher_encrypt_one(ctx->child, key1, ctx->consts);
 | |
| 
 | |
| 	return crypto_cipher_setkey(ctx->child, key1, bs);
 | |
| }
 | |
| 
 | |
| static int crypto_xcbc_digest_setkey(struct crypto_hash *parent,
 | |
| 				     const u8 *inkey, unsigned int keylen)
 | |
| {
 | |
| 	struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(parent);
 | |
| 
 | |
| 	if (keylen != crypto_cipher_blocksize(ctx->child))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ctx->keylen = keylen;
 | |
| 	memcpy(ctx->key, inkey, keylen);
 | |
| 	ctx->consts = (u8*)ks;
 | |
| 
 | |
| 	return _crypto_xcbc_digest_setkey(parent, ctx);
 | |
| }
 | |
| 
 | |
| static int crypto_xcbc_digest_init(struct hash_desc *pdesc)
 | |
| {
 | |
| 	struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(pdesc->tfm);
 | |
| 	int bs = crypto_hash_blocksize(pdesc->tfm);
 | |
| 
 | |
| 	ctx->len = 0;
 | |
| 	memset(ctx->odds, 0, bs);
 | |
| 	memset(ctx->prev, 0, bs);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int crypto_xcbc_digest_update2(struct hash_desc *pdesc,
 | |
| 				      struct scatterlist *sg,
 | |
| 				      unsigned int nbytes)
 | |
| {
 | |
| 	struct crypto_hash *parent = pdesc->tfm;
 | |
| 	struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(parent);
 | |
| 	struct crypto_cipher *tfm = ctx->child;
 | |
| 	int bs = crypto_hash_blocksize(parent);
 | |
| 	unsigned int i = 0;
 | |
| 
 | |
| 	do {
 | |
| 
 | |
| 		struct page *pg = sg_page(&sg[i]);
 | |
| 		unsigned int offset = sg[i].offset;
 | |
| 		unsigned int slen = sg[i].length;
 | |
| 
 | |
| 		while (slen > 0) {
 | |
| 			unsigned int len = min(slen, ((unsigned int)(PAGE_SIZE)) - offset);
 | |
| 			char *p = crypto_kmap(pg, 0) + offset;
 | |
| 
 | |
| 			/* checking the data can fill the block */
 | |
| 			if ((ctx->len + len) <= bs) {
 | |
| 				memcpy(ctx->odds + ctx->len, p, len);
 | |
| 				ctx->len += len;
 | |
| 				slen -= len;
 | |
| 
 | |
| 				/* checking the rest of the page */
 | |
| 				if (len + offset >= PAGE_SIZE) {
 | |
| 					offset = 0;
 | |
| 					pg++;
 | |
| 				} else
 | |
| 					offset += len;
 | |
| 
 | |
| 				crypto_kunmap(p, 0);
 | |
| 				crypto_yield(pdesc->flags);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* filling odds with new data and encrypting it */
 | |
| 			memcpy(ctx->odds + ctx->len, p, bs - ctx->len);
 | |
| 			len -= bs - ctx->len;
 | |
| 			p += bs - ctx->len;
 | |
| 
 | |
| 			ctx->xor(ctx->prev, ctx->odds, bs);
 | |
| 			crypto_cipher_encrypt_one(tfm, ctx->prev, ctx->prev);
 | |
| 
 | |
| 			/* clearing the length */
 | |
| 			ctx->len = 0;
 | |
| 
 | |
| 			/* encrypting the rest of data */
 | |
| 			while (len > bs) {
 | |
| 				ctx->xor(ctx->prev, p, bs);
 | |
| 				crypto_cipher_encrypt_one(tfm, ctx->prev,
 | |
| 							  ctx->prev);
 | |
| 				p += bs;
 | |
| 				len -= bs;
 | |
| 			}
 | |
| 
 | |
| 			/* keeping the surplus of blocksize */
 | |
| 			if (len) {
 | |
| 				memcpy(ctx->odds, p, len);
 | |
| 				ctx->len = len;
 | |
| 			}
 | |
| 			crypto_kunmap(p, 0);
 | |
| 			crypto_yield(pdesc->flags);
 | |
| 			slen -= min(slen, ((unsigned int)(PAGE_SIZE)) - offset);
 | |
| 			offset = 0;
 | |
| 			pg++;
 | |
| 		}
 | |
| 		nbytes-=sg[i].length;
 | |
| 		i++;
 | |
| 	} while (nbytes>0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int crypto_xcbc_digest_update(struct hash_desc *pdesc,
 | |
| 				     struct scatterlist *sg,
 | |
| 				     unsigned int nbytes)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(in_irq()))
 | |
| 		return -EDEADLK;
 | |
| 	return crypto_xcbc_digest_update2(pdesc, sg, nbytes);
 | |
| }
 | |
| 
 | |
| static int crypto_xcbc_digest_final(struct hash_desc *pdesc, u8 *out)
 | |
| {
 | |
| 	struct crypto_hash *parent = pdesc->tfm;
 | |
| 	struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(parent);
 | |
| 	struct crypto_cipher *tfm = ctx->child;
 | |
| 	int bs = crypto_hash_blocksize(parent);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (ctx->len == bs) {
 | |
| 		u8 key2[bs];
 | |
| 
 | |
| 		if ((err = crypto_cipher_setkey(tfm, ctx->key, ctx->keylen)) != 0)
 | |
| 			return err;
 | |
| 
 | |
| 		crypto_cipher_encrypt_one(tfm, key2,
 | |
| 					  (u8 *)(ctx->consts + bs));
 | |
| 
 | |
| 		ctx->xor(ctx->prev, ctx->odds, bs);
 | |
| 		ctx->xor(ctx->prev, key2, bs);
 | |
| 		_crypto_xcbc_digest_setkey(parent, ctx);
 | |
| 
 | |
| 		crypto_cipher_encrypt_one(tfm, out, ctx->prev);
 | |
| 	} else {
 | |
| 		u8 key3[bs];
 | |
| 		unsigned int rlen;
 | |
| 		u8 *p = ctx->odds + ctx->len;
 | |
| 		*p = 0x80;
 | |
| 		p++;
 | |
| 
 | |
| 		rlen = bs - ctx->len -1;
 | |
| 		if (rlen)
 | |
| 			memset(p, 0, rlen);
 | |
| 
 | |
| 		if ((err = crypto_cipher_setkey(tfm, ctx->key, ctx->keylen)) != 0)
 | |
| 			return err;
 | |
| 
 | |
| 		crypto_cipher_encrypt_one(tfm, key3,
 | |
| 					  (u8 *)(ctx->consts + bs * 2));
 | |
| 
 | |
| 		ctx->xor(ctx->prev, ctx->odds, bs);
 | |
| 		ctx->xor(ctx->prev, key3, bs);
 | |
| 
 | |
| 		_crypto_xcbc_digest_setkey(parent, ctx);
 | |
| 
 | |
| 		crypto_cipher_encrypt_one(tfm, out, ctx->prev);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int crypto_xcbc_digest(struct hash_desc *pdesc,
 | |
| 		  struct scatterlist *sg, unsigned int nbytes, u8 *out)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(in_irq()))
 | |
| 		return -EDEADLK;
 | |
| 
 | |
| 	crypto_xcbc_digest_init(pdesc);
 | |
| 	crypto_xcbc_digest_update2(pdesc, sg, nbytes);
 | |
| 	return crypto_xcbc_digest_final(pdesc, out);
 | |
| }
 | |
| 
 | |
| static int xcbc_init_tfm(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct crypto_cipher *cipher;
 | |
| 	struct crypto_instance *inst = (void *)tfm->__crt_alg;
 | |
| 	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
 | |
| 	struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(__crypto_hash_cast(tfm));
 | |
| 	int bs = crypto_hash_blocksize(__crypto_hash_cast(tfm));
 | |
| 
 | |
| 	cipher = crypto_spawn_cipher(spawn);
 | |
| 	if (IS_ERR(cipher))
 | |
| 		return PTR_ERR(cipher);
 | |
| 
 | |
| 	switch(bs) {
 | |
| 	case 16:
 | |
| 		ctx->xor = xor_128;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ctx->child = cipher;
 | |
| 	ctx->odds = (u8*)(ctx+1);
 | |
| 	ctx->prev = ctx->odds + bs;
 | |
| 	ctx->key = ctx->prev + bs;
 | |
| 
 | |
| 	return 0;
 | |
| };
 | |
| 
 | |
| static void xcbc_exit_tfm(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(__crypto_hash_cast(tfm));
 | |
| 	crypto_free_cipher(ctx->child);
 | |
| }
 | |
| 
 | |
| static struct crypto_instance *xcbc_alloc(struct rtattr **tb)
 | |
| {
 | |
| 	struct crypto_instance *inst;
 | |
| 	struct crypto_alg *alg;
 | |
| 	int err;
 | |
| 
 | |
| 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_HASH);
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
 | |
| 				  CRYPTO_ALG_TYPE_MASK);
 | |
| 	if (IS_ERR(alg))
 | |
| 		return ERR_PTR(PTR_ERR(alg));
 | |
| 
 | |
| 	switch(alg->cra_blocksize) {
 | |
| 	case 16:
 | |
| 		break;
 | |
| 	default:
 | |
| 		inst = ERR_PTR(-EINVAL);
 | |
| 		goto out_put_alg;
 | |
| 	}
 | |
| 
 | |
| 	inst = crypto_alloc_instance("xcbc", alg);
 | |
| 	if (IS_ERR(inst))
 | |
| 		goto out_put_alg;
 | |
| 
 | |
| 	inst->alg.cra_flags = CRYPTO_ALG_TYPE_HASH;
 | |
| 	inst->alg.cra_priority = alg->cra_priority;
 | |
| 	inst->alg.cra_blocksize = alg->cra_blocksize;
 | |
| 	inst->alg.cra_alignmask = alg->cra_alignmask;
 | |
| 	inst->alg.cra_type = &crypto_hash_type;
 | |
| 
 | |
| 	inst->alg.cra_hash.digestsize = alg->cra_blocksize;
 | |
| 	inst->alg.cra_ctxsize = sizeof(struct crypto_xcbc_ctx) +
 | |
| 				ALIGN(inst->alg.cra_blocksize * 3, sizeof(void *));
 | |
| 	inst->alg.cra_init = xcbc_init_tfm;
 | |
| 	inst->alg.cra_exit = xcbc_exit_tfm;
 | |
| 
 | |
| 	inst->alg.cra_hash.init = crypto_xcbc_digest_init;
 | |
| 	inst->alg.cra_hash.update = crypto_xcbc_digest_update;
 | |
| 	inst->alg.cra_hash.final = crypto_xcbc_digest_final;
 | |
| 	inst->alg.cra_hash.digest = crypto_xcbc_digest;
 | |
| 	inst->alg.cra_hash.setkey = crypto_xcbc_digest_setkey;
 | |
| 
 | |
| out_put_alg:
 | |
| 	crypto_mod_put(alg);
 | |
| 	return inst;
 | |
| }
 | |
| 
 | |
| static void xcbc_free(struct crypto_instance *inst)
 | |
| {
 | |
| 	crypto_drop_spawn(crypto_instance_ctx(inst));
 | |
| 	kfree(inst);
 | |
| }
 | |
| 
 | |
| static struct crypto_template crypto_xcbc_tmpl = {
 | |
| 	.name = "xcbc",
 | |
| 	.alloc = xcbc_alloc,
 | |
| 	.free = xcbc_free,
 | |
| 	.module = THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init crypto_xcbc_module_init(void)
 | |
| {
 | |
| 	return crypto_register_template(&crypto_xcbc_tmpl);
 | |
| }
 | |
| 
 | |
| static void __exit crypto_xcbc_module_exit(void)
 | |
| {
 | |
| 	crypto_unregister_template(&crypto_xcbc_tmpl);
 | |
| }
 | |
| 
 | |
| module_init(crypto_xcbc_module_init);
 | |
| module_exit(crypto_xcbc_module_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("XCBC keyed hash algorithm");
 |