 96e82e4551
			
		
	
	
	96e82e4551
	
	
	
		
			
			This patch exports four tables and the set_key() routine. This ressources can be shared by other AES implementations (aes-x86_64 for instance). The decryption key has been turned around (deckey[0] is the first piece of the key instead of deckey[keylen+20]). The encrypt/decrypt functions are looking now identical (except they are using different tables and key). Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			470 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			470 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* 
 | |
|  * Cryptographic API.
 | |
|  *
 | |
|  * AES Cipher Algorithm.
 | |
|  *
 | |
|  * Based on Brian Gladman's code.
 | |
|  *
 | |
|  * Linux developers:
 | |
|  *  Alexander Kjeldaas <astor@fast.no>
 | |
|  *  Herbert Valerio Riedel <hvr@hvrlab.org>
 | |
|  *  Kyle McMartin <kyle@debian.org>
 | |
|  *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * ---------------------------------------------------------------------------
 | |
|  * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * LICENSE TERMS
 | |
|  *
 | |
|  * The free distribution and use of this software in both source and binary
 | |
|  * form is allowed (with or without changes) provided that:
 | |
|  *
 | |
|  *   1. distributions of this source code include the above copyright
 | |
|  *      notice, this list of conditions and the following disclaimer;
 | |
|  *
 | |
|  *   2. distributions in binary form include the above copyright
 | |
|  *      notice, this list of conditions and the following disclaimer
 | |
|  *      in the documentation and/or other associated materials;
 | |
|  *
 | |
|  *   3. the copyright holder's name is not used to endorse products
 | |
|  *      built using this software without specific written permission.
 | |
|  *
 | |
|  * ALTERNATIVELY, provided that this notice is retained in full, this product
 | |
|  * may be distributed under the terms of the GNU General Public License (GPL),
 | |
|  * in which case the provisions of the GPL apply INSTEAD OF those given above.
 | |
|  *
 | |
|  * DISCLAIMER
 | |
|  *
 | |
|  * This software is provided 'as is' with no explicit or implied warranties
 | |
|  * in respect of its properties, including, but not limited to, correctness
 | |
|  * and/or fitness for purpose.
 | |
|  * ---------------------------------------------------------------------------
 | |
|  */
 | |
| 
 | |
| #include <crypto/aes.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <asm/byteorder.h>
 | |
| 
 | |
| static inline u8 byte(const u32 x, const unsigned n)
 | |
| {
 | |
| 	return x >> (n << 3);
 | |
| }
 | |
| 
 | |
| static u8 pow_tab[256] __initdata;
 | |
| static u8 log_tab[256] __initdata;
 | |
| static u8 sbx_tab[256] __initdata;
 | |
| static u8 isb_tab[256] __initdata;
 | |
| static u32 rco_tab[10];
 | |
| 
 | |
| u32 crypto_ft_tab[4][256];
 | |
| u32 crypto_fl_tab[4][256];
 | |
| u32 crypto_it_tab[4][256];
 | |
| u32 crypto_il_tab[4][256];
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(crypto_ft_tab);
 | |
| EXPORT_SYMBOL_GPL(crypto_fl_tab);
 | |
| EXPORT_SYMBOL_GPL(crypto_it_tab);
 | |
| EXPORT_SYMBOL_GPL(crypto_il_tab);
 | |
| 
 | |
| static inline u8 __init f_mult(u8 a, u8 b)
 | |
| {
 | |
| 	u8 aa = log_tab[a], cc = aa + log_tab[b];
 | |
| 
 | |
| 	return pow_tab[cc + (cc < aa ? 1 : 0)];
 | |
| }
 | |
| 
 | |
| #define ff_mult(a, b)	(a && b ? f_mult(a, b) : 0)
 | |
| 
 | |
| static void __init gen_tabs(void)
 | |
| {
 | |
| 	u32 i, t;
 | |
| 	u8 p, q;
 | |
| 
 | |
| 	/*
 | |
| 	 * log and power tables for GF(2**8) finite field with
 | |
| 	 * 0x011b as modular polynomial - the simplest primitive
 | |
| 	 * root is 0x03, used here to generate the tables
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0, p = 1; i < 256; ++i) {
 | |
| 		pow_tab[i] = (u8) p;
 | |
| 		log_tab[p] = (u8) i;
 | |
| 
 | |
| 		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
 | |
| 	}
 | |
| 
 | |
| 	log_tab[1] = 0;
 | |
| 
 | |
| 	for (i = 0, p = 1; i < 10; ++i) {
 | |
| 		rco_tab[i] = p;
 | |
| 
 | |
| 		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 256; ++i) {
 | |
| 		p = (i ? pow_tab[255 - log_tab[i]] : 0);
 | |
| 		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
 | |
| 		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
 | |
| 		sbx_tab[i] = p;
 | |
| 		isb_tab[p] = (u8) i;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 256; ++i) {
 | |
| 		p = sbx_tab[i];
 | |
| 
 | |
| 		t = p;
 | |
| 		crypto_fl_tab[0][i] = t;
 | |
| 		crypto_fl_tab[1][i] = rol32(t, 8);
 | |
| 		crypto_fl_tab[2][i] = rol32(t, 16);
 | |
| 		crypto_fl_tab[3][i] = rol32(t, 24);
 | |
| 
 | |
| 		t = ((u32) ff_mult(2, p)) |
 | |
| 		    ((u32) p << 8) |
 | |
| 		    ((u32) p << 16) | ((u32) ff_mult(3, p) << 24);
 | |
| 
 | |
| 		crypto_ft_tab[0][i] = t;
 | |
| 		crypto_ft_tab[1][i] = rol32(t, 8);
 | |
| 		crypto_ft_tab[2][i] = rol32(t, 16);
 | |
| 		crypto_ft_tab[3][i] = rol32(t, 24);
 | |
| 
 | |
| 		p = isb_tab[i];
 | |
| 
 | |
| 		t = p;
 | |
| 		crypto_il_tab[0][i] = t;
 | |
| 		crypto_il_tab[1][i] = rol32(t, 8);
 | |
| 		crypto_il_tab[2][i] = rol32(t, 16);
 | |
| 		crypto_il_tab[3][i] = rol32(t, 24);
 | |
| 
 | |
| 		t = ((u32) ff_mult(14, p)) |
 | |
| 		    ((u32) ff_mult(9, p) << 8) |
 | |
| 		    ((u32) ff_mult(13, p) << 16) |
 | |
| 		    ((u32) ff_mult(11, p) << 24);
 | |
| 
 | |
| 		crypto_it_tab[0][i] = t;
 | |
| 		crypto_it_tab[1][i] = rol32(t, 8);
 | |
| 		crypto_it_tab[2][i] = rol32(t, 16);
 | |
| 		crypto_it_tab[3][i] = rol32(t, 24);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* initialise the key schedule from the user supplied key */
 | |
| 
 | |
| #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
 | |
| 
 | |
| #define imix_col(y,x)	do {		\
 | |
| 	u	= star_x(x);		\
 | |
| 	v	= star_x(u);		\
 | |
| 	w	= star_x(v);		\
 | |
| 	t	= w ^ (x);		\
 | |
| 	(y)	= u ^ v ^ w;		\
 | |
| 	(y)	^= ror32(u ^ t, 8) ^	\
 | |
| 		ror32(v ^ t, 16) ^	\
 | |
| 		ror32(t, 24);		\
 | |
| } while (0)
 | |
| 
 | |
| #define ls_box(x)		\
 | |
| 	crypto_fl_tab[0][byte(x, 0)] ^	\
 | |
| 	crypto_fl_tab[1][byte(x, 1)] ^	\
 | |
| 	crypto_fl_tab[2][byte(x, 2)] ^	\
 | |
| 	crypto_fl_tab[3][byte(x, 3)]
 | |
| 
 | |
| #define loop4(i)	do {		\
 | |
| 	t = ror32(t, 8);		\
 | |
| 	t = ls_box(t) ^ rco_tab[i];	\
 | |
| 	t ^= ctx->key_enc[4 * i];		\
 | |
| 	ctx->key_enc[4 * i + 4] = t;		\
 | |
| 	t ^= ctx->key_enc[4 * i + 1];		\
 | |
| 	ctx->key_enc[4 * i + 5] = t;		\
 | |
| 	t ^= ctx->key_enc[4 * i + 2];		\
 | |
| 	ctx->key_enc[4 * i + 6] = t;		\
 | |
| 	t ^= ctx->key_enc[4 * i + 3];		\
 | |
| 	ctx->key_enc[4 * i + 7] = t;		\
 | |
| } while (0)
 | |
| 
 | |
| #define loop6(i)	do {		\
 | |
| 	t = ror32(t, 8);		\
 | |
| 	t = ls_box(t) ^ rco_tab[i];	\
 | |
| 	t ^= ctx->key_enc[6 * i];		\
 | |
| 	ctx->key_enc[6 * i + 6] = t;		\
 | |
| 	t ^= ctx->key_enc[6 * i + 1];		\
 | |
| 	ctx->key_enc[6 * i + 7] = t;		\
 | |
| 	t ^= ctx->key_enc[6 * i + 2];		\
 | |
| 	ctx->key_enc[6 * i + 8] = t;		\
 | |
| 	t ^= ctx->key_enc[6 * i + 3];		\
 | |
| 	ctx->key_enc[6 * i + 9] = t;		\
 | |
| 	t ^= ctx->key_enc[6 * i + 4];		\
 | |
| 	ctx->key_enc[6 * i + 10] = t;		\
 | |
| 	t ^= ctx->key_enc[6 * i + 5];		\
 | |
| 	ctx->key_enc[6 * i + 11] = t;		\
 | |
| } while (0)
 | |
| 
 | |
| #define loop8(i)	do {			\
 | |
| 	t = ror32(t, 8);			\
 | |
| 	t = ls_box(t) ^ rco_tab[i];		\
 | |
| 	t ^= ctx->key_enc[8 * i];			\
 | |
| 	ctx->key_enc[8 * i + 8] = t;			\
 | |
| 	t ^= ctx->key_enc[8 * i + 1];			\
 | |
| 	ctx->key_enc[8 * i + 9] = t;			\
 | |
| 	t ^= ctx->key_enc[8 * i + 2];			\
 | |
| 	ctx->key_enc[8 * i + 10] = t;			\
 | |
| 	t ^= ctx->key_enc[8 * i + 3];			\
 | |
| 	ctx->key_enc[8 * i + 11] = t;			\
 | |
| 	t  = ctx->key_enc[8 * i + 4] ^ ls_box(t);	\
 | |
| 	ctx->key_enc[8 * i + 12] = t;			\
 | |
| 	t ^= ctx->key_enc[8 * i + 5];			\
 | |
| 	ctx->key_enc[8 * i + 13] = t;			\
 | |
| 	t ^= ctx->key_enc[8 * i + 6];			\
 | |
| 	ctx->key_enc[8 * i + 14] = t;			\
 | |
| 	t ^= ctx->key_enc[8 * i + 7];			\
 | |
| 	ctx->key_enc[8 * i + 15] = t;			\
 | |
| } while (0)
 | |
| 
 | |
| int crypto_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
 | |
| 		unsigned int key_len)
 | |
| {
 | |
| 	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 	const __le32 *key = (const __le32 *)in_key;
 | |
| 	u32 *flags = &tfm->crt_flags;
 | |
| 	u32 i, t, u, v, w, j;
 | |
| 
 | |
| 	if (key_len % 8) {
 | |
| 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ctx->key_length = key_len;
 | |
| 
 | |
| 	ctx->key_dec[key_len + 24] = ctx->key_enc[0] = le32_to_cpu(key[0]);
 | |
| 	ctx->key_dec[key_len + 25] = ctx->key_enc[1] = le32_to_cpu(key[1]);
 | |
| 	ctx->key_dec[key_len + 26] = ctx->key_enc[2] = le32_to_cpu(key[2]);
 | |
| 	ctx->key_dec[key_len + 27] = ctx->key_enc[3] = le32_to_cpu(key[3]);
 | |
| 
 | |
| 	switch (key_len) {
 | |
| 	case 16:
 | |
| 		t = ctx->key_enc[3];
 | |
| 		for (i = 0; i < 10; ++i)
 | |
| 			loop4(i);
 | |
| 		break;
 | |
| 
 | |
| 	case 24:
 | |
| 		ctx->key_enc[4] = le32_to_cpu(key[4]);
 | |
| 		t = ctx->key_enc[5] = le32_to_cpu(key[5]);
 | |
| 		for (i = 0; i < 8; ++i)
 | |
| 			loop6(i);
 | |
| 		break;
 | |
| 
 | |
| 	case 32:
 | |
| 		ctx->key_enc[4] = le32_to_cpu(key[4]);
 | |
| 		ctx->key_enc[5] = le32_to_cpu(key[5]);
 | |
| 		ctx->key_enc[6] = le32_to_cpu(key[6]);
 | |
| 		t = ctx->key_enc[7] = le32_to_cpu(key[7]);
 | |
| 		for (i = 0; i < 7; ++i)
 | |
| 			loop8(i);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ctx->key_dec[0] = ctx->key_enc[key_len + 24];
 | |
| 	ctx->key_dec[1] = ctx->key_enc[key_len + 25];
 | |
| 	ctx->key_dec[2] = ctx->key_enc[key_len + 26];
 | |
| 	ctx->key_dec[3] = ctx->key_enc[key_len + 27];
 | |
| 
 | |
| 	for (i = 4; i < key_len + 24; ++i) {
 | |
| 		j = key_len + 24 - (i & ~3) + (i & 3);
 | |
| 		imix_col(ctx->key_dec[j], ctx->key_enc[i]);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_aes_set_key);
 | |
| 
 | |
| /* encrypt a block of text */
 | |
| 
 | |
| #define f_rn(bo, bi, n, k)	do {				\
 | |
| 	bo[n] = crypto_ft_tab[0][byte(bi[n], 0)] ^			\
 | |
| 		crypto_ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^		\
 | |
| 		crypto_ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\
 | |
| 		crypto_ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n);	\
 | |
| } while (0)
 | |
| 
 | |
| #define f_nround(bo, bi, k)	do {\
 | |
| 	f_rn(bo, bi, 0, k);	\
 | |
| 	f_rn(bo, bi, 1, k);	\
 | |
| 	f_rn(bo, bi, 2, k);	\
 | |
| 	f_rn(bo, bi, 3, k);	\
 | |
| 	k += 4;			\
 | |
| } while (0)
 | |
| 
 | |
| #define f_rl(bo, bi, n, k)	do {				\
 | |
| 	bo[n] = crypto_fl_tab[0][byte(bi[n], 0)] ^			\
 | |
| 		crypto_fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^		\
 | |
| 		crypto_fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\
 | |
| 		crypto_fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n);	\
 | |
| } while (0)
 | |
| 
 | |
| #define f_lround(bo, bi, k)	do {\
 | |
| 	f_rl(bo, bi, 0, k);	\
 | |
| 	f_rl(bo, bi, 1, k);	\
 | |
| 	f_rl(bo, bi, 2, k);	\
 | |
| 	f_rl(bo, bi, 3, k);	\
 | |
| } while (0)
 | |
| 
 | |
| static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 | |
| {
 | |
| 	const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 	const __le32 *src = (const __le32 *)in;
 | |
| 	__le32 *dst = (__le32 *)out;
 | |
| 	u32 b0[4], b1[4];
 | |
| 	const u32 *kp = ctx->key_enc + 4;
 | |
| 	const int key_len = ctx->key_length;
 | |
| 
 | |
| 	b0[0] = le32_to_cpu(src[0]) ^ ctx->key_enc[0];
 | |
| 	b0[1] = le32_to_cpu(src[1]) ^ ctx->key_enc[1];
 | |
| 	b0[2] = le32_to_cpu(src[2]) ^ ctx->key_enc[2];
 | |
| 	b0[3] = le32_to_cpu(src[3]) ^ ctx->key_enc[3];
 | |
| 
 | |
| 	if (key_len > 24) {
 | |
| 		f_nround(b1, b0, kp);
 | |
| 		f_nround(b0, b1, kp);
 | |
| 	}
 | |
| 
 | |
| 	if (key_len > 16) {
 | |
| 		f_nround(b1, b0, kp);
 | |
| 		f_nround(b0, b1, kp);
 | |
| 	}
 | |
| 
 | |
| 	f_nround(b1, b0, kp);
 | |
| 	f_nround(b0, b1, kp);
 | |
| 	f_nround(b1, b0, kp);
 | |
| 	f_nround(b0, b1, kp);
 | |
| 	f_nround(b1, b0, kp);
 | |
| 	f_nround(b0, b1, kp);
 | |
| 	f_nround(b1, b0, kp);
 | |
| 	f_nround(b0, b1, kp);
 | |
| 	f_nround(b1, b0, kp);
 | |
| 	f_lround(b0, b1, kp);
 | |
| 
 | |
| 	dst[0] = cpu_to_le32(b0[0]);
 | |
| 	dst[1] = cpu_to_le32(b0[1]);
 | |
| 	dst[2] = cpu_to_le32(b0[2]);
 | |
| 	dst[3] = cpu_to_le32(b0[3]);
 | |
| }
 | |
| 
 | |
| /* decrypt a block of text */
 | |
| 
 | |
| #define i_rn(bo, bi, n, k)	do {				\
 | |
| 	bo[n] = crypto_it_tab[0][byte(bi[n], 0)] ^			\
 | |
| 		crypto_it_tab[1][byte(bi[(n + 3) & 3], 1)] ^		\
 | |
| 		crypto_it_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\
 | |
| 		crypto_it_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n);	\
 | |
| } while (0)
 | |
| 
 | |
| #define i_nround(bo, bi, k)	do {\
 | |
| 	i_rn(bo, bi, 0, k);	\
 | |
| 	i_rn(bo, bi, 1, k);	\
 | |
| 	i_rn(bo, bi, 2, k);	\
 | |
| 	i_rn(bo, bi, 3, k);	\
 | |
| 	k += 4;			\
 | |
| } while (0)
 | |
| 
 | |
| #define i_rl(bo, bi, n, k)	do {			\
 | |
| 	bo[n] = crypto_il_tab[0][byte(bi[n], 0)] ^		\
 | |
| 	crypto_il_tab[1][byte(bi[(n + 3) & 3], 1)] ^		\
 | |
| 	crypto_il_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\
 | |
| 	crypto_il_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n);	\
 | |
| } while (0)
 | |
| 
 | |
| #define i_lround(bo, bi, k)	do {\
 | |
| 	i_rl(bo, bi, 0, k);	\
 | |
| 	i_rl(bo, bi, 1, k);	\
 | |
| 	i_rl(bo, bi, 2, k);	\
 | |
| 	i_rl(bo, bi, 3, k);	\
 | |
| } while (0)
 | |
| 
 | |
| static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 | |
| {
 | |
| 	const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 	const __le32 *src = (const __le32 *)in;
 | |
| 	__le32 *dst = (__le32 *)out;
 | |
| 	u32 b0[4], b1[4];
 | |
| 	const int key_len = ctx->key_length;
 | |
| 	const u32 *kp = ctx->key_dec + 4;
 | |
| 
 | |
| 	b0[0] = le32_to_cpu(src[0]) ^  ctx->key_dec[0];
 | |
| 	b0[1] = le32_to_cpu(src[1]) ^  ctx->key_dec[1];
 | |
| 	b0[2] = le32_to_cpu(src[2]) ^  ctx->key_dec[2];
 | |
| 	b0[3] = le32_to_cpu(src[3]) ^  ctx->key_dec[3];
 | |
| 
 | |
| 	if (key_len > 24) {
 | |
| 		i_nround(b1, b0, kp);
 | |
| 		i_nround(b0, b1, kp);
 | |
| 	}
 | |
| 
 | |
| 	if (key_len > 16) {
 | |
| 		i_nround(b1, b0, kp);
 | |
| 		i_nround(b0, b1, kp);
 | |
| 	}
 | |
| 
 | |
| 	i_nround(b1, b0, kp);
 | |
| 	i_nround(b0, b1, kp);
 | |
| 	i_nround(b1, b0, kp);
 | |
| 	i_nround(b0, b1, kp);
 | |
| 	i_nround(b1, b0, kp);
 | |
| 	i_nround(b0, b1, kp);
 | |
| 	i_nround(b1, b0, kp);
 | |
| 	i_nround(b0, b1, kp);
 | |
| 	i_nround(b1, b0, kp);
 | |
| 	i_lround(b0, b1, kp);
 | |
| 
 | |
| 	dst[0] = cpu_to_le32(b0[0]);
 | |
| 	dst[1] = cpu_to_le32(b0[1]);
 | |
| 	dst[2] = cpu_to_le32(b0[2]);
 | |
| 	dst[3] = cpu_to_le32(b0[3]);
 | |
| }
 | |
| 
 | |
| static struct crypto_alg aes_alg = {
 | |
| 	.cra_name		=	"aes",
 | |
| 	.cra_driver_name	=	"aes-generic",
 | |
| 	.cra_priority		=	100,
 | |
| 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
 | |
| 	.cra_blocksize		=	AES_BLOCK_SIZE,
 | |
| 	.cra_ctxsize		=	sizeof(struct crypto_aes_ctx),
 | |
| 	.cra_alignmask		=	3,
 | |
| 	.cra_module		=	THIS_MODULE,
 | |
| 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
 | |
| 	.cra_u			=	{
 | |
| 		.cipher = {
 | |
| 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
 | |
| 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
 | |
| 			.cia_setkey		=	crypto_aes_set_key,
 | |
| 			.cia_encrypt		=	aes_encrypt,
 | |
| 			.cia_decrypt		=	aes_decrypt
 | |
| 		}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static int __init aes_init(void)
 | |
| {
 | |
| 	gen_tabs();
 | |
| 	return crypto_register_alg(&aes_alg);
 | |
| }
 | |
| 
 | |
| static void __exit aes_fini(void)
 | |
| {
 | |
| 	crypto_unregister_alg(&aes_alg);
 | |
| }
 | |
| 
 | |
| module_init(aes_init);
 | |
| module_exit(aes_fini);
 | |
| 
 | |
| MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
 | |
| MODULE_LICENSE("Dual BSD/GPL");
 | |
| MODULE_ALIAS("aes");
 |