2593 lines
		
	
	
	
		
			77 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2593 lines
		
	
	
	
		
			77 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  ** old_item_num
 | |
|  ** old_entry_num
 | |
|  ** set_entry_sizes
 | |
|  ** create_virtual_node
 | |
|  ** check_left
 | |
|  ** check_right
 | |
|  ** directory_part_size
 | |
|  ** get_num_ver
 | |
|  ** set_parameters
 | |
|  ** is_leaf_removable
 | |
|  ** are_leaves_removable
 | |
|  ** get_empty_nodes
 | |
|  ** get_lfree
 | |
|  ** get_rfree
 | |
|  ** is_left_neighbor_in_cache
 | |
|  ** decrement_key
 | |
|  ** get_far_parent
 | |
|  ** get_parents
 | |
|  ** can_node_be_removed
 | |
|  ** ip_check_balance
 | |
|  ** dc_check_balance_internal
 | |
|  ** dc_check_balance_leaf
 | |
|  ** dc_check_balance
 | |
|  ** check_balance
 | |
|  ** get_direct_parent
 | |
|  ** get_neighbors
 | |
|  ** fix_nodes
 | |
|  **
 | |
|  **
 | |
|  **/
 | |
| 
 | |
| #include <linux/time.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include "reiserfs.h"
 | |
| #include <linux/buffer_head.h>
 | |
| 
 | |
| /* To make any changes in the tree we find a node, that contains item
 | |
|    to be changed/deleted or position in the node we insert a new item
 | |
|    to. We call this node S. To do balancing we need to decide what we
 | |
|    will shift to left/right neighbor, or to a new node, where new item
 | |
|    will be etc. To make this analysis simpler we build virtual
 | |
|    node. Virtual node is an array of items, that will replace items of
 | |
|    node S. (For instance if we are going to delete an item, virtual
 | |
|    node does not contain it). Virtual node keeps information about
 | |
|    item sizes and types, mergeability of first and last items, sizes
 | |
|    of all entries in directory item. We use this array of items when
 | |
|    calculating what we can shift to neighbors and how many nodes we
 | |
|    have to have if we do not any shiftings, if we shift to left/right
 | |
|    neighbor or to both. */
 | |
| 
 | |
| /* taking item number in virtual node, returns number of item, that it has in source buffer */
 | |
| static inline int old_item_num(int new_num, int affected_item_num, int mode)
 | |
| {
 | |
| 	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
 | |
| 		return new_num;
 | |
| 
 | |
| 	if (mode == M_INSERT) {
 | |
| 
 | |
| 		RFALSE(new_num == 0,
 | |
| 		       "vs-8005: for INSERT mode and item number of inserted item");
 | |
| 
 | |
| 		return new_num - 1;
 | |
| 	}
 | |
| 
 | |
| 	RFALSE(mode != M_DELETE,
 | |
| 	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
 | |
| 	       mode);
 | |
| 	/* delete mode */
 | |
| 	return new_num + 1;
 | |
| }
 | |
| 
 | |
| static void create_virtual_node(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct item_head *ih;
 | |
| 	struct virtual_node *vn = tb->tb_vn;
 | |
| 	int new_num;
 | |
| 	struct buffer_head *Sh;	/* this comes from tb->S[h] */
 | |
| 
 | |
| 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
 | |
| 
 | |
| 	/* size of changed node */
 | |
| 	vn->vn_size =
 | |
| 	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
 | |
| 
 | |
| 	/* for internal nodes array if virtual items is not created */
 | |
| 	if (h) {
 | |
| 		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* number of items in virtual node  */
 | |
| 	vn->vn_nr_item =
 | |
| 	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
 | |
| 	    ((vn->vn_mode == M_DELETE) ? 1 : 0);
 | |
| 
 | |
| 	/* first virtual item */
 | |
| 	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
 | |
| 	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
 | |
| 	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
 | |
| 
 | |
| 	/* first item in the node */
 | |
| 	ih = B_N_PITEM_HEAD(Sh, 0);
 | |
| 
 | |
| 	/* define the mergeability for 0-th item (if it is not being deleted) */
 | |
| 	if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
 | |
| 	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
 | |
| 		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
 | |
| 
 | |
| 	/* go through all items those remain in the virtual node (except for the new (inserted) one) */
 | |
| 	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
 | |
| 		int j;
 | |
| 		struct virtual_item *vi = vn->vn_vi + new_num;
 | |
| 		int is_affected =
 | |
| 		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);
 | |
| 
 | |
| 		if (is_affected && vn->vn_mode == M_INSERT)
 | |
| 			continue;
 | |
| 
 | |
| 		/* get item number in source node */
 | |
| 		j = old_item_num(new_num, vn->vn_affected_item_num,
 | |
| 				 vn->vn_mode);
 | |
| 
 | |
| 		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
 | |
| 		vi->vi_ih = ih + j;
 | |
| 		vi->vi_item = B_I_PITEM(Sh, ih + j);
 | |
| 		vi->vi_uarea = vn->vn_free_ptr;
 | |
| 
 | |
| 		// FIXME: there is no check, that item operation did not
 | |
| 		// consume too much memory
 | |
| 		vn->vn_free_ptr +=
 | |
| 		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
 | |
| 		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
 | |
| 			reiserfs_panic(tb->tb_sb, "vs-8030",
 | |
| 				       "virtual node space consumed");
 | |
| 
 | |
| 		if (!is_affected)
 | |
| 			/* this is not being changed */
 | |
| 			continue;
 | |
| 
 | |
| 		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
 | |
| 			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
 | |
| 			vi->vi_new_data = vn->vn_data;	// pointer to data which is going to be pasted
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* virtual inserted item is not defined yet */
 | |
| 	if (vn->vn_mode == M_INSERT) {
 | |
| 		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
 | |
| 
 | |
| 		RFALSE(vn->vn_ins_ih == NULL,
 | |
| 		       "vs-8040: item header of inserted item is not specified");
 | |
| 		vi->vi_item_len = tb->insert_size[0];
 | |
| 		vi->vi_ih = vn->vn_ins_ih;
 | |
| 		vi->vi_item = vn->vn_data;
 | |
| 		vi->vi_uarea = vn->vn_free_ptr;
 | |
| 
 | |
| 		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
 | |
| 			     tb->insert_size[0]);
 | |
| 	}
 | |
| 
 | |
| 	/* set right merge flag we take right delimiting key and check whether it is a mergeable item */
 | |
| 	if (tb->CFR[0]) {
 | |
| 		struct reiserfs_key *key;
 | |
| 
 | |
| 		key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
 | |
| 		if (op_is_left_mergeable(key, Sh->b_size)
 | |
| 		    && (vn->vn_mode != M_DELETE
 | |
| 			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
 | |
| 			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
 | |
| 			    VI_TYPE_RIGHT_MERGEABLE;
 | |
| 
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 		if (op_is_left_mergeable(key, Sh->b_size) &&
 | |
| 		    !(vn->vn_mode != M_DELETE
 | |
| 		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
 | |
| 			/* we delete last item and it could be merged with right neighbor's first item */
 | |
| 			if (!
 | |
| 			    (B_NR_ITEMS(Sh) == 1
 | |
| 			     && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
 | |
| 			     && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
 | |
| 				/* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
 | |
| 				print_block(Sh, 0, -1, -1);
 | |
| 				reiserfs_panic(tb->tb_sb, "vs-8045",
 | |
| 					       "rdkey %k, affected item==%d "
 | |
| 					       "(mode==%c) Must be %c",
 | |
| 					       key, vn->vn_affected_item_num,
 | |
| 					       vn->vn_mode, M_DELETE);
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* using virtual node check, how many items can be shifted to left
 | |
|    neighbor */
 | |
| static void check_left(struct tree_balance *tb, int h, int cur_free)
 | |
| {
 | |
| 	int i;
 | |
| 	struct virtual_node *vn = tb->tb_vn;
 | |
| 	struct virtual_item *vi;
 | |
| 	int d_size, ih_size;
 | |
| 
 | |
| 	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
 | |
| 
 | |
| 	/* internal level */
 | |
| 	if (h > 0) {
 | |
| 		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* leaf level */
 | |
| 
 | |
| 	if (!cur_free || !vn->vn_nr_item) {
 | |
| 		/* no free space or nothing to move */
 | |
| 		tb->lnum[h] = 0;
 | |
| 		tb->lbytes = -1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
 | |
| 	       "vs-8055: parent does not exist or invalid");
 | |
| 
 | |
| 	vi = vn->vn_vi;
 | |
| 	if ((unsigned int)cur_free >=
 | |
| 	    (vn->vn_size -
 | |
| 	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
 | |
| 		/* all contents of S[0] fits into L[0] */
 | |
| 
 | |
| 		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
 | |
| 		       "vs-8055: invalid mode or balance condition failed");
 | |
| 
 | |
| 		tb->lnum[0] = vn->vn_nr_item;
 | |
| 		tb->lbytes = -1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	d_size = 0, ih_size = IH_SIZE;
 | |
| 
 | |
| 	/* first item may be merge with last item in left neighbor */
 | |
| 	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
 | |
| 		d_size = -((int)IH_SIZE), ih_size = 0;
 | |
| 
 | |
| 	tb->lnum[0] = 0;
 | |
| 	for (i = 0; i < vn->vn_nr_item;
 | |
| 	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
 | |
| 		d_size += vi->vi_item_len;
 | |
| 		if (cur_free >= d_size) {
 | |
| 			/* the item can be shifted entirely */
 | |
| 			cur_free -= d_size;
 | |
| 			tb->lnum[0]++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* the item cannot be shifted entirely, try to split it */
 | |
| 		/* check whether L[0] can hold ih and at least one byte of the item body */
 | |
| 		if (cur_free <= ih_size) {
 | |
| 			/* cannot shift even a part of the current item */
 | |
| 			tb->lbytes = -1;
 | |
| 			return;
 | |
| 		}
 | |
| 		cur_free -= ih_size;
 | |
| 
 | |
| 		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
 | |
| 		if (tb->lbytes != -1)
 | |
| 			/* count partially shifted item */
 | |
| 			tb->lnum[0]++;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /* using virtual node check, how many items can be shifted to right
 | |
|    neighbor */
 | |
| static void check_right(struct tree_balance *tb, int h, int cur_free)
 | |
| {
 | |
| 	int i;
 | |
| 	struct virtual_node *vn = tb->tb_vn;
 | |
| 	struct virtual_item *vi;
 | |
| 	int d_size, ih_size;
 | |
| 
 | |
| 	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
 | |
| 
 | |
| 	/* internal level */
 | |
| 	if (h > 0) {
 | |
| 		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* leaf level */
 | |
| 
 | |
| 	if (!cur_free || !vn->vn_nr_item) {
 | |
| 		/* no free space  */
 | |
| 		tb->rnum[h] = 0;
 | |
| 		tb->rbytes = -1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
 | |
| 	       "vs-8075: parent does not exist or invalid");
 | |
| 
 | |
| 	vi = vn->vn_vi + vn->vn_nr_item - 1;
 | |
| 	if ((unsigned int)cur_free >=
 | |
| 	    (vn->vn_size -
 | |
| 	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
 | |
| 		/* all contents of S[0] fits into R[0] */
 | |
| 
 | |
| 		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
 | |
| 		       "vs-8080: invalid mode or balance condition failed");
 | |
| 
 | |
| 		tb->rnum[h] = vn->vn_nr_item;
 | |
| 		tb->rbytes = -1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	d_size = 0, ih_size = IH_SIZE;
 | |
| 
 | |
| 	/* last item may be merge with first item in right neighbor */
 | |
| 	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
 | |
| 		d_size = -(int)IH_SIZE, ih_size = 0;
 | |
| 
 | |
| 	tb->rnum[0] = 0;
 | |
| 	for (i = vn->vn_nr_item - 1; i >= 0;
 | |
| 	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
 | |
| 		d_size += vi->vi_item_len;
 | |
| 		if (cur_free >= d_size) {
 | |
| 			/* the item can be shifted entirely */
 | |
| 			cur_free -= d_size;
 | |
| 			tb->rnum[0]++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* check whether R[0] can hold ih and at least one byte of the item body */
 | |
| 		if (cur_free <= ih_size) {	/* cannot shift even a part of the current item */
 | |
| 			tb->rbytes = -1;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* R[0] can hold the header of the item and at least one byte of its body */
 | |
| 		cur_free -= ih_size;	/* cur_free is still > 0 */
 | |
| 
 | |
| 		tb->rbytes = op_check_right(vi, cur_free);
 | |
| 		if (tb->rbytes != -1)
 | |
| 			/* count partially shifted item */
 | |
| 			tb->rnum[0]++;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * from - number of items, which are shifted to left neighbor entirely
 | |
|  * to - number of item, which are shifted to right neighbor entirely
 | |
|  * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
 | |
|  * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
 | |
| static int get_num_ver(int mode, struct tree_balance *tb, int h,
 | |
| 		       int from, int from_bytes,
 | |
| 		       int to, int to_bytes, short *snum012, int flow)
 | |
| {
 | |
| 	int i;
 | |
| 	int cur_free;
 | |
| 	//    int bytes;
 | |
| 	int units;
 | |
| 	struct virtual_node *vn = tb->tb_vn;
 | |
| 	//    struct virtual_item * vi;
 | |
| 
 | |
| 	int total_node_size, max_node_size, current_item_size;
 | |
| 	int needed_nodes;
 | |
| 	int start_item,		/* position of item we start filling node from */
 | |
| 	 end_item,		/* position of item we finish filling node by */
 | |
| 	 start_bytes,		/* number of first bytes (entries for directory) of start_item-th item
 | |
| 				   we do not include into node that is being filled */
 | |
| 	 end_bytes;		/* number of last bytes (entries for directory) of end_item-th item
 | |
| 				   we do node include into node that is being filled */
 | |
| 	int split_item_positions[2];	/* these are positions in virtual item of
 | |
| 					   items, that are split between S[0] and
 | |
| 					   S1new and S1new and S2new */
 | |
| 
 | |
| 	split_item_positions[0] = -1;
 | |
| 	split_item_positions[1] = -1;
 | |
| 
 | |
| 	/* We only create additional nodes if we are in insert or paste mode
 | |
| 	   or we are in replace mode at the internal level. If h is 0 and
 | |
| 	   the mode is M_REPLACE then in fix_nodes we change the mode to
 | |
| 	   paste or insert before we get here in the code.  */
 | |
| 	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
 | |
| 	       "vs-8100: insert_size < 0 in overflow");
 | |
| 
 | |
| 	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
 | |
| 
 | |
| 	/* snum012 [0-2] - number of items, that lay
 | |
| 	   to S[0], first new node and second new node */
 | |
| 	snum012[3] = -1;	/* s1bytes */
 | |
| 	snum012[4] = -1;	/* s2bytes */
 | |
| 
 | |
| 	/* internal level */
 | |
| 	if (h > 0) {
 | |
| 		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
 | |
| 		if (i == max_node_size)
 | |
| 			return 1;
 | |
| 		return (i / max_node_size + 1);
 | |
| 	}
 | |
| 
 | |
| 	/* leaf level */
 | |
| 	needed_nodes = 1;
 | |
| 	total_node_size = 0;
 | |
| 	cur_free = max_node_size;
 | |
| 
 | |
| 	// start from 'from'-th item
 | |
| 	start_item = from;
 | |
| 	// skip its first 'start_bytes' units
 | |
| 	start_bytes = ((from_bytes != -1) ? from_bytes : 0);
 | |
| 
 | |
| 	// last included item is the 'end_item'-th one
 | |
| 	end_item = vn->vn_nr_item - to - 1;
 | |
| 	// do not count last 'end_bytes' units of 'end_item'-th item
 | |
| 	end_bytes = (to_bytes != -1) ? to_bytes : 0;
 | |
| 
 | |
| 	/* go through all item beginning from the start_item-th item and ending by
 | |
| 	   the end_item-th item. Do not count first 'start_bytes' units of
 | |
| 	   'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
 | |
| 
 | |
| 	for (i = start_item; i <= end_item; i++) {
 | |
| 		struct virtual_item *vi = vn->vn_vi + i;
 | |
| 		int skip_from_end = ((i == end_item) ? end_bytes : 0);
 | |
| 
 | |
| 		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
 | |
| 
 | |
| 		/* get size of current item */
 | |
| 		current_item_size = vi->vi_item_len;
 | |
| 
 | |
| 		/* do not take in calculation head part (from_bytes) of from-th item */
 | |
| 		current_item_size -=
 | |
| 		    op_part_size(vi, 0 /*from start */ , start_bytes);
 | |
| 
 | |
| 		/* do not take in calculation tail part of last item */
 | |
| 		current_item_size -=
 | |
| 		    op_part_size(vi, 1 /*from end */ , skip_from_end);
 | |
| 
 | |
| 		/* if item fits into current node entierly */
 | |
| 		if (total_node_size + current_item_size <= max_node_size) {
 | |
| 			snum012[needed_nodes - 1]++;
 | |
| 			total_node_size += current_item_size;
 | |
| 			start_bytes = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (current_item_size > max_node_size) {
 | |
| 			/* virtual item length is longer, than max size of item in
 | |
| 			   a node. It is impossible for direct item */
 | |
| 			RFALSE(is_direct_le_ih(vi->vi_ih),
 | |
| 			       "vs-8110: "
 | |
| 			       "direct item length is %d. It can not be longer than %d",
 | |
| 			       current_item_size, max_node_size);
 | |
| 			/* we will try to split it */
 | |
| 			flow = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (!flow) {
 | |
| 			/* as we do not split items, take new node and continue */
 | |
| 			needed_nodes++;
 | |
| 			i--;
 | |
| 			total_node_size = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 		// calculate number of item units which fit into node being
 | |
| 		// filled
 | |
| 		{
 | |
| 			int free_space;
 | |
| 
 | |
| 			free_space = max_node_size - total_node_size - IH_SIZE;
 | |
| 			units =
 | |
| 			    op_check_left(vi, free_space, start_bytes,
 | |
| 					  skip_from_end);
 | |
| 			if (units == -1) {
 | |
| 				/* nothing fits into current node, take new node and continue */
 | |
| 				needed_nodes++, i--, total_node_size = 0;
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* something fits into the current node */
 | |
| 		//if (snum012[3] != -1 || needed_nodes != 1)
 | |
| 		//  reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
 | |
| 		//snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
 | |
| 		start_bytes += units;
 | |
| 		snum012[needed_nodes - 1 + 3] = units;
 | |
| 
 | |
| 		if (needed_nodes > 2)
 | |
| 			reiserfs_warning(tb->tb_sb, "vs-8111",
 | |
| 					 "split_item_position is out of range");
 | |
| 		snum012[needed_nodes - 1]++;
 | |
| 		split_item_positions[needed_nodes - 1] = i;
 | |
| 		needed_nodes++;
 | |
| 		/* continue from the same item with start_bytes != -1 */
 | |
| 		start_item = i;
 | |
| 		i--;
 | |
| 		total_node_size = 0;
 | |
| 	}
 | |
| 
 | |
| 	// sum012[4] (if it is not -1) contains number of units of which
 | |
| 	// are to be in S1new, snum012[3] - to be in S0. They are supposed
 | |
| 	// to be S1bytes and S2bytes correspondingly, so recalculate
 | |
| 	if (snum012[4] > 0) {
 | |
| 		int split_item_num;
 | |
| 		int bytes_to_r, bytes_to_l;
 | |
| 		int bytes_to_S1new;
 | |
| 
 | |
| 		split_item_num = split_item_positions[1];
 | |
| 		bytes_to_l =
 | |
| 		    ((from == split_item_num
 | |
| 		      && from_bytes != -1) ? from_bytes : 0);
 | |
| 		bytes_to_r =
 | |
| 		    ((end_item == split_item_num
 | |
| 		      && end_bytes != -1) ? end_bytes : 0);
 | |
| 		bytes_to_S1new =
 | |
| 		    ((split_item_positions[0] ==
 | |
| 		      split_item_positions[1]) ? snum012[3] : 0);
 | |
| 
 | |
| 		// s2bytes
 | |
| 		snum012[4] =
 | |
| 		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
 | |
| 		    bytes_to_r - bytes_to_l - bytes_to_S1new;
 | |
| 
 | |
| 		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
 | |
| 		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
 | |
| 			reiserfs_warning(tb->tb_sb, "vs-8115",
 | |
| 					 "not directory or indirect item");
 | |
| 	}
 | |
| 
 | |
| 	/* now we know S2bytes, calculate S1bytes */
 | |
| 	if (snum012[3] > 0) {
 | |
| 		int split_item_num;
 | |
| 		int bytes_to_r, bytes_to_l;
 | |
| 		int bytes_to_S2new;
 | |
| 
 | |
| 		split_item_num = split_item_positions[0];
 | |
| 		bytes_to_l =
 | |
| 		    ((from == split_item_num
 | |
| 		      && from_bytes != -1) ? from_bytes : 0);
 | |
| 		bytes_to_r =
 | |
| 		    ((end_item == split_item_num
 | |
| 		      && end_bytes != -1) ? end_bytes : 0);
 | |
| 		bytes_to_S2new =
 | |
| 		    ((split_item_positions[0] == split_item_positions[1]
 | |
| 		      && snum012[4] != -1) ? snum012[4] : 0);
 | |
| 
 | |
| 		// s1bytes
 | |
| 		snum012[3] =
 | |
| 		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
 | |
| 		    bytes_to_r - bytes_to_l - bytes_to_S2new;
 | |
| 	}
 | |
| 
 | |
| 	return needed_nodes;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Set parameters for balancing.
 | |
|  * Performs write of results of analysis of balancing into structure tb,
 | |
|  * where it will later be used by the functions that actually do the balancing.
 | |
|  * Parameters:
 | |
|  *	tb	tree_balance structure;
 | |
|  *	h	current level of the node;
 | |
|  *	lnum	number of items from S[h] that must be shifted to L[h];
 | |
|  *	rnum	number of items from S[h] that must be shifted to R[h];
 | |
|  *	blk_num	number of blocks that S[h] will be splitted into;
 | |
|  *	s012	number of items that fall into splitted nodes.
 | |
|  *	lbytes	number of bytes which flow to the left neighbor from the item that is not
 | |
|  *		not shifted entirely
 | |
|  *	rbytes	number of bytes which flow to the right neighbor from the item that is not
 | |
|  *		not shifted entirely
 | |
|  *	s1bytes	number of bytes which flow to the first  new node when S[0] splits (this number is contained in s012 array)
 | |
|  */
 | |
| 
 | |
| static void set_parameters(struct tree_balance *tb, int h, int lnum,
 | |
| 			   int rnum, int blk_num, short *s012, int lb, int rb)
 | |
| {
 | |
| 
 | |
| 	tb->lnum[h] = lnum;
 | |
| 	tb->rnum[h] = rnum;
 | |
| 	tb->blknum[h] = blk_num;
 | |
| 
 | |
| 	if (h == 0) {		/* only for leaf level */
 | |
| 		if (s012 != NULL) {
 | |
| 			tb->s0num = *s012++,
 | |
| 			    tb->s1num = *s012++, tb->s2num = *s012++;
 | |
| 			tb->s1bytes = *s012++;
 | |
| 			tb->s2bytes = *s012;
 | |
| 		}
 | |
| 		tb->lbytes = lb;
 | |
| 		tb->rbytes = rb;
 | |
| 	}
 | |
| 	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
 | |
| 	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
 | |
| 
 | |
| 	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
 | |
| 	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
 | |
| }
 | |
| 
 | |
| /* check, does node disappear if we shift tb->lnum[0] items to left
 | |
|    neighbor and tb->rnum[0] to the right one. */
 | |
| static int is_leaf_removable(struct tree_balance *tb)
 | |
| {
 | |
| 	struct virtual_node *vn = tb->tb_vn;
 | |
| 	int to_left, to_right;
 | |
| 	int size;
 | |
| 	int remain_items;
 | |
| 
 | |
| 	/* number of items, that will be shifted to left (right) neighbor
 | |
| 	   entirely */
 | |
| 	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
 | |
| 	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
 | |
| 	remain_items = vn->vn_nr_item;
 | |
| 
 | |
| 	/* how many items remain in S[0] after shiftings to neighbors */
 | |
| 	remain_items -= (to_left + to_right);
 | |
| 
 | |
| 	if (remain_items < 1) {
 | |
| 		/* all content of node can be shifted to neighbors */
 | |
| 		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
 | |
| 			       NULL, -1, -1);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
 | |
| 		/* S[0] is not removable */
 | |
| 		return 0;
 | |
| 
 | |
| 	/* check, whether we can divide 1 remaining item between neighbors */
 | |
| 
 | |
| 	/* get size of remaining item (in item units) */
 | |
| 	size = op_unit_num(&(vn->vn_vi[to_left]));
 | |
| 
 | |
| 	if (tb->lbytes + tb->rbytes >= size) {
 | |
| 		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
 | |
| 			       tb->lbytes, -1);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* check whether L, S, R can be joined in one node */
 | |
| static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
 | |
| {
 | |
| 	struct virtual_node *vn = tb->tb_vn;
 | |
| 	int ih_size;
 | |
| 	struct buffer_head *S0;
 | |
| 
 | |
| 	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
 | |
| 
 | |
| 	ih_size = 0;
 | |
| 	if (vn->vn_nr_item) {
 | |
| 		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
 | |
| 			ih_size += IH_SIZE;
 | |
| 
 | |
| 		if (vn->vn_vi[vn->vn_nr_item - 1].
 | |
| 		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
 | |
| 			ih_size += IH_SIZE;
 | |
| 	} else {
 | |
| 		/* there was only one item and it will be deleted */
 | |
| 		struct item_head *ih;
 | |
| 
 | |
| 		RFALSE(B_NR_ITEMS(S0) != 1,
 | |
| 		       "vs-8125: item number must be 1: it is %d",
 | |
| 		       B_NR_ITEMS(S0));
 | |
| 
 | |
| 		ih = B_N_PITEM_HEAD(S0, 0);
 | |
| 		if (tb->CFR[0]
 | |
| 		    && !comp_short_le_keys(&(ih->ih_key),
 | |
| 					   B_N_PDELIM_KEY(tb->CFR[0],
 | |
| 							  tb->rkey[0])))
 | |
| 			if (is_direntry_le_ih(ih)) {
 | |
| 				/* Directory must be in correct state here: that is
 | |
| 				   somewhere at the left side should exist first directory
 | |
| 				   item. But the item being deleted can not be that first
 | |
| 				   one because its right neighbor is item of the same
 | |
| 				   directory. (But first item always gets deleted in last
 | |
| 				   turn). So, neighbors of deleted item can be merged, so
 | |
| 				   we can save ih_size */
 | |
| 				ih_size = IH_SIZE;
 | |
| 
 | |
| 				/* we might check that left neighbor exists and is of the
 | |
| 				   same directory */
 | |
| 				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
 | |
| 				       "vs-8130: first directory item can not be removed until directory is not empty");
 | |
| 			}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
 | |
| 		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
 | |
| 		PROC_INFO_INC(tb->tb_sb, leaves_removable);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* when we do not split item, lnum and rnum are numbers of entire items */
 | |
| #define SET_PAR_SHIFT_LEFT \
 | |
| if (h)\
 | |
| {\
 | |
|    int to_l;\
 | |
|    \
 | |
|    to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
 | |
| 	      (MAX_NR_KEY(Sh) + 1 - lpar);\
 | |
| 	      \
 | |
| 	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
 | |
| }\
 | |
| else \
 | |
| {\
 | |
|    if (lset==LEFT_SHIFT_FLOW)\
 | |
|      set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
 | |
| 		     tb->lbytes, -1);\
 | |
|    else\
 | |
|      set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
 | |
| 		     -1, -1);\
 | |
| }
 | |
| 
 | |
| #define SET_PAR_SHIFT_RIGHT \
 | |
| if (h)\
 | |
| {\
 | |
|    int to_r;\
 | |
|    \
 | |
|    to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
 | |
|    \
 | |
|    set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
 | |
| }\
 | |
| else \
 | |
| {\
 | |
|    if (rset==RIGHT_SHIFT_FLOW)\
 | |
|      set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
 | |
| 		  -1, tb->rbytes);\
 | |
|    else\
 | |
|      set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
 | |
| 		  -1, -1);\
 | |
| }
 | |
| 
 | |
| static void free_buffers_in_tb(struct tree_balance *tb)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pathrelse(tb->tb_path);
 | |
| 
 | |
| 	for (i = 0; i < MAX_HEIGHT; i++) {
 | |
| 		brelse(tb->L[i]);
 | |
| 		brelse(tb->R[i]);
 | |
| 		brelse(tb->FL[i]);
 | |
| 		brelse(tb->FR[i]);
 | |
| 		brelse(tb->CFL[i]);
 | |
| 		brelse(tb->CFR[i]);
 | |
| 
 | |
| 		tb->L[i] = NULL;
 | |
| 		tb->R[i] = NULL;
 | |
| 		tb->FL[i] = NULL;
 | |
| 		tb->FR[i] = NULL;
 | |
| 		tb->CFL[i] = NULL;
 | |
| 		tb->CFR[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Get new buffers for storing new nodes that are created while balancing.
 | |
|  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
 | |
|  *	        CARRY_ON - schedule didn't occur while the function worked;
 | |
|  *	        NO_DISK_SPACE - no disk space.
 | |
|  */
 | |
| /* The function is NOT SCHEDULE-SAFE! */
 | |
| static int get_empty_nodes(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct buffer_head *new_bh,
 | |
| 	    *Sh = PATH_H_PBUFFER(tb->tb_path, h);
 | |
| 	b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
 | |
| 	int counter, number_of_freeblk, amount_needed,	/* number of needed empty blocks */
 | |
| 	 retval = CARRY_ON;
 | |
| 	struct super_block *sb = tb->tb_sb;
 | |
| 
 | |
| 	/* number_of_freeblk is the number of empty blocks which have been
 | |
| 	   acquired for use by the balancing algorithm minus the number of
 | |
| 	   empty blocks used in the previous levels of the analysis,
 | |
| 	   number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
 | |
| 	   after empty blocks are acquired, and the balancing analysis is
 | |
| 	   then restarted, amount_needed is the number needed by this level
 | |
| 	   (h) of the balancing analysis.
 | |
| 
 | |
| 	   Note that for systems with many processes writing, it would be
 | |
| 	   more layout optimal to calculate the total number needed by all
 | |
| 	   levels and then to run reiserfs_new_blocks to get all of them at once.  */
 | |
| 
 | |
| 	/* Initiate number_of_freeblk to the amount acquired prior to the restart of
 | |
| 	   the analysis or 0 if not restarted, then subtract the amount needed
 | |
| 	   by all of the levels of the tree below h. */
 | |
| 	/* blknum includes S[h], so we subtract 1 in this calculation */
 | |
| 	for (counter = 0, number_of_freeblk = tb->cur_blknum;
 | |
| 	     counter < h; counter++)
 | |
| 		number_of_freeblk -=
 | |
| 		    (tb->blknum[counter]) ? (tb->blknum[counter] -
 | |
| 						   1) : 0;
 | |
| 
 | |
| 	/* Allocate missing empty blocks. */
 | |
| 	/* if Sh == 0  then we are getting a new root */
 | |
| 	amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
 | |
| 	/*  Amount_needed = the amount that we need more than the amount that we have. */
 | |
| 	if (amount_needed > number_of_freeblk)
 | |
| 		amount_needed -= number_of_freeblk;
 | |
| 	else			/* If we have enough already then there is nothing to do. */
 | |
| 		return CARRY_ON;
 | |
| 
 | |
| 	/* No need to check quota - is not allocated for blocks used for formatted nodes */
 | |
| 	if (reiserfs_new_form_blocknrs(tb, blocknrs,
 | |
| 				       amount_needed) == NO_DISK_SPACE)
 | |
| 		return NO_DISK_SPACE;
 | |
| 
 | |
| 	/* for each blocknumber we just got, get a buffer and stick it on FEB */
 | |
| 	for (blocknr = blocknrs, counter = 0;
 | |
| 	     counter < amount_needed; blocknr++, counter++) {
 | |
| 
 | |
| 		RFALSE(!*blocknr,
 | |
| 		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
 | |
| 
 | |
| 		new_bh = sb_getblk(sb, *blocknr);
 | |
| 		RFALSE(buffer_dirty(new_bh) ||
 | |
| 		       buffer_journaled(new_bh) ||
 | |
| 		       buffer_journal_dirty(new_bh),
 | |
| 		       "PAP-8140: journaled or dirty buffer %b for the new block",
 | |
| 		       new_bh);
 | |
| 
 | |
| 		/* Put empty buffers into the array. */
 | |
| 		RFALSE(tb->FEB[tb->cur_blknum],
 | |
| 		       "PAP-8141: busy slot for new buffer");
 | |
| 
 | |
| 		set_buffer_journal_new(new_bh);
 | |
| 		tb->FEB[tb->cur_blknum++] = new_bh;
 | |
| 	}
 | |
| 
 | |
| 	if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
 | |
| 		retval = REPEAT_SEARCH;
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /* Get free space of the left neighbor, which is stored in the parent
 | |
|  * node of the left neighbor.  */
 | |
| static int get_lfree(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct buffer_head *l, *f;
 | |
| 	int order;
 | |
| 
 | |
| 	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
 | |
| 	    (l = tb->FL[h]) == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (f == l)
 | |
| 		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
 | |
| 	else {
 | |
| 		order = B_NR_ITEMS(l);
 | |
| 		f = l;
 | |
| 	}
 | |
| 
 | |
| 	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
 | |
| }
 | |
| 
 | |
| /* Get free space of the right neighbor,
 | |
|  * which is stored in the parent node of the right neighbor.
 | |
|  */
 | |
| static int get_rfree(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct buffer_head *r, *f;
 | |
| 	int order;
 | |
| 
 | |
| 	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
 | |
| 	    (r = tb->FR[h]) == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (f == r)
 | |
| 		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
 | |
| 	else {
 | |
| 		order = 0;
 | |
| 		f = r;
 | |
| 	}
 | |
| 
 | |
| 	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Check whether left neighbor is in memory. */
 | |
| static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct buffer_head *father, *left;
 | |
| 	struct super_block *sb = tb->tb_sb;
 | |
| 	b_blocknr_t left_neighbor_blocknr;
 | |
| 	int left_neighbor_position;
 | |
| 
 | |
| 	/* Father of the left neighbor does not exist. */
 | |
| 	if (!tb->FL[h])
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Calculate father of the node to be balanced. */
 | |
| 	father = PATH_H_PBUFFER(tb->tb_path, h + 1);
 | |
| 
 | |
| 	RFALSE(!father ||
 | |
| 	       !B_IS_IN_TREE(father) ||
 | |
| 	       !B_IS_IN_TREE(tb->FL[h]) ||
 | |
| 	       !buffer_uptodate(father) ||
 | |
| 	       !buffer_uptodate(tb->FL[h]),
 | |
| 	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
 | |
| 	       father, tb->FL[h]);
 | |
| 
 | |
| 	/* Get position of the pointer to the left neighbor into the left father. */
 | |
| 	left_neighbor_position = (father == tb->FL[h]) ?
 | |
| 	    tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
 | |
| 	/* Get left neighbor block number. */
 | |
| 	left_neighbor_blocknr =
 | |
| 	    B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
 | |
| 	/* Look for the left neighbor in the cache. */
 | |
| 	if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
 | |
| 
 | |
| 		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
 | |
| 		       "vs-8170: left neighbor (%b %z) is not in the tree",
 | |
| 		       left, left);
 | |
| 		put_bh(left);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define LEFT_PARENTS  'l'
 | |
| #define RIGHT_PARENTS 'r'
 | |
| 
 | |
| static void decrement_key(struct cpu_key *key)
 | |
| {
 | |
| 	// call item specific function for this key
 | |
| 	item_ops[cpu_key_k_type(key)]->decrement_key(key);
 | |
| }
 | |
| 
 | |
| /* Calculate far left/right parent of the left/right neighbor of the current node, that
 | |
|  * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
 | |
|  * Calculate left/right common parent of the current node and L[h]/R[h].
 | |
|  * Calculate left/right delimiting key position.
 | |
|  * Returns:	PATH_INCORRECT   - path in the tree is not correct;
 | |
|  		SCHEDULE_OCCURRED - schedule occurred while the function worked;
 | |
|  *	        CARRY_ON         - schedule didn't occur while the function worked;
 | |
|  */
 | |
| static int get_far_parent(struct tree_balance *tb,
 | |
| 			  int h,
 | |
| 			  struct buffer_head **pfather,
 | |
| 			  struct buffer_head **pcom_father, char c_lr_par)
 | |
| {
 | |
| 	struct buffer_head *parent;
 | |
| 	INITIALIZE_PATH(s_path_to_neighbor_father);
 | |
| 	struct treepath *path = tb->tb_path;
 | |
| 	struct cpu_key s_lr_father_key;
 | |
| 	int counter,
 | |
| 	    position = INT_MAX,
 | |
| 	    first_last_position = 0,
 | |
| 	    path_offset = PATH_H_PATH_OFFSET(path, h);
 | |
| 
 | |
| 	/* Starting from F[h] go upwards in the tree, and look for the common
 | |
| 	   ancestor of F[h], and its neighbor l/r, that should be obtained. */
 | |
| 
 | |
| 	counter = path_offset;
 | |
| 
 | |
| 	RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
 | |
| 	       "PAP-8180: invalid path length");
 | |
| 
 | |
| 	for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
 | |
| 		/* Check whether parent of the current buffer in the path is really parent in the tree. */
 | |
| 		if (!B_IS_IN_TREE
 | |
| 		    (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
 | |
| 			return REPEAT_SEARCH;
 | |
| 		/* Check whether position in the parent is correct. */
 | |
| 		if ((position =
 | |
| 		     PATH_OFFSET_POSITION(path,
 | |
| 					  counter - 1)) >
 | |
| 		    B_NR_ITEMS(parent))
 | |
| 			return REPEAT_SEARCH;
 | |
| 		/* Check whether parent at the path really points to the child. */
 | |
| 		if (B_N_CHILD_NUM(parent, position) !=
 | |
| 		    PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
 | |
| 			return REPEAT_SEARCH;
 | |
| 		/* Return delimiting key if position in the parent is not equal to first/last one. */
 | |
| 		if (c_lr_par == RIGHT_PARENTS)
 | |
| 			first_last_position = B_NR_ITEMS(parent);
 | |
| 		if (position != first_last_position) {
 | |
| 			*pcom_father = parent;
 | |
| 			get_bh(*pcom_father);
 | |
| 			/*(*pcom_father = parent)->b_count++; */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* if we are in the root of the tree, then there is no common father */
 | |
| 	if (counter == FIRST_PATH_ELEMENT_OFFSET) {
 | |
| 		/* Check whether first buffer in the path is the root of the tree. */
 | |
| 		if (PATH_OFFSET_PBUFFER
 | |
| 		    (tb->tb_path,
 | |
| 		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
 | |
| 		    SB_ROOT_BLOCK(tb->tb_sb)) {
 | |
| 			*pfather = *pcom_father = NULL;
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 		return REPEAT_SEARCH;
 | |
| 	}
 | |
| 
 | |
| 	RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
 | |
| 	       "PAP-8185: (%b %z) level too small",
 | |
| 	       *pcom_father, *pcom_father);
 | |
| 
 | |
| 	/* Check whether the common parent is locked. */
 | |
| 
 | |
| 	if (buffer_locked(*pcom_father)) {
 | |
| 
 | |
| 		/* Release the write lock while the buffer is busy */
 | |
| 		reiserfs_write_unlock(tb->tb_sb);
 | |
| 		__wait_on_buffer(*pcom_father);
 | |
| 		reiserfs_write_lock(tb->tb_sb);
 | |
| 		if (FILESYSTEM_CHANGED_TB(tb)) {
 | |
| 			brelse(*pcom_father);
 | |
| 			return REPEAT_SEARCH;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* So, we got common parent of the current node and its left/right neighbor.
 | |
| 	   Now we are geting the parent of the left/right neighbor. */
 | |
| 
 | |
| 	/* Form key to get parent of the left/right neighbor. */
 | |
| 	le_key2cpu_key(&s_lr_father_key,
 | |
| 		       B_N_PDELIM_KEY(*pcom_father,
 | |
| 				      (c_lr_par ==
 | |
| 				       LEFT_PARENTS) ? (tb->lkey[h - 1] =
 | |
| 							position -
 | |
| 							1) : (tb->rkey[h -
 | |
| 									   1] =
 | |
| 							      position)));
 | |
| 
 | |
| 	if (c_lr_par == LEFT_PARENTS)
 | |
| 		decrement_key(&s_lr_father_key);
 | |
| 
 | |
| 	if (search_by_key
 | |
| 	    (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
 | |
| 	     h + 1) == IO_ERROR)
 | |
| 		// path is released
 | |
| 		return IO_ERROR;
 | |
| 
 | |
| 	if (FILESYSTEM_CHANGED_TB(tb)) {
 | |
| 		pathrelse(&s_path_to_neighbor_father);
 | |
| 		brelse(*pcom_father);
 | |
| 		return REPEAT_SEARCH;
 | |
| 	}
 | |
| 
 | |
| 	*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
 | |
| 
 | |
| 	RFALSE(B_LEVEL(*pfather) != h + 1,
 | |
| 	       "PAP-8190: (%b %z) level too small", *pfather, *pfather);
 | |
| 	RFALSE(s_path_to_neighbor_father.path_length <
 | |
| 	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
 | |
| 
 | |
| 	s_path_to_neighbor_father.path_length--;
 | |
| 	pathrelse(&s_path_to_neighbor_father);
 | |
| 	return CARRY_ON;
 | |
| }
 | |
| 
 | |
| /* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
 | |
|  * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
 | |
|  * FR[path_offset], CFL[path_offset], CFR[path_offset].
 | |
|  * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
 | |
|  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
 | |
|  *	        CARRY_ON - schedule didn't occur while the function worked;
 | |
|  */
 | |
| static int get_parents(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct treepath *path = tb->tb_path;
 | |
| 	int position,
 | |
| 	    ret,
 | |
| 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
 | |
| 	struct buffer_head *curf, *curcf;
 | |
| 
 | |
| 	/* Current node is the root of the tree or will be root of the tree */
 | |
| 	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
 | |
| 		/* The root can not have parents.
 | |
| 		   Release nodes which previously were obtained as parents of the current node neighbors. */
 | |
| 		brelse(tb->FL[h]);
 | |
| 		brelse(tb->CFL[h]);
 | |
| 		brelse(tb->FR[h]);
 | |
| 		brelse(tb->CFR[h]);
 | |
| 		tb->FL[h]  = NULL;
 | |
| 		tb->CFL[h] = NULL;
 | |
| 		tb->FR[h]  = NULL;
 | |
| 		tb->CFR[h] = NULL;
 | |
| 		return CARRY_ON;
 | |
| 	}
 | |
| 
 | |
| 	/* Get parent FL[path_offset] of L[path_offset]. */
 | |
| 	position = PATH_OFFSET_POSITION(path, path_offset - 1);
 | |
| 	if (position) {
 | |
| 		/* Current node is not the first child of its parent. */
 | |
| 		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
 | |
| 		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
 | |
| 		get_bh(curf);
 | |
| 		get_bh(curf);
 | |
| 		tb->lkey[h] = position - 1;
 | |
| 	} else {
 | |
| 		/* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
 | |
| 		   Calculate current common parent of L[path_offset] and the current node. Note that
 | |
| 		   CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
 | |
| 		   Calculate lkey[path_offset]. */
 | |
| 		if ((ret = get_far_parent(tb, h + 1, &curf,
 | |
| 						  &curcf,
 | |
| 						  LEFT_PARENTS)) != CARRY_ON)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	brelse(tb->FL[h]);
 | |
| 	tb->FL[h] = curf;	/* New initialization of FL[h]. */
 | |
| 	brelse(tb->CFL[h]);
 | |
| 	tb->CFL[h] = curcf;	/* New initialization of CFL[h]. */
 | |
| 
 | |
| 	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
 | |
| 	       (curcf && !B_IS_IN_TREE(curcf)),
 | |
| 	       "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
 | |
| 
 | |
| /* Get parent FR[h] of R[h]. */
 | |
| 
 | |
| /* Current node is the last child of F[h]. FR[h] != F[h]. */
 | |
| 	if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
 | |
| /* Calculate current parent of R[h], which is the right neighbor of F[h].
 | |
|    Calculate current common parent of R[h] and current node. Note that CFR[h]
 | |
|    not equal FR[path_offset] and CFR[h] not equal F[h]. */
 | |
| 		if ((ret =
 | |
| 		     get_far_parent(tb, h + 1, &curf, &curcf,
 | |
| 				    RIGHT_PARENTS)) != CARRY_ON)
 | |
| 			return ret;
 | |
| 	} else {
 | |
| /* Current node is not the last child of its parent F[h]. */
 | |
| 		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
 | |
| 		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
 | |
| 		get_bh(curf);
 | |
| 		get_bh(curf);
 | |
| 		tb->rkey[h] = position;
 | |
| 	}
 | |
| 
 | |
| 	brelse(tb->FR[h]);
 | |
| 	/* New initialization of FR[path_offset]. */
 | |
| 	tb->FR[h] = curf;
 | |
| 
 | |
| 	brelse(tb->CFR[h]);
 | |
| 	/* New initialization of CFR[path_offset]. */
 | |
| 	tb->CFR[h] = curcf;
 | |
| 
 | |
| 	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
 | |
| 	       (curcf && !B_IS_IN_TREE(curcf)),
 | |
| 	       "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
 | |
| 
 | |
| 	return CARRY_ON;
 | |
| }
 | |
| 
 | |
| /* it is possible to remove node as result of shiftings to
 | |
|    neighbors even when we insert or paste item. */
 | |
| static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
 | |
| 				      struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
 | |
| 	int levbytes = tb->insert_size[h];
 | |
| 	struct item_head *ih;
 | |
| 	struct reiserfs_key *r_key = NULL;
 | |
| 
 | |
| 	ih = B_N_PITEM_HEAD(Sh, 0);
 | |
| 	if (tb->CFR[h])
 | |
| 		r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
 | |
| 
 | |
| 	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
 | |
| 	    /* shifting may merge items which might save space */
 | |
| 	    -
 | |
| 	    ((!h
 | |
| 	      && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
 | |
| 	    -
 | |
| 	    ((!h && r_key
 | |
| 	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
 | |
| 	    + ((h) ? KEY_SIZE : 0)) {
 | |
| 		/* node can not be removed */
 | |
| 		if (sfree >= levbytes) {	/* new item fits into node S[h] without any shifting */
 | |
| 			if (!h)
 | |
| 				tb->s0num =
 | |
| 				    B_NR_ITEMS(Sh) +
 | |
| 				    ((mode == M_INSERT) ? 1 : 0);
 | |
| 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | |
| 			return NO_BALANCING_NEEDED;
 | |
| 		}
 | |
| 	}
 | |
| 	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
 | |
| 	return !NO_BALANCING_NEEDED;
 | |
| }
 | |
| 
 | |
| /* Check whether current node S[h] is balanced when increasing its size by
 | |
|  * Inserting or Pasting.
 | |
|  * Calculate parameters for balancing for current level h.
 | |
|  * Parameters:
 | |
|  *	tb	tree_balance structure;
 | |
|  *	h	current level of the node;
 | |
|  *	inum	item number in S[h];
 | |
|  *	mode	i - insert, p - paste;
 | |
|  * Returns:	1 - schedule occurred;
 | |
|  *	        0 - balancing for higher levels needed;
 | |
|  *	       -1 - no balancing for higher levels needed;
 | |
|  *	       -2 - no disk space.
 | |
|  */
 | |
| /* ip means Inserting or Pasting */
 | |
| static int ip_check_balance(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct virtual_node *vn = tb->tb_vn;
 | |
| 	int levbytes,		/* Number of bytes that must be inserted into (value
 | |
| 				   is negative if bytes are deleted) buffer which
 | |
| 				   contains node being balanced.  The mnemonic is
 | |
| 				   that the attempted change in node space used level
 | |
| 				   is levbytes bytes. */
 | |
| 	 ret;
 | |
| 
 | |
| 	int lfree, sfree, rfree /* free space in L, S and R */ ;
 | |
| 
 | |
| 	/* nver is short for number of vertixes, and lnver is the number if
 | |
| 	   we shift to the left, rnver is the number if we shift to the
 | |
| 	   right, and lrnver is the number if we shift in both directions.
 | |
| 	   The goal is to minimize first the number of vertixes, and second,
 | |
| 	   the number of vertixes whose contents are changed by shifting,
 | |
| 	   and third the number of uncached vertixes whose contents are
 | |
| 	   changed by shifting and must be read from disk.  */
 | |
| 	int nver, lnver, rnver, lrnver;
 | |
| 
 | |
| 	/* used at leaf level only, S0 = S[0] is the node being balanced,
 | |
| 	   sInum [ I = 0,1,2 ] is the number of items that will
 | |
| 	   remain in node SI after balancing.  S1 and S2 are new
 | |
| 	   nodes that might be created. */
 | |
| 
 | |
| 	/* we perform 8 calls to get_num_ver().  For each call we calculate five parameters.
 | |
| 	   where 4th parameter is s1bytes and 5th - s2bytes
 | |
| 	 */
 | |
| 	short snum012[40] = { 0, };	/* s0num, s1num, s2num for 8 cases
 | |
| 					   0,1 - do not shift and do not shift but bottle
 | |
| 					   2 - shift only whole item to left
 | |
| 					   3 - shift to left and bottle as much as possible
 | |
| 					   4,5 - shift to right (whole items and as much as possible
 | |
| 					   6,7 - shift to both directions (whole items and as much as possible)
 | |
| 					 */
 | |
| 
 | |
| 	/* Sh is the node whose balance is currently being checked */
 | |
| 	struct buffer_head *Sh;
 | |
| 
 | |
| 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
 | |
| 	levbytes = tb->insert_size[h];
 | |
| 
 | |
| 	/* Calculate balance parameters for creating new root. */
 | |
| 	if (!Sh) {
 | |
| 		if (!h)
 | |
| 			reiserfs_panic(tb->tb_sb, "vs-8210",
 | |
| 				       "S[0] can not be 0");
 | |
| 		switch (ret = get_empty_nodes(tb, h)) {
 | |
| 		case CARRY_ON:
 | |
| 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | |
| 			return NO_BALANCING_NEEDED;	/* no balancing for higher levels needed */
 | |
| 
 | |
| 		case NO_DISK_SPACE:
 | |
| 		case REPEAT_SEARCH:
 | |
| 			return ret;
 | |
| 		default:
 | |
| 			reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
 | |
| 				       "return value of get_empty_nodes");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((ret = get_parents(tb, h)) != CARRY_ON)	/* get parents of S[h] neighbors. */
 | |
| 		return ret;
 | |
| 
 | |
| 	sfree = B_FREE_SPACE(Sh);
 | |
| 
 | |
| 	/* get free space of neighbors */
 | |
| 	rfree = get_rfree(tb, h);
 | |
| 	lfree = get_lfree(tb, h);
 | |
| 
 | |
| 	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
 | |
| 	    NO_BALANCING_NEEDED)
 | |
| 		/* and new item fits into node S[h] without any shifting */
 | |
| 		return NO_BALANCING_NEEDED;
 | |
| 
 | |
| 	create_virtual_node(tb, h);
 | |
| 
 | |
| 	/*
 | |
| 	   determine maximal number of items we can shift to the left neighbor (in tb structure)
 | |
| 	   and the maximal number of bytes that can flow to the left neighbor
 | |
| 	   from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
 | |
| 	 */
 | |
| 	check_left(tb, h, lfree);
 | |
| 
 | |
| 	/*
 | |
| 	   determine maximal number of items we can shift to the right neighbor (in tb structure)
 | |
| 	   and the maximal number of bytes that can flow to the right neighbor
 | |
| 	   from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
 | |
| 	 */
 | |
| 	check_right(tb, h, rfree);
 | |
| 
 | |
| 	/* all contents of internal node S[h] can be moved into its
 | |
| 	   neighbors, S[h] will be removed after balancing */
 | |
| 	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
 | |
| 		int to_r;
 | |
| 
 | |
| 		/* Since we are working on internal nodes, and our internal
 | |
| 		   nodes have fixed size entries, then we can balance by the
 | |
| 		   number of items rather than the space they consume.  In this
 | |
| 		   routine we set the left node equal to the right node,
 | |
| 		   allowing a difference of less than or equal to 1 child
 | |
| 		   pointer. */
 | |
| 		to_r =
 | |
| 		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
 | |
| 		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
 | |
| 						tb->rnum[h]);
 | |
| 		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
 | |
| 			       -1, -1);
 | |
| 		return CARRY_ON;
 | |
| 	}
 | |
| 
 | |
| 	/* this checks balance condition, that any two neighboring nodes can not fit in one node */
 | |
| 	RFALSE(h &&
 | |
| 	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
 | |
| 		tb->rnum[h] >= vn->vn_nr_item + 1),
 | |
| 	       "vs-8220: tree is not balanced on internal level");
 | |
| 	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
 | |
| 		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
 | |
| 	       "vs-8225: tree is not balanced on leaf level");
 | |
| 
 | |
| 	/* all contents of S[0] can be moved into its neighbors
 | |
| 	   S[0] will be removed after balancing. */
 | |
| 	if (!h && is_leaf_removable(tb))
 | |
| 		return CARRY_ON;
 | |
| 
 | |
| 	/* why do we perform this check here rather than earlier??
 | |
| 	   Answer: we can win 1 node in some cases above. Moreover we
 | |
| 	   checked it above, when we checked, that S[0] is not removable
 | |
| 	   in principle */
 | |
| 	if (sfree >= levbytes) {	/* new item fits into node S[h] without any shifting */
 | |
| 		if (!h)
 | |
| 			tb->s0num = vn->vn_nr_item;
 | |
| 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | |
| 		return NO_BALANCING_NEEDED;
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		int lpar, rpar, nset, lset, rset, lrset;
 | |
| 		/*
 | |
| 		 * regular overflowing of the node
 | |
| 		 */
 | |
| 
 | |
| 		/* get_num_ver works in 2 modes (FLOW & NO_FLOW)
 | |
| 		   lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
 | |
| 		   nset, lset, rset, lrset - shows, whether flowing items give better packing
 | |
| 		 */
 | |
| #define FLOW 1
 | |
| #define NO_FLOW 0		/* do not any splitting */
 | |
| 
 | |
| 		/* we choose one the following */
 | |
| #define NOTHING_SHIFT_NO_FLOW	0
 | |
| #define NOTHING_SHIFT_FLOW	5
 | |
| #define LEFT_SHIFT_NO_FLOW	10
 | |
| #define LEFT_SHIFT_FLOW		15
 | |
| #define RIGHT_SHIFT_NO_FLOW	20
 | |
| #define RIGHT_SHIFT_FLOW	25
 | |
| #define LR_SHIFT_NO_FLOW	30
 | |
| #define LR_SHIFT_FLOW		35
 | |
| 
 | |
| 		lpar = tb->lnum[h];
 | |
| 		rpar = tb->rnum[h];
 | |
| 
 | |
| 		/* calculate number of blocks S[h] must be split into when
 | |
| 		   nothing is shifted to the neighbors,
 | |
| 		   as well as number of items in each part of the split node (s012 numbers),
 | |
| 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
 | |
| 		nset = NOTHING_SHIFT_NO_FLOW;
 | |
| 		nver = get_num_ver(vn->vn_mode, tb, h,
 | |
| 				   0, -1, h ? vn->vn_nr_item : 0, -1,
 | |
| 				   snum012, NO_FLOW);
 | |
| 
 | |
| 		if (!h) {
 | |
| 			int nver1;
 | |
| 
 | |
| 			/* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
 | |
| 			nver1 = get_num_ver(vn->vn_mode, tb, h,
 | |
| 					    0, -1, 0, -1,
 | |
| 					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
 | |
| 			if (nver > nver1)
 | |
| 				nset = NOTHING_SHIFT_FLOW, nver = nver1;
 | |
| 		}
 | |
| 
 | |
| 		/* calculate number of blocks S[h] must be split into when
 | |
| 		   l_shift_num first items and l_shift_bytes of the right most
 | |
| 		   liquid item to be shifted are shifted to the left neighbor,
 | |
| 		   as well as number of items in each part of the splitted node (s012 numbers),
 | |
| 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
 | |
| 		 */
 | |
| 		lset = LEFT_SHIFT_NO_FLOW;
 | |
| 		lnver = get_num_ver(vn->vn_mode, tb, h,
 | |
| 				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
 | |
| 				    -1, h ? vn->vn_nr_item : 0, -1,
 | |
| 				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
 | |
| 		if (!h) {
 | |
| 			int lnver1;
 | |
| 
 | |
| 			lnver1 = get_num_ver(vn->vn_mode, tb, h,
 | |
| 					     lpar -
 | |
| 					     ((tb->lbytes != -1) ? 1 : 0),
 | |
| 					     tb->lbytes, 0, -1,
 | |
| 					     snum012 + LEFT_SHIFT_FLOW, FLOW);
 | |
| 			if (lnver > lnver1)
 | |
| 				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
 | |
| 		}
 | |
| 
 | |
| 		/* calculate number of blocks S[h] must be split into when
 | |
| 		   r_shift_num first items and r_shift_bytes of the left most
 | |
| 		   liquid item to be shifted are shifted to the right neighbor,
 | |
| 		   as well as number of items in each part of the splitted node (s012 numbers),
 | |
| 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
 | |
| 		 */
 | |
| 		rset = RIGHT_SHIFT_NO_FLOW;
 | |
| 		rnver = get_num_ver(vn->vn_mode, tb, h,
 | |
| 				    0, -1,
 | |
| 				    h ? (vn->vn_nr_item - rpar) : (rpar -
 | |
| 								   ((tb->
 | |
| 								     rbytes !=
 | |
| 								     -1) ? 1 :
 | |
| 								    0)), -1,
 | |
| 				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
 | |
| 		if (!h) {
 | |
| 			int rnver1;
 | |
| 
 | |
| 			rnver1 = get_num_ver(vn->vn_mode, tb, h,
 | |
| 					     0, -1,
 | |
| 					     (rpar -
 | |
| 					      ((tb->rbytes != -1) ? 1 : 0)),
 | |
| 					     tb->rbytes,
 | |
| 					     snum012 + RIGHT_SHIFT_FLOW, FLOW);
 | |
| 
 | |
| 			if (rnver > rnver1)
 | |
| 				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
 | |
| 		}
 | |
| 
 | |
| 		/* calculate number of blocks S[h] must be split into when
 | |
| 		   items are shifted in both directions,
 | |
| 		   as well as number of items in each part of the splitted node (s012 numbers),
 | |
| 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
 | |
| 		 */
 | |
| 		lrset = LR_SHIFT_NO_FLOW;
 | |
| 		lrnver = get_num_ver(vn->vn_mode, tb, h,
 | |
| 				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
 | |
| 				     -1,
 | |
| 				     h ? (vn->vn_nr_item - rpar) : (rpar -
 | |
| 								    ((tb->
 | |
| 								      rbytes !=
 | |
| 								      -1) ? 1 :
 | |
| 								     0)), -1,
 | |
| 				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
 | |
| 		if (!h) {
 | |
| 			int lrnver1;
 | |
| 
 | |
| 			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
 | |
| 					      lpar -
 | |
| 					      ((tb->lbytes != -1) ? 1 : 0),
 | |
| 					      tb->lbytes,
 | |
| 					      (rpar -
 | |
| 					       ((tb->rbytes != -1) ? 1 : 0)),
 | |
| 					      tb->rbytes,
 | |
| 					      snum012 + LR_SHIFT_FLOW, FLOW);
 | |
| 			if (lrnver > lrnver1)
 | |
| 				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
 | |
| 		}
 | |
| 
 | |
| 		/* Our general shifting strategy is:
 | |
| 		   1) to minimized number of new nodes;
 | |
| 		   2) to minimized number of neighbors involved in shifting;
 | |
| 		   3) to minimized number of disk reads; */
 | |
| 
 | |
| 		/* we can win TWO or ONE nodes by shifting in both directions */
 | |
| 		if (lrnver < lnver && lrnver < rnver) {
 | |
| 			RFALSE(h &&
 | |
| 			       (tb->lnum[h] != 1 ||
 | |
| 				tb->rnum[h] != 1 ||
 | |
| 				lrnver != 1 || rnver != 2 || lnver != 2
 | |
| 				|| h != 1), "vs-8230: bad h");
 | |
| 			if (lrset == LR_SHIFT_FLOW)
 | |
| 				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
 | |
| 					       lrnver, snum012 + lrset,
 | |
| 					       tb->lbytes, tb->rbytes);
 | |
| 			else
 | |
| 				set_parameters(tb, h,
 | |
| 					       tb->lnum[h] -
 | |
| 					       ((tb->lbytes == -1) ? 0 : 1),
 | |
| 					       tb->rnum[h] -
 | |
| 					       ((tb->rbytes == -1) ? 0 : 1),
 | |
| 					       lrnver, snum012 + lrset, -1, -1);
 | |
| 
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 
 | |
| 		/* if shifting doesn't lead to better packing then don't shift */
 | |
| 		if (nver == lrnver) {
 | |
| 			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
 | |
| 				       -1);
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 
 | |
| 		/* now we know that for better packing shifting in only one
 | |
| 		   direction either to the left or to the right is required */
 | |
| 
 | |
| 		/*  if shifting to the left is better than shifting to the right */
 | |
| 		if (lnver < rnver) {
 | |
| 			SET_PAR_SHIFT_LEFT;
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 
 | |
| 		/* if shifting to the right is better than shifting to the left */
 | |
| 		if (lnver > rnver) {
 | |
| 			SET_PAR_SHIFT_RIGHT;
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 
 | |
| 		/* now shifting in either direction gives the same number
 | |
| 		   of nodes and we can make use of the cached neighbors */
 | |
| 		if (is_left_neighbor_in_cache(tb, h)) {
 | |
| 			SET_PAR_SHIFT_LEFT;
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 
 | |
| 		/* shift to the right independently on whether the right neighbor in cache or not */
 | |
| 		SET_PAR_SHIFT_RIGHT;
 | |
| 		return CARRY_ON;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Check whether current node S[h] is balanced when Decreasing its size by
 | |
|  * Deleting or Cutting for INTERNAL node of S+tree.
 | |
|  * Calculate parameters for balancing for current level h.
 | |
|  * Parameters:
 | |
|  *	tb	tree_balance structure;
 | |
|  *	h	current level of the node;
 | |
|  *	inum	item number in S[h];
 | |
|  *	mode	i - insert, p - paste;
 | |
|  * Returns:	1 - schedule occurred;
 | |
|  *	        0 - balancing for higher levels needed;
 | |
|  *	       -1 - no balancing for higher levels needed;
 | |
|  *	       -2 - no disk space.
 | |
|  *
 | |
|  * Note: Items of internal nodes have fixed size, so the balance condition for
 | |
|  * the internal part of S+tree is as for the B-trees.
 | |
|  */
 | |
| static int dc_check_balance_internal(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct virtual_node *vn = tb->tb_vn;
 | |
| 
 | |
| 	/* Sh is the node whose balance is currently being checked,
 | |
| 	   and Fh is its father.  */
 | |
| 	struct buffer_head *Sh, *Fh;
 | |
| 	int maxsize, ret;
 | |
| 	int lfree, rfree /* free space in L and R */ ;
 | |
| 
 | |
| 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
 | |
| 	Fh = PATH_H_PPARENT(tb->tb_path, h);
 | |
| 
 | |
| 	maxsize = MAX_CHILD_SIZE(Sh);
 | |
| 
 | |
| /*   using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
 | |
| /*   new_nr_item = number of items node would have if operation is */
 | |
| /* 	performed without balancing (new_nr_item); */
 | |
| 	create_virtual_node(tb, h);
 | |
| 
 | |
| 	if (!Fh) {		/* S[h] is the root. */
 | |
| 		if (vn->vn_nr_item > 0) {
 | |
| 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | |
| 			return NO_BALANCING_NEEDED;	/* no balancing for higher levels needed */
 | |
| 		}
 | |
| 		/* new_nr_item == 0.
 | |
| 		 * Current root will be deleted resulting in
 | |
| 		 * decrementing the tree height. */
 | |
| 		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
 | |
| 		return CARRY_ON;
 | |
| 	}
 | |
| 
 | |
| 	if ((ret = get_parents(tb, h)) != CARRY_ON)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* get free space of neighbors */
 | |
| 	rfree = get_rfree(tb, h);
 | |
| 	lfree = get_lfree(tb, h);
 | |
| 
 | |
| 	/* determine maximal number of items we can fit into neighbors */
 | |
| 	check_left(tb, h, lfree);
 | |
| 	check_right(tb, h, rfree);
 | |
| 
 | |
| 	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {	/* Balance condition for the internal node is valid.
 | |
| 						 * In this case we balance only if it leads to better packing. */
 | |
| 		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {	/* Here we join S[h] with one of its neighbors,
 | |
| 							 * which is impossible with greater values of new_nr_item. */
 | |
| 			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
 | |
| 				/* All contents of S[h] can be moved to L[h]. */
 | |
| 				int n;
 | |
| 				int order_L;
 | |
| 
 | |
| 				order_L =
 | |
| 				    ((n =
 | |
| 				      PATH_H_B_ITEM_ORDER(tb->tb_path,
 | |
| 							  h)) ==
 | |
| 				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
 | |
| 				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
 | |
| 				    (DC_SIZE + KEY_SIZE);
 | |
| 				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
 | |
| 					       -1);
 | |
| 				return CARRY_ON;
 | |
| 			}
 | |
| 
 | |
| 			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
 | |
| 				/* All contents of S[h] can be moved to R[h]. */
 | |
| 				int n;
 | |
| 				int order_R;
 | |
| 
 | |
| 				order_R =
 | |
| 				    ((n =
 | |
| 				      PATH_H_B_ITEM_ORDER(tb->tb_path,
 | |
| 							  h)) ==
 | |
| 				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
 | |
| 				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
 | |
| 				    (DC_SIZE + KEY_SIZE);
 | |
| 				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
 | |
| 					       -1);
 | |
| 				return CARRY_ON;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
 | |
| 			/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
 | |
| 			int to_r;
 | |
| 
 | |
| 			to_r =
 | |
| 			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
 | |
| 			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
 | |
| 			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
 | |
| 			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
 | |
| 				       0, NULL, -1, -1);
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 
 | |
| 		/* Balancing does not lead to better packing. */
 | |
| 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | |
| 		return NO_BALANCING_NEEDED;
 | |
| 	}
 | |
| 
 | |
| 	/* Current node contain insufficient number of items. Balancing is required. */
 | |
| 	/* Check whether we can merge S[h] with left neighbor. */
 | |
| 	if (tb->lnum[h] >= vn->vn_nr_item + 1)
 | |
| 		if (is_left_neighbor_in_cache(tb, h)
 | |
| 		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
 | |
| 			int n;
 | |
| 			int order_L;
 | |
| 
 | |
| 			order_L =
 | |
| 			    ((n =
 | |
| 			      PATH_H_B_ITEM_ORDER(tb->tb_path,
 | |
| 						  h)) ==
 | |
| 			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
 | |
| 			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
 | |
| 								      KEY_SIZE);
 | |
| 			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 
 | |
| 	/* Check whether we can merge S[h] with right neighbor. */
 | |
| 	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
 | |
| 		int n;
 | |
| 		int order_R;
 | |
| 
 | |
| 		order_R =
 | |
| 		    ((n =
 | |
| 		      PATH_H_B_ITEM_ORDER(tb->tb_path,
 | |
| 					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
 | |
| 		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
 | |
| 							      KEY_SIZE);
 | |
| 		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
 | |
| 		return CARRY_ON;
 | |
| 	}
 | |
| 
 | |
| 	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
 | |
| 	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
 | |
| 		int to_r;
 | |
| 
 | |
| 		to_r =
 | |
| 		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
 | |
| 		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
 | |
| 						tb->rnum[h]);
 | |
| 		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
 | |
| 			       -1, -1);
 | |
| 		return CARRY_ON;
 | |
| 	}
 | |
| 
 | |
| 	/* For internal nodes try to borrow item from a neighbor */
 | |
| 	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
 | |
| 
 | |
| 	/* Borrow one or two items from caching neighbor */
 | |
| 	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
 | |
| 		int from_l;
 | |
| 
 | |
| 		from_l =
 | |
| 		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
 | |
| 		     1) / 2 - (vn->vn_nr_item + 1);
 | |
| 		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
 | |
| 		return CARRY_ON;
 | |
| 	}
 | |
| 
 | |
| 	set_parameters(tb, h, 0,
 | |
| 		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
 | |
| 			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
 | |
| 	return CARRY_ON;
 | |
| }
 | |
| 
 | |
| /* Check whether current node S[h] is balanced when Decreasing its size by
 | |
|  * Deleting or Truncating for LEAF node of S+tree.
 | |
|  * Calculate parameters for balancing for current level h.
 | |
|  * Parameters:
 | |
|  *	tb	tree_balance structure;
 | |
|  *	h	current level of the node;
 | |
|  *	inum	item number in S[h];
 | |
|  *	mode	i - insert, p - paste;
 | |
|  * Returns:	1 - schedule occurred;
 | |
|  *	        0 - balancing for higher levels needed;
 | |
|  *	       -1 - no balancing for higher levels needed;
 | |
|  *	       -2 - no disk space.
 | |
|  */
 | |
| static int dc_check_balance_leaf(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct virtual_node *vn = tb->tb_vn;
 | |
| 
 | |
| 	/* Number of bytes that must be deleted from
 | |
| 	   (value is negative if bytes are deleted) buffer which
 | |
| 	   contains node being balanced.  The mnemonic is that the
 | |
| 	   attempted change in node space used level is levbytes bytes. */
 | |
| 	int levbytes;
 | |
| 	/* the maximal item size */
 | |
| 	int maxsize, ret;
 | |
| 	/* S0 is the node whose balance is currently being checked,
 | |
| 	   and F0 is its father.  */
 | |
| 	struct buffer_head *S0, *F0;
 | |
| 	int lfree, rfree /* free space in L and R */ ;
 | |
| 
 | |
| 	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
 | |
| 	F0 = PATH_H_PPARENT(tb->tb_path, 0);
 | |
| 
 | |
| 	levbytes = tb->insert_size[h];
 | |
| 
 | |
| 	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */
 | |
| 
 | |
| 	if (!F0) {		/* S[0] is the root now. */
 | |
| 
 | |
| 		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
 | |
| 		       "vs-8240: attempt to create empty buffer tree");
 | |
| 
 | |
| 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | |
| 		return NO_BALANCING_NEEDED;
 | |
| 	}
 | |
| 
 | |
| 	if ((ret = get_parents(tb, h)) != CARRY_ON)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* get free space of neighbors */
 | |
| 	rfree = get_rfree(tb, h);
 | |
| 	lfree = get_lfree(tb, h);
 | |
| 
 | |
| 	create_virtual_node(tb, h);
 | |
| 
 | |
| 	/* if 3 leaves can be merge to one, set parameters and return */
 | |
| 	if (are_leaves_removable(tb, lfree, rfree))
 | |
| 		return CARRY_ON;
 | |
| 
 | |
| 	/* determine maximal number of items we can shift to the left/right  neighbor
 | |
| 	   and the maximal number of bytes that can flow to the left/right neighbor
 | |
| 	   from the left/right most liquid item that cannot be shifted from S[0] entirely
 | |
| 	 */
 | |
| 	check_left(tb, h, lfree);
 | |
| 	check_right(tb, h, rfree);
 | |
| 
 | |
| 	/* check whether we can merge S with left neighbor. */
 | |
| 	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
 | |
| 		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
 | |
| 		    !tb->FR[h]) {
 | |
| 
 | |
| 			RFALSE(!tb->FL[h],
 | |
| 			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");
 | |
| 
 | |
| 			/* set parameter to merge S[0] with its left neighbor */
 | |
| 			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 
 | |
| 	/* check whether we can merge S[0] with right neighbor. */
 | |
| 	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
 | |
| 		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
 | |
| 		return CARRY_ON;
 | |
| 	}
 | |
| 
 | |
| 	/* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
 | |
| 	if (is_leaf_removable(tb))
 | |
| 		return CARRY_ON;
 | |
| 
 | |
| 	/* Balancing is not required. */
 | |
| 	tb->s0num = vn->vn_nr_item;
 | |
| 	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | |
| 	return NO_BALANCING_NEEDED;
 | |
| }
 | |
| 
 | |
| /* Check whether current node S[h] is balanced when Decreasing its size by
 | |
|  * Deleting or Cutting.
 | |
|  * Calculate parameters for balancing for current level h.
 | |
|  * Parameters:
 | |
|  *	tb	tree_balance structure;
 | |
|  *	h	current level of the node;
 | |
|  *	inum	item number in S[h];
 | |
|  *	mode	d - delete, c - cut.
 | |
|  * Returns:	1 - schedule occurred;
 | |
|  *	        0 - balancing for higher levels needed;
 | |
|  *	       -1 - no balancing for higher levels needed;
 | |
|  *	       -2 - no disk space.
 | |
|  */
 | |
| static int dc_check_balance(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
 | |
| 	       "vs-8250: S is not initialized");
 | |
| 
 | |
| 	if (h)
 | |
| 		return dc_check_balance_internal(tb, h);
 | |
| 	else
 | |
| 		return dc_check_balance_leaf(tb, h);
 | |
| }
 | |
| 
 | |
| /* Check whether current node S[h] is balanced.
 | |
|  * Calculate parameters for balancing for current level h.
 | |
|  * Parameters:
 | |
|  *
 | |
|  *	tb	tree_balance structure:
 | |
|  *
 | |
|  *              tb is a large structure that must be read about in the header file
 | |
|  *              at the same time as this procedure if the reader is to successfully
 | |
|  *              understand this procedure
 | |
|  *
 | |
|  *	h	current level of the node;
 | |
|  *	inum	item number in S[h];
 | |
|  *	mode	i - insert, p - paste, d - delete, c - cut.
 | |
|  * Returns:	1 - schedule occurred;
 | |
|  *	        0 - balancing for higher levels needed;
 | |
|  *	       -1 - no balancing for higher levels needed;
 | |
|  *	       -2 - no disk space.
 | |
|  */
 | |
| static int check_balance(int mode,
 | |
| 			 struct tree_balance *tb,
 | |
| 			 int h,
 | |
| 			 int inum,
 | |
| 			 int pos_in_item,
 | |
| 			 struct item_head *ins_ih, const void *data)
 | |
| {
 | |
| 	struct virtual_node *vn;
 | |
| 
 | |
| 	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
 | |
| 	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
 | |
| 	vn->vn_mode = mode;
 | |
| 	vn->vn_affected_item_num = inum;
 | |
| 	vn->vn_pos_in_item = pos_in_item;
 | |
| 	vn->vn_ins_ih = ins_ih;
 | |
| 	vn->vn_data = data;
 | |
| 
 | |
| 	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
 | |
| 	       "vs-8255: ins_ih can not be 0 in insert mode");
 | |
| 
 | |
| 	if (tb->insert_size[h] > 0)
 | |
| 		/* Calculate balance parameters when size of node is increasing. */
 | |
| 		return ip_check_balance(tb, h);
 | |
| 
 | |
| 	/* Calculate balance parameters when  size of node is decreasing. */
 | |
| 	return dc_check_balance(tb, h);
 | |
| }
 | |
| 
 | |
| /* Check whether parent at the path is the really parent of the current node.*/
 | |
| static int get_direct_parent(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	struct buffer_head *bh;
 | |
| 	struct treepath *path = tb->tb_path;
 | |
| 	int position,
 | |
| 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
 | |
| 
 | |
| 	/* We are in the root or in the new root. */
 | |
| 	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
 | |
| 
 | |
| 		RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
 | |
| 		       "PAP-8260: invalid offset in the path");
 | |
| 
 | |
| 		if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
 | |
| 		    b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
 | |
| 			/* Root is not changed. */
 | |
| 			PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
 | |
| 			PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 		return REPEAT_SEARCH;	/* Root is changed and we must recalculate the path. */
 | |
| 	}
 | |
| 
 | |
| 	if (!B_IS_IN_TREE
 | |
| 	    (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
 | |
| 		return REPEAT_SEARCH;	/* Parent in the path is not in the tree. */
 | |
| 
 | |
| 	if ((position =
 | |
| 	     PATH_OFFSET_POSITION(path,
 | |
| 				  path_offset - 1)) > B_NR_ITEMS(bh))
 | |
| 		return REPEAT_SEARCH;
 | |
| 
 | |
| 	if (B_N_CHILD_NUM(bh, position) !=
 | |
| 	    PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
 | |
| 		/* Parent in the path is not parent of the current node in the tree. */
 | |
| 		return REPEAT_SEARCH;
 | |
| 
 | |
| 	if (buffer_locked(bh)) {
 | |
| 		reiserfs_write_unlock(tb->tb_sb);
 | |
| 		__wait_on_buffer(bh);
 | |
| 		reiserfs_write_lock(tb->tb_sb);
 | |
| 		if (FILESYSTEM_CHANGED_TB(tb))
 | |
| 			return REPEAT_SEARCH;
 | |
| 	}
 | |
| 
 | |
| 	return CARRY_ON;	/* Parent in the path is unlocked and really parent of the current node.  */
 | |
| }
 | |
| 
 | |
| /* Using lnum[h] and rnum[h] we should determine what neighbors
 | |
|  * of S[h] we
 | |
|  * need in order to balance S[h], and get them if necessary.
 | |
|  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
 | |
|  *	        CARRY_ON - schedule didn't occur while the function worked;
 | |
|  */
 | |
| static int get_neighbors(struct tree_balance *tb, int h)
 | |
| {
 | |
| 	int child_position,
 | |
| 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
 | |
| 	unsigned long son_number;
 | |
| 	struct super_block *sb = tb->tb_sb;
 | |
| 	struct buffer_head *bh;
 | |
| 
 | |
| 	PROC_INFO_INC(sb, get_neighbors[h]);
 | |
| 
 | |
| 	if (tb->lnum[h]) {
 | |
| 		/* We need left neighbor to balance S[h]. */
 | |
| 		PROC_INFO_INC(sb, need_l_neighbor[h]);
 | |
| 		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
 | |
| 
 | |
| 		RFALSE(bh == tb->FL[h] &&
 | |
| 		       !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
 | |
| 		       "PAP-8270: invalid position in the parent");
 | |
| 
 | |
| 		child_position =
 | |
| 		    (bh ==
 | |
| 		     tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
 | |
| 								       FL[h]);
 | |
| 		son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
 | |
| 		reiserfs_write_unlock(sb);
 | |
| 		bh = sb_bread(sb, son_number);
 | |
| 		reiserfs_write_lock(sb);
 | |
| 		if (!bh)
 | |
| 			return IO_ERROR;
 | |
| 		if (FILESYSTEM_CHANGED_TB(tb)) {
 | |
| 			brelse(bh);
 | |
| 			PROC_INFO_INC(sb, get_neighbors_restart[h]);
 | |
| 			return REPEAT_SEARCH;
 | |
| 		}
 | |
| 
 | |
| 		RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
 | |
| 		       child_position > B_NR_ITEMS(tb->FL[h]) ||
 | |
| 		       B_N_CHILD_NUM(tb->FL[h], child_position) !=
 | |
| 		       bh->b_blocknr, "PAP-8275: invalid parent");
 | |
| 		RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
 | |
| 		RFALSE(!h &&
 | |
| 		       B_FREE_SPACE(bh) !=
 | |
| 		       MAX_CHILD_SIZE(bh) -
 | |
| 		       dc_size(B_N_CHILD(tb->FL[0], child_position)),
 | |
| 		       "PAP-8290: invalid child size of left neighbor");
 | |
| 
 | |
| 		brelse(tb->L[h]);
 | |
| 		tb->L[h] = bh;
 | |
| 	}
 | |
| 
 | |
| 	/* We need right neighbor to balance S[path_offset]. */
 | |
| 	if (tb->rnum[h]) {	/* We need right neighbor to balance S[path_offset]. */
 | |
| 		PROC_INFO_INC(sb, need_r_neighbor[h]);
 | |
| 		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
 | |
| 
 | |
| 		RFALSE(bh == tb->FR[h] &&
 | |
| 		       PATH_OFFSET_POSITION(tb->tb_path,
 | |
| 					    path_offset) >=
 | |
| 		       B_NR_ITEMS(bh),
 | |
| 		       "PAP-8295: invalid position in the parent");
 | |
| 
 | |
| 		child_position =
 | |
| 		    (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
 | |
| 		son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
 | |
| 		reiserfs_write_unlock(sb);
 | |
| 		bh = sb_bread(sb, son_number);
 | |
| 		reiserfs_write_lock(sb);
 | |
| 		if (!bh)
 | |
| 			return IO_ERROR;
 | |
| 		if (FILESYSTEM_CHANGED_TB(tb)) {
 | |
| 			brelse(bh);
 | |
| 			PROC_INFO_INC(sb, get_neighbors_restart[h]);
 | |
| 			return REPEAT_SEARCH;
 | |
| 		}
 | |
| 		brelse(tb->R[h]);
 | |
| 		tb->R[h] = bh;
 | |
| 
 | |
| 		RFALSE(!h
 | |
| 		       && B_FREE_SPACE(bh) !=
 | |
| 		       MAX_CHILD_SIZE(bh) -
 | |
| 		       dc_size(B_N_CHILD(tb->FR[0], child_position)),
 | |
| 		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
 | |
| 		       B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
 | |
| 		       dc_size(B_N_CHILD(tb->FR[0], child_position)));
 | |
| 
 | |
| 	}
 | |
| 	return CARRY_ON;
 | |
| }
 | |
| 
 | |
| static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
 | |
| {
 | |
| 	int max_num_of_items;
 | |
| 	int max_num_of_entries;
 | |
| 	unsigned long blocksize = sb->s_blocksize;
 | |
| 
 | |
| #define MIN_NAME_LEN 1
 | |
| 
 | |
| 	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
 | |
| 	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
 | |
| 	    (DEH_SIZE + MIN_NAME_LEN);
 | |
| 
 | |
| 	return sizeof(struct virtual_node) +
 | |
| 	    max(max_num_of_items * sizeof(struct virtual_item),
 | |
| 		sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
 | |
| 		(max_num_of_entries - 1) * sizeof(__u16));
 | |
| }
 | |
| 
 | |
| /* maybe we should fail balancing we are going to perform when kmalloc
 | |
|    fails several times. But now it will loop until kmalloc gets
 | |
|    required memory */
 | |
| static int get_mem_for_virtual_node(struct tree_balance *tb)
 | |
| {
 | |
| 	int check_fs = 0;
 | |
| 	int size;
 | |
| 	char *buf;
 | |
| 
 | |
| 	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
 | |
| 
 | |
| 	if (size > tb->vn_buf_size) {
 | |
| 		/* we have to allocate more memory for virtual node */
 | |
| 		if (tb->vn_buf) {
 | |
| 			/* free memory allocated before */
 | |
| 			kfree(tb->vn_buf);
 | |
| 			/* this is not needed if kfree is atomic */
 | |
| 			check_fs = 1;
 | |
| 		}
 | |
| 
 | |
| 		/* virtual node requires now more memory */
 | |
| 		tb->vn_buf_size = size;
 | |
| 
 | |
| 		/* get memory for virtual item */
 | |
| 		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
 | |
| 		if (!buf) {
 | |
| 			/* getting memory with GFP_KERNEL priority may involve
 | |
| 			   balancing now (due to indirect_to_direct conversion on
 | |
| 			   dcache shrinking). So, release path and collected
 | |
| 			   resources here */
 | |
| 			free_buffers_in_tb(tb);
 | |
| 			buf = kmalloc(size, GFP_NOFS);
 | |
| 			if (!buf) {
 | |
| 				tb->vn_buf_size = 0;
 | |
| 			}
 | |
| 			tb->vn_buf = buf;
 | |
| 			schedule();
 | |
| 			return REPEAT_SEARCH;
 | |
| 		}
 | |
| 
 | |
| 		tb->vn_buf = buf;
 | |
| 	}
 | |
| 
 | |
| 	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
 | |
| 		return REPEAT_SEARCH;
 | |
| 
 | |
| 	return CARRY_ON;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| static void tb_buffer_sanity_check(struct super_block *sb,
 | |
| 				   struct buffer_head *bh,
 | |
| 				   const char *descr, int level)
 | |
| {
 | |
| 	if (bh) {
 | |
| 		if (atomic_read(&(bh->b_count)) <= 0)
 | |
| 
 | |
| 			reiserfs_panic(sb, "jmacd-1", "negative or zero "
 | |
| 				       "reference counter for buffer %s[%d] "
 | |
| 				       "(%b)", descr, level, bh);
 | |
| 
 | |
| 		if (!buffer_uptodate(bh))
 | |
| 			reiserfs_panic(sb, "jmacd-2", "buffer is not up "
 | |
| 				       "to date %s[%d] (%b)",
 | |
| 				       descr, level, bh);
 | |
| 
 | |
| 		if (!B_IS_IN_TREE(bh))
 | |
| 			reiserfs_panic(sb, "jmacd-3", "buffer is not "
 | |
| 				       "in tree %s[%d] (%b)",
 | |
| 				       descr, level, bh);
 | |
| 
 | |
| 		if (bh->b_bdev != sb->s_bdev)
 | |
| 			reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
 | |
| 				       "device %s[%d] (%b)",
 | |
| 				       descr, level, bh);
 | |
| 
 | |
| 		if (bh->b_size != sb->s_blocksize)
 | |
| 			reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
 | |
| 				       "blocksize %s[%d] (%b)",
 | |
| 				       descr, level, bh);
 | |
| 
 | |
| 		if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
 | |
| 			reiserfs_panic(sb, "jmacd-6", "buffer block "
 | |
| 				       "number too high %s[%d] (%b)",
 | |
| 				       descr, level, bh);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void tb_buffer_sanity_check(struct super_block *sb,
 | |
| 				   struct buffer_head *bh,
 | |
| 				   const char *descr, int level)
 | |
| {;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
 | |
| {
 | |
| 	return reiserfs_prepare_for_journal(s, bh, 0);
 | |
| }
 | |
| 
 | |
| static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
 | |
| {
 | |
| 	struct buffer_head *locked;
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 	int repeat_counter = 0;
 | |
| #endif
 | |
| 	int i;
 | |
| 
 | |
| 	do {
 | |
| 
 | |
| 		locked = NULL;
 | |
| 
 | |
| 		for (i = tb->tb_path->path_length;
 | |
| 		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
 | |
| 			if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
 | |
| 				/* if I understand correctly, we can only be sure the last buffer
 | |
| 				 ** in the path is in the tree --clm
 | |
| 				 */
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 				if (PATH_PLAST_BUFFER(tb->tb_path) ==
 | |
| 				    PATH_OFFSET_PBUFFER(tb->tb_path, i))
 | |
| 					tb_buffer_sanity_check(tb->tb_sb,
 | |
| 							       PATH_OFFSET_PBUFFER
 | |
| 							       (tb->tb_path,
 | |
| 								i), "S",
 | |
| 							       tb->tb_path->
 | |
| 							       path_length - i);
 | |
| #endif
 | |
| 				if (!clear_all_dirty_bits(tb->tb_sb,
 | |
| 							  PATH_OFFSET_PBUFFER
 | |
| 							  (tb->tb_path,
 | |
| 							   i))) {
 | |
| 					locked =
 | |
| 					    PATH_OFFSET_PBUFFER(tb->tb_path,
 | |
| 								i);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
 | |
| 		     i++) {
 | |
| 
 | |
| 			if (tb->lnum[i]) {
 | |
| 
 | |
| 				if (tb->L[i]) {
 | |
| 					tb_buffer_sanity_check(tb->tb_sb,
 | |
| 							       tb->L[i],
 | |
| 							       "L", i);
 | |
| 					if (!clear_all_dirty_bits
 | |
| 					    (tb->tb_sb, tb->L[i]))
 | |
| 						locked = tb->L[i];
 | |
| 				}
 | |
| 
 | |
| 				if (!locked && tb->FL[i]) {
 | |
| 					tb_buffer_sanity_check(tb->tb_sb,
 | |
| 							       tb->FL[i],
 | |
| 							       "FL", i);
 | |
| 					if (!clear_all_dirty_bits
 | |
| 					    (tb->tb_sb, tb->FL[i]))
 | |
| 						locked = tb->FL[i];
 | |
| 				}
 | |
| 
 | |
| 				if (!locked && tb->CFL[i]) {
 | |
| 					tb_buffer_sanity_check(tb->tb_sb,
 | |
| 							       tb->CFL[i],
 | |
| 							       "CFL", i);
 | |
| 					if (!clear_all_dirty_bits
 | |
| 					    (tb->tb_sb, tb->CFL[i]))
 | |
| 						locked = tb->CFL[i];
 | |
| 				}
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 			if (!locked && (tb->rnum[i])) {
 | |
| 
 | |
| 				if (tb->R[i]) {
 | |
| 					tb_buffer_sanity_check(tb->tb_sb,
 | |
| 							       tb->R[i],
 | |
| 							       "R", i);
 | |
| 					if (!clear_all_dirty_bits
 | |
| 					    (tb->tb_sb, tb->R[i]))
 | |
| 						locked = tb->R[i];
 | |
| 				}
 | |
| 
 | |
| 				if (!locked && tb->FR[i]) {
 | |
| 					tb_buffer_sanity_check(tb->tb_sb,
 | |
| 							       tb->FR[i],
 | |
| 							       "FR", i);
 | |
| 					if (!clear_all_dirty_bits
 | |
| 					    (tb->tb_sb, tb->FR[i]))
 | |
| 						locked = tb->FR[i];
 | |
| 				}
 | |
| 
 | |
| 				if (!locked && tb->CFR[i]) {
 | |
| 					tb_buffer_sanity_check(tb->tb_sb,
 | |
| 							       tb->CFR[i],
 | |
| 							       "CFR", i);
 | |
| 					if (!clear_all_dirty_bits
 | |
| 					    (tb->tb_sb, tb->CFR[i]))
 | |
| 						locked = tb->CFR[i];
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		/* as far as I can tell, this is not required.  The FEB list seems
 | |
| 		 ** to be full of newly allocated nodes, which will never be locked,
 | |
| 		 ** dirty, or anything else.
 | |
| 		 ** To be safe, I'm putting in the checks and waits in.  For the moment,
 | |
| 		 ** they are needed to keep the code in journal.c from complaining
 | |
| 		 ** about the buffer.  That code is inside CONFIG_REISERFS_CHECK as well.
 | |
| 		 ** --clm
 | |
| 		 */
 | |
| 		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
 | |
| 			if (tb->FEB[i]) {
 | |
| 				if (!clear_all_dirty_bits
 | |
| 				    (tb->tb_sb, tb->FEB[i]))
 | |
| 					locked = tb->FEB[i];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (locked) {
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 			repeat_counter++;
 | |
| 			if ((repeat_counter % 10000) == 0) {
 | |
| 				reiserfs_warning(tb->tb_sb, "reiserfs-8200",
 | |
| 						 "too many iterations waiting "
 | |
| 						 "for buffer to unlock "
 | |
| 						 "(%b)", locked);
 | |
| 
 | |
| 				/* Don't loop forever.  Try to recover from possible error. */
 | |
| 
 | |
| 				return (FILESYSTEM_CHANGED_TB(tb)) ?
 | |
| 				    REPEAT_SEARCH : CARRY_ON;
 | |
| 			}
 | |
| #endif
 | |
| 			reiserfs_write_unlock(tb->tb_sb);
 | |
| 			__wait_on_buffer(locked);
 | |
| 			reiserfs_write_lock(tb->tb_sb);
 | |
| 			if (FILESYSTEM_CHANGED_TB(tb))
 | |
| 				return REPEAT_SEARCH;
 | |
| 		}
 | |
| 
 | |
| 	} while (locked);
 | |
| 
 | |
| 	return CARRY_ON;
 | |
| }
 | |
| 
 | |
| /* Prepare for balancing, that is
 | |
|  *	get all necessary parents, and neighbors;
 | |
|  *	analyze what and where should be moved;
 | |
|  *	get sufficient number of new nodes;
 | |
|  * Balancing will start only after all resources will be collected at a time.
 | |
|  *
 | |
|  * When ported to SMP kernels, only at the last moment after all needed nodes
 | |
|  * are collected in cache, will the resources be locked using the usual
 | |
|  * textbook ordered lock acquisition algorithms.  Note that ensuring that
 | |
|  * this code neither write locks what it does not need to write lock nor locks out of order
 | |
|  * will be a pain in the butt that could have been avoided.  Grumble grumble. -Hans
 | |
|  *
 | |
|  * fix is meant in the sense of render unchanging
 | |
|  *
 | |
|  * Latency might be improved by first gathering a list of what buffers are needed
 | |
|  * and then getting as many of them in parallel as possible? -Hans
 | |
|  *
 | |
|  * Parameters:
 | |
|  *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
 | |
|  *	tb	tree_balance structure;
 | |
|  *	inum	item number in S[h];
 | |
|  *      pos_in_item - comment this if you can
 | |
|  *      ins_ih	item head of item being inserted
 | |
|  *	data	inserted item or data to be pasted
 | |
|  * Returns:	1 - schedule occurred while the function worked;
 | |
|  *	        0 - schedule didn't occur while the function worked;
 | |
|  *             -1 - if no_disk_space
 | |
|  */
 | |
| 
 | |
| int fix_nodes(int op_mode, struct tree_balance *tb,
 | |
| 	      struct item_head *ins_ih, const void *data)
 | |
| {
 | |
| 	int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
 | |
| 	int pos_in_item;
 | |
| 
 | |
| 	/* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
 | |
| 	 ** during wait_tb_buffers_run
 | |
| 	 */
 | |
| 	int wait_tb_buffers_run = 0;
 | |
| 	struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
 | |
| 
 | |
| 	++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
 | |
| 
 | |
| 	pos_in_item = tb->tb_path->pos_in_item;
 | |
| 
 | |
| 	tb->fs_gen = get_generation(tb->tb_sb);
 | |
| 
 | |
| 	/* we prepare and log the super here so it will already be in the
 | |
| 	 ** transaction when do_balance needs to change it.
 | |
| 	 ** This way do_balance won't have to schedule when trying to prepare
 | |
| 	 ** the super for logging
 | |
| 	 */
 | |
| 	reiserfs_prepare_for_journal(tb->tb_sb,
 | |
| 				     SB_BUFFER_WITH_SB(tb->tb_sb), 1);
 | |
| 	journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
 | |
| 			   SB_BUFFER_WITH_SB(tb->tb_sb));
 | |
| 	if (FILESYSTEM_CHANGED_TB(tb))
 | |
| 		return REPEAT_SEARCH;
 | |
| 
 | |
| 	/* if it possible in indirect_to_direct conversion */
 | |
| 	if (buffer_locked(tbS0)) {
 | |
| 		reiserfs_write_unlock(tb->tb_sb);
 | |
| 		__wait_on_buffer(tbS0);
 | |
| 		reiserfs_write_lock(tb->tb_sb);
 | |
| 		if (FILESYSTEM_CHANGED_TB(tb))
 | |
| 			return REPEAT_SEARCH;
 | |
| 	}
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 	if (REISERFS_SB(tb->tb_sb)->cur_tb) {
 | |
| 		print_cur_tb("fix_nodes");
 | |
| 		reiserfs_panic(tb->tb_sb, "PAP-8305",
 | |
| 			       "there is pending do_balance");
 | |
| 	}
 | |
| 
 | |
| 	if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
 | |
| 		reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
 | |
| 			       "not uptodate at the beginning of fix_nodes "
 | |
| 			       "or not in tree (mode %c)",
 | |
| 			       tbS0, tbS0, op_mode);
 | |
| 
 | |
| 	/* Check parameters. */
 | |
| 	switch (op_mode) {
 | |
| 	case M_INSERT:
 | |
| 		if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
 | |
| 			reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
 | |
| 				       "item number %d (in S0 - %d) in case "
 | |
| 				       "of insert", item_num,
 | |
| 				       B_NR_ITEMS(tbS0));
 | |
| 		break;
 | |
| 	case M_PASTE:
 | |
| 	case M_DELETE:
 | |
| 	case M_CUT:
 | |
| 		if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
 | |
| 			print_block(tbS0, 0, -1, -1);
 | |
| 			reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
 | |
| 				       "item number(%d); mode = %c "
 | |
| 				       "insert_size = %d",
 | |
| 				       item_num, op_mode,
 | |
| 				       tb->insert_size[0]);
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
 | |
| 			       "of operation");
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
 | |
| 		// FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
 | |
| 		return REPEAT_SEARCH;
 | |
| 
 | |
| 	/* Starting from the leaf level; for all levels h of the tree. */
 | |
| 	for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
 | |
| 		ret = get_direct_parent(tb, h);
 | |
| 		if (ret != CARRY_ON)
 | |
| 			goto repeat;
 | |
| 
 | |
| 		ret = check_balance(op_mode, tb, h, item_num,
 | |
| 				    pos_in_item, ins_ih, data);
 | |
| 		if (ret != CARRY_ON) {
 | |
| 			if (ret == NO_BALANCING_NEEDED) {
 | |
| 				/* No balancing for higher levels needed. */
 | |
| 				ret = get_neighbors(tb, h);
 | |
| 				if (ret != CARRY_ON)
 | |
| 					goto repeat;
 | |
| 				if (h != MAX_HEIGHT - 1)
 | |
| 					tb->insert_size[h + 1] = 0;
 | |
| 				/* ok, analysis and resource gathering are complete */
 | |
| 				break;
 | |
| 			}
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 
 | |
| 		ret = get_neighbors(tb, h);
 | |
| 		if (ret != CARRY_ON)
 | |
| 			goto repeat;
 | |
| 
 | |
| 		/* No disk space, or schedule occurred and analysis may be
 | |
| 		 * invalid and needs to be redone. */
 | |
| 		ret = get_empty_nodes(tb, h);
 | |
| 		if (ret != CARRY_ON)
 | |
| 			goto repeat;
 | |
| 
 | |
| 		if (!PATH_H_PBUFFER(tb->tb_path, h)) {
 | |
| 			/* We have a positive insert size but no nodes exist on this
 | |
| 			   level, this means that we are creating a new root. */
 | |
| 
 | |
| 			RFALSE(tb->blknum[h] != 1,
 | |
| 			       "PAP-8350: creating new empty root");
 | |
| 
 | |
| 			if (h < MAX_HEIGHT - 1)
 | |
| 				tb->insert_size[h + 1] = 0;
 | |
| 		} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
 | |
| 			if (tb->blknum[h] > 1) {
 | |
| 				/* The tree needs to be grown, so this node S[h]
 | |
| 				   which is the root node is split into two nodes,
 | |
| 				   and a new node (S[h+1]) will be created to
 | |
| 				   become the root node.  */
 | |
| 
 | |
| 				RFALSE(h == MAX_HEIGHT - 1,
 | |
| 				       "PAP-8355: attempt to create too high of a tree");
 | |
| 
 | |
| 				tb->insert_size[h + 1] =
 | |
| 				    (DC_SIZE +
 | |
| 				     KEY_SIZE) * (tb->blknum[h] - 1) +
 | |
| 				    DC_SIZE;
 | |
| 			} else if (h < MAX_HEIGHT - 1)
 | |
| 				tb->insert_size[h + 1] = 0;
 | |
| 		} else
 | |
| 			tb->insert_size[h + 1] =
 | |
| 			    (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
 | |
| 	}
 | |
| 
 | |
| 	ret = wait_tb_buffers_until_unlocked(tb);
 | |
| 	if (ret == CARRY_ON) {
 | |
| 		if (FILESYSTEM_CHANGED_TB(tb)) {
 | |
| 			wait_tb_buffers_run = 1;
 | |
| 			ret = REPEAT_SEARCH;
 | |
| 			goto repeat;
 | |
| 		} else {
 | |
| 			return CARRY_ON;
 | |
| 		}
 | |
| 	} else {
 | |
| 		wait_tb_buffers_run = 1;
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
|       repeat:
 | |
| 	// fix_nodes was unable to perform its calculation due to
 | |
| 	// filesystem got changed under us, lack of free disk space or i/o
 | |
| 	// failure. If the first is the case - the search will be
 | |
| 	// repeated. For now - free all resources acquired so far except
 | |
| 	// for the new allocated nodes
 | |
| 	{
 | |
| 		int i;
 | |
| 
 | |
| 		/* Release path buffers. */
 | |
| 		if (wait_tb_buffers_run) {
 | |
| 			pathrelse_and_restore(tb->tb_sb, tb->tb_path);
 | |
| 		} else {
 | |
| 			pathrelse(tb->tb_path);
 | |
| 		}
 | |
| 		/* brelse all resources collected for balancing */
 | |
| 		for (i = 0; i < MAX_HEIGHT; i++) {
 | |
| 			if (wait_tb_buffers_run) {
 | |
| 				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | |
| 								 tb->L[i]);
 | |
| 				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | |
| 								 tb->R[i]);
 | |
| 				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | |
| 								 tb->FL[i]);
 | |
| 				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | |
| 								 tb->FR[i]);
 | |
| 				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | |
| 								 tb->
 | |
| 								 CFL[i]);
 | |
| 				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | |
| 								 tb->
 | |
| 								 CFR[i]);
 | |
| 			}
 | |
| 
 | |
| 			brelse(tb->L[i]);
 | |
| 			brelse(tb->R[i]);
 | |
| 			brelse(tb->FL[i]);
 | |
| 			brelse(tb->FR[i]);
 | |
| 			brelse(tb->CFL[i]);
 | |
| 			brelse(tb->CFR[i]);
 | |
| 
 | |
| 			tb->L[i] = NULL;
 | |
| 			tb->R[i] = NULL;
 | |
| 			tb->FL[i] = NULL;
 | |
| 			tb->FR[i] = NULL;
 | |
| 			tb->CFL[i] = NULL;
 | |
| 			tb->CFR[i] = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (wait_tb_buffers_run) {
 | |
| 			for (i = 0; i < MAX_FEB_SIZE; i++) {
 | |
| 				if (tb->FEB[i])
 | |
| 					reiserfs_restore_prepared_buffer
 | |
| 					    (tb->tb_sb, tb->FEB[i]);
 | |
| 			}
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Anatoly will probably forgive me renaming tb to tb. I just
 | |
|    wanted to make lines shorter */
 | |
| void unfix_nodes(struct tree_balance *tb)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Release path buffers. */
 | |
| 	pathrelse_and_restore(tb->tb_sb, tb->tb_path);
 | |
| 
 | |
| 	/* brelse all resources collected for balancing */
 | |
| 	for (i = 0; i < MAX_HEIGHT; i++) {
 | |
| 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
 | |
| 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
 | |
| 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
 | |
| 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
 | |
| 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
 | |
| 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
 | |
| 
 | |
| 		brelse(tb->L[i]);
 | |
| 		brelse(tb->R[i]);
 | |
| 		brelse(tb->FL[i]);
 | |
| 		brelse(tb->FR[i]);
 | |
| 		brelse(tb->CFL[i]);
 | |
| 		brelse(tb->CFR[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* deal with list of allocated (used and unused) nodes */
 | |
| 	for (i = 0; i < MAX_FEB_SIZE; i++) {
 | |
| 		if (tb->FEB[i]) {
 | |
| 			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
 | |
| 			/* de-allocated block which was not used by balancing and
 | |
| 			   bforget about buffer for it */
 | |
| 			brelse(tb->FEB[i]);
 | |
| 			reiserfs_free_block(tb->transaction_handle, NULL,
 | |
| 					    blocknr, 0);
 | |
| 		}
 | |
| 		if (tb->used[i]) {
 | |
| 			/* release used as new nodes including a new root */
 | |
| 			brelse(tb->used[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(tb->vn_buf);
 | |
| 
 | |
| }
 | 
