 c7bc6319c5
			
		
	
	
	c7bc6319c5
	
	
	
		
			
			We try to allocate an extent state structure before acquiring the extent state tree's spinlock as we might need a new one later and therefore avoid doing later an atomic allocation while holding the tree's spinlock. However we returned -ENOMEM if that initial non-atomic allocation failed, which is a bit excessive since we might end up not needing the pre-allocated extent state at all - for the case where the tree doesn't have any extent states that cover the input range and cover too any other range. Therefore don't return -ENOMEM if that pre-allocation fails. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
		
			
				
	
	
		
			5585 lines
		
	
	
	
		
			140 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5585 lines
		
	
	
	
		
			140 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/bitops.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/cleancache.h>
 | |
| #include "extent_io.h"
 | |
| #include "extent_map.h"
 | |
| #include "ctree.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "volumes.h"
 | |
| #include "check-integrity.h"
 | |
| #include "locking.h"
 | |
| #include "rcu-string.h"
 | |
| #include "backref.h"
 | |
| 
 | |
| static struct kmem_cache *extent_state_cache;
 | |
| static struct kmem_cache *extent_buffer_cache;
 | |
| static struct bio_set *btrfs_bioset;
 | |
| 
 | |
| static inline bool extent_state_in_tree(const struct extent_state *state)
 | |
| {
 | |
| 	return !RB_EMPTY_NODE(&state->rb_node);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_DEBUG
 | |
| static LIST_HEAD(buffers);
 | |
| static LIST_HEAD(states);
 | |
| 
 | |
| static DEFINE_SPINLOCK(leak_lock);
 | |
| 
 | |
| static inline
 | |
| void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&leak_lock, flags);
 | |
| 	list_add(new, head);
 | |
| 	spin_unlock_irqrestore(&leak_lock, flags);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void btrfs_leak_debug_del(struct list_head *entry)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&leak_lock, flags);
 | |
| 	list_del(entry);
 | |
| 	spin_unlock_irqrestore(&leak_lock, flags);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void btrfs_leak_debug_check(void)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	while (!list_empty(&states)) {
 | |
| 		state = list_entry(states.next, struct extent_state, leak_list);
 | |
| 		pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
 | |
| 		       state->start, state->end, state->state,
 | |
| 		       extent_state_in_tree(state),
 | |
| 		       atomic_read(&state->refs));
 | |
| 		list_del(&state->leak_list);
 | |
| 		kmem_cache_free(extent_state_cache, state);
 | |
| 	}
 | |
| 
 | |
| 	while (!list_empty(&buffers)) {
 | |
| 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
 | |
| 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
 | |
| 		       "refs %d\n",
 | |
| 		       eb->start, eb->len, atomic_read(&eb->refs));
 | |
| 		list_del(&eb->leak_list);
 | |
| 		kmem_cache_free(extent_buffer_cache, eb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define btrfs_debug_check_extent_io_range(tree, start, end)		\
 | |
| 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
 | |
| static inline void __btrfs_debug_check_extent_io_range(const char *caller,
 | |
| 		struct extent_io_tree *tree, u64 start, u64 end)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	u64 isize;
 | |
| 
 | |
| 	if (!tree->mapping)
 | |
| 		return;
 | |
| 
 | |
| 	inode = tree->mapping->host;
 | |
| 	isize = i_size_read(inode);
 | |
| 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
 | |
| 		printk_ratelimited(KERN_DEBUG
 | |
| 		    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
 | |
| 				caller, btrfs_ino(inode), isize, start, end);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| #define btrfs_leak_debug_add(new, head)	do {} while (0)
 | |
| #define btrfs_leak_debug_del(entry)	do {} while (0)
 | |
| #define btrfs_leak_debug_check()	do {} while (0)
 | |
| #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 | |
| #endif
 | |
| 
 | |
| #define BUFFER_LRU_MAX 64
 | |
| 
 | |
| struct tree_entry {
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	struct rb_node rb_node;
 | |
| };
 | |
| 
 | |
| struct extent_page_data {
 | |
| 	struct bio *bio;
 | |
| 	struct extent_io_tree *tree;
 | |
| 	get_extent_t *get_extent;
 | |
| 	unsigned long bio_flags;
 | |
| 
 | |
| 	/* tells writepage not to lock the state bits for this range
 | |
| 	 * it still does the unlocking
 | |
| 	 */
 | |
| 	unsigned int extent_locked:1;
 | |
| 
 | |
| 	/* tells the submit_bio code to use a WRITE_SYNC */
 | |
| 	unsigned int sync_io:1;
 | |
| };
 | |
| 
 | |
| static noinline void flush_write_bio(void *data);
 | |
| static inline struct btrfs_fs_info *
 | |
| tree_fs_info(struct extent_io_tree *tree)
 | |
| {
 | |
| 	if (!tree->mapping)
 | |
| 		return NULL;
 | |
| 	return btrfs_sb(tree->mapping->host->i_sb);
 | |
| }
 | |
| 
 | |
| int __init extent_io_init(void)
 | |
| {
 | |
| 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 | |
| 			sizeof(struct extent_state), 0,
 | |
| 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 | |
| 	if (!extent_state_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 | |
| 			sizeof(struct extent_buffer), 0,
 | |
| 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 | |
| 	if (!extent_buffer_cache)
 | |
| 		goto free_state_cache;
 | |
| 
 | |
| 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 | |
| 				     offsetof(struct btrfs_io_bio, bio));
 | |
| 	if (!btrfs_bioset)
 | |
| 		goto free_buffer_cache;
 | |
| 
 | |
| 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 | |
| 		goto free_bioset;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_bioset:
 | |
| 	bioset_free(btrfs_bioset);
 | |
| 	btrfs_bioset = NULL;
 | |
| 
 | |
| free_buffer_cache:
 | |
| 	kmem_cache_destroy(extent_buffer_cache);
 | |
| 	extent_buffer_cache = NULL;
 | |
| 
 | |
| free_state_cache:
 | |
| 	kmem_cache_destroy(extent_state_cache);
 | |
| 	extent_state_cache = NULL;
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void extent_io_exit(void)
 | |
| {
 | |
| 	btrfs_leak_debug_check();
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure all delayed rcu free are flushed before we
 | |
| 	 * destroy caches.
 | |
| 	 */
 | |
| 	rcu_barrier();
 | |
| 	if (extent_state_cache)
 | |
| 		kmem_cache_destroy(extent_state_cache);
 | |
| 	if (extent_buffer_cache)
 | |
| 		kmem_cache_destroy(extent_buffer_cache);
 | |
| 	if (btrfs_bioset)
 | |
| 		bioset_free(btrfs_bioset);
 | |
| }
 | |
| 
 | |
| void extent_io_tree_init(struct extent_io_tree *tree,
 | |
| 			 struct address_space *mapping)
 | |
| {
 | |
| 	tree->state = RB_ROOT;
 | |
| 	tree->ops = NULL;
 | |
| 	tree->dirty_bytes = 0;
 | |
| 	spin_lock_init(&tree->lock);
 | |
| 	tree->mapping = mapping;
 | |
| }
 | |
| 
 | |
| static struct extent_state *alloc_extent_state(gfp_t mask)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 
 | |
| 	state = kmem_cache_alloc(extent_state_cache, mask);
 | |
| 	if (!state)
 | |
| 		return state;
 | |
| 	state->state = 0;
 | |
| 	state->private = 0;
 | |
| 	RB_CLEAR_NODE(&state->rb_node);
 | |
| 	btrfs_leak_debug_add(&state->leak_list, &states);
 | |
| 	atomic_set(&state->refs, 1);
 | |
| 	init_waitqueue_head(&state->wq);
 | |
| 	trace_alloc_extent_state(state, mask, _RET_IP_);
 | |
| 	return state;
 | |
| }
 | |
| 
 | |
| void free_extent_state(struct extent_state *state)
 | |
| {
 | |
| 	if (!state)
 | |
| 		return;
 | |
| 	if (atomic_dec_and_test(&state->refs)) {
 | |
| 		WARN_ON(extent_state_in_tree(state));
 | |
| 		btrfs_leak_debug_del(&state->leak_list);
 | |
| 		trace_free_extent_state(state, _RET_IP_);
 | |
| 		kmem_cache_free(extent_state_cache, state);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct rb_node *tree_insert(struct rb_root *root,
 | |
| 				   struct rb_node *search_start,
 | |
| 				   u64 offset,
 | |
| 				   struct rb_node *node,
 | |
| 				   struct rb_node ***p_in,
 | |
| 				   struct rb_node **parent_in)
 | |
| {
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct tree_entry *entry;
 | |
| 
 | |
| 	if (p_in && parent_in) {
 | |
| 		p = *p_in;
 | |
| 		parent = *parent_in;
 | |
| 		goto do_insert;
 | |
| 	}
 | |
| 
 | |
| 	p = search_start ? &search_start : &root->rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		entry = rb_entry(parent, struct tree_entry, rb_node);
 | |
| 
 | |
| 		if (offset < entry->start)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (offset > entry->end)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			return parent;
 | |
| 	}
 | |
| 
 | |
| do_insert:
 | |
| 	rb_link_node(node, parent, p);
 | |
| 	rb_insert_color(node, root);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 | |
| 				      struct rb_node **prev_ret,
 | |
| 				      struct rb_node **next_ret,
 | |
| 				      struct rb_node ***p_ret,
 | |
| 				      struct rb_node **parent_ret)
 | |
| {
 | |
| 	struct rb_root *root = &tree->state;
 | |
| 	struct rb_node **n = &root->rb_node;
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct rb_node *orig_prev = NULL;
 | |
| 	struct tree_entry *entry;
 | |
| 	struct tree_entry *prev_entry = NULL;
 | |
| 
 | |
| 	while (*n) {
 | |
| 		prev = *n;
 | |
| 		entry = rb_entry(prev, struct tree_entry, rb_node);
 | |
| 		prev_entry = entry;
 | |
| 
 | |
| 		if (offset < entry->start)
 | |
| 			n = &(*n)->rb_left;
 | |
| 		else if (offset > entry->end)
 | |
| 			n = &(*n)->rb_right;
 | |
| 		else
 | |
| 			return *n;
 | |
| 	}
 | |
| 
 | |
| 	if (p_ret)
 | |
| 		*p_ret = n;
 | |
| 	if (parent_ret)
 | |
| 		*parent_ret = prev;
 | |
| 
 | |
| 	if (prev_ret) {
 | |
| 		orig_prev = prev;
 | |
| 		while (prev && offset > prev_entry->end) {
 | |
| 			prev = rb_next(prev);
 | |
| 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 | |
| 		}
 | |
| 		*prev_ret = prev;
 | |
| 		prev = orig_prev;
 | |
| 	}
 | |
| 
 | |
| 	if (next_ret) {
 | |
| 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 | |
| 		while (prev && offset < prev_entry->start) {
 | |
| 			prev = rb_prev(prev);
 | |
| 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 | |
| 		}
 | |
| 		*next_ret = prev;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct rb_node *
 | |
| tree_search_for_insert(struct extent_io_tree *tree,
 | |
| 		       u64 offset,
 | |
| 		       struct rb_node ***p_ret,
 | |
| 		       struct rb_node **parent_ret)
 | |
| {
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct rb_node *ret;
 | |
| 
 | |
| 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 | |
| 	if (!ret)
 | |
| 		return prev;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 | |
| 					  u64 offset)
 | |
| {
 | |
| 	return tree_search_for_insert(tree, offset, NULL, NULL);
 | |
| }
 | |
| 
 | |
| static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 | |
| 		     struct extent_state *other)
 | |
| {
 | |
| 	if (tree->ops && tree->ops->merge_extent_hook)
 | |
| 		tree->ops->merge_extent_hook(tree->mapping->host, new,
 | |
| 					     other);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * utility function to look for merge candidates inside a given range.
 | |
|  * Any extents with matching state are merged together into a single
 | |
|  * extent in the tree.  Extents with EXTENT_IO in their state field
 | |
|  * are not merged because the end_io handlers need to be able to do
 | |
|  * operations on them without sleeping (or doing allocations/splits).
 | |
|  *
 | |
|  * This should be called with the tree lock held.
 | |
|  */
 | |
| static void merge_state(struct extent_io_tree *tree,
 | |
| 		        struct extent_state *state)
 | |
| {
 | |
| 	struct extent_state *other;
 | |
| 	struct rb_node *other_node;
 | |
| 
 | |
| 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 | |
| 		return;
 | |
| 
 | |
| 	other_node = rb_prev(&state->rb_node);
 | |
| 	if (other_node) {
 | |
| 		other = rb_entry(other_node, struct extent_state, rb_node);
 | |
| 		if (other->end == state->start - 1 &&
 | |
| 		    other->state == state->state) {
 | |
| 			merge_cb(tree, state, other);
 | |
| 			state->start = other->start;
 | |
| 			rb_erase(&other->rb_node, &tree->state);
 | |
| 			RB_CLEAR_NODE(&other->rb_node);
 | |
| 			free_extent_state(other);
 | |
| 		}
 | |
| 	}
 | |
| 	other_node = rb_next(&state->rb_node);
 | |
| 	if (other_node) {
 | |
| 		other = rb_entry(other_node, struct extent_state, rb_node);
 | |
| 		if (other->start == state->end + 1 &&
 | |
| 		    other->state == state->state) {
 | |
| 			merge_cb(tree, state, other);
 | |
| 			state->end = other->end;
 | |
| 			rb_erase(&other->rb_node, &tree->state);
 | |
| 			RB_CLEAR_NODE(&other->rb_node);
 | |
| 			free_extent_state(other);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_state_cb(struct extent_io_tree *tree,
 | |
| 			 struct extent_state *state, unsigned long *bits)
 | |
| {
 | |
| 	if (tree->ops && tree->ops->set_bit_hook)
 | |
| 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 | |
| }
 | |
| 
 | |
| static void clear_state_cb(struct extent_io_tree *tree,
 | |
| 			   struct extent_state *state, unsigned long *bits)
 | |
| {
 | |
| 	if (tree->ops && tree->ops->clear_bit_hook)
 | |
| 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 | |
| }
 | |
| 
 | |
| static void set_state_bits(struct extent_io_tree *tree,
 | |
| 			   struct extent_state *state, unsigned long *bits);
 | |
| 
 | |
| /*
 | |
|  * insert an extent_state struct into the tree.  'bits' are set on the
 | |
|  * struct before it is inserted.
 | |
|  *
 | |
|  * This may return -EEXIST if the extent is already there, in which case the
 | |
|  * state struct is freed.
 | |
|  *
 | |
|  * The tree lock is not taken internally.  This is a utility function and
 | |
|  * probably isn't what you want to call (see set/clear_extent_bit).
 | |
|  */
 | |
| static int insert_state(struct extent_io_tree *tree,
 | |
| 			struct extent_state *state, u64 start, u64 end,
 | |
| 			struct rb_node ***p,
 | |
| 			struct rb_node **parent,
 | |
| 			unsigned long *bits)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	if (end < start)
 | |
| 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 | |
| 		       end, start);
 | |
| 	state->start = start;
 | |
| 	state->end = end;
 | |
| 
 | |
| 	set_state_bits(tree, state, bits);
 | |
| 
 | |
| 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 | |
| 	if (node) {
 | |
| 		struct extent_state *found;
 | |
| 		found = rb_entry(node, struct extent_state, rb_node);
 | |
| 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
 | |
| 		       "%llu %llu\n",
 | |
| 		       found->start, found->end, start, end);
 | |
| 		return -EEXIST;
 | |
| 	}
 | |
| 	merge_state(tree, state);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 | |
| 		     u64 split)
 | |
| {
 | |
| 	if (tree->ops && tree->ops->split_extent_hook)
 | |
| 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * split a given extent state struct in two, inserting the preallocated
 | |
|  * struct 'prealloc' as the newly created second half.  'split' indicates an
 | |
|  * offset inside 'orig' where it should be split.
 | |
|  *
 | |
|  * Before calling,
 | |
|  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 | |
|  * are two extent state structs in the tree:
 | |
|  * prealloc: [orig->start, split - 1]
 | |
|  * orig: [ split, orig->end ]
 | |
|  *
 | |
|  * The tree locks are not taken by this function. They need to be held
 | |
|  * by the caller.
 | |
|  */
 | |
| static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 | |
| 		       struct extent_state *prealloc, u64 split)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	split_cb(tree, orig, split);
 | |
| 
 | |
| 	prealloc->start = orig->start;
 | |
| 	prealloc->end = split - 1;
 | |
| 	prealloc->state = orig->state;
 | |
| 	orig->start = split;
 | |
| 
 | |
| 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 | |
| 			   &prealloc->rb_node, NULL, NULL);
 | |
| 	if (node) {
 | |
| 		free_extent_state(prealloc);
 | |
| 		return -EEXIST;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct extent_state *next_state(struct extent_state *state)
 | |
| {
 | |
| 	struct rb_node *next = rb_next(&state->rb_node);
 | |
| 	if (next)
 | |
| 		return rb_entry(next, struct extent_state, rb_node);
 | |
| 	else
 | |
| 		return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * utility function to clear some bits in an extent state struct.
 | |
|  * it will optionally wake up any one waiting on this state (wake == 1).
 | |
|  *
 | |
|  * If no bits are set on the state struct after clearing things, the
 | |
|  * struct is freed and removed from the tree
 | |
|  */
 | |
| static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 | |
| 					    struct extent_state *state,
 | |
| 					    unsigned long *bits, int wake)
 | |
| {
 | |
| 	struct extent_state *next;
 | |
| 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
 | |
| 
 | |
| 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 | |
| 		u64 range = state->end - state->start + 1;
 | |
| 		WARN_ON(range > tree->dirty_bytes);
 | |
| 		tree->dirty_bytes -= range;
 | |
| 	}
 | |
| 	clear_state_cb(tree, state, bits);
 | |
| 	state->state &= ~bits_to_clear;
 | |
| 	if (wake)
 | |
| 		wake_up(&state->wq);
 | |
| 	if (state->state == 0) {
 | |
| 		next = next_state(state);
 | |
| 		if (extent_state_in_tree(state)) {
 | |
| 			rb_erase(&state->rb_node, &tree->state);
 | |
| 			RB_CLEAR_NODE(&state->rb_node);
 | |
| 			free_extent_state(state);
 | |
| 		} else {
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| 	} else {
 | |
| 		merge_state(tree, state);
 | |
| 		next = next_state(state);
 | |
| 	}
 | |
| 	return next;
 | |
| }
 | |
| 
 | |
| static struct extent_state *
 | |
| alloc_extent_state_atomic(struct extent_state *prealloc)
 | |
| {
 | |
| 	if (!prealloc)
 | |
| 		prealloc = alloc_extent_state(GFP_ATOMIC);
 | |
| 
 | |
| 	return prealloc;
 | |
| }
 | |
| 
 | |
| static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 | |
| {
 | |
| 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 | |
| 		    "Extent tree was modified by another "
 | |
| 		    "thread while locked.");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * clear some bits on a range in the tree.  This may require splitting
 | |
|  * or inserting elements in the tree, so the gfp mask is used to
 | |
|  * indicate which allocations or sleeping are allowed.
 | |
|  *
 | |
|  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 | |
|  * the given range from the tree regardless of state (ie for truncate).
 | |
|  *
 | |
|  * the range [start, end] is inclusive.
 | |
|  *
 | |
|  * This takes the tree lock, and returns 0 on success and < 0 on error.
 | |
|  */
 | |
| int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		     unsigned long bits, int wake, int delete,
 | |
| 		     struct extent_state **cached_state,
 | |
| 		     gfp_t mask)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 	struct extent_state *cached;
 | |
| 	struct extent_state *prealloc = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	u64 last_end;
 | |
| 	int err;
 | |
| 	int clear = 0;
 | |
| 
 | |
| 	btrfs_debug_check_extent_io_range(tree, start, end);
 | |
| 
 | |
| 	if (bits & EXTENT_DELALLOC)
 | |
| 		bits |= EXTENT_NORESERVE;
 | |
| 
 | |
| 	if (delete)
 | |
| 		bits |= ~EXTENT_CTLBITS;
 | |
| 	bits |= EXTENT_FIRST_DELALLOC;
 | |
| 
 | |
| 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 | |
| 		clear = 1;
 | |
| again:
 | |
| 	if (!prealloc && (mask & __GFP_WAIT)) {
 | |
| 		/*
 | |
| 		 * Don't care for allocation failure here because we might end
 | |
| 		 * up not needing the pre-allocated extent state at all, which
 | |
| 		 * is the case if we only have in the tree extent states that
 | |
| 		 * cover our input range and don't cover too any other range.
 | |
| 		 * If we end up needing a new extent state we allocate it later.
 | |
| 		 */
 | |
| 		prealloc = alloc_extent_state(mask);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	if (cached_state) {
 | |
| 		cached = *cached_state;
 | |
| 
 | |
| 		if (clear) {
 | |
| 			*cached_state = NULL;
 | |
| 			cached_state = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (cached && extent_state_in_tree(cached) &&
 | |
| 		    cached->start <= start && cached->end > start) {
 | |
| 			if (clear)
 | |
| 				atomic_dec(&cached->refs);
 | |
| 			state = cached;
 | |
| 			goto hit_next;
 | |
| 		}
 | |
| 		if (clear)
 | |
| 			free_extent_state(cached);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * this search will find the extents that end after
 | |
| 	 * our range starts
 | |
| 	 */
 | |
| 	node = tree_search(tree, start);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 	state = rb_entry(node, struct extent_state, rb_node);
 | |
| hit_next:
 | |
| 	if (state->start > end)
 | |
| 		goto out;
 | |
| 	WARN_ON(state->end < start);
 | |
| 	last_end = state->end;
 | |
| 
 | |
| 	/* the state doesn't have the wanted bits, go ahead */
 | |
| 	if (!(state->state & bits)) {
 | |
| 		state = next_state(state);
 | |
| 		goto next;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *     | ---- desired range ---- |
 | |
| 	 *  | state | or
 | |
| 	 *  | ------------- state -------------- |
 | |
| 	 *
 | |
| 	 * We need to split the extent we found, and may flip
 | |
| 	 * bits on second half.
 | |
| 	 *
 | |
| 	 * If the extent we found extends past our range, we
 | |
| 	 * just split and search again.  It'll get split again
 | |
| 	 * the next time though.
 | |
| 	 *
 | |
| 	 * If the extent we found is inside our range, we clear
 | |
| 	 * the desired bit on it.
 | |
| 	 */
 | |
| 
 | |
| 	if (state->start < start) {
 | |
| 		prealloc = alloc_extent_state_atomic(prealloc);
 | |
| 		BUG_ON(!prealloc);
 | |
| 		err = split_state(tree, state, prealloc, start);
 | |
| 		if (err)
 | |
| 			extent_io_tree_panic(tree, err);
 | |
| 
 | |
| 		prealloc = NULL;
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		if (state->end <= end) {
 | |
| 			state = clear_state_bit(tree, state, &bits, wake);
 | |
| 			goto next;
 | |
| 		}
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 *                        | state |
 | |
| 	 * We need to split the extent, and clear the bit
 | |
| 	 * on the first half
 | |
| 	 */
 | |
| 	if (state->start <= end && state->end > end) {
 | |
| 		prealloc = alloc_extent_state_atomic(prealloc);
 | |
| 		BUG_ON(!prealloc);
 | |
| 		err = split_state(tree, state, prealloc, end + 1);
 | |
| 		if (err)
 | |
| 			extent_io_tree_panic(tree, err);
 | |
| 
 | |
| 		if (wake)
 | |
| 			wake_up(&state->wq);
 | |
| 
 | |
| 		clear_state_bit(tree, prealloc, &bits, wake);
 | |
| 
 | |
| 		prealloc = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	state = clear_state_bit(tree, state, &bits, wake);
 | |
| next:
 | |
| 	if (last_end == (u64)-1)
 | |
| 		goto out;
 | |
| 	start = last_end + 1;
 | |
| 	if (start <= end && state && !need_resched())
 | |
| 		goto hit_next;
 | |
| 	goto search_again;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	if (prealloc)
 | |
| 		free_extent_state(prealloc);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| search_again:
 | |
| 	if (start > end)
 | |
| 		goto out;
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	if (mask & __GFP_WAIT)
 | |
| 		cond_resched();
 | |
| 	goto again;
 | |
| }
 | |
| 
 | |
| static void wait_on_state(struct extent_io_tree *tree,
 | |
| 			  struct extent_state *state)
 | |
| 		__releases(tree->lock)
 | |
| 		__acquires(tree->lock)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	schedule();
 | |
| 	spin_lock(&tree->lock);
 | |
| 	finish_wait(&state->wq, &wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * waits for one or more bits to clear on a range in the state tree.
 | |
|  * The range [start, end] is inclusive.
 | |
|  * The tree lock is taken by this function
 | |
|  */
 | |
| static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 			    unsigned long bits)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	btrfs_debug_check_extent_io_range(tree, start, end);
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| again:
 | |
| 	while (1) {
 | |
| 		/*
 | |
| 		 * this search will find all the extents that end after
 | |
| 		 * our range starts
 | |
| 		 */
 | |
| 		node = tree_search(tree, start);
 | |
| process_node:
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 
 | |
| 		if (state->start > end)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (state->state & bits) {
 | |
| 			start = state->start;
 | |
| 			atomic_inc(&state->refs);
 | |
| 			wait_on_state(tree, state);
 | |
| 			free_extent_state(state);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		start = state->end + 1;
 | |
| 
 | |
| 		if (start > end)
 | |
| 			break;
 | |
| 
 | |
| 		if (!cond_resched_lock(&tree->lock)) {
 | |
| 			node = rb_next(node);
 | |
| 			goto process_node;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| }
 | |
| 
 | |
| static void set_state_bits(struct extent_io_tree *tree,
 | |
| 			   struct extent_state *state,
 | |
| 			   unsigned long *bits)
 | |
| {
 | |
| 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
 | |
| 
 | |
| 	set_state_cb(tree, state, bits);
 | |
| 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 | |
| 		u64 range = state->end - state->start + 1;
 | |
| 		tree->dirty_bytes += range;
 | |
| 	}
 | |
| 	state->state |= bits_to_set;
 | |
| }
 | |
| 
 | |
| static void cache_state_if_flags(struct extent_state *state,
 | |
| 				 struct extent_state **cached_ptr,
 | |
| 				 const u64 flags)
 | |
| {
 | |
| 	if (cached_ptr && !(*cached_ptr)) {
 | |
| 		if (!flags || (state->state & flags)) {
 | |
| 			*cached_ptr = state;
 | |
| 			atomic_inc(&state->refs);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cache_state(struct extent_state *state,
 | |
| 			struct extent_state **cached_ptr)
 | |
| {
 | |
| 	return cache_state_if_flags(state, cached_ptr,
 | |
| 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set some bits on a range in the tree.  This may require allocations or
 | |
|  * sleeping, so the gfp mask is used to indicate what is allowed.
 | |
|  *
 | |
|  * If any of the exclusive bits are set, this will fail with -EEXIST if some
 | |
|  * part of the range already has the desired bits set.  The start of the
 | |
|  * existing range is returned in failed_start in this case.
 | |
|  *
 | |
|  * [start, end] is inclusive This takes the tree lock.
 | |
|  */
 | |
| 
 | |
| static int __must_check
 | |
| __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		 unsigned long bits, unsigned long exclusive_bits,
 | |
| 		 u64 *failed_start, struct extent_state **cached_state,
 | |
| 		 gfp_t mask)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 	struct extent_state *prealloc = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent;
 | |
| 	int err = 0;
 | |
| 	u64 last_start;
 | |
| 	u64 last_end;
 | |
| 
 | |
| 	btrfs_debug_check_extent_io_range(tree, start, end);
 | |
| 
 | |
| 	bits |= EXTENT_FIRST_DELALLOC;
 | |
| again:
 | |
| 	if (!prealloc && (mask & __GFP_WAIT)) {
 | |
| 		prealloc = alloc_extent_state(mask);
 | |
| 		BUG_ON(!prealloc);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	if (cached_state && *cached_state) {
 | |
| 		state = *cached_state;
 | |
| 		if (state->start <= start && state->end > start &&
 | |
| 		    extent_state_in_tree(state)) {
 | |
| 			node = &state->rb_node;
 | |
| 			goto hit_next;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search_for_insert(tree, start, &p, &parent);
 | |
| 	if (!node) {
 | |
| 		prealloc = alloc_extent_state_atomic(prealloc);
 | |
| 		BUG_ON(!prealloc);
 | |
| 		err = insert_state(tree, prealloc, start, end,
 | |
| 				   &p, &parent, &bits);
 | |
| 		if (err)
 | |
| 			extent_io_tree_panic(tree, err);
 | |
| 
 | |
| 		cache_state(prealloc, cached_state);
 | |
| 		prealloc = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	state = rb_entry(node, struct extent_state, rb_node);
 | |
| hit_next:
 | |
| 	last_start = state->start;
 | |
| 	last_end = state->end;
 | |
| 
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 * | state |
 | |
| 	 *
 | |
| 	 * Just lock what we found and keep going
 | |
| 	 */
 | |
| 	if (state->start == start && state->end <= end) {
 | |
| 		if (state->state & exclusive_bits) {
 | |
| 			*failed_start = state->start;
 | |
| 			err = -EEXIST;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		set_state_bits(tree, state, &bits);
 | |
| 		cache_state(state, cached_state);
 | |
| 		merge_state(tree, state);
 | |
| 		if (last_end == (u64)-1)
 | |
| 			goto out;
 | |
| 		start = last_end + 1;
 | |
| 		state = next_state(state);
 | |
| 		if (start < end && state && state->start == start &&
 | |
| 		    !need_resched())
 | |
| 			goto hit_next;
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *     | ---- desired range ---- |
 | |
| 	 * | state |
 | |
| 	 *   or
 | |
| 	 * | ------------- state -------------- |
 | |
| 	 *
 | |
| 	 * We need to split the extent we found, and may flip bits on
 | |
| 	 * second half.
 | |
| 	 *
 | |
| 	 * If the extent we found extends past our
 | |
| 	 * range, we just split and search again.  It'll get split
 | |
| 	 * again the next time though.
 | |
| 	 *
 | |
| 	 * If the extent we found is inside our range, we set the
 | |
| 	 * desired bit on it.
 | |
| 	 */
 | |
| 	if (state->start < start) {
 | |
| 		if (state->state & exclusive_bits) {
 | |
| 			*failed_start = start;
 | |
| 			err = -EEXIST;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		prealloc = alloc_extent_state_atomic(prealloc);
 | |
| 		BUG_ON(!prealloc);
 | |
| 		err = split_state(tree, state, prealloc, start);
 | |
| 		if (err)
 | |
| 			extent_io_tree_panic(tree, err);
 | |
| 
 | |
| 		prealloc = NULL;
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		if (state->end <= end) {
 | |
| 			set_state_bits(tree, state, &bits);
 | |
| 			cache_state(state, cached_state);
 | |
| 			merge_state(tree, state);
 | |
| 			if (last_end == (u64)-1)
 | |
| 				goto out;
 | |
| 			start = last_end + 1;
 | |
| 			state = next_state(state);
 | |
| 			if (start < end && state && state->start == start &&
 | |
| 			    !need_resched())
 | |
| 				goto hit_next;
 | |
| 		}
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 *     | state | or               | state |
 | |
| 	 *
 | |
| 	 * There's a hole, we need to insert something in it and
 | |
| 	 * ignore the extent we found.
 | |
| 	 */
 | |
| 	if (state->start > start) {
 | |
| 		u64 this_end;
 | |
| 		if (end < last_start)
 | |
| 			this_end = end;
 | |
| 		else
 | |
| 			this_end = last_start - 1;
 | |
| 
 | |
| 		prealloc = alloc_extent_state_atomic(prealloc);
 | |
| 		BUG_ON(!prealloc);
 | |
| 
 | |
| 		/*
 | |
| 		 * Avoid to free 'prealloc' if it can be merged with
 | |
| 		 * the later extent.
 | |
| 		 */
 | |
| 		err = insert_state(tree, prealloc, start, this_end,
 | |
| 				   NULL, NULL, &bits);
 | |
| 		if (err)
 | |
| 			extent_io_tree_panic(tree, err);
 | |
| 
 | |
| 		cache_state(prealloc, cached_state);
 | |
| 		prealloc = NULL;
 | |
| 		start = this_end + 1;
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 *                        | state |
 | |
| 	 * We need to split the extent, and set the bit
 | |
| 	 * on the first half
 | |
| 	 */
 | |
| 	if (state->start <= end && state->end > end) {
 | |
| 		if (state->state & exclusive_bits) {
 | |
| 			*failed_start = start;
 | |
| 			err = -EEXIST;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		prealloc = alloc_extent_state_atomic(prealloc);
 | |
| 		BUG_ON(!prealloc);
 | |
| 		err = split_state(tree, state, prealloc, end + 1);
 | |
| 		if (err)
 | |
| 			extent_io_tree_panic(tree, err);
 | |
| 
 | |
| 		set_state_bits(tree, prealloc, &bits);
 | |
| 		cache_state(prealloc, cached_state);
 | |
| 		merge_state(tree, prealloc);
 | |
| 		prealloc = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	goto search_again;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	if (prealloc)
 | |
| 		free_extent_state(prealloc);
 | |
| 
 | |
| 	return err;
 | |
| 
 | |
| search_again:
 | |
| 	if (start > end)
 | |
| 		goto out;
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	if (mask & __GFP_WAIT)
 | |
| 		cond_resched();
 | |
| 	goto again;
 | |
| }
 | |
| 
 | |
| int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		   unsigned long bits, u64 * failed_start,
 | |
| 		   struct extent_state **cached_state, gfp_t mask)
 | |
| {
 | |
| 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
 | |
| 				cached_state, mask);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * convert_extent_bit - convert all bits in a given range from one bit to
 | |
|  * 			another
 | |
|  * @tree:	the io tree to search
 | |
|  * @start:	the start offset in bytes
 | |
|  * @end:	the end offset in bytes (inclusive)
 | |
|  * @bits:	the bits to set in this range
 | |
|  * @clear_bits:	the bits to clear in this range
 | |
|  * @cached_state:	state that we're going to cache
 | |
|  * @mask:	the allocation mask
 | |
|  *
 | |
|  * This will go through and set bits for the given range.  If any states exist
 | |
|  * already in this range they are set with the given bit and cleared of the
 | |
|  * clear_bits.  This is only meant to be used by things that are mergeable, ie
 | |
|  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 | |
|  * boundary bits like LOCK.
 | |
|  */
 | |
| int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		       unsigned long bits, unsigned long clear_bits,
 | |
| 		       struct extent_state **cached_state, gfp_t mask)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 	struct extent_state *prealloc = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent;
 | |
| 	int err = 0;
 | |
| 	u64 last_start;
 | |
| 	u64 last_end;
 | |
| 	bool first_iteration = true;
 | |
| 
 | |
| 	btrfs_debug_check_extent_io_range(tree, start, end);
 | |
| 
 | |
| again:
 | |
| 	if (!prealloc && (mask & __GFP_WAIT)) {
 | |
| 		/*
 | |
| 		 * Best effort, don't worry if extent state allocation fails
 | |
| 		 * here for the first iteration. We might have a cached state
 | |
| 		 * that matches exactly the target range, in which case no
 | |
| 		 * extent state allocations are needed. We'll only know this
 | |
| 		 * after locking the tree.
 | |
| 		 */
 | |
| 		prealloc = alloc_extent_state(mask);
 | |
| 		if (!prealloc && !first_iteration)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	if (cached_state && *cached_state) {
 | |
| 		state = *cached_state;
 | |
| 		if (state->start <= start && state->end > start &&
 | |
| 		    extent_state_in_tree(state)) {
 | |
| 			node = &state->rb_node;
 | |
| 			goto hit_next;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search_for_insert(tree, start, &p, &parent);
 | |
| 	if (!node) {
 | |
| 		prealloc = alloc_extent_state_atomic(prealloc);
 | |
| 		if (!prealloc) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		err = insert_state(tree, prealloc, start, end,
 | |
| 				   &p, &parent, &bits);
 | |
| 		if (err)
 | |
| 			extent_io_tree_panic(tree, err);
 | |
| 		cache_state(prealloc, cached_state);
 | |
| 		prealloc = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	state = rb_entry(node, struct extent_state, rb_node);
 | |
| hit_next:
 | |
| 	last_start = state->start;
 | |
| 	last_end = state->end;
 | |
| 
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 * | state |
 | |
| 	 *
 | |
| 	 * Just lock what we found and keep going
 | |
| 	 */
 | |
| 	if (state->start == start && state->end <= end) {
 | |
| 		set_state_bits(tree, state, &bits);
 | |
| 		cache_state(state, cached_state);
 | |
| 		state = clear_state_bit(tree, state, &clear_bits, 0);
 | |
| 		if (last_end == (u64)-1)
 | |
| 			goto out;
 | |
| 		start = last_end + 1;
 | |
| 		if (start < end && state && state->start == start &&
 | |
| 		    !need_resched())
 | |
| 			goto hit_next;
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *     | ---- desired range ---- |
 | |
| 	 * | state |
 | |
| 	 *   or
 | |
| 	 * | ------------- state -------------- |
 | |
| 	 *
 | |
| 	 * We need to split the extent we found, and may flip bits on
 | |
| 	 * second half.
 | |
| 	 *
 | |
| 	 * If the extent we found extends past our
 | |
| 	 * range, we just split and search again.  It'll get split
 | |
| 	 * again the next time though.
 | |
| 	 *
 | |
| 	 * If the extent we found is inside our range, we set the
 | |
| 	 * desired bit on it.
 | |
| 	 */
 | |
| 	if (state->start < start) {
 | |
| 		prealloc = alloc_extent_state_atomic(prealloc);
 | |
| 		if (!prealloc) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		err = split_state(tree, state, prealloc, start);
 | |
| 		if (err)
 | |
| 			extent_io_tree_panic(tree, err);
 | |
| 		prealloc = NULL;
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		if (state->end <= end) {
 | |
| 			set_state_bits(tree, state, &bits);
 | |
| 			cache_state(state, cached_state);
 | |
| 			state = clear_state_bit(tree, state, &clear_bits, 0);
 | |
| 			if (last_end == (u64)-1)
 | |
| 				goto out;
 | |
| 			start = last_end + 1;
 | |
| 			if (start < end && state && state->start == start &&
 | |
| 			    !need_resched())
 | |
| 				goto hit_next;
 | |
| 		}
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 *     | state | or               | state |
 | |
| 	 *
 | |
| 	 * There's a hole, we need to insert something in it and
 | |
| 	 * ignore the extent we found.
 | |
| 	 */
 | |
| 	if (state->start > start) {
 | |
| 		u64 this_end;
 | |
| 		if (end < last_start)
 | |
| 			this_end = end;
 | |
| 		else
 | |
| 			this_end = last_start - 1;
 | |
| 
 | |
| 		prealloc = alloc_extent_state_atomic(prealloc);
 | |
| 		if (!prealloc) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Avoid to free 'prealloc' if it can be merged with
 | |
| 		 * the later extent.
 | |
| 		 */
 | |
| 		err = insert_state(tree, prealloc, start, this_end,
 | |
| 				   NULL, NULL, &bits);
 | |
| 		if (err)
 | |
| 			extent_io_tree_panic(tree, err);
 | |
| 		cache_state(prealloc, cached_state);
 | |
| 		prealloc = NULL;
 | |
| 		start = this_end + 1;
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 *                        | state |
 | |
| 	 * We need to split the extent, and set the bit
 | |
| 	 * on the first half
 | |
| 	 */
 | |
| 	if (state->start <= end && state->end > end) {
 | |
| 		prealloc = alloc_extent_state_atomic(prealloc);
 | |
| 		if (!prealloc) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		err = split_state(tree, state, prealloc, end + 1);
 | |
| 		if (err)
 | |
| 			extent_io_tree_panic(tree, err);
 | |
| 
 | |
| 		set_state_bits(tree, prealloc, &bits);
 | |
| 		cache_state(prealloc, cached_state);
 | |
| 		clear_state_bit(tree, prealloc, &clear_bits, 0);
 | |
| 		prealloc = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	goto search_again;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	if (prealloc)
 | |
| 		free_extent_state(prealloc);
 | |
| 
 | |
| 	return err;
 | |
| 
 | |
| search_again:
 | |
| 	if (start > end)
 | |
| 		goto out;
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	if (mask & __GFP_WAIT)
 | |
| 		cond_resched();
 | |
| 	first_iteration = false;
 | |
| 	goto again;
 | |
| }
 | |
| 
 | |
| /* wrappers around set/clear extent bit */
 | |
| int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		     gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
 | |
| 			      NULL, mask);
 | |
| }
 | |
| 
 | |
| int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		    unsigned long bits, gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end, bits, NULL,
 | |
| 			      NULL, mask);
 | |
| }
 | |
| 
 | |
| int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		      unsigned long bits, gfp_t mask)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
 | |
| }
 | |
| 
 | |
| int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 			struct extent_state **cached_state, gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end,
 | |
| 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
 | |
| 			      NULL, cached_state, mask);
 | |
| }
 | |
| 
 | |
| int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		      struct extent_state **cached_state, gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end,
 | |
| 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
 | |
| 			      NULL, cached_state, mask);
 | |
| }
 | |
| 
 | |
| int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		       gfp_t mask)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end,
 | |
| 				EXTENT_DIRTY | EXTENT_DELALLOC |
 | |
| 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
 | |
| }
 | |
| 
 | |
| int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		     gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
 | |
| 			      NULL, mask);
 | |
| }
 | |
| 
 | |
| int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 			struct extent_state **cached_state, gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
 | |
| 			      cached_state, mask);
 | |
| }
 | |
| 
 | |
| int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 			  struct extent_state **cached_state, gfp_t mask)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
 | |
| 				cached_state, mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * either insert or lock state struct between start and end use mask to tell
 | |
|  * us if waiting is desired.
 | |
|  */
 | |
| int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		     unsigned long bits, struct extent_state **cached_state)
 | |
| {
 | |
| 	int err;
 | |
| 	u64 failed_start;
 | |
| 	while (1) {
 | |
| 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
 | |
| 				       EXTENT_LOCKED, &failed_start,
 | |
| 				       cached_state, GFP_NOFS);
 | |
| 		if (err == -EEXIST) {
 | |
| 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
 | |
| 			start = failed_start;
 | |
| 		} else
 | |
| 			break;
 | |
| 		WARN_ON(start > end);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
 | |
| {
 | |
| 	return lock_extent_bits(tree, start, end, 0, NULL);
 | |
| }
 | |
| 
 | |
| int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
 | |
| {
 | |
| 	int err;
 | |
| 	u64 failed_start;
 | |
| 
 | |
| 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
 | |
| 			       &failed_start, NULL, GFP_NOFS);
 | |
| 	if (err == -EEXIST) {
 | |
| 		if (failed_start > start)
 | |
| 			clear_extent_bit(tree, start, failed_start - 1,
 | |
| 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 			 struct extent_state **cached, gfp_t mask)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
 | |
| 				mask);
 | |
| }
 | |
| 
 | |
| int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
 | |
| 				GFP_NOFS);
 | |
| }
 | |
| 
 | |
| int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
 | |
| {
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	while (index <= end_index) {
 | |
| 		page = find_get_page(inode->i_mapping, index);
 | |
| 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
 | |
| 		clear_page_dirty_for_io(page);
 | |
| 		page_cache_release(page);
 | |
| 		index++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
 | |
| {
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	while (index <= end_index) {
 | |
| 		page = find_get_page(inode->i_mapping, index);
 | |
| 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
 | |
| 		account_page_redirty(page);
 | |
| 		__set_page_dirty_nobuffers(page);
 | |
| 		page_cache_release(page);
 | |
| 		index++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to set both pages and extents in the tree writeback
 | |
|  */
 | |
| static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
 | |
| {
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	while (index <= end_index) {
 | |
| 		page = find_get_page(tree->mapping, index);
 | |
| 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
 | |
| 		set_page_writeback(page);
 | |
| 		page_cache_release(page);
 | |
| 		index++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* find the first state struct with 'bits' set after 'start', and
 | |
|  * return it.  tree->lock must be held.  NULL will returned if
 | |
|  * nothing was found after 'start'
 | |
|  */
 | |
| static struct extent_state *
 | |
| find_first_extent_bit_state(struct extent_io_tree *tree,
 | |
| 			    u64 start, unsigned long bits)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, start);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (1) {
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 		if (state->end >= start && (state->state & bits))
 | |
| 			return state;
 | |
| 
 | |
| 		node = rb_next(node);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find the first offset in the io tree with 'bits' set. zero is
 | |
|  * returned if we find something, and *start_ret and *end_ret are
 | |
|  * set to reflect the state struct that was found.
 | |
|  *
 | |
|  * If nothing was found, 1 is returned. If found something, return 0.
 | |
|  */
 | |
| int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
 | |
| 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
 | |
| 			  struct extent_state **cached_state)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 	struct rb_node *n;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	if (cached_state && *cached_state) {
 | |
| 		state = *cached_state;
 | |
| 		if (state->end == start - 1 && extent_state_in_tree(state)) {
 | |
| 			n = rb_next(&state->rb_node);
 | |
| 			while (n) {
 | |
| 				state = rb_entry(n, struct extent_state,
 | |
| 						 rb_node);
 | |
| 				if (state->state & bits)
 | |
| 					goto got_it;
 | |
| 				n = rb_next(n);
 | |
| 			}
 | |
| 			free_extent_state(*cached_state);
 | |
| 			*cached_state = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		free_extent_state(*cached_state);
 | |
| 		*cached_state = NULL;
 | |
| 	}
 | |
| 
 | |
| 	state = find_first_extent_bit_state(tree, start, bits);
 | |
| got_it:
 | |
| 	if (state) {
 | |
| 		cache_state_if_flags(state, cached_state, 0);
 | |
| 		*start_ret = state->start;
 | |
| 		*end_ret = state->end;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find a contiguous range of bytes in the file marked as delalloc, not
 | |
|  * more than 'max_bytes'.  start and end are used to return the range,
 | |
|  *
 | |
|  * 1 is returned if we find something, 0 if nothing was in the tree
 | |
|  */
 | |
| static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
 | |
| 					u64 *start, u64 *end, u64 max_bytes,
 | |
| 					struct extent_state **cached_state)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 	u64 cur_start = *start;
 | |
| 	u64 found = 0;
 | |
| 	u64 total_bytes = 0;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, cur_start);
 | |
| 	if (!node) {
 | |
| 		if (!found)
 | |
| 			*end = (u64)-1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 		if (found && (state->start != cur_start ||
 | |
| 			      (state->state & EXTENT_BOUNDARY))) {
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (!(state->state & EXTENT_DELALLOC)) {
 | |
| 			if (!found)
 | |
| 				*end = state->end;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (!found) {
 | |
| 			*start = state->start;
 | |
| 			*cached_state = state;
 | |
| 			atomic_inc(&state->refs);
 | |
| 		}
 | |
| 		found++;
 | |
| 		*end = state->end;
 | |
| 		cur_start = state->end + 1;
 | |
| 		node = rb_next(node);
 | |
| 		total_bytes += state->end - state->start + 1;
 | |
| 		if (total_bytes >= max_bytes)
 | |
| 			break;
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| static noinline void __unlock_for_delalloc(struct inode *inode,
 | |
| 					   struct page *locked_page,
 | |
| 					   u64 start, u64 end)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct page *pages[16];
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long nr_pages = end_index - index + 1;
 | |
| 	int i;
 | |
| 
 | |
| 	if (index == locked_page->index && end_index == index)
 | |
| 		return;
 | |
| 
 | |
| 	while (nr_pages > 0) {
 | |
| 		ret = find_get_pages_contig(inode->i_mapping, index,
 | |
| 				     min_t(unsigned long, nr_pages,
 | |
| 				     ARRAY_SIZE(pages)), pages);
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			if (pages[i] != locked_page)
 | |
| 				unlock_page(pages[i]);
 | |
| 			page_cache_release(pages[i]);
 | |
| 		}
 | |
| 		nr_pages -= ret;
 | |
| 		index += ret;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline int lock_delalloc_pages(struct inode *inode,
 | |
| 					struct page *locked_page,
 | |
| 					u64 delalloc_start,
 | |
| 					u64 delalloc_end)
 | |
| {
 | |
| 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long start_index = index;
 | |
| 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long pages_locked = 0;
 | |
| 	struct page *pages[16];
 | |
| 	unsigned long nrpages;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	/* the caller is responsible for locking the start index */
 | |
| 	if (index == locked_page->index && index == end_index)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* skip the page at the start index */
 | |
| 	nrpages = end_index - index + 1;
 | |
| 	while (nrpages > 0) {
 | |
| 		ret = find_get_pages_contig(inode->i_mapping, index,
 | |
| 				     min_t(unsigned long,
 | |
| 				     nrpages, ARRAY_SIZE(pages)), pages);
 | |
| 		if (ret == 0) {
 | |
| 			ret = -EAGAIN;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		/* now we have an array of pages, lock them all */
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			/*
 | |
| 			 * the caller is taking responsibility for
 | |
| 			 * locked_page
 | |
| 			 */
 | |
| 			if (pages[i] != locked_page) {
 | |
| 				lock_page(pages[i]);
 | |
| 				if (!PageDirty(pages[i]) ||
 | |
| 				    pages[i]->mapping != inode->i_mapping) {
 | |
| 					ret = -EAGAIN;
 | |
| 					unlock_page(pages[i]);
 | |
| 					page_cache_release(pages[i]);
 | |
| 					goto done;
 | |
| 				}
 | |
| 			}
 | |
| 			page_cache_release(pages[i]);
 | |
| 			pages_locked++;
 | |
| 		}
 | |
| 		nrpages -= ret;
 | |
| 		index += ret;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	ret = 0;
 | |
| done:
 | |
| 	if (ret && pages_locked) {
 | |
| 		__unlock_for_delalloc(inode, locked_page,
 | |
| 			      delalloc_start,
 | |
| 			      ((u64)(start_index + pages_locked - 1)) <<
 | |
| 			      PAGE_CACHE_SHIFT);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find a contiguous range of bytes in the file marked as delalloc, not
 | |
|  * more than 'max_bytes'.  start and end are used to return the range,
 | |
|  *
 | |
|  * 1 is returned if we find something, 0 if nothing was in the tree
 | |
|  */
 | |
| STATIC u64 find_lock_delalloc_range(struct inode *inode,
 | |
| 				    struct extent_io_tree *tree,
 | |
| 				    struct page *locked_page, u64 *start,
 | |
| 				    u64 *end, u64 max_bytes)
 | |
| {
 | |
| 	u64 delalloc_start;
 | |
| 	u64 delalloc_end;
 | |
| 	u64 found;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	int ret;
 | |
| 	int loops = 0;
 | |
| 
 | |
| again:
 | |
| 	/* step one, find a bunch of delalloc bytes starting at start */
 | |
| 	delalloc_start = *start;
 | |
| 	delalloc_end = 0;
 | |
| 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 | |
| 				    max_bytes, &cached_state);
 | |
| 	if (!found || delalloc_end <= *start) {
 | |
| 		*start = delalloc_start;
 | |
| 		*end = delalloc_end;
 | |
| 		free_extent_state(cached_state);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * start comes from the offset of locked_page.  We have to lock
 | |
| 	 * pages in order, so we can't process delalloc bytes before
 | |
| 	 * locked_page
 | |
| 	 */
 | |
| 	if (delalloc_start < *start)
 | |
| 		delalloc_start = *start;
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure to limit the number of pages we try to lock down
 | |
| 	 */
 | |
| 	if (delalloc_end + 1 - delalloc_start > max_bytes)
 | |
| 		delalloc_end = delalloc_start + max_bytes - 1;
 | |
| 
 | |
| 	/* step two, lock all the pages after the page that has start */
 | |
| 	ret = lock_delalloc_pages(inode, locked_page,
 | |
| 				  delalloc_start, delalloc_end);
 | |
| 	if (ret == -EAGAIN) {
 | |
| 		/* some of the pages are gone, lets avoid looping by
 | |
| 		 * shortening the size of the delalloc range we're searching
 | |
| 		 */
 | |
| 		free_extent_state(cached_state);
 | |
| 		cached_state = NULL;
 | |
| 		if (!loops) {
 | |
| 			max_bytes = PAGE_CACHE_SIZE;
 | |
| 			loops = 1;
 | |
| 			goto again;
 | |
| 		} else {
 | |
| 			found = 0;
 | |
| 			goto out_failed;
 | |
| 		}
 | |
| 	}
 | |
| 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
 | |
| 
 | |
| 	/* step three, lock the state bits for the whole range */
 | |
| 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
 | |
| 
 | |
| 	/* then test to make sure it is all still delalloc */
 | |
| 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 | |
| 			     EXTENT_DELALLOC, 1, cached_state);
 | |
| 	if (!ret) {
 | |
| 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
 | |
| 				     &cached_state, GFP_NOFS);
 | |
| 		__unlock_for_delalloc(inode, locked_page,
 | |
| 			      delalloc_start, delalloc_end);
 | |
| 		cond_resched();
 | |
| 		goto again;
 | |
| 	}
 | |
| 	free_extent_state(cached_state);
 | |
| 	*start = delalloc_start;
 | |
| 	*end = delalloc_end;
 | |
| out_failed:
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
 | |
| 				 struct page *locked_page,
 | |
| 				 unsigned long clear_bits,
 | |
| 				 unsigned long page_ops)
 | |
| {
 | |
| 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 | |
| 	int ret;
 | |
| 	struct page *pages[16];
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long nr_pages = end_index - index + 1;
 | |
| 	int i;
 | |
| 
 | |
| 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
 | |
| 	if (page_ops == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
 | |
| 		mapping_set_error(inode->i_mapping, -EIO);
 | |
| 
 | |
| 	while (nr_pages > 0) {
 | |
| 		ret = find_get_pages_contig(inode->i_mapping, index,
 | |
| 				     min_t(unsigned long,
 | |
| 				     nr_pages, ARRAY_SIZE(pages)), pages);
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 
 | |
| 			if (page_ops & PAGE_SET_PRIVATE2)
 | |
| 				SetPagePrivate2(pages[i]);
 | |
| 
 | |
| 			if (pages[i] == locked_page) {
 | |
| 				page_cache_release(pages[i]);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (page_ops & PAGE_CLEAR_DIRTY)
 | |
| 				clear_page_dirty_for_io(pages[i]);
 | |
| 			if (page_ops & PAGE_SET_WRITEBACK)
 | |
| 				set_page_writeback(pages[i]);
 | |
| 			if (page_ops & PAGE_SET_ERROR)
 | |
| 				SetPageError(pages[i]);
 | |
| 			if (page_ops & PAGE_END_WRITEBACK)
 | |
| 				end_page_writeback(pages[i]);
 | |
| 			if (page_ops & PAGE_UNLOCK)
 | |
| 				unlock_page(pages[i]);
 | |
| 			page_cache_release(pages[i]);
 | |
| 		}
 | |
| 		nr_pages -= ret;
 | |
| 		index += ret;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * count the number of bytes in the tree that have a given bit(s)
 | |
|  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 | |
|  * cached.  The total number found is returned.
 | |
|  */
 | |
| u64 count_range_bits(struct extent_io_tree *tree,
 | |
| 		     u64 *start, u64 search_end, u64 max_bytes,
 | |
| 		     unsigned long bits, int contig)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 	u64 cur_start = *start;
 | |
| 	u64 total_bytes = 0;
 | |
| 	u64 last = 0;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	if (WARN_ON(search_end <= cur_start))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
 | |
| 		total_bytes = tree->dirty_bytes;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, cur_start);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (1) {
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 		if (state->start > search_end)
 | |
| 			break;
 | |
| 		if (contig && found && state->start > last + 1)
 | |
| 			break;
 | |
| 		if (state->end >= cur_start && (state->state & bits) == bits) {
 | |
| 			total_bytes += min(search_end, state->end) + 1 -
 | |
| 				       max(cur_start, state->start);
 | |
| 			if (total_bytes >= max_bytes)
 | |
| 				break;
 | |
| 			if (!found) {
 | |
| 				*start = max(cur_start, state->start);
 | |
| 				found = 1;
 | |
| 			}
 | |
| 			last = state->end;
 | |
| 		} else if (contig && found) {
 | |
| 			break;
 | |
| 		}
 | |
| 		node = rb_next(node);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return total_bytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set the private field for a given byte offset in the tree.  If there isn't
 | |
|  * an extent_state there already, this does nothing.
 | |
|  */
 | |
| static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, start);
 | |
| 	if (!node) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	state = rb_entry(node, struct extent_state, rb_node);
 | |
| 	if (state->start != start) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	state->private = private;
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, start);
 | |
| 	if (!node) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	state = rb_entry(node, struct extent_state, rb_node);
 | |
| 	if (state->start != start) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	*private = state->private;
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * searches a range in the state tree for a given mask.
 | |
|  * If 'filled' == 1, this returns 1 only if every extent in the tree
 | |
|  * has the bits set.  Otherwise, 1 is returned if any bit in the
 | |
|  * range is found set.
 | |
|  */
 | |
| int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		   unsigned long bits, int filled, struct extent_state *cached)
 | |
| {
 | |
| 	struct extent_state *state = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	int bitset = 0;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
 | |
| 	    cached->end > start)
 | |
| 		node = &cached->rb_node;
 | |
| 	else
 | |
| 		node = tree_search(tree, start);
 | |
| 	while (node && start <= end) {
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 
 | |
| 		if (filled && state->start > start) {
 | |
| 			bitset = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (state->start > end)
 | |
| 			break;
 | |
| 
 | |
| 		if (state->state & bits) {
 | |
| 			bitset = 1;
 | |
| 			if (!filled)
 | |
| 				break;
 | |
| 		} else if (filled) {
 | |
| 			bitset = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (state->end == (u64)-1)
 | |
| 			break;
 | |
| 
 | |
| 		start = state->end + 1;
 | |
| 		if (start > end)
 | |
| 			break;
 | |
| 		node = rb_next(node);
 | |
| 		if (!node) {
 | |
| 			if (filled)
 | |
| 				bitset = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return bitset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to set a given page up to date if all the
 | |
|  * extents in the tree for that page are up to date
 | |
|  */
 | |
| static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
 | |
| {
 | |
| 	u64 start = page_offset(page);
 | |
| 	u64 end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
 | |
| 		SetPageUptodate(page);
 | |
| }
 | |
| 
 | |
| int free_io_failure(struct inode *inode, struct io_failure_record *rec)
 | |
| {
 | |
| 	int ret;
 | |
| 	int err = 0;
 | |
| 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
 | |
| 
 | |
| 	set_state_private(failure_tree, rec->start, 0);
 | |
| 	ret = clear_extent_bits(failure_tree, rec->start,
 | |
| 				rec->start + rec->len - 1,
 | |
| 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
 | |
| 	if (ret)
 | |
| 		err = ret;
 | |
| 
 | |
| 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
 | |
| 				rec->start + rec->len - 1,
 | |
| 				EXTENT_DAMAGED, GFP_NOFS);
 | |
| 	if (ret && !err)
 | |
| 		err = ret;
 | |
| 
 | |
| 	kfree(rec);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this bypasses the standard btrfs submit functions deliberately, as
 | |
|  * the standard behavior is to write all copies in a raid setup. here we only
 | |
|  * want to write the one bad copy. so we do the mapping for ourselves and issue
 | |
|  * submit_bio directly.
 | |
|  * to avoid any synchronization issues, wait for the data after writing, which
 | |
|  * actually prevents the read that triggered the error from finishing.
 | |
|  * currently, there can be no more than two copies of every data bit. thus,
 | |
|  * exactly one rewrite is required.
 | |
|  */
 | |
| int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
 | |
| 		      struct page *page, unsigned int pg_offset, int mirror_num)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 | |
| 	struct bio *bio;
 | |
| 	struct btrfs_device *dev;
 | |
| 	u64 map_length = 0;
 | |
| 	u64 sector;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
 | |
| 	BUG_ON(!mirror_num);
 | |
| 
 | |
| 	/* we can't repair anything in raid56 yet */
 | |
| 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
 | |
| 		return 0;
 | |
| 
 | |
| 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
 | |
| 	if (!bio)
 | |
| 		return -EIO;
 | |
| 	bio->bi_iter.bi_size = 0;
 | |
| 	map_length = length;
 | |
| 
 | |
| 	ret = btrfs_map_block(fs_info, WRITE, logical,
 | |
| 			      &map_length, &bbio, mirror_num);
 | |
| 	if (ret) {
 | |
| 		bio_put(bio);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	BUG_ON(mirror_num != bbio->mirror_num);
 | |
| 	sector = bbio->stripes[mirror_num-1].physical >> 9;
 | |
| 	bio->bi_iter.bi_sector = sector;
 | |
| 	dev = bbio->stripes[mirror_num-1].dev;
 | |
| 	kfree(bbio);
 | |
| 	if (!dev || !dev->bdev || !dev->writeable) {
 | |
| 		bio_put(bio);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	bio->bi_bdev = dev->bdev;
 | |
| 	bio_add_page(bio, page, length, pg_offset);
 | |
| 
 | |
| 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
 | |
| 		/* try to remap that extent elsewhere? */
 | |
| 		bio_put(bio);
 | |
| 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	printk_ratelimited_in_rcu(KERN_INFO
 | |
| 				  "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
 | |
| 				  btrfs_ino(inode), start,
 | |
| 				  rcu_str_deref(dev->name), sector);
 | |
| 	bio_put(bio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
 | |
| 			 int mirror_num)
 | |
| {
 | |
| 	u64 start = eb->start;
 | |
| 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (root->fs_info->sb->s_flags & MS_RDONLY)
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		struct page *p = eb->pages[i];
 | |
| 
 | |
| 		ret = repair_io_failure(root->fs_info->btree_inode, start,
 | |
| 					PAGE_CACHE_SIZE, start, p,
 | |
| 					start - page_offset(p), mirror_num);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		start += PAGE_CACHE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * each time an IO finishes, we do a fast check in the IO failure tree
 | |
|  * to see if we need to process or clean up an io_failure_record
 | |
|  */
 | |
| int clean_io_failure(struct inode *inode, u64 start, struct page *page,
 | |
| 		     unsigned int pg_offset)
 | |
| {
 | |
| 	u64 private;
 | |
| 	u64 private_failure;
 | |
| 	struct io_failure_record *failrec;
 | |
| 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 | |
| 	struct extent_state *state;
 | |
| 	int num_copies;
 | |
| 	int ret;
 | |
| 
 | |
| 	private = 0;
 | |
| 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
 | |
| 				(u64)-1, 1, EXTENT_DIRTY, 0);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
 | |
| 				&private_failure);
 | |
| 	if (ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
 | |
| 	BUG_ON(!failrec->this_mirror);
 | |
| 
 | |
| 	if (failrec->in_validation) {
 | |
| 		/* there was no real error, just free the record */
 | |
| 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
 | |
| 			 failrec->start);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (fs_info->sb->s_flags & MS_RDONLY)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
 | |
| 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
 | |
| 					    failrec->start,
 | |
| 					    EXTENT_LOCKED);
 | |
| 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
 | |
| 
 | |
| 	if (state && state->start <= failrec->start &&
 | |
| 	    state->end >= failrec->start + failrec->len - 1) {
 | |
| 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
 | |
| 					      failrec->len);
 | |
| 		if (num_copies > 1)  {
 | |
| 			repair_io_failure(inode, start, failrec->len,
 | |
| 					  failrec->logical, page,
 | |
| 					  pg_offset, failrec->failed_mirror);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	free_io_failure(inode, failrec);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Can be called when
 | |
|  * - hold extent lock
 | |
|  * - under ordered extent
 | |
|  * - the inode is freeing
 | |
|  */
 | |
| void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
 | |
| {
 | |
| 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
 | |
| 	struct io_failure_record *failrec;
 | |
| 	struct extent_state *state, *next;
 | |
| 
 | |
| 	if (RB_EMPTY_ROOT(&failure_tree->state))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&failure_tree->lock);
 | |
| 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
 | |
| 	while (state) {
 | |
| 		if (state->start > end)
 | |
| 			break;
 | |
| 
 | |
| 		ASSERT(state->end <= end);
 | |
| 
 | |
| 		next = next_state(state);
 | |
| 
 | |
| 		failrec = (struct io_failure_record *)state->private;
 | |
| 		free_extent_state(state);
 | |
| 		kfree(failrec);
 | |
| 
 | |
| 		state = next;
 | |
| 	}
 | |
| 	spin_unlock(&failure_tree->lock);
 | |
| }
 | |
| 
 | |
| int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
 | |
| 				struct io_failure_record **failrec_ret)
 | |
| {
 | |
| 	struct io_failure_record *failrec;
 | |
| 	u64 private;
 | |
| 	struct extent_map *em;
 | |
| 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
 | |
| 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 | |
| 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 | |
| 	int ret;
 | |
| 	u64 logical;
 | |
| 
 | |
| 	ret = get_state_private(failure_tree, start, &private);
 | |
| 	if (ret) {
 | |
| 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
 | |
| 		if (!failrec)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		failrec->start = start;
 | |
| 		failrec->len = end - start + 1;
 | |
| 		failrec->this_mirror = 0;
 | |
| 		failrec->bio_flags = 0;
 | |
| 		failrec->in_validation = 0;
 | |
| 
 | |
| 		read_lock(&em_tree->lock);
 | |
| 		em = lookup_extent_mapping(em_tree, start, failrec->len);
 | |
| 		if (!em) {
 | |
| 			read_unlock(&em_tree->lock);
 | |
| 			kfree(failrec);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		if (em->start > start || em->start + em->len <= start) {
 | |
| 			free_extent_map(em);
 | |
| 			em = NULL;
 | |
| 		}
 | |
| 		read_unlock(&em_tree->lock);
 | |
| 		if (!em) {
 | |
| 			kfree(failrec);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		logical = start - em->start;
 | |
| 		logical = em->block_start + logical;
 | |
| 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
 | |
| 			logical = em->block_start;
 | |
| 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
 | |
| 			extent_set_compress_type(&failrec->bio_flags,
 | |
| 						 em->compress_type);
 | |
| 		}
 | |
| 
 | |
| 		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
 | |
| 			 logical, start, failrec->len);
 | |
| 
 | |
| 		failrec->logical = logical;
 | |
| 		free_extent_map(em);
 | |
| 
 | |
| 		/* set the bits in the private failure tree */
 | |
| 		ret = set_extent_bits(failure_tree, start, end,
 | |
| 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
 | |
| 		if (ret >= 0)
 | |
| 			ret = set_state_private(failure_tree, start,
 | |
| 						(u64)(unsigned long)failrec);
 | |
| 		/* set the bits in the inode's tree */
 | |
| 		if (ret >= 0)
 | |
| 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
 | |
| 						GFP_NOFS);
 | |
| 		if (ret < 0) {
 | |
| 			kfree(failrec);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	} else {
 | |
| 		failrec = (struct io_failure_record *)(unsigned long)private;
 | |
| 		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
 | |
| 			 failrec->logical, failrec->start, failrec->len,
 | |
| 			 failrec->in_validation);
 | |
| 		/*
 | |
| 		 * when data can be on disk more than twice, add to failrec here
 | |
| 		 * (e.g. with a list for failed_mirror) to make
 | |
| 		 * clean_io_failure() clean all those errors at once.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	*failrec_ret = failrec;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
 | |
| 			   struct io_failure_record *failrec, int failed_mirror)
 | |
| {
 | |
| 	int num_copies;
 | |
| 
 | |
| 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
 | |
| 				      failrec->logical, failrec->len);
 | |
| 	if (num_copies == 1) {
 | |
| 		/*
 | |
| 		 * we only have a single copy of the data, so don't bother with
 | |
| 		 * all the retry and error correction code that follows. no
 | |
| 		 * matter what the error is, it is very likely to persist.
 | |
| 		 */
 | |
| 		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
 | |
| 			 num_copies, failrec->this_mirror, failed_mirror);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * there are two premises:
 | |
| 	 *	a) deliver good data to the caller
 | |
| 	 *	b) correct the bad sectors on disk
 | |
| 	 */
 | |
| 	if (failed_bio->bi_vcnt > 1) {
 | |
| 		/*
 | |
| 		 * to fulfill b), we need to know the exact failing sectors, as
 | |
| 		 * we don't want to rewrite any more than the failed ones. thus,
 | |
| 		 * we need separate read requests for the failed bio
 | |
| 		 *
 | |
| 		 * if the following BUG_ON triggers, our validation request got
 | |
| 		 * merged. we need separate requests for our algorithm to work.
 | |
| 		 */
 | |
| 		BUG_ON(failrec->in_validation);
 | |
| 		failrec->in_validation = 1;
 | |
| 		failrec->this_mirror = failed_mirror;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * we're ready to fulfill a) and b) alongside. get a good copy
 | |
| 		 * of the failed sector and if we succeed, we have setup
 | |
| 		 * everything for repair_io_failure to do the rest for us.
 | |
| 		 */
 | |
| 		if (failrec->in_validation) {
 | |
| 			BUG_ON(failrec->this_mirror != failed_mirror);
 | |
| 			failrec->in_validation = 0;
 | |
| 			failrec->this_mirror = 0;
 | |
| 		}
 | |
| 		failrec->failed_mirror = failed_mirror;
 | |
| 		failrec->this_mirror++;
 | |
| 		if (failrec->this_mirror == failed_mirror)
 | |
| 			failrec->this_mirror++;
 | |
| 	}
 | |
| 
 | |
| 	if (failrec->this_mirror > num_copies) {
 | |
| 		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
 | |
| 			 num_copies, failrec->this_mirror, failed_mirror);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
 | |
| 				    struct io_failure_record *failrec,
 | |
| 				    struct page *page, int pg_offset, int icsum,
 | |
| 				    bio_end_io_t *endio_func, void *data)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	struct btrfs_io_bio *btrfs_failed_bio;
 | |
| 	struct btrfs_io_bio *btrfs_bio;
 | |
| 
 | |
| 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
 | |
| 	if (!bio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	bio->bi_end_io = endio_func;
 | |
| 	bio->bi_iter.bi_sector = failrec->logical >> 9;
 | |
| 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 | |
| 	bio->bi_iter.bi_size = 0;
 | |
| 	bio->bi_private = data;
 | |
| 
 | |
| 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
 | |
| 	if (btrfs_failed_bio->csum) {
 | |
| 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 | |
| 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 | |
| 
 | |
| 		btrfs_bio = btrfs_io_bio(bio);
 | |
| 		btrfs_bio->csum = btrfs_bio->csum_inline;
 | |
| 		icsum *= csum_size;
 | |
| 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
 | |
| 		       csum_size);
 | |
| 	}
 | |
| 
 | |
| 	bio_add_page(bio, page, failrec->len, pg_offset);
 | |
| 
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is a generic handler for readpage errors (default
 | |
|  * readpage_io_failed_hook). if other copies exist, read those and write back
 | |
|  * good data to the failed position. does not investigate in remapping the
 | |
|  * failed extent elsewhere, hoping the device will be smart enough to do this as
 | |
|  * needed
 | |
|  */
 | |
| 
 | |
| static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
 | |
| 			      struct page *page, u64 start, u64 end,
 | |
| 			      int failed_mirror)
 | |
| {
 | |
| 	struct io_failure_record *failrec;
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 | |
| 	struct bio *bio;
 | |
| 	int read_mode;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
 | |
| 
 | |
| 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
 | |
| 	if (!ret) {
 | |
| 		free_io_failure(inode, failrec);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (failed_bio->bi_vcnt > 1)
 | |
| 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
 | |
| 	else
 | |
| 		read_mode = READ_SYNC;
 | |
| 
 | |
| 	phy_offset >>= inode->i_sb->s_blocksize_bits;
 | |
| 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
 | |
| 				      start - page_offset(page),
 | |
| 				      (int)phy_offset, failed_bio->bi_end_io,
 | |
| 				      NULL);
 | |
| 	if (!bio) {
 | |
| 		free_io_failure(inode, failrec);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
 | |
| 		 read_mode, failrec->this_mirror, failrec->in_validation);
 | |
| 
 | |
| 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
 | |
| 					 failrec->this_mirror,
 | |
| 					 failrec->bio_flags, 0);
 | |
| 	if (ret) {
 | |
| 		free_io_failure(inode, failrec);
 | |
| 		bio_put(bio);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* lots and lots of room for performance fixes in the end_bio funcs */
 | |
| 
 | |
| int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
 | |
| {
 | |
| 	int uptodate = (err == 0);
 | |
| 	struct extent_io_tree *tree;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	tree = &BTRFS_I(page->mapping->host)->io_tree;
 | |
| 
 | |
| 	if (tree->ops && tree->ops->writepage_end_io_hook) {
 | |
| 		ret = tree->ops->writepage_end_io_hook(page, start,
 | |
| 					       end, NULL, uptodate);
 | |
| 		if (ret)
 | |
| 			uptodate = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!uptodate) {
 | |
| 		ClearPageUptodate(page);
 | |
| 		SetPageError(page);
 | |
| 		ret = ret < 0 ? ret : -EIO;
 | |
| 		mapping_set_error(page->mapping, ret);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * after a writepage IO is done, we need to:
 | |
|  * clear the uptodate bits on error
 | |
|  * clear the writeback bits in the extent tree for this IO
 | |
|  * end_page_writeback if the page has no more pending IO
 | |
|  *
 | |
|  * Scheduling is not allowed, so the extent state tree is expected
 | |
|  * to have one and only one object corresponding to this IO.
 | |
|  */
 | |
| static void end_bio_extent_writepage(struct bio *bio, int err)
 | |
| {
 | |
| 	struct bio_vec *bvec;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	int i;
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, i) {
 | |
| 		struct page *page = bvec->bv_page;
 | |
| 
 | |
| 		/* We always issue full-page reads, but if some block
 | |
| 		 * in a page fails to read, blk_update_request() will
 | |
| 		 * advance bv_offset and adjust bv_len to compensate.
 | |
| 		 * Print a warning for nonzero offsets, and an error
 | |
| 		 * if they don't add up to a full page.  */
 | |
| 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
 | |
| 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
 | |
| 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
 | |
| 				   "partial page write in btrfs with offset %u and length %u",
 | |
| 					bvec->bv_offset, bvec->bv_len);
 | |
| 			else
 | |
| 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
 | |
| 				   "incomplete page write in btrfs with offset %u and "
 | |
| 				   "length %u",
 | |
| 					bvec->bv_offset, bvec->bv_len);
 | |
| 		}
 | |
| 
 | |
| 		start = page_offset(page);
 | |
| 		end = start + bvec->bv_offset + bvec->bv_len - 1;
 | |
| 
 | |
| 		if (end_extent_writepage(page, err, start, end))
 | |
| 			continue;
 | |
| 
 | |
| 		end_page_writeback(page);
 | |
| 	}
 | |
| 
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| static void
 | |
| endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
 | |
| 			      int uptodate)
 | |
| {
 | |
| 	struct extent_state *cached = NULL;
 | |
| 	u64 end = start + len - 1;
 | |
| 
 | |
| 	if (uptodate && tree->track_uptodate)
 | |
| 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
 | |
| 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * after a readpage IO is done, we need to:
 | |
|  * clear the uptodate bits on error
 | |
|  * set the uptodate bits if things worked
 | |
|  * set the page up to date if all extents in the tree are uptodate
 | |
|  * clear the lock bit in the extent tree
 | |
|  * unlock the page if there are no other extents locked for it
 | |
|  *
 | |
|  * Scheduling is not allowed, so the extent state tree is expected
 | |
|  * to have one and only one object corresponding to this IO.
 | |
|  */
 | |
| static void end_bio_extent_readpage(struct bio *bio, int err)
 | |
| {
 | |
| 	struct bio_vec *bvec;
 | |
| 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 | |
| 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
 | |
| 	struct extent_io_tree *tree;
 | |
| 	u64 offset = 0;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	u64 len;
 | |
| 	u64 extent_start = 0;
 | |
| 	u64 extent_len = 0;
 | |
| 	int mirror;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	if (err)
 | |
| 		uptodate = 0;
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, i) {
 | |
| 		struct page *page = bvec->bv_page;
 | |
| 		struct inode *inode = page->mapping->host;
 | |
| 
 | |
| 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
 | |
| 			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
 | |
| 			 io_bio->mirror_num);
 | |
| 		tree = &BTRFS_I(inode)->io_tree;
 | |
| 
 | |
| 		/* We always issue full-page reads, but if some block
 | |
| 		 * in a page fails to read, blk_update_request() will
 | |
| 		 * advance bv_offset and adjust bv_len to compensate.
 | |
| 		 * Print a warning for nonzero offsets, and an error
 | |
| 		 * if they don't add up to a full page.  */
 | |
| 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
 | |
| 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
 | |
| 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
 | |
| 				   "partial page read in btrfs with offset %u and length %u",
 | |
| 					bvec->bv_offset, bvec->bv_len);
 | |
| 			else
 | |
| 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
 | |
| 				   "incomplete page read in btrfs with offset %u and "
 | |
| 				   "length %u",
 | |
| 					bvec->bv_offset, bvec->bv_len);
 | |
| 		}
 | |
| 
 | |
| 		start = page_offset(page);
 | |
| 		end = start + bvec->bv_offset + bvec->bv_len - 1;
 | |
| 		len = bvec->bv_len;
 | |
| 
 | |
| 		mirror = io_bio->mirror_num;
 | |
| 		if (likely(uptodate && tree->ops &&
 | |
| 			   tree->ops->readpage_end_io_hook)) {
 | |
| 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
 | |
| 							      page, start, end,
 | |
| 							      mirror);
 | |
| 			if (ret)
 | |
| 				uptodate = 0;
 | |
| 			else
 | |
| 				clean_io_failure(inode, start, page, 0);
 | |
| 		}
 | |
| 
 | |
| 		if (likely(uptodate))
 | |
| 			goto readpage_ok;
 | |
| 
 | |
| 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
 | |
| 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
 | |
| 			if (!ret && !err &&
 | |
| 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
 | |
| 				uptodate = 1;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The generic bio_readpage_error handles errors the
 | |
| 			 * following way: If possible, new read requests are
 | |
| 			 * created and submitted and will end up in
 | |
| 			 * end_bio_extent_readpage as well (if we're lucky, not
 | |
| 			 * in the !uptodate case). In that case it returns 0 and
 | |
| 			 * we just go on with the next page in our bio. If it
 | |
| 			 * can't handle the error it will return -EIO and we
 | |
| 			 * remain responsible for that page.
 | |
| 			 */
 | |
| 			ret = bio_readpage_error(bio, offset, page, start, end,
 | |
| 						 mirror);
 | |
| 			if (ret == 0) {
 | |
| 				uptodate =
 | |
| 					test_bit(BIO_UPTODATE, &bio->bi_flags);
 | |
| 				if (err)
 | |
| 					uptodate = 0;
 | |
| 				offset += len;
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| readpage_ok:
 | |
| 		if (likely(uptodate)) {
 | |
| 			loff_t i_size = i_size_read(inode);
 | |
| 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
 | |
| 			unsigned off;
 | |
| 
 | |
| 			/* Zero out the end if this page straddles i_size */
 | |
| 			off = i_size & (PAGE_CACHE_SIZE-1);
 | |
| 			if (page->index == end_index && off)
 | |
| 				zero_user_segment(page, off, PAGE_CACHE_SIZE);
 | |
| 			SetPageUptodate(page);
 | |
| 		} else {
 | |
| 			ClearPageUptodate(page);
 | |
| 			SetPageError(page);
 | |
| 		}
 | |
| 		unlock_page(page);
 | |
| 		offset += len;
 | |
| 
 | |
| 		if (unlikely(!uptodate)) {
 | |
| 			if (extent_len) {
 | |
| 				endio_readpage_release_extent(tree,
 | |
| 							      extent_start,
 | |
| 							      extent_len, 1);
 | |
| 				extent_start = 0;
 | |
| 				extent_len = 0;
 | |
| 			}
 | |
| 			endio_readpage_release_extent(tree, start,
 | |
| 						      end - start + 1, 0);
 | |
| 		} else if (!extent_len) {
 | |
| 			extent_start = start;
 | |
| 			extent_len = end + 1 - start;
 | |
| 		} else if (extent_start + extent_len == start) {
 | |
| 			extent_len += end + 1 - start;
 | |
| 		} else {
 | |
| 			endio_readpage_release_extent(tree, extent_start,
 | |
| 						      extent_len, uptodate);
 | |
| 			extent_start = start;
 | |
| 			extent_len = end + 1 - start;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (extent_len)
 | |
| 		endio_readpage_release_extent(tree, extent_start, extent_len,
 | |
| 					      uptodate);
 | |
| 	if (io_bio->end_io)
 | |
| 		io_bio->end_io(io_bio, err);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this allocates from the btrfs_bioset.  We're returning a bio right now
 | |
|  * but you can call btrfs_io_bio for the appropriate container_of magic
 | |
|  */
 | |
| struct bio *
 | |
| btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
 | |
| 		gfp_t gfp_flags)
 | |
| {
 | |
| 	struct btrfs_io_bio *btrfs_bio;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
 | |
| 
 | |
| 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
 | |
| 		while (!bio && (nr_vecs /= 2)) {
 | |
| 			bio = bio_alloc_bioset(gfp_flags,
 | |
| 					       nr_vecs, btrfs_bioset);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bio) {
 | |
| 		bio->bi_bdev = bdev;
 | |
| 		bio->bi_iter.bi_sector = first_sector;
 | |
| 		btrfs_bio = btrfs_io_bio(bio);
 | |
| 		btrfs_bio->csum = NULL;
 | |
| 		btrfs_bio->csum_allocated = NULL;
 | |
| 		btrfs_bio->end_io = NULL;
 | |
| 	}
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct btrfs_io_bio *btrfs_bio;
 | |
| 	struct bio *new;
 | |
| 
 | |
| 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
 | |
| 	if (new) {
 | |
| 		btrfs_bio = btrfs_io_bio(new);
 | |
| 		btrfs_bio->csum = NULL;
 | |
| 		btrfs_bio->csum_allocated = NULL;
 | |
| 		btrfs_bio->end_io = NULL;
 | |
| 	}
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| /* this also allocates from the btrfs_bioset */
 | |
| struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
 | |
| {
 | |
| 	struct btrfs_io_bio *btrfs_bio;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
 | |
| 	if (bio) {
 | |
| 		btrfs_bio = btrfs_io_bio(bio);
 | |
| 		btrfs_bio->csum = NULL;
 | |
| 		btrfs_bio->csum_allocated = NULL;
 | |
| 		btrfs_bio->end_io = NULL;
 | |
| 	}
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __must_check submit_one_bio(int rw, struct bio *bio,
 | |
| 				       int mirror_num, unsigned long bio_flags)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
 | |
| 	struct page *page = bvec->bv_page;
 | |
| 	struct extent_io_tree *tree = bio->bi_private;
 | |
| 	u64 start;
 | |
| 
 | |
| 	start = page_offset(page) + bvec->bv_offset;
 | |
| 
 | |
| 	bio->bi_private = NULL;
 | |
| 
 | |
| 	bio_get(bio);
 | |
| 
 | |
| 	if (tree->ops && tree->ops->submit_bio_hook)
 | |
| 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
 | |
| 					   mirror_num, bio_flags, start);
 | |
| 	else
 | |
| 		btrfsic_submit_bio(rw, bio);
 | |
| 
 | |
| 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 	bio_put(bio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
 | |
| 		     unsigned long offset, size_t size, struct bio *bio,
 | |
| 		     unsigned long bio_flags)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	if (tree->ops && tree->ops->merge_bio_hook)
 | |
| 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
 | |
| 						bio_flags);
 | |
| 	BUG_ON(ret < 0);
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int submit_extent_page(int rw, struct extent_io_tree *tree,
 | |
| 			      struct page *page, sector_t sector,
 | |
| 			      size_t size, unsigned long offset,
 | |
| 			      struct block_device *bdev,
 | |
| 			      struct bio **bio_ret,
 | |
| 			      unsigned long max_pages,
 | |
| 			      bio_end_io_t end_io_func,
 | |
| 			      int mirror_num,
 | |
| 			      unsigned long prev_bio_flags,
 | |
| 			      unsigned long bio_flags)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct bio *bio;
 | |
| 	int nr;
 | |
| 	int contig = 0;
 | |
| 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
 | |
| 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
 | |
| 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
 | |
| 
 | |
| 	if (bio_ret && *bio_ret) {
 | |
| 		bio = *bio_ret;
 | |
| 		if (old_compressed)
 | |
| 			contig = bio->bi_iter.bi_sector == sector;
 | |
| 		else
 | |
| 			contig = bio_end_sector(bio) == sector;
 | |
| 
 | |
| 		if (prev_bio_flags != bio_flags || !contig ||
 | |
| 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
 | |
| 		    bio_add_page(bio, page, page_size, offset) < page_size) {
 | |
| 			ret = submit_one_bio(rw, bio, mirror_num,
 | |
| 					     prev_bio_flags);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			bio = NULL;
 | |
| 		} else {
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	if (this_compressed)
 | |
| 		nr = BIO_MAX_PAGES;
 | |
| 	else
 | |
| 		nr = bio_get_nr_vecs(bdev);
 | |
| 
 | |
| 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
 | |
| 	if (!bio)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bio_add_page(bio, page, page_size, offset);
 | |
| 	bio->bi_end_io = end_io_func;
 | |
| 	bio->bi_private = tree;
 | |
| 
 | |
| 	if (bio_ret)
 | |
| 		*bio_ret = bio;
 | |
| 	else
 | |
| 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void attach_extent_buffer_page(struct extent_buffer *eb,
 | |
| 				      struct page *page)
 | |
| {
 | |
| 	if (!PagePrivate(page)) {
 | |
| 		SetPagePrivate(page);
 | |
| 		page_cache_get(page);
 | |
| 		set_page_private(page, (unsigned long)eb);
 | |
| 	} else {
 | |
| 		WARN_ON(page->private != (unsigned long)eb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void set_page_extent_mapped(struct page *page)
 | |
| {
 | |
| 	if (!PagePrivate(page)) {
 | |
| 		SetPagePrivate(page);
 | |
| 		page_cache_get(page);
 | |
| 		set_page_private(page, EXTENT_PAGE_PRIVATE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct extent_map *
 | |
| __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
 | |
| 		 u64 start, u64 len, get_extent_t *get_extent,
 | |
| 		 struct extent_map **em_cached)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 
 | |
| 	if (em_cached && *em_cached) {
 | |
| 		em = *em_cached;
 | |
| 		if (extent_map_in_tree(em) && start >= em->start &&
 | |
| 		    start < extent_map_end(em)) {
 | |
| 			atomic_inc(&em->refs);
 | |
| 			return em;
 | |
| 		}
 | |
| 
 | |
| 		free_extent_map(em);
 | |
| 		*em_cached = NULL;
 | |
| 	}
 | |
| 
 | |
| 	em = get_extent(inode, page, pg_offset, start, len, 0);
 | |
| 	if (em_cached && !IS_ERR_OR_NULL(em)) {
 | |
| 		BUG_ON(*em_cached);
 | |
| 		atomic_inc(&em->refs);
 | |
| 		*em_cached = em;
 | |
| 	}
 | |
| 	return em;
 | |
| }
 | |
| /*
 | |
|  * basic readpage implementation.  Locked extent state structs are inserted
 | |
|  * into the tree that are removed when the IO is done (by the end_io
 | |
|  * handlers)
 | |
|  * XXX JDM: This needs looking at to ensure proper page locking
 | |
|  */
 | |
| static int __do_readpage(struct extent_io_tree *tree,
 | |
| 			 struct page *page,
 | |
| 			 get_extent_t *get_extent,
 | |
| 			 struct extent_map **em_cached,
 | |
| 			 struct bio **bio, int mirror_num,
 | |
| 			 unsigned long *bio_flags, int rw)
 | |
| {
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	u64 start = page_offset(page);
 | |
| 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	u64 end;
 | |
| 	u64 cur = start;
 | |
| 	u64 extent_offset;
 | |
| 	u64 last_byte = i_size_read(inode);
 | |
| 	u64 block_start;
 | |
| 	u64 cur_end;
 | |
| 	sector_t sector;
 | |
| 	struct extent_map *em;
 | |
| 	struct block_device *bdev;
 | |
| 	int ret;
 | |
| 	int nr = 0;
 | |
| 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
 | |
| 	size_t pg_offset = 0;
 | |
| 	size_t iosize;
 | |
| 	size_t disk_io_size;
 | |
| 	size_t blocksize = inode->i_sb->s_blocksize;
 | |
| 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
 | |
| 
 | |
| 	set_page_extent_mapped(page);
 | |
| 
 | |
| 	end = page_end;
 | |
| 	if (!PageUptodate(page)) {
 | |
| 		if (cleancache_get_page(page) == 0) {
 | |
| 			BUG_ON(blocksize != PAGE_SIZE);
 | |
| 			unlock_extent(tree, start, end);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
 | |
| 		char *userpage;
 | |
| 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 		if (zero_offset) {
 | |
| 			iosize = PAGE_CACHE_SIZE - zero_offset;
 | |
| 			userpage = kmap_atomic(page);
 | |
| 			memset(userpage + zero_offset, 0, iosize);
 | |
| 			flush_dcache_page(page);
 | |
| 			kunmap_atomic(userpage);
 | |
| 		}
 | |
| 	}
 | |
| 	while (cur <= end) {
 | |
| 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
 | |
| 
 | |
| 		if (cur >= last_byte) {
 | |
| 			char *userpage;
 | |
| 			struct extent_state *cached = NULL;
 | |
| 
 | |
| 			iosize = PAGE_CACHE_SIZE - pg_offset;
 | |
| 			userpage = kmap_atomic(page);
 | |
| 			memset(userpage + pg_offset, 0, iosize);
 | |
| 			flush_dcache_page(page);
 | |
| 			kunmap_atomic(userpage);
 | |
| 			set_extent_uptodate(tree, cur, cur + iosize - 1,
 | |
| 					    &cached, GFP_NOFS);
 | |
| 			if (!parent_locked)
 | |
| 				unlock_extent_cached(tree, cur,
 | |
| 						     cur + iosize - 1,
 | |
| 						     &cached, GFP_NOFS);
 | |
| 			break;
 | |
| 		}
 | |
| 		em = __get_extent_map(inode, page, pg_offset, cur,
 | |
| 				      end - cur + 1, get_extent, em_cached);
 | |
| 		if (IS_ERR_OR_NULL(em)) {
 | |
| 			SetPageError(page);
 | |
| 			if (!parent_locked)
 | |
| 				unlock_extent(tree, cur, end);
 | |
| 			break;
 | |
| 		}
 | |
| 		extent_offset = cur - em->start;
 | |
| 		BUG_ON(extent_map_end(em) <= cur);
 | |
| 		BUG_ON(end < cur);
 | |
| 
 | |
| 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
 | |
| 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
 | |
| 			extent_set_compress_type(&this_bio_flag,
 | |
| 						 em->compress_type);
 | |
| 		}
 | |
| 
 | |
| 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 | |
| 		cur_end = min(extent_map_end(em) - 1, end);
 | |
| 		iosize = ALIGN(iosize, blocksize);
 | |
| 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
 | |
| 			disk_io_size = em->block_len;
 | |
| 			sector = em->block_start >> 9;
 | |
| 		} else {
 | |
| 			sector = (em->block_start + extent_offset) >> 9;
 | |
| 			disk_io_size = iosize;
 | |
| 		}
 | |
| 		bdev = em->bdev;
 | |
| 		block_start = em->block_start;
 | |
| 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
 | |
| 			block_start = EXTENT_MAP_HOLE;
 | |
| 		free_extent_map(em);
 | |
| 		em = NULL;
 | |
| 
 | |
| 		/* we've found a hole, just zero and go on */
 | |
| 		if (block_start == EXTENT_MAP_HOLE) {
 | |
| 			char *userpage;
 | |
| 			struct extent_state *cached = NULL;
 | |
| 
 | |
| 			userpage = kmap_atomic(page);
 | |
| 			memset(userpage + pg_offset, 0, iosize);
 | |
| 			flush_dcache_page(page);
 | |
| 			kunmap_atomic(userpage);
 | |
| 
 | |
| 			set_extent_uptodate(tree, cur, cur + iosize - 1,
 | |
| 					    &cached, GFP_NOFS);
 | |
| 			unlock_extent_cached(tree, cur, cur + iosize - 1,
 | |
| 			                     &cached, GFP_NOFS);
 | |
| 			cur = cur + iosize;
 | |
| 			pg_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* the get_extent function already copied into the page */
 | |
| 		if (test_range_bit(tree, cur, cur_end,
 | |
| 				   EXTENT_UPTODATE, 1, NULL)) {
 | |
| 			check_page_uptodate(tree, page);
 | |
| 			if (!parent_locked)
 | |
| 				unlock_extent(tree, cur, cur + iosize - 1);
 | |
| 			cur = cur + iosize;
 | |
| 			pg_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* we have an inline extent but it didn't get marked up
 | |
| 		 * to date.  Error out
 | |
| 		 */
 | |
| 		if (block_start == EXTENT_MAP_INLINE) {
 | |
| 			SetPageError(page);
 | |
| 			if (!parent_locked)
 | |
| 				unlock_extent(tree, cur, cur + iosize - 1);
 | |
| 			cur = cur + iosize;
 | |
| 			pg_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pnr -= page->index;
 | |
| 		ret = submit_extent_page(rw, tree, page,
 | |
| 					 sector, disk_io_size, pg_offset,
 | |
| 					 bdev, bio, pnr,
 | |
| 					 end_bio_extent_readpage, mirror_num,
 | |
| 					 *bio_flags,
 | |
| 					 this_bio_flag);
 | |
| 		if (!ret) {
 | |
| 			nr++;
 | |
| 			*bio_flags = this_bio_flag;
 | |
| 		} else {
 | |
| 			SetPageError(page);
 | |
| 			if (!parent_locked)
 | |
| 				unlock_extent(tree, cur, cur + iosize - 1);
 | |
| 		}
 | |
| 		cur = cur + iosize;
 | |
| 		pg_offset += iosize;
 | |
| 	}
 | |
| out:
 | |
| 	if (!nr) {
 | |
| 		if (!PageError(page))
 | |
| 			SetPageUptodate(page);
 | |
| 		unlock_page(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
 | |
| 					     struct page *pages[], int nr_pages,
 | |
| 					     u64 start, u64 end,
 | |
| 					     get_extent_t *get_extent,
 | |
| 					     struct extent_map **em_cached,
 | |
| 					     struct bio **bio, int mirror_num,
 | |
| 					     unsigned long *bio_flags, int rw)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	int index;
 | |
| 
 | |
| 	inode = pages[0]->mapping->host;
 | |
| 	while (1) {
 | |
| 		lock_extent(tree, start, end);
 | |
| 		ordered = btrfs_lookup_ordered_range(inode, start,
 | |
| 						     end - start + 1);
 | |
| 		if (!ordered)
 | |
| 			break;
 | |
| 		unlock_extent(tree, start, end);
 | |
| 		btrfs_start_ordered_extent(inode, ordered, 1);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 	}
 | |
| 
 | |
| 	for (index = 0; index < nr_pages; index++) {
 | |
| 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
 | |
| 			      mirror_num, bio_flags, rw);
 | |
| 		page_cache_release(pages[index]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __extent_readpages(struct extent_io_tree *tree,
 | |
| 			       struct page *pages[],
 | |
| 			       int nr_pages, get_extent_t *get_extent,
 | |
| 			       struct extent_map **em_cached,
 | |
| 			       struct bio **bio, int mirror_num,
 | |
| 			       unsigned long *bio_flags, int rw)
 | |
| {
 | |
| 	u64 start = 0;
 | |
| 	u64 end = 0;
 | |
| 	u64 page_start;
 | |
| 	int index;
 | |
| 	int first_index = 0;
 | |
| 
 | |
| 	for (index = 0; index < nr_pages; index++) {
 | |
| 		page_start = page_offset(pages[index]);
 | |
| 		if (!end) {
 | |
| 			start = page_start;
 | |
| 			end = start + PAGE_CACHE_SIZE - 1;
 | |
| 			first_index = index;
 | |
| 		} else if (end + 1 == page_start) {
 | |
| 			end += PAGE_CACHE_SIZE;
 | |
| 		} else {
 | |
| 			__do_contiguous_readpages(tree, &pages[first_index],
 | |
| 						  index - first_index, start,
 | |
| 						  end, get_extent, em_cached,
 | |
| 						  bio, mirror_num, bio_flags,
 | |
| 						  rw);
 | |
| 			start = page_start;
 | |
| 			end = start + PAGE_CACHE_SIZE - 1;
 | |
| 			first_index = index;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (end)
 | |
| 		__do_contiguous_readpages(tree, &pages[first_index],
 | |
| 					  index - first_index, start,
 | |
| 					  end, get_extent, em_cached, bio,
 | |
| 					  mirror_num, bio_flags, rw);
 | |
| }
 | |
| 
 | |
| static int __extent_read_full_page(struct extent_io_tree *tree,
 | |
| 				   struct page *page,
 | |
| 				   get_extent_t *get_extent,
 | |
| 				   struct bio **bio, int mirror_num,
 | |
| 				   unsigned long *bio_flags, int rw)
 | |
| {
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	u64 start = page_offset(page);
 | |
| 	u64 end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	while (1) {
 | |
| 		lock_extent(tree, start, end);
 | |
| 		ordered = btrfs_lookup_ordered_extent(inode, start);
 | |
| 		if (!ordered)
 | |
| 			break;
 | |
| 		unlock_extent(tree, start, end);
 | |
| 		btrfs_start_ordered_extent(inode, ordered, 1);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 	}
 | |
| 
 | |
| 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
 | |
| 			    bio_flags, rw);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
 | |
| 			    get_extent_t *get_extent, int mirror_num)
 | |
| {
 | |
| 	struct bio *bio = NULL;
 | |
| 	unsigned long bio_flags = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
 | |
| 				      &bio_flags, READ);
 | |
| 	if (bio)
 | |
| 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
 | |
| 				 get_extent_t *get_extent, int mirror_num)
 | |
| {
 | |
| 	struct bio *bio = NULL;
 | |
| 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
 | |
| 				      &bio_flags, READ);
 | |
| 	if (bio)
 | |
| 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline void update_nr_written(struct page *page,
 | |
| 				      struct writeback_control *wbc,
 | |
| 				      unsigned long nr_written)
 | |
| {
 | |
| 	wbc->nr_to_write -= nr_written;
 | |
| 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
 | |
| 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
 | |
| 		page->mapping->writeback_index = page->index + nr_written;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper for __extent_writepage, doing all of the delayed allocation setup.
 | |
|  *
 | |
|  * This returns 1 if our fill_delalloc function did all the work required
 | |
|  * to write the page (copy into inline extent).  In this case the IO has
 | |
|  * been started and the page is already unlocked.
 | |
|  *
 | |
|  * This returns 0 if all went well (page still locked)
 | |
|  * This returns < 0 if there were errors (page still locked)
 | |
|  */
 | |
| static noinline_for_stack int writepage_delalloc(struct inode *inode,
 | |
| 			      struct page *page, struct writeback_control *wbc,
 | |
| 			      struct extent_page_data *epd,
 | |
| 			      u64 delalloc_start,
 | |
| 			      unsigned long *nr_written)
 | |
| {
 | |
| 	struct extent_io_tree *tree = epd->tree;
 | |
| 	u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
 | |
| 	u64 nr_delalloc;
 | |
| 	u64 delalloc_to_write = 0;
 | |
| 	u64 delalloc_end = 0;
 | |
| 	int ret;
 | |
| 	int page_started = 0;
 | |
| 
 | |
| 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (delalloc_end < page_end) {
 | |
| 		nr_delalloc = find_lock_delalloc_range(inode, tree,
 | |
| 					       page,
 | |
| 					       &delalloc_start,
 | |
| 					       &delalloc_end,
 | |
| 					       128 * 1024 * 1024);
 | |
| 		if (nr_delalloc == 0) {
 | |
| 			delalloc_start = delalloc_end + 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		ret = tree->ops->fill_delalloc(inode, page,
 | |
| 					       delalloc_start,
 | |
| 					       delalloc_end,
 | |
| 					       &page_started,
 | |
| 					       nr_written);
 | |
| 		/* File system has been set read-only */
 | |
| 		if (ret) {
 | |
| 			SetPageError(page);
 | |
| 			/* fill_delalloc should be return < 0 for error
 | |
| 			 * but just in case, we use > 0 here meaning the
 | |
| 			 * IO is started, so we don't want to return > 0
 | |
| 			 * unless things are going well.
 | |
| 			 */
 | |
| 			ret = ret < 0 ? ret : -EIO;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * delalloc_end is already one less than the total
 | |
| 		 * length, so we don't subtract one from
 | |
| 		 * PAGE_CACHE_SIZE
 | |
| 		 */
 | |
| 		delalloc_to_write += (delalloc_end - delalloc_start +
 | |
| 				      PAGE_CACHE_SIZE) >>
 | |
| 				      PAGE_CACHE_SHIFT;
 | |
| 		delalloc_start = delalloc_end + 1;
 | |
| 	}
 | |
| 	if (wbc->nr_to_write < delalloc_to_write) {
 | |
| 		int thresh = 8192;
 | |
| 
 | |
| 		if (delalloc_to_write < thresh * 2)
 | |
| 			thresh = delalloc_to_write;
 | |
| 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
 | |
| 					 thresh);
 | |
| 	}
 | |
| 
 | |
| 	/* did the fill delalloc function already unlock and start
 | |
| 	 * the IO?
 | |
| 	 */
 | |
| 	if (page_started) {
 | |
| 		/*
 | |
| 		 * we've unlocked the page, so we can't update
 | |
| 		 * the mapping's writeback index, just update
 | |
| 		 * nr_to_write.
 | |
| 		 */
 | |
| 		wbc->nr_to_write -= *nr_written;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| done:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper for __extent_writepage.  This calls the writepage start hooks,
 | |
|  * and does the loop to map the page into extents and bios.
 | |
|  *
 | |
|  * We return 1 if the IO is started and the page is unlocked,
 | |
|  * 0 if all went well (page still locked)
 | |
|  * < 0 if there were errors (page still locked)
 | |
|  */
 | |
| static noinline_for_stack int __extent_writepage_io(struct inode *inode,
 | |
| 				 struct page *page,
 | |
| 				 struct writeback_control *wbc,
 | |
| 				 struct extent_page_data *epd,
 | |
| 				 loff_t i_size,
 | |
| 				 unsigned long nr_written,
 | |
| 				 int write_flags, int *nr_ret)
 | |
| {
 | |
| 	struct extent_io_tree *tree = epd->tree;
 | |
| 	u64 start = page_offset(page);
 | |
| 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	u64 end;
 | |
| 	u64 cur = start;
 | |
| 	u64 extent_offset;
 | |
| 	u64 block_start;
 | |
| 	u64 iosize;
 | |
| 	sector_t sector;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct extent_map *em;
 | |
| 	struct block_device *bdev;
 | |
| 	size_t pg_offset = 0;
 | |
| 	size_t blocksize;
 | |
| 	int ret = 0;
 | |
| 	int nr = 0;
 | |
| 	bool compressed;
 | |
| 
 | |
| 	if (tree->ops && tree->ops->writepage_start_hook) {
 | |
| 		ret = tree->ops->writepage_start_hook(page, start,
 | |
| 						      page_end);
 | |
| 		if (ret) {
 | |
| 			/* Fixup worker will requeue */
 | |
| 			if (ret == -EBUSY)
 | |
| 				wbc->pages_skipped++;
 | |
| 			else
 | |
| 				redirty_page_for_writepage(wbc, page);
 | |
| 
 | |
| 			update_nr_written(page, wbc, nr_written);
 | |
| 			unlock_page(page);
 | |
| 			ret = 1;
 | |
| 			goto done_unlocked;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't want to touch the inode after unlocking the page,
 | |
| 	 * so we update the mapping writeback index now
 | |
| 	 */
 | |
| 	update_nr_written(page, wbc, nr_written + 1);
 | |
| 
 | |
| 	end = page_end;
 | |
| 	if (i_size <= start) {
 | |
| 		if (tree->ops && tree->ops->writepage_end_io_hook)
 | |
| 			tree->ops->writepage_end_io_hook(page, start,
 | |
| 							 page_end, NULL, 1);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	blocksize = inode->i_sb->s_blocksize;
 | |
| 
 | |
| 	while (cur <= end) {
 | |
| 		u64 em_end;
 | |
| 		if (cur >= i_size) {
 | |
| 			if (tree->ops && tree->ops->writepage_end_io_hook)
 | |
| 				tree->ops->writepage_end_io_hook(page, cur,
 | |
| 							 page_end, NULL, 1);
 | |
| 			break;
 | |
| 		}
 | |
| 		em = epd->get_extent(inode, page, pg_offset, cur,
 | |
| 				     end - cur + 1, 1);
 | |
| 		if (IS_ERR_OR_NULL(em)) {
 | |
| 			SetPageError(page);
 | |
| 			ret = PTR_ERR_OR_ZERO(em);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		extent_offset = cur - em->start;
 | |
| 		em_end = extent_map_end(em);
 | |
| 		BUG_ON(em_end <= cur);
 | |
| 		BUG_ON(end < cur);
 | |
| 		iosize = min(em_end - cur, end - cur + 1);
 | |
| 		iosize = ALIGN(iosize, blocksize);
 | |
| 		sector = (em->block_start + extent_offset) >> 9;
 | |
| 		bdev = em->bdev;
 | |
| 		block_start = em->block_start;
 | |
| 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 | |
| 		free_extent_map(em);
 | |
| 		em = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * compressed and inline extents are written through other
 | |
| 		 * paths in the FS
 | |
| 		 */
 | |
| 		if (compressed || block_start == EXTENT_MAP_HOLE ||
 | |
| 		    block_start == EXTENT_MAP_INLINE) {
 | |
| 			/*
 | |
| 			 * end_io notification does not happen here for
 | |
| 			 * compressed extents
 | |
| 			 */
 | |
| 			if (!compressed && tree->ops &&
 | |
| 			    tree->ops->writepage_end_io_hook)
 | |
| 				tree->ops->writepage_end_io_hook(page, cur,
 | |
| 							 cur + iosize - 1,
 | |
| 							 NULL, 1);
 | |
| 			else if (compressed) {
 | |
| 				/* we don't want to end_page_writeback on
 | |
| 				 * a compressed extent.  this happens
 | |
| 				 * elsewhere
 | |
| 				 */
 | |
| 				nr++;
 | |
| 			}
 | |
| 
 | |
| 			cur += iosize;
 | |
| 			pg_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (tree->ops && tree->ops->writepage_io_hook) {
 | |
| 			ret = tree->ops->writepage_io_hook(page, cur,
 | |
| 						cur + iosize - 1);
 | |
| 		} else {
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 		if (ret) {
 | |
| 			SetPageError(page);
 | |
| 		} else {
 | |
| 			unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
 | |
| 
 | |
| 			set_range_writeback(tree, cur, cur + iosize - 1);
 | |
| 			if (!PageWriteback(page)) {
 | |
| 				btrfs_err(BTRFS_I(inode)->root->fs_info,
 | |
| 					   "page %lu not writeback, cur %llu end %llu",
 | |
| 				       page->index, cur, end);
 | |
| 			}
 | |
| 
 | |
| 			ret = submit_extent_page(write_flags, tree, page,
 | |
| 						 sector, iosize, pg_offset,
 | |
| 						 bdev, &epd->bio, max_nr,
 | |
| 						 end_bio_extent_writepage,
 | |
| 						 0, 0, 0);
 | |
| 			if (ret)
 | |
| 				SetPageError(page);
 | |
| 		}
 | |
| 		cur = cur + iosize;
 | |
| 		pg_offset += iosize;
 | |
| 		nr++;
 | |
| 	}
 | |
| done:
 | |
| 	*nr_ret = nr;
 | |
| 
 | |
| done_unlocked:
 | |
| 
 | |
| 	/* drop our reference on any cached states */
 | |
| 	free_extent_state(cached_state);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the writepage semantics are similar to regular writepage.  extent
 | |
|  * records are inserted to lock ranges in the tree, and as dirty areas
 | |
|  * are found, they are marked writeback.  Then the lock bits are removed
 | |
|  * and the end_io handler clears the writeback ranges
 | |
|  */
 | |
| static int __extent_writepage(struct page *page, struct writeback_control *wbc,
 | |
| 			      void *data)
 | |
| {
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	struct extent_page_data *epd = data;
 | |
| 	u64 start = page_offset(page);
 | |
| 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	int ret;
 | |
| 	int nr = 0;
 | |
| 	size_t pg_offset = 0;
 | |
| 	loff_t i_size = i_size_read(inode);
 | |
| 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
 | |
| 	int write_flags;
 | |
| 	unsigned long nr_written = 0;
 | |
| 
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL)
 | |
| 		write_flags = WRITE_SYNC;
 | |
| 	else
 | |
| 		write_flags = WRITE;
 | |
| 
 | |
| 	trace___extent_writepage(page, inode, wbc);
 | |
| 
 | |
| 	WARN_ON(!PageLocked(page));
 | |
| 
 | |
| 	ClearPageError(page);
 | |
| 
 | |
| 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
 | |
| 	if (page->index > end_index ||
 | |
| 	   (page->index == end_index && !pg_offset)) {
 | |
| 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
 | |
| 		unlock_page(page);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (page->index == end_index) {
 | |
| 		char *userpage;
 | |
| 
 | |
| 		userpage = kmap_atomic(page);
 | |
| 		memset(userpage + pg_offset, 0,
 | |
| 		       PAGE_CACHE_SIZE - pg_offset);
 | |
| 		kunmap_atomic(userpage);
 | |
| 		flush_dcache_page(page);
 | |
| 	}
 | |
| 
 | |
| 	pg_offset = 0;
 | |
| 
 | |
| 	set_page_extent_mapped(page);
 | |
| 
 | |
| 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
 | |
| 	if (ret == 1)
 | |
| 		goto done_unlocked;
 | |
| 	if (ret)
 | |
| 		goto done;
 | |
| 
 | |
| 	ret = __extent_writepage_io(inode, page, wbc, epd,
 | |
| 				    i_size, nr_written, write_flags, &nr);
 | |
| 	if (ret == 1)
 | |
| 		goto done_unlocked;
 | |
| 
 | |
| done:
 | |
| 	if (nr == 0) {
 | |
| 		/* make sure the mapping tag for page dirty gets cleared */
 | |
| 		set_page_writeback(page);
 | |
| 		end_page_writeback(page);
 | |
| 	}
 | |
| 	if (PageError(page)) {
 | |
| 		ret = ret < 0 ? ret : -EIO;
 | |
| 		end_extent_writepage(page, ret, start, page_end);
 | |
| 	}
 | |
| 	unlock_page(page);
 | |
| 	return ret;
 | |
| 
 | |
| done_unlocked:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
 | |
| {
 | |
| 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
 | |
| 		       TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| lock_extent_buffer_for_io(struct extent_buffer *eb,
 | |
| 			  struct btrfs_fs_info *fs_info,
 | |
| 			  struct extent_page_data *epd)
 | |
| {
 | |
| 	unsigned long i, num_pages;
 | |
| 	int flush = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!btrfs_try_tree_write_lock(eb)) {
 | |
| 		flush = 1;
 | |
| 		flush_write_bio(epd);
 | |
| 		btrfs_tree_lock(eb);
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
 | |
| 		btrfs_tree_unlock(eb);
 | |
| 		if (!epd->sync_io)
 | |
| 			return 0;
 | |
| 		if (!flush) {
 | |
| 			flush_write_bio(epd);
 | |
| 			flush = 1;
 | |
| 		}
 | |
| 		while (1) {
 | |
| 			wait_on_extent_buffer_writeback(eb);
 | |
| 			btrfs_tree_lock(eb);
 | |
| 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
 | |
| 				break;
 | |
| 			btrfs_tree_unlock(eb);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to do this to prevent races in people who check if the eb is
 | |
| 	 * under IO since we can end up having no IO bits set for a short period
 | |
| 	 * of time.
 | |
| 	 */
 | |
| 	spin_lock(&eb->refs_lock);
 | |
| 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
 | |
| 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
 | |
| 		spin_unlock(&eb->refs_lock);
 | |
| 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
 | |
| 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
 | |
| 				     -eb->len,
 | |
| 				     fs_info->dirty_metadata_batch);
 | |
| 		ret = 1;
 | |
| 	} else {
 | |
| 		spin_unlock(&eb->refs_lock);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_tree_unlock(eb);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		struct page *p = eb->pages[i];
 | |
| 
 | |
| 		if (!trylock_page(p)) {
 | |
| 			if (!flush) {
 | |
| 				flush_write_bio(epd);
 | |
| 				flush = 1;
 | |
| 			}
 | |
| 			lock_page(p);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void end_extent_buffer_writeback(struct extent_buffer *eb)
 | |
| {
 | |
| 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
 | |
| 	smp_mb__after_atomic();
 | |
| 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
 | |
| }
 | |
| 
 | |
| static void set_btree_ioerr(struct page *page)
 | |
| {
 | |
| 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
 | |
| 	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
 | |
| 
 | |
| 	SetPageError(page);
 | |
| 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If writeback for a btree extent that doesn't belong to a log tree
 | |
| 	 * failed, increment the counter transaction->eb_write_errors.
 | |
| 	 * We do this because while the transaction is running and before it's
 | |
| 	 * committing (when we call filemap_fdata[write|wait]_range against
 | |
| 	 * the btree inode), we might have
 | |
| 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
 | |
| 	 * returns an error or an error happens during writeback, when we're
 | |
| 	 * committing the transaction we wouldn't know about it, since the pages
 | |
| 	 * can be no longer dirty nor marked anymore for writeback (if a
 | |
| 	 * subsequent modification to the extent buffer didn't happen before the
 | |
| 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
 | |
| 	 * able to find the pages tagged with SetPageError at transaction
 | |
| 	 * commit time. So if this happens we must abort the transaction,
 | |
| 	 * otherwise we commit a super block with btree roots that point to
 | |
| 	 * btree nodes/leafs whose content on disk is invalid - either garbage
 | |
| 	 * or the content of some node/leaf from a past generation that got
 | |
| 	 * cowed or deleted and is no longer valid.
 | |
| 	 *
 | |
| 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
 | |
| 	 * not be enough - we need to distinguish between log tree extents vs
 | |
| 	 * non-log tree extents, and the next filemap_fdatawait_range() call
 | |
| 	 * will catch and clear such errors in the mapping - and that call might
 | |
| 	 * be from a log sync and not from a transaction commit. Also, checking
 | |
| 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
 | |
| 	 * not done and would not be reliable - the eb might have been released
 | |
| 	 * from memory and reading it back again means that flag would not be
 | |
| 	 * set (since it's a runtime flag, not persisted on disk).
 | |
| 	 *
 | |
| 	 * Using the flags below in the btree inode also makes us achieve the
 | |
| 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
 | |
| 	 * writeback for all dirty pages and before filemap_fdatawait_range()
 | |
| 	 * is called, the writeback for all dirty pages had already finished
 | |
| 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
 | |
| 	 * filemap_fdatawait_range() would return success, as it could not know
 | |
| 	 * that writeback errors happened (the pages were no longer tagged for
 | |
| 	 * writeback).
 | |
| 	 */
 | |
| 	switch (eb->log_index) {
 | |
| 	case -1:
 | |
| 		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
 | |
| 		break;
 | |
| 	case 0:
 | |
| 		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG(); /* unexpected, logic error */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
 | |
| {
 | |
| 	struct bio_vec *bvec;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int i, done;
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, i) {
 | |
| 		struct page *page = bvec->bv_page;
 | |
| 
 | |
| 		eb = (struct extent_buffer *)page->private;
 | |
| 		BUG_ON(!eb);
 | |
| 		done = atomic_dec_and_test(&eb->io_pages);
 | |
| 
 | |
| 		if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
 | |
| 			ClearPageUptodate(page);
 | |
| 			set_btree_ioerr(page);
 | |
| 		}
 | |
| 
 | |
| 		end_page_writeback(page);
 | |
| 
 | |
| 		if (!done)
 | |
| 			continue;
 | |
| 
 | |
| 		end_extent_buffer_writeback(eb);
 | |
| 	}
 | |
| 
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
 | |
| 			struct btrfs_fs_info *fs_info,
 | |
| 			struct writeback_control *wbc,
 | |
| 			struct extent_page_data *epd)
 | |
| {
 | |
| 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
 | |
| 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 | |
| 	u64 offset = eb->start;
 | |
| 	unsigned long i, num_pages;
 | |
| 	unsigned long bio_flags = 0;
 | |
| 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	atomic_set(&eb->io_pages, num_pages);
 | |
| 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
 | |
| 		bio_flags = EXTENT_BIO_TREE_LOG;
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		struct page *p = eb->pages[i];
 | |
| 
 | |
| 		clear_page_dirty_for_io(p);
 | |
| 		set_page_writeback(p);
 | |
| 		ret = submit_extent_page(rw, tree, p, offset >> 9,
 | |
| 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
 | |
| 					 -1, end_bio_extent_buffer_writepage,
 | |
| 					 0, epd->bio_flags, bio_flags);
 | |
| 		epd->bio_flags = bio_flags;
 | |
| 		if (ret) {
 | |
| 			set_btree_ioerr(p);
 | |
| 			end_page_writeback(p);
 | |
| 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
 | |
| 				end_extent_buffer_writeback(eb);
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		offset += PAGE_CACHE_SIZE;
 | |
| 		update_nr_written(p, wbc, 1);
 | |
| 		unlock_page(p);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ret)) {
 | |
| 		for (; i < num_pages; i++) {
 | |
| 			struct page *p = eb->pages[i];
 | |
| 			clear_page_dirty_for_io(p);
 | |
| 			unlock_page(p);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btree_write_cache_pages(struct address_space *mapping,
 | |
| 				   struct writeback_control *wbc)
 | |
| {
 | |
| 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
 | |
| 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
 | |
| 	struct extent_buffer *eb, *prev_eb = NULL;
 | |
| 	struct extent_page_data epd = {
 | |
| 		.bio = NULL,
 | |
| 		.tree = tree,
 | |
| 		.extent_locked = 0,
 | |
| 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 | |
| 		.bio_flags = 0,
 | |
| 	};
 | |
| 	int ret = 0;
 | |
| 	int done = 0;
 | |
| 	int nr_to_write_done = 0;
 | |
| 	struct pagevec pvec;
 | |
| 	int nr_pages;
 | |
| 	pgoff_t index;
 | |
| 	pgoff_t end;		/* Inclusive */
 | |
| 	int scanned = 0;
 | |
| 	int tag;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	if (wbc->range_cyclic) {
 | |
| 		index = mapping->writeback_index; /* Start from prev offset */
 | |
| 		end = -1;
 | |
| 	} else {
 | |
| 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
 | |
| 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 | |
| 		scanned = 1;
 | |
| 	}
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL)
 | |
| 		tag = PAGECACHE_TAG_TOWRITE;
 | |
| 	else
 | |
| 		tag = PAGECACHE_TAG_DIRTY;
 | |
| retry:
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL)
 | |
| 		tag_pages_for_writeback(mapping, index, end);
 | |
| 	while (!done && !nr_to_write_done && (index <= end) &&
 | |
| 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
 | |
| 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
 | |
| 		unsigned i;
 | |
| 
 | |
| 		scanned = 1;
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			if (!PagePrivate(page))
 | |
| 				continue;
 | |
| 
 | |
| 			if (!wbc->range_cyclic && page->index > end) {
 | |
| 				done = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			spin_lock(&mapping->private_lock);
 | |
| 			if (!PagePrivate(page)) {
 | |
| 				spin_unlock(&mapping->private_lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			eb = (struct extent_buffer *)page->private;
 | |
| 
 | |
| 			/*
 | |
| 			 * Shouldn't happen and normally this would be a BUG_ON
 | |
| 			 * but no sense in crashing the users box for something
 | |
| 			 * we can survive anyway.
 | |
| 			 */
 | |
| 			if (WARN_ON(!eb)) {
 | |
| 				spin_unlock(&mapping->private_lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (eb == prev_eb) {
 | |
| 				spin_unlock(&mapping->private_lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ret = atomic_inc_not_zero(&eb->refs);
 | |
| 			spin_unlock(&mapping->private_lock);
 | |
| 			if (!ret)
 | |
| 				continue;
 | |
| 
 | |
| 			prev_eb = eb;
 | |
| 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
 | |
| 			if (!ret) {
 | |
| 				free_extent_buffer(eb);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ret = write_one_eb(eb, fs_info, wbc, &epd);
 | |
| 			if (ret) {
 | |
| 				done = 1;
 | |
| 				free_extent_buffer(eb);
 | |
| 				break;
 | |
| 			}
 | |
| 			free_extent_buffer(eb);
 | |
| 
 | |
| 			/*
 | |
| 			 * the filesystem may choose to bump up nr_to_write.
 | |
| 			 * We have to make sure to honor the new nr_to_write
 | |
| 			 * at any time
 | |
| 			 */
 | |
| 			nr_to_write_done = wbc->nr_to_write <= 0;
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	if (!scanned && !done) {
 | |
| 		/*
 | |
| 		 * We hit the last page and there is more work to be done: wrap
 | |
| 		 * back to the start of the file
 | |
| 		 */
 | |
| 		scanned = 1;
 | |
| 		index = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	flush_write_bio(&epd);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 | |
|  * @mapping: address space structure to write
 | |
|  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 | |
|  * @writepage: function called for each page
 | |
|  * @data: data passed to writepage function
 | |
|  *
 | |
|  * If a page is already under I/O, write_cache_pages() skips it, even
 | |
|  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 | |
|  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 | |
|  * and msync() need to guarantee that all the data which was dirty at the time
 | |
|  * the call was made get new I/O started against them.  If wbc->sync_mode is
 | |
|  * WB_SYNC_ALL then we were called for data integrity and we must wait for
 | |
|  * existing IO to complete.
 | |
|  */
 | |
| static int extent_write_cache_pages(struct extent_io_tree *tree,
 | |
| 			     struct address_space *mapping,
 | |
| 			     struct writeback_control *wbc,
 | |
| 			     writepage_t writepage, void *data,
 | |
| 			     void (*flush_fn)(void *))
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	int ret = 0;
 | |
| 	int done = 0;
 | |
| 	int err = 0;
 | |
| 	int nr_to_write_done = 0;
 | |
| 	struct pagevec pvec;
 | |
| 	int nr_pages;
 | |
| 	pgoff_t index;
 | |
| 	pgoff_t end;		/* Inclusive */
 | |
| 	int scanned = 0;
 | |
| 	int tag;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to hold onto the inode so that ordered extents can do their
 | |
| 	 * work when the IO finishes.  The alternative to this is failing to add
 | |
| 	 * an ordered extent if the igrab() fails there and that is a huge pain
 | |
| 	 * to deal with, so instead just hold onto the inode throughout the
 | |
| 	 * writepages operation.  If it fails here we are freeing up the inode
 | |
| 	 * anyway and we'd rather not waste our time writing out stuff that is
 | |
| 	 * going to be truncated anyway.
 | |
| 	 */
 | |
| 	if (!igrab(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	if (wbc->range_cyclic) {
 | |
| 		index = mapping->writeback_index; /* Start from prev offset */
 | |
| 		end = -1;
 | |
| 	} else {
 | |
| 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
 | |
| 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 | |
| 		scanned = 1;
 | |
| 	}
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL)
 | |
| 		tag = PAGECACHE_TAG_TOWRITE;
 | |
| 	else
 | |
| 		tag = PAGECACHE_TAG_DIRTY;
 | |
| retry:
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL)
 | |
| 		tag_pages_for_writeback(mapping, index, end);
 | |
| 	while (!done && !nr_to_write_done && (index <= end) &&
 | |
| 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
 | |
| 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
 | |
| 		unsigned i;
 | |
| 
 | |
| 		scanned = 1;
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			/*
 | |
| 			 * At this point we hold neither mapping->tree_lock nor
 | |
| 			 * lock on the page itself: the page may be truncated or
 | |
| 			 * invalidated (changing page->mapping to NULL), or even
 | |
| 			 * swizzled back from swapper_space to tmpfs file
 | |
| 			 * mapping
 | |
| 			 */
 | |
| 			if (!trylock_page(page)) {
 | |
| 				flush_fn(data);
 | |
| 				lock_page(page);
 | |
| 			}
 | |
| 
 | |
| 			if (unlikely(page->mapping != mapping)) {
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!wbc->range_cyclic && page->index > end) {
 | |
| 				done = 1;
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (wbc->sync_mode != WB_SYNC_NONE) {
 | |
| 				if (PageWriteback(page))
 | |
| 					flush_fn(data);
 | |
| 				wait_on_page_writeback(page);
 | |
| 			}
 | |
| 
 | |
| 			if (PageWriteback(page) ||
 | |
| 			    !clear_page_dirty_for_io(page)) {
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ret = (*writepage)(page, wbc, data);
 | |
| 
 | |
| 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
 | |
| 				unlock_page(page);
 | |
| 				ret = 0;
 | |
| 			}
 | |
| 			if (!err && ret < 0)
 | |
| 				err = ret;
 | |
| 
 | |
| 			/*
 | |
| 			 * the filesystem may choose to bump up nr_to_write.
 | |
| 			 * We have to make sure to honor the new nr_to_write
 | |
| 			 * at any time
 | |
| 			 */
 | |
| 			nr_to_write_done = wbc->nr_to_write <= 0;
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	if (!scanned && !done && !err) {
 | |
| 		/*
 | |
| 		 * We hit the last page and there is more work to be done: wrap
 | |
| 		 * back to the start of the file
 | |
| 		 */
 | |
| 		scanned = 1;
 | |
| 		index = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	btrfs_add_delayed_iput(inode);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void flush_epd_write_bio(struct extent_page_data *epd)
 | |
| {
 | |
| 	if (epd->bio) {
 | |
| 		int rw = WRITE;
 | |
| 		int ret;
 | |
| 
 | |
| 		if (epd->sync_io)
 | |
| 			rw = WRITE_SYNC;
 | |
| 
 | |
| 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
 | |
| 		BUG_ON(ret < 0); /* -ENOMEM */
 | |
| 		epd->bio = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline void flush_write_bio(void *data)
 | |
| {
 | |
| 	struct extent_page_data *epd = data;
 | |
| 	flush_epd_write_bio(epd);
 | |
| }
 | |
| 
 | |
| int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
 | |
| 			  get_extent_t *get_extent,
 | |
| 			  struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct extent_page_data epd = {
 | |
| 		.bio = NULL,
 | |
| 		.tree = tree,
 | |
| 		.get_extent = get_extent,
 | |
| 		.extent_locked = 0,
 | |
| 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 | |
| 		.bio_flags = 0,
 | |
| 	};
 | |
| 
 | |
| 	ret = __extent_writepage(page, wbc, &epd);
 | |
| 
 | |
| 	flush_epd_write_bio(&epd);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
 | |
| 			      u64 start, u64 end, get_extent_t *get_extent,
 | |
| 			      int mode)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct page *page;
 | |
| 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
 | |
| 		PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	struct extent_page_data epd = {
 | |
| 		.bio = NULL,
 | |
| 		.tree = tree,
 | |
| 		.get_extent = get_extent,
 | |
| 		.extent_locked = 1,
 | |
| 		.sync_io = mode == WB_SYNC_ALL,
 | |
| 		.bio_flags = 0,
 | |
| 	};
 | |
| 	struct writeback_control wbc_writepages = {
 | |
| 		.sync_mode	= mode,
 | |
| 		.nr_to_write	= nr_pages * 2,
 | |
| 		.range_start	= start,
 | |
| 		.range_end	= end + 1,
 | |
| 	};
 | |
| 
 | |
| 	while (start <= end) {
 | |
| 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
 | |
| 		if (clear_page_dirty_for_io(page))
 | |
| 			ret = __extent_writepage(page, &wbc_writepages, &epd);
 | |
| 		else {
 | |
| 			if (tree->ops && tree->ops->writepage_end_io_hook)
 | |
| 				tree->ops->writepage_end_io_hook(page, start,
 | |
| 						 start + PAGE_CACHE_SIZE - 1,
 | |
| 						 NULL, 1);
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		page_cache_release(page);
 | |
| 		start += PAGE_CACHE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	flush_epd_write_bio(&epd);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int extent_writepages(struct extent_io_tree *tree,
 | |
| 		      struct address_space *mapping,
 | |
| 		      get_extent_t *get_extent,
 | |
| 		      struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct extent_page_data epd = {
 | |
| 		.bio = NULL,
 | |
| 		.tree = tree,
 | |
| 		.get_extent = get_extent,
 | |
| 		.extent_locked = 0,
 | |
| 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 | |
| 		.bio_flags = 0,
 | |
| 	};
 | |
| 
 | |
| 	ret = extent_write_cache_pages(tree, mapping, wbc,
 | |
| 				       __extent_writepage, &epd,
 | |
| 				       flush_write_bio);
 | |
| 	flush_epd_write_bio(&epd);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int extent_readpages(struct extent_io_tree *tree,
 | |
| 		     struct address_space *mapping,
 | |
| 		     struct list_head *pages, unsigned nr_pages,
 | |
| 		     get_extent_t get_extent)
 | |
| {
 | |
| 	struct bio *bio = NULL;
 | |
| 	unsigned page_idx;
 | |
| 	unsigned long bio_flags = 0;
 | |
| 	struct page *pagepool[16];
 | |
| 	struct page *page;
 | |
| 	struct extent_map *em_cached = NULL;
 | |
| 	int nr = 0;
 | |
| 
 | |
| 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 | |
| 		page = list_entry(pages->prev, struct page, lru);
 | |
| 
 | |
| 		prefetchw(&page->flags);
 | |
| 		list_del(&page->lru);
 | |
| 		if (add_to_page_cache_lru(page, mapping,
 | |
| 					page->index, GFP_NOFS)) {
 | |
| 			page_cache_release(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pagepool[nr++] = page;
 | |
| 		if (nr < ARRAY_SIZE(pagepool))
 | |
| 			continue;
 | |
| 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
 | |
| 				   &bio, 0, &bio_flags, READ);
 | |
| 		nr = 0;
 | |
| 	}
 | |
| 	if (nr)
 | |
| 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
 | |
| 				   &bio, 0, &bio_flags, READ);
 | |
| 
 | |
| 	if (em_cached)
 | |
| 		free_extent_map(em_cached);
 | |
| 
 | |
| 	BUG_ON(!list_empty(pages));
 | |
| 	if (bio)
 | |
| 		return submit_one_bio(READ, bio, 0, bio_flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * basic invalidatepage code, this waits on any locked or writeback
 | |
|  * ranges corresponding to the page, and then deletes any extent state
 | |
|  * records from the tree
 | |
|  */
 | |
| int extent_invalidatepage(struct extent_io_tree *tree,
 | |
| 			  struct page *page, unsigned long offset)
 | |
| {
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	u64 start = page_offset(page);
 | |
| 	u64 end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
 | |
| 
 | |
| 	start += ALIGN(offset, blocksize);
 | |
| 	if (start > end)
 | |
| 		return 0;
 | |
| 
 | |
| 	lock_extent_bits(tree, start, end, 0, &cached_state);
 | |
| 	wait_on_page_writeback(page);
 | |
| 	clear_extent_bit(tree, start, end,
 | |
| 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
 | |
| 			 EXTENT_DO_ACCOUNTING,
 | |
| 			 1, 1, &cached_state, GFP_NOFS);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a helper for releasepage, this tests for areas of the page that
 | |
|  * are locked or under IO and drops the related state bits if it is safe
 | |
|  * to drop the page.
 | |
|  */
 | |
| static int try_release_extent_state(struct extent_map_tree *map,
 | |
| 				    struct extent_io_tree *tree,
 | |
| 				    struct page *page, gfp_t mask)
 | |
| {
 | |
| 	u64 start = page_offset(page);
 | |
| 	u64 end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	if (test_range_bit(tree, start, end,
 | |
| 			   EXTENT_IOBITS, 0, NULL))
 | |
| 		ret = 0;
 | |
| 	else {
 | |
| 		if ((mask & GFP_NOFS) == GFP_NOFS)
 | |
| 			mask = GFP_NOFS;
 | |
| 		/*
 | |
| 		 * at this point we can safely clear everything except the
 | |
| 		 * locked bit and the nodatasum bit
 | |
| 		 */
 | |
| 		ret = clear_extent_bit(tree, start, end,
 | |
| 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
 | |
| 				 0, 0, NULL, mask);
 | |
| 
 | |
| 		/* if clear_extent_bit failed for enomem reasons,
 | |
| 		 * we can't allow the release to continue.
 | |
| 		 */
 | |
| 		if (ret < 0)
 | |
| 			ret = 0;
 | |
| 		else
 | |
| 			ret = 1;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a helper for releasepage.  As long as there are no locked extents
 | |
|  * in the range corresponding to the page, both state records and extent
 | |
|  * map records are removed
 | |
|  */
 | |
| int try_release_extent_mapping(struct extent_map_tree *map,
 | |
| 			       struct extent_io_tree *tree, struct page *page,
 | |
| 			       gfp_t mask)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	u64 start = page_offset(page);
 | |
| 	u64 end = start + PAGE_CACHE_SIZE - 1;
 | |
| 
 | |
| 	if ((mask & __GFP_WAIT) &&
 | |
| 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
 | |
| 		u64 len;
 | |
| 		while (start <= end) {
 | |
| 			len = end - start + 1;
 | |
| 			write_lock(&map->lock);
 | |
| 			em = lookup_extent_mapping(map, start, len);
 | |
| 			if (!em) {
 | |
| 				write_unlock(&map->lock);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
 | |
| 			    em->start != start) {
 | |
| 				write_unlock(&map->lock);
 | |
| 				free_extent_map(em);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (!test_range_bit(tree, em->start,
 | |
| 					    extent_map_end(em) - 1,
 | |
| 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
 | |
| 					    0, NULL)) {
 | |
| 				remove_extent_mapping(map, em);
 | |
| 				/* once for the rb tree */
 | |
| 				free_extent_map(em);
 | |
| 			}
 | |
| 			start = extent_map_end(em);
 | |
| 			write_unlock(&map->lock);
 | |
| 
 | |
| 			/* once for us */
 | |
| 			free_extent_map(em);
 | |
| 		}
 | |
| 	}
 | |
| 	return try_release_extent_state(map, tree, page, mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function for fiemap, which doesn't want to see any holes.
 | |
|  * This maps until we find something past 'last'
 | |
|  */
 | |
| static struct extent_map *get_extent_skip_holes(struct inode *inode,
 | |
| 						u64 offset,
 | |
| 						u64 last,
 | |
| 						get_extent_t *get_extent)
 | |
| {
 | |
| 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
 | |
| 	struct extent_map *em;
 | |
| 	u64 len;
 | |
| 
 | |
| 	if (offset >= last)
 | |
| 		return NULL;
 | |
| 
 | |
| 	while (1) {
 | |
| 		len = last - offset;
 | |
| 		if (len == 0)
 | |
| 			break;
 | |
| 		len = ALIGN(len, sectorsize);
 | |
| 		em = get_extent(inode, NULL, 0, offset, len, 0);
 | |
| 		if (IS_ERR_OR_NULL(em))
 | |
| 			return em;
 | |
| 
 | |
| 		/* if this isn't a hole return it */
 | |
| 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
 | |
| 		    em->block_start != EXTENT_MAP_HOLE) {
 | |
| 			return em;
 | |
| 		}
 | |
| 
 | |
| 		/* this is a hole, advance to the next extent */
 | |
| 		offset = extent_map_end(em);
 | |
| 		free_extent_map(em);
 | |
| 		if (offset >= last)
 | |
| 			break;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 | |
| 		__u64 start, __u64 len, get_extent_t *get_extent)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u64 off = start;
 | |
| 	u64 max = start + len;
 | |
| 	u32 flags = 0;
 | |
| 	u32 found_type;
 | |
| 	u64 last;
 | |
| 	u64 last_for_get_extent = 0;
 | |
| 	u64 disko = 0;
 | |
| 	u64 isize = i_size_read(inode);
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_map *em = NULL;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	int end = 0;
 | |
| 	u64 em_start = 0;
 | |
| 	u64 em_len = 0;
 | |
| 	u64 em_end = 0;
 | |
| 
 | |
| 	if (len == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	path->leave_spinning = 1;
 | |
| 
 | |
| 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
 | |
| 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
 | |
| 
 | |
| 	/*
 | |
| 	 * lookup the last file extent.  We're not using i_size here
 | |
| 	 * because there might be preallocation past i_size
 | |
| 	 */
 | |
| 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
 | |
| 				       0);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	WARN_ON(!ret);
 | |
| 	path->slots[0]--;
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
 | |
| 	found_type = found_key.type;
 | |
| 
 | |
| 	/* No extents, but there might be delalloc bits */
 | |
| 	if (found_key.objectid != btrfs_ino(inode) ||
 | |
| 	    found_type != BTRFS_EXTENT_DATA_KEY) {
 | |
| 		/* have to trust i_size as the end */
 | |
| 		last = (u64)-1;
 | |
| 		last_for_get_extent = isize;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * remember the start of the last extent.  There are a
 | |
| 		 * bunch of different factors that go into the length of the
 | |
| 		 * extent, so its much less complex to remember where it started
 | |
| 		 */
 | |
| 		last = found_key.offset;
 | |
| 		last_for_get_extent = last + 1;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/*
 | |
| 	 * we might have some extents allocated but more delalloc past those
 | |
| 	 * extents.  so, we trust isize unless the start of the last extent is
 | |
| 	 * beyond isize
 | |
| 	 */
 | |
| 	if (last < isize) {
 | |
| 		last = (u64)-1;
 | |
| 		last_for_get_extent = isize;
 | |
| 	}
 | |
| 
 | |
| 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
 | |
| 			 &cached_state);
 | |
| 
 | |
| 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
 | |
| 				   get_extent);
 | |
| 	if (!em)
 | |
| 		goto out;
 | |
| 	if (IS_ERR(em)) {
 | |
| 		ret = PTR_ERR(em);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (!end) {
 | |
| 		u64 offset_in_extent = 0;
 | |
| 
 | |
| 		/* break if the extent we found is outside the range */
 | |
| 		if (em->start >= max || extent_map_end(em) < off)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * get_extent may return an extent that starts before our
 | |
| 		 * requested range.  We have to make sure the ranges
 | |
| 		 * we return to fiemap always move forward and don't
 | |
| 		 * overlap, so adjust the offsets here
 | |
| 		 */
 | |
| 		em_start = max(em->start, off);
 | |
| 
 | |
| 		/*
 | |
| 		 * record the offset from the start of the extent
 | |
| 		 * for adjusting the disk offset below.  Only do this if the
 | |
| 		 * extent isn't compressed since our in ram offset may be past
 | |
| 		 * what we have actually allocated on disk.
 | |
| 		 */
 | |
| 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
 | |
| 			offset_in_extent = em_start - em->start;
 | |
| 		em_end = extent_map_end(em);
 | |
| 		em_len = em_end - em_start;
 | |
| 		disko = 0;
 | |
| 		flags = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * bump off for our next call to get_extent
 | |
| 		 */
 | |
| 		off = extent_map_end(em);
 | |
| 		if (off >= max)
 | |
| 			end = 1;
 | |
| 
 | |
| 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
 | |
| 			end = 1;
 | |
| 			flags |= FIEMAP_EXTENT_LAST;
 | |
| 		} else if (em->block_start == EXTENT_MAP_INLINE) {
 | |
| 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
 | |
| 				  FIEMAP_EXTENT_NOT_ALIGNED);
 | |
| 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
 | |
| 			flags |= (FIEMAP_EXTENT_DELALLOC |
 | |
| 				  FIEMAP_EXTENT_UNKNOWN);
 | |
| 		} else if (fieinfo->fi_extents_max) {
 | |
| 			u64 bytenr = em->block_start -
 | |
| 				(em->start - em->orig_start);
 | |
| 
 | |
| 			disko = em->block_start + offset_in_extent;
 | |
| 
 | |
| 			/*
 | |
| 			 * As btrfs supports shared space, this information
 | |
| 			 * can be exported to userspace tools via
 | |
| 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
 | |
| 			 * then we're just getting a count and we can skip the
 | |
| 			 * lookup stuff.
 | |
| 			 */
 | |
| 			ret = btrfs_check_shared(NULL, root->fs_info,
 | |
| 						 root->objectid,
 | |
| 						 btrfs_ino(inode), bytenr);
 | |
| 			if (ret < 0)
 | |
| 				goto out_free;
 | |
| 			if (ret)
 | |
| 				flags |= FIEMAP_EXTENT_SHARED;
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
 | |
| 			flags |= FIEMAP_EXTENT_ENCODED;
 | |
| 
 | |
| 		free_extent_map(em);
 | |
| 		em = NULL;
 | |
| 		if ((em_start >= last) || em_len == (u64)-1 ||
 | |
| 		   (last == (u64)-1 && isize <= em_end)) {
 | |
| 			flags |= FIEMAP_EXTENT_LAST;
 | |
| 			end = 1;
 | |
| 		}
 | |
| 
 | |
| 		/* now scan forward to see if this is really the last extent. */
 | |
| 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
 | |
| 					   get_extent);
 | |
| 		if (IS_ERR(em)) {
 | |
| 			ret = PTR_ERR(em);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (!em) {
 | |
| 			flags |= FIEMAP_EXTENT_LAST;
 | |
| 			end = 1;
 | |
| 		}
 | |
| 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
 | |
| 					      em_len, flags);
 | |
| 		if (ret)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| out_free:
 | |
| 	free_extent_map(em);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
 | |
| 			     &cached_state, GFP_NOFS);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __free_extent_buffer(struct extent_buffer *eb)
 | |
| {
 | |
| 	btrfs_leak_debug_del(&eb->leak_list);
 | |
| 	kmem_cache_free(extent_buffer_cache, eb);
 | |
| }
 | |
| 
 | |
| int extent_buffer_under_io(struct extent_buffer *eb)
 | |
| {
 | |
| 	return (atomic_read(&eb->io_pages) ||
 | |
| 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
 | |
| 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper for releasing extent buffer page.
 | |
|  */
 | |
| static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
 | |
| {
 | |
| 	unsigned long index;
 | |
| 	struct page *page;
 | |
| 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
 | |
| 
 | |
| 	BUG_ON(extent_buffer_under_io(eb));
 | |
| 
 | |
| 	index = num_extent_pages(eb->start, eb->len);
 | |
| 	if (index == 0)
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		index--;
 | |
| 		page = eb->pages[index];
 | |
| 		if (page && mapped) {
 | |
| 			spin_lock(&page->mapping->private_lock);
 | |
| 			/*
 | |
| 			 * We do this since we'll remove the pages after we've
 | |
| 			 * removed the eb from the radix tree, so we could race
 | |
| 			 * and have this page now attached to the new eb.  So
 | |
| 			 * only clear page_private if it's still connected to
 | |
| 			 * this eb.
 | |
| 			 */
 | |
| 			if (PagePrivate(page) &&
 | |
| 			    page->private == (unsigned long)eb) {
 | |
| 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 | |
| 				BUG_ON(PageDirty(page));
 | |
| 				BUG_ON(PageWriteback(page));
 | |
| 				/*
 | |
| 				 * We need to make sure we haven't be attached
 | |
| 				 * to a new eb.
 | |
| 				 */
 | |
| 				ClearPagePrivate(page);
 | |
| 				set_page_private(page, 0);
 | |
| 				/* One for the page private */
 | |
| 				page_cache_release(page);
 | |
| 			}
 | |
| 			spin_unlock(&page->mapping->private_lock);
 | |
| 
 | |
| 		}
 | |
| 		if (page) {
 | |
| 			/* One for when we alloced the page */
 | |
| 			page_cache_release(page);
 | |
| 		}
 | |
| 	} while (index != 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper for releasing the extent buffer.
 | |
|  */
 | |
| static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
 | |
| {
 | |
| 	btrfs_release_extent_buffer_page(eb);
 | |
| 	__free_extent_buffer(eb);
 | |
| }
 | |
| 
 | |
| static struct extent_buffer *
 | |
| __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
 | |
| 		      unsigned long len, gfp_t mask)
 | |
| {
 | |
| 	struct extent_buffer *eb = NULL;
 | |
| 
 | |
| 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
 | |
| 	if (eb == NULL)
 | |
| 		return NULL;
 | |
| 	eb->start = start;
 | |
| 	eb->len = len;
 | |
| 	eb->fs_info = fs_info;
 | |
| 	eb->bflags = 0;
 | |
| 	rwlock_init(&eb->lock);
 | |
| 	atomic_set(&eb->write_locks, 0);
 | |
| 	atomic_set(&eb->read_locks, 0);
 | |
| 	atomic_set(&eb->blocking_readers, 0);
 | |
| 	atomic_set(&eb->blocking_writers, 0);
 | |
| 	atomic_set(&eb->spinning_readers, 0);
 | |
| 	atomic_set(&eb->spinning_writers, 0);
 | |
| 	eb->lock_nested = 0;
 | |
| 	init_waitqueue_head(&eb->write_lock_wq);
 | |
| 	init_waitqueue_head(&eb->read_lock_wq);
 | |
| 
 | |
| 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
 | |
| 
 | |
| 	spin_lock_init(&eb->refs_lock);
 | |
| 	atomic_set(&eb->refs, 1);
 | |
| 	atomic_set(&eb->io_pages, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
 | |
| 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
 | |
| 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
 | |
| 
 | |
| 	return eb;
 | |
| }
 | |
| 
 | |
| struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct page *p;
 | |
| 	struct extent_buffer *new;
 | |
| 	unsigned long num_pages = num_extent_pages(src->start, src->len);
 | |
| 
 | |
| 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
 | |
| 	if (new == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		p = alloc_page(GFP_NOFS);
 | |
| 		if (!p) {
 | |
| 			btrfs_release_extent_buffer(new);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		attach_extent_buffer_page(new, p);
 | |
| 		WARN_ON(PageDirty(p));
 | |
| 		SetPageUptodate(p);
 | |
| 		new->pages[i] = p;
 | |
| 	}
 | |
| 
 | |
| 	copy_extent_buffer(new, src, 0, 0, src->len);
 | |
| 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
 | |
| 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 	unsigned long num_pages = num_extent_pages(0, len);
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
 | |
| 	if (!eb)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		eb->pages[i] = alloc_page(GFP_NOFS);
 | |
| 		if (!eb->pages[i])
 | |
| 			goto err;
 | |
| 	}
 | |
| 	set_extent_buffer_uptodate(eb);
 | |
| 	btrfs_set_header_nritems(eb, 0);
 | |
| 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
 | |
| 
 | |
| 	return eb;
 | |
| err:
 | |
| 	for (; i > 0; i--)
 | |
| 		__free_page(eb->pages[i - 1]);
 | |
| 	__free_extent_buffer(eb);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void check_buffer_tree_ref(struct extent_buffer *eb)
 | |
| {
 | |
| 	int refs;
 | |
| 	/* the ref bit is tricky.  We have to make sure it is set
 | |
| 	 * if we have the buffer dirty.   Otherwise the
 | |
| 	 * code to free a buffer can end up dropping a dirty
 | |
| 	 * page
 | |
| 	 *
 | |
| 	 * Once the ref bit is set, it won't go away while the
 | |
| 	 * buffer is dirty or in writeback, and it also won't
 | |
| 	 * go away while we have the reference count on the
 | |
| 	 * eb bumped.
 | |
| 	 *
 | |
| 	 * We can't just set the ref bit without bumping the
 | |
| 	 * ref on the eb because free_extent_buffer might
 | |
| 	 * see the ref bit and try to clear it.  If this happens
 | |
| 	 * free_extent_buffer might end up dropping our original
 | |
| 	 * ref by mistake and freeing the page before we are able
 | |
| 	 * to add one more ref.
 | |
| 	 *
 | |
| 	 * So bump the ref count first, then set the bit.  If someone
 | |
| 	 * beat us to it, drop the ref we added.
 | |
| 	 */
 | |
| 	refs = atomic_read(&eb->refs);
 | |
| 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&eb->refs_lock);
 | |
| 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
 | |
| 		atomic_inc(&eb->refs);
 | |
| 	spin_unlock(&eb->refs_lock);
 | |
| }
 | |
| 
 | |
| static void mark_extent_buffer_accessed(struct extent_buffer *eb,
 | |
| 		struct page *accessed)
 | |
| {
 | |
| 	unsigned long num_pages, i;
 | |
| 
 | |
| 	check_buffer_tree_ref(eb);
 | |
| 
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		struct page *p = eb->pages[i];
 | |
| 
 | |
| 		if (p != accessed)
 | |
| 			mark_page_accessed(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
 | |
| 					 u64 start)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	eb = radix_tree_lookup(&fs_info->buffer_radix,
 | |
| 			       start >> PAGE_CACHE_SHIFT);
 | |
| 	if (eb && atomic_inc_not_zero(&eb->refs)) {
 | |
| 		rcu_read_unlock();
 | |
| 		mark_extent_buffer_accessed(eb, NULL);
 | |
| 		return eb;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | |
| struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
 | |
| 					       u64 start, unsigned long len)
 | |
| {
 | |
| 	struct extent_buffer *eb, *exists = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	eb = find_extent_buffer(fs_info, start);
 | |
| 	if (eb)
 | |
| 		return eb;
 | |
| 	eb = alloc_dummy_extent_buffer(start, len);
 | |
| 	if (!eb)
 | |
| 		return NULL;
 | |
| 	eb->fs_info = fs_info;
 | |
| again:
 | |
| 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 | |
| 	if (ret)
 | |
| 		goto free_eb;
 | |
| 	spin_lock(&fs_info->buffer_lock);
 | |
| 	ret = radix_tree_insert(&fs_info->buffer_radix,
 | |
| 				start >> PAGE_CACHE_SHIFT, eb);
 | |
| 	spin_unlock(&fs_info->buffer_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 	if (ret == -EEXIST) {
 | |
| 		exists = find_extent_buffer(fs_info, start);
 | |
| 		if (exists)
 | |
| 			goto free_eb;
 | |
| 		else
 | |
| 			goto again;
 | |
| 	}
 | |
| 	check_buffer_tree_ref(eb);
 | |
| 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
 | |
| 
 | |
| 	/*
 | |
| 	 * We will free dummy extent buffer's if they come into
 | |
| 	 * free_extent_buffer with a ref count of 2, but if we are using this we
 | |
| 	 * want the buffers to stay in memory until we're done with them, so
 | |
| 	 * bump the ref count again.
 | |
| 	 */
 | |
| 	atomic_inc(&eb->refs);
 | |
| 	return eb;
 | |
| free_eb:
 | |
| 	btrfs_release_extent_buffer(eb);
 | |
| 	return exists;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
 | |
| 					  u64 start, unsigned long len)
 | |
| {
 | |
| 	unsigned long num_pages = num_extent_pages(start, len);
 | |
| 	unsigned long i;
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct extent_buffer *exists = NULL;
 | |
| 	struct page *p;
 | |
| 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 | |
| 	int uptodate = 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	eb = find_extent_buffer(fs_info, start);
 | |
| 	if (eb)
 | |
| 		return eb;
 | |
| 
 | |
| 	eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
 | |
| 	if (!eb)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++, index++) {
 | |
| 		p = find_or_create_page(mapping, index, GFP_NOFS);
 | |
| 		if (!p)
 | |
| 			goto free_eb;
 | |
| 
 | |
| 		spin_lock(&mapping->private_lock);
 | |
| 		if (PagePrivate(p)) {
 | |
| 			/*
 | |
| 			 * We could have already allocated an eb for this page
 | |
| 			 * and attached one so lets see if we can get a ref on
 | |
| 			 * the existing eb, and if we can we know it's good and
 | |
| 			 * we can just return that one, else we know we can just
 | |
| 			 * overwrite page->private.
 | |
| 			 */
 | |
| 			exists = (struct extent_buffer *)p->private;
 | |
| 			if (atomic_inc_not_zero(&exists->refs)) {
 | |
| 				spin_unlock(&mapping->private_lock);
 | |
| 				unlock_page(p);
 | |
| 				page_cache_release(p);
 | |
| 				mark_extent_buffer_accessed(exists, p);
 | |
| 				goto free_eb;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Do this so attach doesn't complain and we need to
 | |
| 			 * drop the ref the old guy had.
 | |
| 			 */
 | |
| 			ClearPagePrivate(p);
 | |
| 			WARN_ON(PageDirty(p));
 | |
| 			page_cache_release(p);
 | |
| 		}
 | |
| 		attach_extent_buffer_page(eb, p);
 | |
| 		spin_unlock(&mapping->private_lock);
 | |
| 		WARN_ON(PageDirty(p));
 | |
| 		eb->pages[i] = p;
 | |
| 		if (!PageUptodate(p))
 | |
| 			uptodate = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * see below about how we avoid a nasty race with release page
 | |
| 		 * and why we unlock later
 | |
| 		 */
 | |
| 	}
 | |
| 	if (uptodate)
 | |
| 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| again:
 | |
| 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 | |
| 	if (ret)
 | |
| 		goto free_eb;
 | |
| 
 | |
| 	spin_lock(&fs_info->buffer_lock);
 | |
| 	ret = radix_tree_insert(&fs_info->buffer_radix,
 | |
| 				start >> PAGE_CACHE_SHIFT, eb);
 | |
| 	spin_unlock(&fs_info->buffer_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 	if (ret == -EEXIST) {
 | |
| 		exists = find_extent_buffer(fs_info, start);
 | |
| 		if (exists)
 | |
| 			goto free_eb;
 | |
| 		else
 | |
| 			goto again;
 | |
| 	}
 | |
| 	/* add one reference for the tree */
 | |
| 	check_buffer_tree_ref(eb);
 | |
| 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
 | |
| 
 | |
| 	/*
 | |
| 	 * there is a race where release page may have
 | |
| 	 * tried to find this extent buffer in the radix
 | |
| 	 * but failed.  It will tell the VM it is safe to
 | |
| 	 * reclaim the, and it will clear the page private bit.
 | |
| 	 * We must make sure to set the page private bit properly
 | |
| 	 * after the extent buffer is in the radix tree so
 | |
| 	 * it doesn't get lost
 | |
| 	 */
 | |
| 	SetPageChecked(eb->pages[0]);
 | |
| 	for (i = 1; i < num_pages; i++) {
 | |
| 		p = eb->pages[i];
 | |
| 		ClearPageChecked(p);
 | |
| 		unlock_page(p);
 | |
| 	}
 | |
| 	unlock_page(eb->pages[0]);
 | |
| 	return eb;
 | |
| 
 | |
| free_eb:
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		if (eb->pages[i])
 | |
| 			unlock_page(eb->pages[i]);
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(!atomic_dec_and_test(&eb->refs));
 | |
| 	btrfs_release_extent_buffer(eb);
 | |
| 	return exists;
 | |
| }
 | |
| 
 | |
| static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct extent_buffer *eb =
 | |
| 			container_of(head, struct extent_buffer, rcu_head);
 | |
| 
 | |
| 	__free_extent_buffer(eb);
 | |
| }
 | |
| 
 | |
| /* Expects to have eb->eb_lock already held */
 | |
| static int release_extent_buffer(struct extent_buffer *eb)
 | |
| {
 | |
| 	WARN_ON(atomic_read(&eb->refs) == 0);
 | |
| 	if (atomic_dec_and_test(&eb->refs)) {
 | |
| 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
 | |
| 			struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 
 | |
| 			spin_unlock(&eb->refs_lock);
 | |
| 
 | |
| 			spin_lock(&fs_info->buffer_lock);
 | |
| 			radix_tree_delete(&fs_info->buffer_radix,
 | |
| 					  eb->start >> PAGE_CACHE_SHIFT);
 | |
| 			spin_unlock(&fs_info->buffer_lock);
 | |
| 		} else {
 | |
| 			spin_unlock(&eb->refs_lock);
 | |
| 		}
 | |
| 
 | |
| 		/* Should be safe to release our pages at this point */
 | |
| 		btrfs_release_extent_buffer_page(eb);
 | |
| 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	spin_unlock(&eb->refs_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void free_extent_buffer(struct extent_buffer *eb)
 | |
| {
 | |
| 	int refs;
 | |
| 	int old;
 | |
| 	if (!eb)
 | |
| 		return;
 | |
| 
 | |
| 	while (1) {
 | |
| 		refs = atomic_read(&eb->refs);
 | |
| 		if (refs <= 3)
 | |
| 			break;
 | |
| 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
 | |
| 		if (old == refs)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&eb->refs_lock);
 | |
| 	if (atomic_read(&eb->refs) == 2 &&
 | |
| 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
 | |
| 		atomic_dec(&eb->refs);
 | |
| 
 | |
| 	if (atomic_read(&eb->refs) == 2 &&
 | |
| 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
 | |
| 	    !extent_buffer_under_io(eb) &&
 | |
| 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
 | |
| 		atomic_dec(&eb->refs);
 | |
| 
 | |
| 	/*
 | |
| 	 * I know this is terrible, but it's temporary until we stop tracking
 | |
| 	 * the uptodate bits and such for the extent buffers.
 | |
| 	 */
 | |
| 	release_extent_buffer(eb);
 | |
| }
 | |
| 
 | |
| void free_extent_buffer_stale(struct extent_buffer *eb)
 | |
| {
 | |
| 	if (!eb)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&eb->refs_lock);
 | |
| 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
 | |
| 
 | |
| 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
 | |
| 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
 | |
| 		atomic_dec(&eb->refs);
 | |
| 	release_extent_buffer(eb);
 | |
| }
 | |
| 
 | |
| void clear_extent_buffer_dirty(struct extent_buffer *eb)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	unsigned long num_pages;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		page = eb->pages[i];
 | |
| 		if (!PageDirty(page))
 | |
| 			continue;
 | |
| 
 | |
| 		lock_page(page);
 | |
| 		WARN_ON(!PagePrivate(page));
 | |
| 
 | |
| 		clear_page_dirty_for_io(page);
 | |
| 		spin_lock_irq(&page->mapping->tree_lock);
 | |
| 		if (!PageDirty(page)) {
 | |
| 			radix_tree_tag_clear(&page->mapping->page_tree,
 | |
| 						page_index(page),
 | |
| 						PAGECACHE_TAG_DIRTY);
 | |
| 		}
 | |
| 		spin_unlock_irq(&page->mapping->tree_lock);
 | |
| 		ClearPageError(page);
 | |
| 		unlock_page(page);
 | |
| 	}
 | |
| 	WARN_ON(atomic_read(&eb->refs) == 0);
 | |
| }
 | |
| 
 | |
| int set_extent_buffer_dirty(struct extent_buffer *eb)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	unsigned long num_pages;
 | |
| 	int was_dirty = 0;
 | |
| 
 | |
| 	check_buffer_tree_ref(eb);
 | |
| 
 | |
| 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
 | |
| 
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	WARN_ON(atomic_read(&eb->refs) == 0);
 | |
| 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++)
 | |
| 		set_page_dirty(eb->pages[i]);
 | |
| 	return was_dirty;
 | |
| }
 | |
| 
 | |
| int clear_extent_buffer_uptodate(struct extent_buffer *eb)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct page *page;
 | |
| 	unsigned long num_pages;
 | |
| 
 | |
| 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		page = eb->pages[i];
 | |
| 		if (page)
 | |
| 			ClearPageUptodate(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int set_extent_buffer_uptodate(struct extent_buffer *eb)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct page *page;
 | |
| 	unsigned long num_pages;
 | |
| 
 | |
| 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		page = eb->pages[i];
 | |
| 		SetPageUptodate(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int extent_buffer_uptodate(struct extent_buffer *eb)
 | |
| {
 | |
| 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| }
 | |
| 
 | |
| int read_extent_buffer_pages(struct extent_io_tree *tree,
 | |
| 			     struct extent_buffer *eb, u64 start, int wait,
 | |
| 			     get_extent_t *get_extent, int mirror_num)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	unsigned long start_i;
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| 	int ret = 0;
 | |
| 	int locked_pages = 0;
 | |
| 	int all_uptodate = 1;
 | |
| 	unsigned long num_pages;
 | |
| 	unsigned long num_reads = 0;
 | |
| 	struct bio *bio = NULL;
 | |
| 	unsigned long bio_flags = 0;
 | |
| 
 | |
| 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (start) {
 | |
| 		WARN_ON(start < eb->start);
 | |
| 		start_i = (start >> PAGE_CACHE_SHIFT) -
 | |
| 			(eb->start >> PAGE_CACHE_SHIFT);
 | |
| 	} else {
 | |
| 		start_i = 0;
 | |
| 	}
 | |
| 
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	for (i = start_i; i < num_pages; i++) {
 | |
| 		page = eb->pages[i];
 | |
| 		if (wait == WAIT_NONE) {
 | |
| 			if (!trylock_page(page))
 | |
| 				goto unlock_exit;
 | |
| 		} else {
 | |
| 			lock_page(page);
 | |
| 		}
 | |
| 		locked_pages++;
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			num_reads++;
 | |
| 			all_uptodate = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	if (all_uptodate) {
 | |
| 		if (start_i == 0)
 | |
| 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 		goto unlock_exit;
 | |
| 	}
 | |
| 
 | |
| 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 | |
| 	eb->read_mirror = 0;
 | |
| 	atomic_set(&eb->io_pages, num_reads);
 | |
| 	for (i = start_i; i < num_pages; i++) {
 | |
| 		page = eb->pages[i];
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			ClearPageError(page);
 | |
| 			err = __extent_read_full_page(tree, page,
 | |
| 						      get_extent, &bio,
 | |
| 						      mirror_num, &bio_flags,
 | |
| 						      READ | REQ_META);
 | |
| 			if (err)
 | |
| 				ret = err;
 | |
| 		} else {
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bio) {
 | |
| 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
 | |
| 				     bio_flags);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	if (ret || wait != WAIT_COMPLETE)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = start_i; i < num_pages; i++) {
 | |
| 		page = eb->pages[i];
 | |
| 		wait_on_page_locked(page);
 | |
| 		if (!PageUptodate(page))
 | |
| 			ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| unlock_exit:
 | |
| 	i = start_i;
 | |
| 	while (locked_pages > 0) {
 | |
| 		page = eb->pages[i];
 | |
| 		i++;
 | |
| 		unlock_page(page);
 | |
| 		locked_pages--;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void read_extent_buffer(struct extent_buffer *eb, void *dstv,
 | |
| 			unsigned long start,
 | |
| 			unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	char *dst = (char *)dstv;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	WARN_ON(start > eb->len);
 | |
| 	WARN_ON(start + len > eb->start + eb->len);
 | |
| 
 | |
| 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = eb->pages[i];
 | |
| 
 | |
| 		cur = min(len, (PAGE_CACHE_SIZE - offset));
 | |
| 		kaddr = page_address(page);
 | |
| 		memcpy(dst, kaddr + offset, cur);
 | |
| 
 | |
| 		dst += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
 | |
| 			unsigned long start,
 | |
| 			unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	char __user *dst = (char __user *)dstv;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	WARN_ON(start > eb->len);
 | |
| 	WARN_ON(start + len > eb->start + eb->len);
 | |
| 
 | |
| 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = eb->pages[i];
 | |
| 
 | |
| 		cur = min(len, (PAGE_CACHE_SIZE - offset));
 | |
| 		kaddr = page_address(page);
 | |
| 		if (copy_to_user(dst, kaddr + offset, cur)) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dst += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
 | |
| 			       unsigned long min_len, char **map,
 | |
| 			       unsigned long *map_start,
 | |
| 			       unsigned long *map_len)
 | |
| {
 | |
| 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
 | |
| 	char *kaddr;
 | |
| 	struct page *p;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_i = (start_offset + start + min_len - 1) >>
 | |
| 		PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	if (i != end_i)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (i == 0) {
 | |
| 		offset = start_offset;
 | |
| 		*map_start = 0;
 | |
| 	} else {
 | |
| 		offset = 0;
 | |
| 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
 | |
| 	}
 | |
| 
 | |
| 	if (start + min_len > eb->len) {
 | |
| 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
 | |
| 		       "wanted %lu %lu\n",
 | |
| 		       eb->start, eb->len, start, min_len);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	p = eb->pages[i];
 | |
| 	kaddr = page_address(p);
 | |
| 	*map = kaddr + offset;
 | |
| 	*map_len = PAGE_CACHE_SIZE - offset;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
 | |
| 			  unsigned long start,
 | |
| 			  unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	char *ptr = (char *)ptrv;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	WARN_ON(start > eb->len);
 | |
| 	WARN_ON(start + len > eb->start + eb->len);
 | |
| 
 | |
| 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = eb->pages[i];
 | |
| 
 | |
| 		cur = min(len, (PAGE_CACHE_SIZE - offset));
 | |
| 
 | |
| 		kaddr = page_address(page);
 | |
| 		ret = memcmp(ptr, kaddr + offset, cur);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ptr += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
 | |
| 			 unsigned long start, unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	char *src = (char *)srcv;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	WARN_ON(start > eb->len);
 | |
| 	WARN_ON(start + len > eb->start + eb->len);
 | |
| 
 | |
| 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = eb->pages[i];
 | |
| 		WARN_ON(!PageUptodate(page));
 | |
| 
 | |
| 		cur = min(len, PAGE_CACHE_SIZE - offset);
 | |
| 		kaddr = page_address(page);
 | |
| 		memcpy(kaddr + offset, src, cur);
 | |
| 
 | |
| 		src += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void memset_extent_buffer(struct extent_buffer *eb, char c,
 | |
| 			  unsigned long start, unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	WARN_ON(start > eb->len);
 | |
| 	WARN_ON(start + len > eb->start + eb->len);
 | |
| 
 | |
| 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = eb->pages[i];
 | |
| 		WARN_ON(!PageUptodate(page));
 | |
| 
 | |
| 		cur = min(len, PAGE_CACHE_SIZE - offset);
 | |
| 		kaddr = page_address(page);
 | |
| 		memset(kaddr + offset, c, cur);
 | |
| 
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 | |
| 			unsigned long dst_offset, unsigned long src_offset,
 | |
| 			unsigned long len)
 | |
| {
 | |
| 	u64 dst_len = dst->len;
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	WARN_ON(src->len != dst_len);
 | |
| 
 | |
| 	offset = (start_offset + dst_offset) &
 | |
| 		(PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = dst->pages[i];
 | |
| 		WARN_ON(!PageUptodate(page));
 | |
| 
 | |
| 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
 | |
| 
 | |
| 		kaddr = page_address(page);
 | |
| 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
 | |
| 
 | |
| 		src_offset += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
 | |
| {
 | |
| 	unsigned long distance = (src > dst) ? src - dst : dst - src;
 | |
| 	return distance < len;
 | |
| }
 | |
| 
 | |
| static void copy_pages(struct page *dst_page, struct page *src_page,
 | |
| 		       unsigned long dst_off, unsigned long src_off,
 | |
| 		       unsigned long len)
 | |
| {
 | |
| 	char *dst_kaddr = page_address(dst_page);
 | |
| 	char *src_kaddr;
 | |
| 	int must_memmove = 0;
 | |
| 
 | |
| 	if (dst_page != src_page) {
 | |
| 		src_kaddr = page_address(src_page);
 | |
| 	} else {
 | |
| 		src_kaddr = dst_kaddr;
 | |
| 		if (areas_overlap(src_off, dst_off, len))
 | |
| 			must_memmove = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (must_memmove)
 | |
| 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
 | |
| 	else
 | |
| 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
 | |
| }
 | |
| 
 | |
| void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
 | |
| 			   unsigned long src_offset, unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t dst_off_in_page;
 | |
| 	size_t src_off_in_page;
 | |
| 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long dst_i;
 | |
| 	unsigned long src_i;
 | |
| 
 | |
| 	if (src_offset + len > dst->len) {
 | |
| 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
 | |
| 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 	if (dst_offset + len > dst->len) {
 | |
| 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
 | |
| 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		dst_off_in_page = (start_offset + dst_offset) &
 | |
| 			(PAGE_CACHE_SIZE - 1);
 | |
| 		src_off_in_page = (start_offset + src_offset) &
 | |
| 			(PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
 | |
| 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
 | |
| 					       src_off_in_page));
 | |
| 		cur = min_t(unsigned long, cur,
 | |
| 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
 | |
| 
 | |
| 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
 | |
| 			   dst_off_in_page, src_off_in_page, cur);
 | |
| 
 | |
| 		src_offset += cur;
 | |
| 		dst_offset += cur;
 | |
| 		len -= cur;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
 | |
| 			   unsigned long src_offset, unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t dst_off_in_page;
 | |
| 	size_t src_off_in_page;
 | |
| 	unsigned long dst_end = dst_offset + len - 1;
 | |
| 	unsigned long src_end = src_offset + len - 1;
 | |
| 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long dst_i;
 | |
| 	unsigned long src_i;
 | |
| 
 | |
| 	if (src_offset + len > dst->len) {
 | |
| 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
 | |
| 		       "len %lu len %lu\n", src_offset, len, dst->len);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 	if (dst_offset + len > dst->len) {
 | |
| 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
 | |
| 		       "len %lu len %lu\n", dst_offset, len, dst->len);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 	if (dst_offset < src_offset) {
 | |
| 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
 | |
| 		return;
 | |
| 	}
 | |
| 	while (len > 0) {
 | |
| 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
 | |
| 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 		dst_off_in_page = (start_offset + dst_end) &
 | |
| 			(PAGE_CACHE_SIZE - 1);
 | |
| 		src_off_in_page = (start_offset + src_end) &
 | |
| 			(PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 		cur = min_t(unsigned long, len, src_off_in_page + 1);
 | |
| 		cur = min(cur, dst_off_in_page + 1);
 | |
| 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
 | |
| 			   dst_off_in_page - cur + 1,
 | |
| 			   src_off_in_page - cur + 1, cur);
 | |
| 
 | |
| 		dst_end -= cur;
 | |
| 		src_end -= cur;
 | |
| 		len -= cur;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int try_release_extent_buffer(struct page *page)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to make sure noboody is attaching this page to an eb right
 | |
| 	 * now.
 | |
| 	 */
 | |
| 	spin_lock(&page->mapping->private_lock);
 | |
| 	if (!PagePrivate(page)) {
 | |
| 		spin_unlock(&page->mapping->private_lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	eb = (struct extent_buffer *)page->private;
 | |
| 	BUG_ON(!eb);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a little awful but should be ok, we need to make sure that
 | |
| 	 * the eb doesn't disappear out from under us while we're looking at
 | |
| 	 * this page.
 | |
| 	 */
 | |
| 	spin_lock(&eb->refs_lock);
 | |
| 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
 | |
| 		spin_unlock(&eb->refs_lock);
 | |
| 		spin_unlock(&page->mapping->private_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	spin_unlock(&page->mapping->private_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
 | |
| 	 * so just return, this page will likely be freed soon anyway.
 | |
| 	 */
 | |
| 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
 | |
| 		spin_unlock(&eb->refs_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return release_extent_buffer(eb);
 | |
| }
 |