Convert printks to pr_<level> (excludes printk(KERN_DEBUG...) to be more consistent throughout the xen subsystem. Add pr_fmt with KBUILD_MODNAME or "xen:" KBUILD_MODNAME Coalesce formats and add missing word spaces Add missing newlines Align arguments and reflow to 80 columns Remove DRV_NAME from formats as pr_fmt adds the same content This does change some of the prefixes of these messages but it also does make them more consistent. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
		
			
				
	
	
		
			595 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			595 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Copyright 2010
 | 
						|
 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
 | 
						|
 *
 | 
						|
 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License v2.0 as published by
 | 
						|
 * the Free Software Foundation
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * PV guests under Xen are running in an non-contiguous memory architecture.
 | 
						|
 *
 | 
						|
 * When PCI pass-through is utilized, this necessitates an IOMMU for
 | 
						|
 * translating bus (DMA) to virtual and vice-versa and also providing a
 | 
						|
 * mechanism to have contiguous pages for device drivers operations (say DMA
 | 
						|
 * operations).
 | 
						|
 *
 | 
						|
 * Specifically, under Xen the Linux idea of pages is an illusion. It
 | 
						|
 * assumes that pages start at zero and go up to the available memory. To
 | 
						|
 * help with that, the Linux Xen MMU provides a lookup mechanism to
 | 
						|
 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 | 
						|
 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 | 
						|
 * memory is not contiguous. Xen hypervisor stitches memory for guests
 | 
						|
 * from different pools, which means there is no guarantee that PFN==MFN
 | 
						|
 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 | 
						|
 * allocated in descending order (high to low), meaning the guest might
 | 
						|
 * never get any MFN's under the 4GB mark.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 | 
						|
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/dma-mapping.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <xen/swiotlb-xen.h>
 | 
						|
#include <xen/page.h>
 | 
						|
#include <xen/xen-ops.h>
 | 
						|
#include <xen/hvc-console.h>
 | 
						|
/*
 | 
						|
 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 | 
						|
 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 | 
						|
 * API.
 | 
						|
 */
 | 
						|
 | 
						|
static char *xen_io_tlb_start, *xen_io_tlb_end;
 | 
						|
static unsigned long xen_io_tlb_nslabs;
 | 
						|
/*
 | 
						|
 * Quick lookup value of the bus address of the IOTLB.
 | 
						|
 */
 | 
						|
 | 
						|
static u64 start_dma_addr;
 | 
						|
 | 
						|
static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
 | 
						|
{
 | 
						|
	return phys_to_machine(XPADDR(paddr)).maddr;
 | 
						|
}
 | 
						|
 | 
						|
static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
 | 
						|
{
 | 
						|
	return machine_to_phys(XMADDR(baddr)).paddr;
 | 
						|
}
 | 
						|
 | 
						|
static dma_addr_t xen_virt_to_bus(void *address)
 | 
						|
{
 | 
						|
	return xen_phys_to_bus(virt_to_phys(address));
 | 
						|
}
 | 
						|
 | 
						|
static int check_pages_physically_contiguous(unsigned long pfn,
 | 
						|
					     unsigned int offset,
 | 
						|
					     size_t length)
 | 
						|
{
 | 
						|
	unsigned long next_mfn;
 | 
						|
	int i;
 | 
						|
	int nr_pages;
 | 
						|
 | 
						|
	next_mfn = pfn_to_mfn(pfn);
 | 
						|
	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
 | 
						|
 | 
						|
	for (i = 1; i < nr_pages; i++) {
 | 
						|
		if (pfn_to_mfn(++pfn) != ++next_mfn)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int range_straddles_page_boundary(phys_addr_t p, size_t size)
 | 
						|
{
 | 
						|
	unsigned long pfn = PFN_DOWN(p);
 | 
						|
	unsigned int offset = p & ~PAGE_MASK;
 | 
						|
 | 
						|
	if (offset + size <= PAGE_SIZE)
 | 
						|
		return 0;
 | 
						|
	if (check_pages_physically_contiguous(pfn, offset, size))
 | 
						|
		return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
 | 
						|
{
 | 
						|
	unsigned long mfn = PFN_DOWN(dma_addr);
 | 
						|
	unsigned long pfn = mfn_to_local_pfn(mfn);
 | 
						|
	phys_addr_t paddr;
 | 
						|
 | 
						|
	/* If the address is outside our domain, it CAN
 | 
						|
	 * have the same virtual address as another address
 | 
						|
	 * in our domain. Therefore _only_ check address within our domain.
 | 
						|
	 */
 | 
						|
	if (pfn_valid(pfn)) {
 | 
						|
		paddr = PFN_PHYS(pfn);
 | 
						|
		return paddr >= virt_to_phys(xen_io_tlb_start) &&
 | 
						|
		       paddr < virt_to_phys(xen_io_tlb_end);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int max_dma_bits = 32;
 | 
						|
 | 
						|
static int
 | 
						|
xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
 | 
						|
{
 | 
						|
	int i, rc;
 | 
						|
	int dma_bits;
 | 
						|
 | 
						|
	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
 | 
						|
 | 
						|
	i = 0;
 | 
						|
	do {
 | 
						|
		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
 | 
						|
 | 
						|
		do {
 | 
						|
			rc = xen_create_contiguous_region(
 | 
						|
				(unsigned long)buf + (i << IO_TLB_SHIFT),
 | 
						|
				get_order(slabs << IO_TLB_SHIFT),
 | 
						|
				dma_bits);
 | 
						|
		} while (rc && dma_bits++ < max_dma_bits);
 | 
						|
		if (rc)
 | 
						|
			return rc;
 | 
						|
 | 
						|
		i += slabs;
 | 
						|
	} while (i < nslabs);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static unsigned long xen_set_nslabs(unsigned long nr_tbl)
 | 
						|
{
 | 
						|
	if (!nr_tbl) {
 | 
						|
		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
 | 
						|
		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
 | 
						|
	} else
 | 
						|
		xen_io_tlb_nslabs = nr_tbl;
 | 
						|
 | 
						|
	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
enum xen_swiotlb_err {
 | 
						|
	XEN_SWIOTLB_UNKNOWN = 0,
 | 
						|
	XEN_SWIOTLB_ENOMEM,
 | 
						|
	XEN_SWIOTLB_EFIXUP
 | 
						|
};
 | 
						|
 | 
						|
static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
 | 
						|
{
 | 
						|
	switch (err) {
 | 
						|
	case XEN_SWIOTLB_ENOMEM:
 | 
						|
		return "Cannot allocate Xen-SWIOTLB buffer\n";
 | 
						|
	case XEN_SWIOTLB_EFIXUP:
 | 
						|
		return "Failed to get contiguous memory for DMA from Xen!\n"\
 | 
						|
		    "You either: don't have the permissions, do not have"\
 | 
						|
		    " enough free memory under 4GB, or the hypervisor memory"\
 | 
						|
		    " is too fragmented!";
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return "";
 | 
						|
}
 | 
						|
int __ref xen_swiotlb_init(int verbose, bool early)
 | 
						|
{
 | 
						|
	unsigned long bytes, order;
 | 
						|
	int rc = -ENOMEM;
 | 
						|
	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
 | 
						|
	unsigned int repeat = 3;
 | 
						|
 | 
						|
	xen_io_tlb_nslabs = swiotlb_nr_tbl();
 | 
						|
retry:
 | 
						|
	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
 | 
						|
	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
 | 
						|
	/*
 | 
						|
	 * Get IO TLB memory from any location.
 | 
						|
	 */
 | 
						|
	if (early)
 | 
						|
		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
 | 
						|
	else {
 | 
						|
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 | 
						|
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 | 
						|
		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 | 
						|
			xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
 | 
						|
			if (xen_io_tlb_start)
 | 
						|
				break;
 | 
						|
			order--;
 | 
						|
		}
 | 
						|
		if (order != get_order(bytes)) {
 | 
						|
			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
 | 
						|
				(PAGE_SIZE << order) >> 20);
 | 
						|
			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
 | 
						|
			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (!xen_io_tlb_start) {
 | 
						|
		m_ret = XEN_SWIOTLB_ENOMEM;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	xen_io_tlb_end = xen_io_tlb_start + bytes;
 | 
						|
	/*
 | 
						|
	 * And replace that memory with pages under 4GB.
 | 
						|
	 */
 | 
						|
	rc = xen_swiotlb_fixup(xen_io_tlb_start,
 | 
						|
			       bytes,
 | 
						|
			       xen_io_tlb_nslabs);
 | 
						|
	if (rc) {
 | 
						|
		if (early)
 | 
						|
			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
 | 
						|
		else {
 | 
						|
			free_pages((unsigned long)xen_io_tlb_start, order);
 | 
						|
			xen_io_tlb_start = NULL;
 | 
						|
		}
 | 
						|
		m_ret = XEN_SWIOTLB_EFIXUP;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
 | 
						|
	if (early) {
 | 
						|
		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
 | 
						|
			 verbose))
 | 
						|
			panic("Cannot allocate SWIOTLB buffer");
 | 
						|
		rc = 0;
 | 
						|
	} else
 | 
						|
		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
 | 
						|
	return rc;
 | 
						|
error:
 | 
						|
	if (repeat--) {
 | 
						|
		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
 | 
						|
					(xen_io_tlb_nslabs >> 1));
 | 
						|
		pr_info("Lowering to %luMB\n",
 | 
						|
			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
 | 
						|
	if (early)
 | 
						|
		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
 | 
						|
	else
 | 
						|
		free_pages((unsigned long)xen_io_tlb_start, order);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
void *
 | 
						|
xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 | 
						|
			   dma_addr_t *dma_handle, gfp_t flags,
 | 
						|
			   struct dma_attrs *attrs)
 | 
						|
{
 | 
						|
	void *ret;
 | 
						|
	int order = get_order(size);
 | 
						|
	u64 dma_mask = DMA_BIT_MASK(32);
 | 
						|
	unsigned long vstart;
 | 
						|
	phys_addr_t phys;
 | 
						|
	dma_addr_t dev_addr;
 | 
						|
 | 
						|
	/*
 | 
						|
	* Ignore region specifiers - the kernel's ideas of
 | 
						|
	* pseudo-phys memory layout has nothing to do with the
 | 
						|
	* machine physical layout.  We can't allocate highmem
 | 
						|
	* because we can't return a pointer to it.
 | 
						|
	*/
 | 
						|
	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
 | 
						|
 | 
						|
	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	vstart = __get_free_pages(flags, order);
 | 
						|
	ret = (void *)vstart;
 | 
						|
 | 
						|
	if (!ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (hwdev && hwdev->coherent_dma_mask)
 | 
						|
		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
 | 
						|
 | 
						|
	phys = virt_to_phys(ret);
 | 
						|
	dev_addr = xen_phys_to_bus(phys);
 | 
						|
	if (((dev_addr + size - 1 <= dma_mask)) &&
 | 
						|
	    !range_straddles_page_boundary(phys, size))
 | 
						|
		*dma_handle = dev_addr;
 | 
						|
	else {
 | 
						|
		if (xen_create_contiguous_region(vstart, order,
 | 
						|
						 fls64(dma_mask)) != 0) {
 | 
						|
			free_pages(vstart, order);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		*dma_handle = virt_to_machine(ret).maddr;
 | 
						|
	}
 | 
						|
	memset(ret, 0, size);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
 | 
						|
 | 
						|
void
 | 
						|
xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 | 
						|
			  dma_addr_t dev_addr, struct dma_attrs *attrs)
 | 
						|
{
 | 
						|
	int order = get_order(size);
 | 
						|
	phys_addr_t phys;
 | 
						|
	u64 dma_mask = DMA_BIT_MASK(32);
 | 
						|
 | 
						|
	if (dma_release_from_coherent(hwdev, order, vaddr))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (hwdev && hwdev->coherent_dma_mask)
 | 
						|
		dma_mask = hwdev->coherent_dma_mask;
 | 
						|
 | 
						|
	phys = virt_to_phys(vaddr);
 | 
						|
 | 
						|
	if (((dev_addr + size - 1 > dma_mask)) ||
 | 
						|
	    range_straddles_page_boundary(phys, size))
 | 
						|
		xen_destroy_contiguous_region((unsigned long)vaddr, order);
 | 
						|
 | 
						|
	free_pages((unsigned long)vaddr, order);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 | 
						|
 * physical address to use is returned.
 | 
						|
 *
 | 
						|
 * Once the device is given the dma address, the device owns this memory until
 | 
						|
 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 | 
						|
 */
 | 
						|
dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
 | 
						|
				unsigned long offset, size_t size,
 | 
						|
				enum dma_data_direction dir,
 | 
						|
				struct dma_attrs *attrs)
 | 
						|
{
 | 
						|
	phys_addr_t map, phys = page_to_phys(page) + offset;
 | 
						|
	dma_addr_t dev_addr = xen_phys_to_bus(phys);
 | 
						|
 | 
						|
	BUG_ON(dir == DMA_NONE);
 | 
						|
	/*
 | 
						|
	 * If the address happens to be in the device's DMA window,
 | 
						|
	 * we can safely return the device addr and not worry about bounce
 | 
						|
	 * buffering it.
 | 
						|
	 */
 | 
						|
	if (dma_capable(dev, dev_addr, size) &&
 | 
						|
	    !range_straddles_page_boundary(phys, size) && !swiotlb_force)
 | 
						|
		return dev_addr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Oh well, have to allocate and map a bounce buffer.
 | 
						|
	 */
 | 
						|
	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
 | 
						|
	if (map == SWIOTLB_MAP_ERROR)
 | 
						|
		return DMA_ERROR_CODE;
 | 
						|
 | 
						|
	dev_addr = xen_phys_to_bus(map);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that the address returned is DMA'ble
 | 
						|
	 */
 | 
						|
	if (!dma_capable(dev, dev_addr, size)) {
 | 
						|
		swiotlb_tbl_unmap_single(dev, map, size, dir);
 | 
						|
		dev_addr = 0;
 | 
						|
	}
 | 
						|
	return dev_addr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
 | 
						|
 | 
						|
/*
 | 
						|
 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 | 
						|
 * match what was provided for in a previous xen_swiotlb_map_page call.  All
 | 
						|
 * other usages are undefined.
 | 
						|
 *
 | 
						|
 * After this call, reads by the cpu to the buffer are guaranteed to see
 | 
						|
 * whatever the device wrote there.
 | 
						|
 */
 | 
						|
static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 | 
						|
			     size_t size, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 | 
						|
 | 
						|
	BUG_ON(dir == DMA_NONE);
 | 
						|
 | 
						|
	/* NOTE: We use dev_addr here, not paddr! */
 | 
						|
	if (is_xen_swiotlb_buffer(dev_addr)) {
 | 
						|
		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dir != DMA_FROM_DEVICE)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * phys_to_virt doesn't work with hihgmem page but we could
 | 
						|
	 * call dma_mark_clean() with hihgmem page here. However, we
 | 
						|
	 * are fine since dma_mark_clean() is null on POWERPC. We can
 | 
						|
	 * make dma_mark_clean() take a physical address if necessary.
 | 
						|
	 */
 | 
						|
	dma_mark_clean(phys_to_virt(paddr), size);
 | 
						|
}
 | 
						|
 | 
						|
void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 | 
						|
			    size_t size, enum dma_data_direction dir,
 | 
						|
			    struct dma_attrs *attrs)
 | 
						|
{
 | 
						|
	xen_unmap_single(hwdev, dev_addr, size, dir);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
 | 
						|
 | 
						|
/*
 | 
						|
 * Make physical memory consistent for a single streaming mode DMA translation
 | 
						|
 * after a transfer.
 | 
						|
 *
 | 
						|
 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
 | 
						|
 * using the cpu, yet do not wish to teardown the dma mapping, you must
 | 
						|
 * call this function before doing so.  At the next point you give the dma
 | 
						|
 * address back to the card, you must first perform a
 | 
						|
 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
 | 
						|
 */
 | 
						|
static void
 | 
						|
xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 | 
						|
			size_t size, enum dma_data_direction dir,
 | 
						|
			enum dma_sync_target target)
 | 
						|
{
 | 
						|
	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 | 
						|
 | 
						|
	BUG_ON(dir == DMA_NONE);
 | 
						|
 | 
						|
	/* NOTE: We use dev_addr here, not paddr! */
 | 
						|
	if (is_xen_swiotlb_buffer(dev_addr)) {
 | 
						|
		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dir != DMA_FROM_DEVICE)
 | 
						|
		return;
 | 
						|
 | 
						|
	dma_mark_clean(phys_to_virt(paddr), size);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 | 
						|
				size_t size, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
 | 
						|
 | 
						|
void
 | 
						|
xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 | 
						|
				   size_t size, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
 | 
						|
 | 
						|
/*
 | 
						|
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 | 
						|
 * This is the scatter-gather version of the above xen_swiotlb_map_page
 | 
						|
 * interface.  Here the scatter gather list elements are each tagged with the
 | 
						|
 * appropriate dma address and length.  They are obtained via
 | 
						|
 * sg_dma_{address,length}(SG).
 | 
						|
 *
 | 
						|
 * NOTE: An implementation may be able to use a smaller number of
 | 
						|
 *       DMA address/length pairs than there are SG table elements.
 | 
						|
 *       (for example via virtual mapping capabilities)
 | 
						|
 *       The routine returns the number of addr/length pairs actually
 | 
						|
 *       used, at most nents.
 | 
						|
 *
 | 
						|
 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
 | 
						|
 * same here.
 | 
						|
 */
 | 
						|
int
 | 
						|
xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 | 
						|
			 int nelems, enum dma_data_direction dir,
 | 
						|
			 struct dma_attrs *attrs)
 | 
						|
{
 | 
						|
	struct scatterlist *sg;
 | 
						|
	int i;
 | 
						|
 | 
						|
	BUG_ON(dir == DMA_NONE);
 | 
						|
 | 
						|
	for_each_sg(sgl, sg, nelems, i) {
 | 
						|
		phys_addr_t paddr = sg_phys(sg);
 | 
						|
		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
 | 
						|
 | 
						|
		if (swiotlb_force ||
 | 
						|
		    !dma_capable(hwdev, dev_addr, sg->length) ||
 | 
						|
		    range_straddles_page_boundary(paddr, sg->length)) {
 | 
						|
			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
 | 
						|
								 start_dma_addr,
 | 
						|
								 sg_phys(sg),
 | 
						|
								 sg->length,
 | 
						|
								 dir);
 | 
						|
			if (map == SWIOTLB_MAP_ERROR) {
 | 
						|
				/* Don't panic here, we expect map_sg users
 | 
						|
				   to do proper error handling. */
 | 
						|
				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 | 
						|
							   attrs);
 | 
						|
				sgl[0].dma_length = 0;
 | 
						|
				return DMA_ERROR_CODE;
 | 
						|
			}
 | 
						|
			sg->dma_address = xen_phys_to_bus(map);
 | 
						|
		} else
 | 
						|
			sg->dma_address = dev_addr;
 | 
						|
		sg->dma_length = sg->length;
 | 
						|
	}
 | 
						|
	return nelems;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
 | 
						|
 | 
						|
/*
 | 
						|
 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 | 
						|
 * concerning calls here are the same as for swiotlb_unmap_page() above.
 | 
						|
 */
 | 
						|
void
 | 
						|
xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 | 
						|
			   int nelems, enum dma_data_direction dir,
 | 
						|
			   struct dma_attrs *attrs)
 | 
						|
{
 | 
						|
	struct scatterlist *sg;
 | 
						|
	int i;
 | 
						|
 | 
						|
	BUG_ON(dir == DMA_NONE);
 | 
						|
 | 
						|
	for_each_sg(sgl, sg, nelems, i)
 | 
						|
		xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
 | 
						|
 | 
						|
/*
 | 
						|
 * Make physical memory consistent for a set of streaming mode DMA translations
 | 
						|
 * after a transfer.
 | 
						|
 *
 | 
						|
 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 | 
						|
 * and usage.
 | 
						|
 */
 | 
						|
static void
 | 
						|
xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 | 
						|
		    int nelems, enum dma_data_direction dir,
 | 
						|
		    enum dma_sync_target target)
 | 
						|
{
 | 
						|
	struct scatterlist *sg;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for_each_sg(sgl, sg, nelems, i)
 | 
						|
		xen_swiotlb_sync_single(hwdev, sg->dma_address,
 | 
						|
					sg->dma_length, dir, target);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
 | 
						|
			    int nelems, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
 | 
						|
 | 
						|
void
 | 
						|
xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
 | 
						|
			       int nelems, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
 | 
						|
 | 
						|
int
 | 
						|
xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
 | 
						|
{
 | 
						|
	return !dma_addr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return whether the given device DMA address mask can be supported
 | 
						|
 * properly.  For example, if your device can only drive the low 24-bits
 | 
						|
 * during bus mastering, then you would pass 0x00ffffff as the mask to
 | 
						|
 * this function.
 | 
						|
 */
 | 
						|
int
 | 
						|
xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
 | 
						|
{
 | 
						|
	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
 |