 322efba5b6
			
		
	
	
	322efba5b6
	
	
	
		
			
			doc.2014.02.24a: Documentation changes fixes.2014.02.26a: Miscellaneous fixes rt.2014.02.17b: Response-time-related changes
		
			
				
	
	
		
			2916 lines
		
	
	
	
		
			85 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2916 lines
		
	
	
	
		
			85 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 | |
|  * Internal non-public definitions that provide either classic
 | |
|  * or preemptible semantics.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, you can access it online at
 | |
|  * http://www.gnu.org/licenses/gpl-2.0.html.
 | |
|  *
 | |
|  * Copyright Red Hat, 2009
 | |
|  * Copyright IBM Corporation, 2009
 | |
|  *
 | |
|  * Author: Ingo Molnar <mingo@elte.hu>
 | |
|  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/smpboot.h>
 | |
| #include "../time/tick-internal.h"
 | |
| 
 | |
| #define RCU_KTHREAD_PRIO 1
 | |
| 
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
 | |
| #else
 | |
| #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RCU_NOCB_CPU
 | |
| static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
 | |
| static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
 | |
| static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
 | |
| static char __initdata nocb_buf[NR_CPUS * 5];
 | |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| 
 | |
| /*
 | |
|  * Check the RCU kernel configuration parameters and print informative
 | |
|  * messages about anything out of the ordinary.  If you like #ifdef, you
 | |
|  * will love this function.
 | |
|  */
 | |
| static void __init rcu_bootup_announce_oddness(void)
 | |
| {
 | |
| #ifdef CONFIG_RCU_TRACE
 | |
| 	pr_info("\tRCU debugfs-based tracing is enabled.\n");
 | |
| #endif
 | |
| #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
 | |
| 	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
 | |
| 	       CONFIG_RCU_FANOUT);
 | |
| #endif
 | |
| #ifdef CONFIG_RCU_FANOUT_EXACT
 | |
| 	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
 | |
| #endif
 | |
| #ifdef CONFIG_RCU_FAST_NO_HZ
 | |
| 	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
 | |
| #endif
 | |
| #ifdef CONFIG_PROVE_RCU
 | |
| 	pr_info("\tRCU lockdep checking is enabled.\n");
 | |
| #endif
 | |
| #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
 | |
| 	pr_info("\tRCU torture testing starts during boot.\n");
 | |
| #endif
 | |
| #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
 | |
| 	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
 | |
| #endif
 | |
| #if defined(CONFIG_RCU_CPU_STALL_INFO)
 | |
| 	pr_info("\tAdditional per-CPU info printed with stalls.\n");
 | |
| #endif
 | |
| #if NUM_RCU_LVL_4 != 0
 | |
| 	pr_info("\tFour-level hierarchy is enabled.\n");
 | |
| #endif
 | |
| 	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
 | |
| 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
 | |
| 	if (nr_cpu_ids != NR_CPUS)
 | |
| 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
 | |
| #ifdef CONFIG_RCU_NOCB_CPU
 | |
| #ifndef CONFIG_RCU_NOCB_CPU_NONE
 | |
| 	if (!have_rcu_nocb_mask) {
 | |
| 		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
 | |
| 		have_rcu_nocb_mask = true;
 | |
| 	}
 | |
| #ifdef CONFIG_RCU_NOCB_CPU_ZERO
 | |
| 	pr_info("\tOffload RCU callbacks from CPU 0\n");
 | |
| 	cpumask_set_cpu(0, rcu_nocb_mask);
 | |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
 | |
| #ifdef CONFIG_RCU_NOCB_CPU_ALL
 | |
| 	pr_info("\tOffload RCU callbacks from all CPUs\n");
 | |
| 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
 | |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
 | |
| #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
 | |
| 	if (have_rcu_nocb_mask) {
 | |
| 		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
 | |
| 			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
 | |
| 			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
 | |
| 				    rcu_nocb_mask);
 | |
| 		}
 | |
| 		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
 | |
| 		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
 | |
| 		if (rcu_nocb_poll)
 | |
| 			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
 | |
| 	}
 | |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TREE_PREEMPT_RCU
 | |
| 
 | |
| RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
 | |
| static struct rcu_state *rcu_state = &rcu_preempt_state;
 | |
| 
 | |
| static int rcu_preempted_readers_exp(struct rcu_node *rnp);
 | |
| 
 | |
| /*
 | |
|  * Tell them what RCU they are running.
 | |
|  */
 | |
| static void __init rcu_bootup_announce(void)
 | |
| {
 | |
| 	pr_info("Preemptible hierarchical RCU implementation.\n");
 | |
| 	rcu_bootup_announce_oddness();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of RCU-preempt batches processed thus far
 | |
|  * for debug and statistics.
 | |
|  */
 | |
| long rcu_batches_completed_preempt(void)
 | |
| {
 | |
| 	return rcu_preempt_state.completed;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
 | |
| 
 | |
| /*
 | |
|  * Return the number of RCU batches processed thus far for debug & stats.
 | |
|  */
 | |
| long rcu_batches_completed(void)
 | |
| {
 | |
| 	return rcu_batches_completed_preempt();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_batches_completed);
 | |
| 
 | |
| /*
 | |
|  * Force a quiescent state for preemptible RCU.
 | |
|  */
 | |
| void rcu_force_quiescent_state(void)
 | |
| {
 | |
| 	force_quiescent_state(&rcu_preempt_state);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 | |
| 
 | |
| /*
 | |
|  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 | |
|  * that this just means that the task currently running on the CPU is
 | |
|  * not in a quiescent state.  There might be any number of tasks blocked
 | |
|  * while in an RCU read-side critical section.
 | |
|  *
 | |
|  * Unlike the other rcu_*_qs() functions, callers to this function
 | |
|  * must disable irqs in order to protect the assignment to
 | |
|  * ->rcu_read_unlock_special.
 | |
|  */
 | |
| static void rcu_preempt_qs(int cpu)
 | |
| {
 | |
| 	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
 | |
| 
 | |
| 	if (rdp->passed_quiesce == 0)
 | |
| 		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
 | |
| 	rdp->passed_quiesce = 1;
 | |
| 	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We have entered the scheduler, and the current task might soon be
 | |
|  * context-switched away from.  If this task is in an RCU read-side
 | |
|  * critical section, we will no longer be able to rely on the CPU to
 | |
|  * record that fact, so we enqueue the task on the blkd_tasks list.
 | |
|  * The task will dequeue itself when it exits the outermost enclosing
 | |
|  * RCU read-side critical section.  Therefore, the current grace period
 | |
|  * cannot be permitted to complete until the blkd_tasks list entries
 | |
|  * predating the current grace period drain, in other words, until
 | |
|  * rnp->gp_tasks becomes NULL.
 | |
|  *
 | |
|  * Caller must disable preemption.
 | |
|  */
 | |
| static void rcu_preempt_note_context_switch(int cpu)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	if (t->rcu_read_lock_nesting > 0 &&
 | |
| 	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
 | |
| 
 | |
| 		/* Possibly blocking in an RCU read-side critical section. */
 | |
| 		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
 | |
| 		rnp = rdp->mynode;
 | |
| 		raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 		smp_mb__after_unlock_lock();
 | |
| 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
 | |
| 		t->rcu_blocked_node = rnp;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this CPU has already checked in, then this task
 | |
| 		 * will hold up the next grace period rather than the
 | |
| 		 * current grace period.  Queue the task accordingly.
 | |
| 		 * If the task is queued for the current grace period
 | |
| 		 * (i.e., this CPU has not yet passed through a quiescent
 | |
| 		 * state for the current grace period), then as long
 | |
| 		 * as that task remains queued, the current grace period
 | |
| 		 * cannot end.  Note that there is some uncertainty as
 | |
| 		 * to exactly when the current grace period started.
 | |
| 		 * We take a conservative approach, which can result
 | |
| 		 * in unnecessarily waiting on tasks that started very
 | |
| 		 * slightly after the current grace period began.  C'est
 | |
| 		 * la vie!!!
 | |
| 		 *
 | |
| 		 * But first, note that the current CPU must still be
 | |
| 		 * on line!
 | |
| 		 */
 | |
| 		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
 | |
| 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 | |
| 		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
 | |
| 			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
 | |
| 			rnp->gp_tasks = &t->rcu_node_entry;
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 			if (rnp->boost_tasks != NULL)
 | |
| 				rnp->boost_tasks = rnp->gp_tasks;
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| 		} else {
 | |
| 			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 | |
| 			if (rnp->qsmask & rdp->grpmask)
 | |
| 				rnp->gp_tasks = &t->rcu_node_entry;
 | |
| 		}
 | |
| 		trace_rcu_preempt_task(rdp->rsp->name,
 | |
| 				       t->pid,
 | |
| 				       (rnp->qsmask & rdp->grpmask)
 | |
| 				       ? rnp->gpnum
 | |
| 				       : rnp->gpnum + 1);
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 	} else if (t->rcu_read_lock_nesting < 0 &&
 | |
| 		   t->rcu_read_unlock_special) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Complete exit from RCU read-side critical section on
 | |
| 		 * behalf of preempted instance of __rcu_read_unlock().
 | |
| 		 */
 | |
| 		rcu_read_unlock_special(t);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Either we were not in an RCU read-side critical section to
 | |
| 	 * begin with, or we have now recorded that critical section
 | |
| 	 * globally.  Either way, we can now note a quiescent state
 | |
| 	 * for this CPU.  Again, if we were in an RCU read-side critical
 | |
| 	 * section, and if that critical section was blocking the current
 | |
| 	 * grace period, then the fact that the task has been enqueued
 | |
| 	 * means that we continue to block the current grace period.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	rcu_preempt_qs(cpu);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for preempted RCU readers blocking the current grace period
 | |
|  * for the specified rcu_node structure.  If the caller needs a reliable
 | |
|  * answer, it must hold the rcu_node's ->lock.
 | |
|  */
 | |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 | |
| {
 | |
| 	return rnp->gp_tasks != NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Record a quiescent state for all tasks that were previously queued
 | |
|  * on the specified rcu_node structure and that were blocking the current
 | |
|  * RCU grace period.  The caller must hold the specified rnp->lock with
 | |
|  * irqs disabled, and this lock is released upon return, but irqs remain
 | |
|  * disabled.
 | |
|  */
 | |
| static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
 | |
| 	__releases(rnp->lock)
 | |
| {
 | |
| 	unsigned long mask;
 | |
| 	struct rcu_node *rnp_p;
 | |
| 
 | |
| 	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		return;  /* Still need more quiescent states! */
 | |
| 	}
 | |
| 
 | |
| 	rnp_p = rnp->parent;
 | |
| 	if (rnp_p == NULL) {
 | |
| 		/*
 | |
| 		 * Either there is only one rcu_node in the tree,
 | |
| 		 * or tasks were kicked up to root rcu_node due to
 | |
| 		 * CPUs going offline.
 | |
| 		 */
 | |
| 		rcu_report_qs_rsp(&rcu_preempt_state, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Report up the rest of the hierarchy. */
 | |
| 	mask = rnp->grpmask;
 | |
| 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
 | |
| 	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
 | |
| 	smp_mb__after_unlock_lock();
 | |
| 	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Advance a ->blkd_tasks-list pointer to the next entry, instead
 | |
|  * returning NULL if at the end of the list.
 | |
|  */
 | |
| static struct list_head *rcu_next_node_entry(struct task_struct *t,
 | |
| 					     struct rcu_node *rnp)
 | |
| {
 | |
| 	struct list_head *np;
 | |
| 
 | |
| 	np = t->rcu_node_entry.next;
 | |
| 	if (np == &rnp->blkd_tasks)
 | |
| 		np = NULL;
 | |
| 	return np;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle special cases during rcu_read_unlock(), such as needing to
 | |
|  * notify RCU core processing or task having blocked during the RCU
 | |
|  * read-side critical section.
 | |
|  */
 | |
| void rcu_read_unlock_special(struct task_struct *t)
 | |
| {
 | |
| 	int empty;
 | |
| 	int empty_exp;
 | |
| 	int empty_exp_now;
 | |
| 	unsigned long flags;
 | |
| 	struct list_head *np;
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 	struct rt_mutex *rbmp = NULL;
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| 	struct rcu_node *rnp;
 | |
| 	int special;
 | |
| 
 | |
| 	/* NMI handlers cannot block and cannot safely manipulate state. */
 | |
| 	if (in_nmi())
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * If RCU core is waiting for this CPU to exit critical section,
 | |
| 	 * let it know that we have done so.
 | |
| 	 */
 | |
| 	special = t->rcu_read_unlock_special;
 | |
| 	if (special & RCU_READ_UNLOCK_NEED_QS) {
 | |
| 		rcu_preempt_qs(smp_processor_id());
 | |
| 		if (!t->rcu_read_unlock_special) {
 | |
| 			local_irq_restore(flags);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Hardware IRQ handlers cannot block, complain if they get here. */
 | |
| 	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
 | |
| 		local_irq_restore(flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Clean up if blocked during RCU read-side critical section. */
 | |
| 	if (special & RCU_READ_UNLOCK_BLOCKED) {
 | |
| 		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
 | |
| 
 | |
| 		/*
 | |
| 		 * Remove this task from the list it blocked on.  The
 | |
| 		 * task can migrate while we acquire the lock, but at
 | |
| 		 * most one time.  So at most two passes through loop.
 | |
| 		 */
 | |
| 		for (;;) {
 | |
| 			rnp = t->rcu_blocked_node;
 | |
| 			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
 | |
| 			smp_mb__after_unlock_lock();
 | |
| 			if (rnp == t->rcu_blocked_node)
 | |
| 				break;
 | |
| 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
 | |
| 		}
 | |
| 		empty = !rcu_preempt_blocked_readers_cgp(rnp);
 | |
| 		empty_exp = !rcu_preempted_readers_exp(rnp);
 | |
| 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 | |
| 		np = rcu_next_node_entry(t, rnp);
 | |
| 		list_del_init(&t->rcu_node_entry);
 | |
| 		t->rcu_blocked_node = NULL;
 | |
| 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 | |
| 						rnp->gpnum, t->pid);
 | |
| 		if (&t->rcu_node_entry == rnp->gp_tasks)
 | |
| 			rnp->gp_tasks = np;
 | |
| 		if (&t->rcu_node_entry == rnp->exp_tasks)
 | |
| 			rnp->exp_tasks = np;
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 		if (&t->rcu_node_entry == rnp->boost_tasks)
 | |
| 			rnp->boost_tasks = np;
 | |
| 		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
 | |
| 		if (t->rcu_boost_mutex) {
 | |
| 			rbmp = t->rcu_boost_mutex;
 | |
| 			t->rcu_boost_mutex = NULL;
 | |
| 		}
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| 
 | |
| 		/*
 | |
| 		 * If this was the last task on the current list, and if
 | |
| 		 * we aren't waiting on any CPUs, report the quiescent state.
 | |
| 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 | |
| 		 * so we must take a snapshot of the expedited state.
 | |
| 		 */
 | |
| 		empty_exp_now = !rcu_preempted_readers_exp(rnp);
 | |
| 		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
 | |
| 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 | |
| 							 rnp->gpnum,
 | |
| 							 0, rnp->qsmask,
 | |
| 							 rnp->level,
 | |
| 							 rnp->grplo,
 | |
| 							 rnp->grphi,
 | |
| 							 !!rnp->gp_tasks);
 | |
| 			rcu_report_unblock_qs_rnp(rnp, flags);
 | |
| 		} else {
 | |
| 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 		/* Unboost if we were boosted. */
 | |
| 		if (rbmp)
 | |
| 			rt_mutex_unlock(rbmp);
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| 
 | |
| 		/*
 | |
| 		 * If this was the last task on the expedited lists,
 | |
| 		 * then we need to report up the rcu_node hierarchy.
 | |
| 		 */
 | |
| 		if (!empty_exp && empty_exp_now)
 | |
| 			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
 | |
| 	} else {
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
 | |
| 
 | |
| /*
 | |
|  * Dump detailed information for all tasks blocking the current RCU
 | |
|  * grace period on the specified rcu_node structure.
 | |
|  */
 | |
| static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	t = list_entry(rnp->gp_tasks,
 | |
| 		       struct task_struct, rcu_node_entry);
 | |
| 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
 | |
| 		sched_show_task(t);
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dump detailed information for all tasks blocking the current RCU
 | |
|  * grace period.
 | |
|  */
 | |
| static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 | |
| {
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	rcu_print_detail_task_stall_rnp(rnp);
 | |
| 	rcu_for_each_leaf_node(rsp, rnp)
 | |
| 		rcu_print_detail_task_stall_rnp(rnp);
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
 | |
| 
 | |
| static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
 | |
| 
 | |
| #ifdef CONFIG_RCU_CPU_STALL_INFO
 | |
| 
 | |
| static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 | |
| {
 | |
| 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
 | |
| 	       rnp->level, rnp->grplo, rnp->grphi);
 | |
| }
 | |
| 
 | |
| static void rcu_print_task_stall_end(void)
 | |
| {
 | |
| 	pr_cont("\n");
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
 | |
| 
 | |
| static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_print_task_stall_end(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
 | |
| 
 | |
| /*
 | |
|  * Scan the current list of tasks blocked within RCU read-side critical
 | |
|  * sections, printing out the tid of each.
 | |
|  */
 | |
| static int rcu_print_task_stall(struct rcu_node *rnp)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 	int ndetected = 0;
 | |
| 
 | |
| 	if (!rcu_preempt_blocked_readers_cgp(rnp))
 | |
| 		return 0;
 | |
| 	rcu_print_task_stall_begin(rnp);
 | |
| 	t = list_entry(rnp->gp_tasks,
 | |
| 		       struct task_struct, rcu_node_entry);
 | |
| 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 | |
| 		pr_cont(" P%d", t->pid);
 | |
| 		ndetected++;
 | |
| 	}
 | |
| 	rcu_print_task_stall_end();
 | |
| 	return ndetected;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the list of blocked tasks for the newly completed grace
 | |
|  * period is in fact empty.  It is a serious bug to complete a grace
 | |
|  * period that still has RCU readers blocked!  This function must be
 | |
|  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 | |
|  * must be held by the caller.
 | |
|  *
 | |
|  * Also, if there are blocked tasks on the list, they automatically
 | |
|  * block the newly created grace period, so set up ->gp_tasks accordingly.
 | |
|  */
 | |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 | |
| {
 | |
| 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 | |
| 	if (!list_empty(&rnp->blkd_tasks))
 | |
| 		rnp->gp_tasks = rnp->blkd_tasks.next;
 | |
| 	WARN_ON_ONCE(rnp->qsmask);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| /*
 | |
|  * Handle tasklist migration for case in which all CPUs covered by the
 | |
|  * specified rcu_node have gone offline.  Move them up to the root
 | |
|  * rcu_node.  The reason for not just moving them to the immediate
 | |
|  * parent is to remove the need for rcu_read_unlock_special() to
 | |
|  * make more than two attempts to acquire the target rcu_node's lock.
 | |
|  * Returns true if there were tasks blocking the current RCU grace
 | |
|  * period.
 | |
|  *
 | |
|  * Returns 1 if there was previously a task blocking the current grace
 | |
|  * period on the specified rcu_node structure.
 | |
|  *
 | |
|  * The caller must hold rnp->lock with irqs disabled.
 | |
|  */
 | |
| static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
 | |
| 				     struct rcu_node *rnp,
 | |
| 				     struct rcu_data *rdp)
 | |
| {
 | |
| 	struct list_head *lp;
 | |
| 	struct list_head *lp_root;
 | |
| 	int retval = 0;
 | |
| 	struct rcu_node *rnp_root = rcu_get_root(rsp);
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	if (rnp == rnp_root) {
 | |
| 		WARN_ONCE(1, "Last CPU thought to be offlined?");
 | |
| 		return 0;  /* Shouldn't happen: at least one CPU online. */
 | |
| 	}
 | |
| 
 | |
| 	/* If we are on an internal node, complain bitterly. */
 | |
| 	WARN_ON_ONCE(rnp != rdp->mynode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Move tasks up to root rcu_node.  Don't try to get fancy for
 | |
| 	 * this corner-case operation -- just put this node's tasks
 | |
| 	 * at the head of the root node's list, and update the root node's
 | |
| 	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
 | |
| 	 * if non-NULL.  This might result in waiting for more tasks than
 | |
| 	 * absolutely necessary, but this is a good performance/complexity
 | |
| 	 * tradeoff.
 | |
| 	 */
 | |
| 	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
 | |
| 		retval |= RCU_OFL_TASKS_NORM_GP;
 | |
| 	if (rcu_preempted_readers_exp(rnp))
 | |
| 		retval |= RCU_OFL_TASKS_EXP_GP;
 | |
| 	lp = &rnp->blkd_tasks;
 | |
| 	lp_root = &rnp_root->blkd_tasks;
 | |
| 	while (!list_empty(lp)) {
 | |
| 		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
 | |
| 		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
 | |
| 		smp_mb__after_unlock_lock();
 | |
| 		list_del(&t->rcu_node_entry);
 | |
| 		t->rcu_blocked_node = rnp_root;
 | |
| 		list_add(&t->rcu_node_entry, lp_root);
 | |
| 		if (&t->rcu_node_entry == rnp->gp_tasks)
 | |
| 			rnp_root->gp_tasks = rnp->gp_tasks;
 | |
| 		if (&t->rcu_node_entry == rnp->exp_tasks)
 | |
| 			rnp_root->exp_tasks = rnp->exp_tasks;
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 		if (&t->rcu_node_entry == rnp->boost_tasks)
 | |
| 			rnp_root->boost_tasks = rnp->boost_tasks;
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| 		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
 | |
| 	}
 | |
| 
 | |
| 	rnp->gp_tasks = NULL;
 | |
| 	rnp->exp_tasks = NULL;
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 	rnp->boost_tasks = NULL;
 | |
| 	/*
 | |
| 	 * In case root is being boosted and leaf was not.  Make sure
 | |
| 	 * that we boost the tasks blocking the current grace period
 | |
| 	 * in this case.
 | |
| 	 */
 | |
| 	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
 | |
| 	smp_mb__after_unlock_lock();
 | |
| 	if (rnp_root->boost_tasks != NULL &&
 | |
| 	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
 | |
| 	    rnp_root->boost_tasks != rnp_root->exp_tasks)
 | |
| 		rnp_root->boost_tasks = rnp_root->gp_tasks;
 | |
| 	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| /*
 | |
|  * Check for a quiescent state from the current CPU.  When a task blocks,
 | |
|  * the task is recorded in the corresponding CPU's rcu_node structure,
 | |
|  * which is checked elsewhere.
 | |
|  *
 | |
|  * Caller must disable hard irqs.
 | |
|  */
 | |
| static void rcu_preempt_check_callbacks(int cpu)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 
 | |
| 	if (t->rcu_read_lock_nesting == 0) {
 | |
| 		rcu_preempt_qs(cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (t->rcu_read_lock_nesting > 0 &&
 | |
| 	    per_cpu(rcu_preempt_data, cpu).qs_pending)
 | |
| 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 
 | |
| static void rcu_preempt_do_callbacks(void)
 | |
| {
 | |
| 	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| 
 | |
| /*
 | |
|  * Queue a preemptible-RCU callback for invocation after a grace period.
 | |
|  */
 | |
| void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 | |
| {
 | |
| 	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(call_rcu);
 | |
| 
 | |
| /*
 | |
|  * Queue an RCU callback for lazy invocation after a grace period.
 | |
|  * This will likely be later named something like "call_rcu_lazy()",
 | |
|  * but this change will require some way of tagging the lazy RCU
 | |
|  * callbacks in the list of pending callbacks.  Until then, this
 | |
|  * function may only be called from __kfree_rcu().
 | |
|  */
 | |
| void kfree_call_rcu(struct rcu_head *head,
 | |
| 		    void (*func)(struct rcu_head *rcu))
 | |
| {
 | |
| 	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kfree_call_rcu);
 | |
| 
 | |
| /**
 | |
|  * synchronize_rcu - wait until a grace period has elapsed.
 | |
|  *
 | |
|  * Control will return to the caller some time after a full grace
 | |
|  * period has elapsed, in other words after all currently executing RCU
 | |
|  * read-side critical sections have completed.  Note, however, that
 | |
|  * upon return from synchronize_rcu(), the caller might well be executing
 | |
|  * concurrently with new RCU read-side critical sections that began while
 | |
|  * synchronize_rcu() was waiting.  RCU read-side critical sections are
 | |
|  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 | |
|  *
 | |
|  * See the description of synchronize_sched() for more detailed information
 | |
|  * on memory ordering guarantees.
 | |
|  */
 | |
| void synchronize_rcu(void)
 | |
| {
 | |
| 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
 | |
| 			   !lock_is_held(&rcu_lock_map) &&
 | |
| 			   !lock_is_held(&rcu_sched_lock_map),
 | |
| 			   "Illegal synchronize_rcu() in RCU read-side critical section");
 | |
| 	if (!rcu_scheduler_active)
 | |
| 		return;
 | |
| 	if (rcu_expedited)
 | |
| 		synchronize_rcu_expedited();
 | |
| 	else
 | |
| 		wait_rcu_gp(call_rcu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(synchronize_rcu);
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
 | |
| static unsigned long sync_rcu_preempt_exp_count;
 | |
| static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
 | |
| 
 | |
| /*
 | |
|  * Return non-zero if there are any tasks in RCU read-side critical
 | |
|  * sections blocking the current preemptible-RCU expedited grace period.
 | |
|  * If there is no preemptible-RCU expedited grace period currently in
 | |
|  * progress, returns zero unconditionally.
 | |
|  */
 | |
| static int rcu_preempted_readers_exp(struct rcu_node *rnp)
 | |
| {
 | |
| 	return rnp->exp_tasks != NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return non-zero if there is no RCU expedited grace period in progress
 | |
|  * for the specified rcu_node structure, in other words, if all CPUs and
 | |
|  * tasks covered by the specified rcu_node structure have done their bit
 | |
|  * for the current expedited grace period.  Works only for preemptible
 | |
|  * RCU -- other RCU implementation use other means.
 | |
|  *
 | |
|  * Caller must hold sync_rcu_preempt_exp_mutex.
 | |
|  */
 | |
| static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
 | |
| {
 | |
| 	return !rcu_preempted_readers_exp(rnp) &&
 | |
| 	       ACCESS_ONCE(rnp->expmask) == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Report the exit from RCU read-side critical section for the last task
 | |
|  * that queued itself during or before the current expedited preemptible-RCU
 | |
|  * grace period.  This event is reported either to the rcu_node structure on
 | |
|  * which the task was queued or to one of that rcu_node structure's ancestors,
 | |
|  * recursively up the tree.  (Calm down, calm down, we do the recursion
 | |
|  * iteratively!)
 | |
|  *
 | |
|  * Most callers will set the "wake" flag, but the task initiating the
 | |
|  * expedited grace period need not wake itself.
 | |
|  *
 | |
|  * Caller must hold sync_rcu_preempt_exp_mutex.
 | |
|  */
 | |
| static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 | |
| 			       bool wake)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long mask;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	smp_mb__after_unlock_lock();
 | |
| 	for (;;) {
 | |
| 		if (!sync_rcu_preempt_exp_done(rnp)) {
 | |
| 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (rnp->parent == NULL) {
 | |
| 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 			if (wake) {
 | |
| 				smp_mb(); /* EGP done before wake_up(). */
 | |
| 				wake_up(&sync_rcu_preempt_exp_wq);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		mask = rnp->grpmask;
 | |
| 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
 | |
| 		rnp = rnp->parent;
 | |
| 		raw_spin_lock(&rnp->lock); /* irqs already disabled */
 | |
| 		smp_mb__after_unlock_lock();
 | |
| 		rnp->expmask &= ~mask;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 | |
|  * grace period for the specified rcu_node structure.  If there are no such
 | |
|  * tasks, report it up the rcu_node hierarchy.
 | |
|  *
 | |
|  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 | |
|  * CPU hotplug operations.
 | |
|  */
 | |
| static void
 | |
| sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int must_wait = 0;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	smp_mb__after_unlock_lock();
 | |
| 	if (list_empty(&rnp->blkd_tasks)) {
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 	} else {
 | |
| 		rnp->exp_tasks = rnp->blkd_tasks.next;
 | |
| 		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
 | |
| 		must_wait = 1;
 | |
| 	}
 | |
| 	if (!must_wait)
 | |
| 		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * synchronize_rcu_expedited - Brute-force RCU grace period
 | |
|  *
 | |
|  * Wait for an RCU-preempt grace period, but expedite it.  The basic
 | |
|  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 | |
|  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 | |
|  * significant time on all CPUs and is unfriendly to real-time workloads,
 | |
|  * so is thus not recommended for any sort of common-case code.
 | |
|  * In fact, if you are using synchronize_rcu_expedited() in a loop,
 | |
|  * please restructure your code to batch your updates, and then Use a
 | |
|  * single synchronize_rcu() instead.
 | |
|  *
 | |
|  * Note that it is illegal to call this function while holding any lock
 | |
|  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 | |
|  * to call this function from a CPU-hotplug notifier.  Failing to observe
 | |
|  * these restriction will result in deadlock.
 | |
|  */
 | |
| void synchronize_rcu_expedited(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_node *rnp;
 | |
| 	struct rcu_state *rsp = &rcu_preempt_state;
 | |
| 	unsigned long snap;
 | |
| 	int trycount = 0;
 | |
| 
 | |
| 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
 | |
| 	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
 | |
| 	smp_mb(); /* Above access cannot bleed into critical section. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
 | |
| 	 * operation that finds an rcu_node structure with tasks in the
 | |
| 	 * process of being boosted will know that all tasks blocking
 | |
| 	 * this expedited grace period will already be in the process of
 | |
| 	 * being boosted.  This simplifies the process of moving tasks
 | |
| 	 * from leaf to root rcu_node structures.
 | |
| 	 */
 | |
| 	get_online_cpus();
 | |
| 
 | |
| 	/*
 | |
| 	 * Acquire lock, falling back to synchronize_rcu() if too many
 | |
| 	 * lock-acquisition failures.  Of course, if someone does the
 | |
| 	 * expedited grace period for us, just leave.
 | |
| 	 */
 | |
| 	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
 | |
| 		if (ULONG_CMP_LT(snap,
 | |
| 		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
 | |
| 			put_online_cpus();
 | |
| 			goto mb_ret; /* Others did our work for us. */
 | |
| 		}
 | |
| 		if (trycount++ < 10) {
 | |
| 			udelay(trycount * num_online_cpus());
 | |
| 		} else {
 | |
| 			put_online_cpus();
 | |
| 			wait_rcu_gp(call_rcu);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
 | |
| 		put_online_cpus();
 | |
| 		goto unlock_mb_ret; /* Others did our work for us. */
 | |
| 	}
 | |
| 
 | |
| 	/* force all RCU readers onto ->blkd_tasks lists. */
 | |
| 	synchronize_sched_expedited();
 | |
| 
 | |
| 	/* Initialize ->expmask for all non-leaf rcu_node structures. */
 | |
| 	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
 | |
| 		raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 		smp_mb__after_unlock_lock();
 | |
| 		rnp->expmask = rnp->qsmaskinit;
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* Snapshot current state of ->blkd_tasks lists. */
 | |
| 	rcu_for_each_leaf_node(rsp, rnp)
 | |
| 		sync_rcu_preempt_exp_init(rsp, rnp);
 | |
| 	if (NUM_RCU_NODES > 1)
 | |
| 		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
 | |
| 
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
 | |
| 	rnp = rcu_get_root(rsp);
 | |
| 	wait_event(sync_rcu_preempt_exp_wq,
 | |
| 		   sync_rcu_preempt_exp_done(rnp));
 | |
| 
 | |
| 	/* Clean up and exit. */
 | |
| 	smp_mb(); /* ensure expedited GP seen before counter increment. */
 | |
| 	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
 | |
| unlock_mb_ret:
 | |
| 	mutex_unlock(&sync_rcu_preempt_exp_mutex);
 | |
| mb_ret:
 | |
| 	smp_mb(); /* ensure subsequent action seen after grace period. */
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 | |
| 
 | |
| /**
 | |
|  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 | |
|  *
 | |
|  * Note that this primitive does not necessarily wait for an RCU grace period
 | |
|  * to complete.  For example, if there are no RCU callbacks queued anywhere
 | |
|  * in the system, then rcu_barrier() is within its rights to return
 | |
|  * immediately, without waiting for anything, much less an RCU grace period.
 | |
|  */
 | |
| void rcu_barrier(void)
 | |
| {
 | |
| 	_rcu_barrier(&rcu_preempt_state);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_barrier);
 | |
| 
 | |
| /*
 | |
|  * Initialize preemptible RCU's state structures.
 | |
|  */
 | |
| static void __init __rcu_init_preempt(void)
 | |
| {
 | |
| 	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for a task exiting while in a preemptible-RCU read-side
 | |
|  * critical section, clean up if so.  No need to issue warnings,
 | |
|  * as debug_check_no_locks_held() already does this if lockdep
 | |
|  * is enabled.
 | |
|  */
 | |
| void exit_rcu(void)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 
 | |
| 	if (likely(list_empty(¤t->rcu_node_entry)))
 | |
| 		return;
 | |
| 	t->rcu_read_lock_nesting = 1;
 | |
| 	barrier();
 | |
| 	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
 | |
| 	__rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
 | |
| 
 | |
| static struct rcu_state *rcu_state = &rcu_sched_state;
 | |
| 
 | |
| /*
 | |
|  * Tell them what RCU they are running.
 | |
|  */
 | |
| static void __init rcu_bootup_announce(void)
 | |
| {
 | |
| 	pr_info("Hierarchical RCU implementation.\n");
 | |
| 	rcu_bootup_announce_oddness();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of RCU batches processed thus far for debug & stats.
 | |
|  */
 | |
| long rcu_batches_completed(void)
 | |
| {
 | |
| 	return rcu_batches_completed_sched();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_batches_completed);
 | |
| 
 | |
| /*
 | |
|  * Force a quiescent state for RCU, which, because there is no preemptible
 | |
|  * RCU, becomes the same as rcu-sched.
 | |
|  */
 | |
| void rcu_force_quiescent_state(void)
 | |
| {
 | |
| 	rcu_sched_force_quiescent_state();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, we never have to check for
 | |
|  * CPUs being in quiescent states.
 | |
|  */
 | |
| static void rcu_preempt_note_context_switch(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, there are never any preempted
 | |
|  * RCU readers.
 | |
|  */
 | |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| /* Because preemptible RCU does not exist, no quieting of tasks. */
 | |
| static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
 | |
| {
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, we never have to check for
 | |
|  * tasks blocked within RCU read-side critical sections.
 | |
|  */
 | |
| static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, we never have to check for
 | |
|  * tasks blocked within RCU read-side critical sections.
 | |
|  */
 | |
| static int rcu_print_task_stall(struct rcu_node *rnp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because there is no preemptible RCU, there can be no readers blocked,
 | |
|  * so there is no need to check for blocked tasks.  So check only for
 | |
|  * bogus qsmask values.
 | |
|  */
 | |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 | |
| {
 | |
| 	WARN_ON_ONCE(rnp->qsmask);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, it never needs to migrate
 | |
|  * tasks that were blocked within RCU read-side critical sections, and
 | |
|  * such non-existent tasks cannot possibly have been blocking the current
 | |
|  * grace period.
 | |
|  */
 | |
| static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
 | |
| 				     struct rcu_node *rnp,
 | |
| 				     struct rcu_data *rdp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, it never has any callbacks
 | |
|  * to check.
 | |
|  */
 | |
| static void rcu_preempt_check_callbacks(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue an RCU callback for lazy invocation after a grace period.
 | |
|  * This will likely be later named something like "call_rcu_lazy()",
 | |
|  * but this change will require some way of tagging the lazy RCU
 | |
|  * callbacks in the list of pending callbacks.  Until then, this
 | |
|  * function may only be called from __kfree_rcu().
 | |
|  *
 | |
|  * Because there is no preemptible RCU, we use RCU-sched instead.
 | |
|  */
 | |
| void kfree_call_rcu(struct rcu_head *head,
 | |
| 		    void (*func)(struct rcu_head *rcu))
 | |
| {
 | |
| 	__call_rcu(head, func, &rcu_sched_state, -1, 1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kfree_call_rcu);
 | |
| 
 | |
| /*
 | |
|  * Wait for an rcu-preempt grace period, but make it happen quickly.
 | |
|  * But because preemptible RCU does not exist, map to rcu-sched.
 | |
|  */
 | |
| void synchronize_rcu_expedited(void)
 | |
| {
 | |
| 	synchronize_sched_expedited();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, there is never any need to
 | |
|  * report on tasks preempted in RCU read-side critical sections during
 | |
|  * expedited RCU grace periods.
 | |
|  */
 | |
| static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 | |
| 			       bool wake)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, rcu_barrier() is just
 | |
|  * another name for rcu_barrier_sched().
 | |
|  */
 | |
| void rcu_barrier(void)
 | |
| {
 | |
| 	rcu_barrier_sched();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_barrier);
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, it need not be initialized.
 | |
|  */
 | |
| static void __init __rcu_init_preempt(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, tasks cannot possibly exit
 | |
|  * while in preemptible RCU read-side critical sections.
 | |
|  */
 | |
| void exit_rcu(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
 | |
| 
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 
 | |
| #include "../locking/rtmutex_common.h"
 | |
| 
 | |
| #ifdef CONFIG_RCU_TRACE
 | |
| 
 | |
| static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 | |
| {
 | |
| 	if (list_empty(&rnp->blkd_tasks))
 | |
| 		rnp->n_balk_blkd_tasks++;
 | |
| 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
 | |
| 		rnp->n_balk_exp_gp_tasks++;
 | |
| 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
 | |
| 		rnp->n_balk_boost_tasks++;
 | |
| 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
 | |
| 		rnp->n_balk_notblocked++;
 | |
| 	else if (rnp->gp_tasks != NULL &&
 | |
| 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
 | |
| 		rnp->n_balk_notyet++;
 | |
| 	else
 | |
| 		rnp->n_balk_nos++;
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_TRACE */
 | |
| 
 | |
| static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_TRACE */
 | |
| 
 | |
| static void rcu_wake_cond(struct task_struct *t, int status)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the thread is yielding, only wake it when this
 | |
| 	 * is invoked from idle
 | |
| 	 */
 | |
| 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
 | |
| 		wake_up_process(t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 | |
|  * or ->boost_tasks, advancing the pointer to the next task in the
 | |
|  * ->blkd_tasks list.
 | |
|  *
 | |
|  * Note that irqs must be enabled: boosting the task can block.
 | |
|  * Returns 1 if there are more tasks needing to be boosted.
 | |
|  */
 | |
| static int rcu_boost(struct rcu_node *rnp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rt_mutex mtx;
 | |
| 	struct task_struct *t;
 | |
| 	struct list_head *tb;
 | |
| 
 | |
| 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
 | |
| 		return 0;  /* Nothing left to boost. */
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	smp_mb__after_unlock_lock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Recheck under the lock: all tasks in need of boosting
 | |
| 	 * might exit their RCU read-side critical sections on their own.
 | |
| 	 */
 | |
| 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Preferentially boost tasks blocking expedited grace periods.
 | |
| 	 * This cannot starve the normal grace periods because a second
 | |
| 	 * expedited grace period must boost all blocked tasks, including
 | |
| 	 * those blocking the pre-existing normal grace period.
 | |
| 	 */
 | |
| 	if (rnp->exp_tasks != NULL) {
 | |
| 		tb = rnp->exp_tasks;
 | |
| 		rnp->n_exp_boosts++;
 | |
| 	} else {
 | |
| 		tb = rnp->boost_tasks;
 | |
| 		rnp->n_normal_boosts++;
 | |
| 	}
 | |
| 	rnp->n_tasks_boosted++;
 | |
| 
 | |
| 	/*
 | |
| 	 * We boost task t by manufacturing an rt_mutex that appears to
 | |
| 	 * be held by task t.  We leave a pointer to that rt_mutex where
 | |
| 	 * task t can find it, and task t will release the mutex when it
 | |
| 	 * exits its outermost RCU read-side critical section.  Then
 | |
| 	 * simply acquiring this artificial rt_mutex will boost task
 | |
| 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
 | |
| 	 *
 | |
| 	 * Note that task t must acquire rnp->lock to remove itself from
 | |
| 	 * the ->blkd_tasks list, which it will do from exit() if from
 | |
| 	 * nowhere else.  We therefore are guaranteed that task t will
 | |
| 	 * stay around at least until we drop rnp->lock.  Note that
 | |
| 	 * rnp->lock also resolves races between our priority boosting
 | |
| 	 * and task t's exiting its outermost RCU read-side critical
 | |
| 	 * section.
 | |
| 	 */
 | |
| 	t = container_of(tb, struct task_struct, rcu_node_entry);
 | |
| 	rt_mutex_init_proxy_locked(&mtx, t);
 | |
| 	t->rcu_boost_mutex = &mtx;
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
 | |
| 	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
 | |
| 
 | |
| 	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
 | |
| 	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Priority-boosting kthread.  One per leaf rcu_node and one for the
 | |
|  * root rcu_node.
 | |
|  */
 | |
| static int rcu_boost_kthread(void *arg)
 | |
| {
 | |
| 	struct rcu_node *rnp = (struct rcu_node *)arg;
 | |
| 	int spincnt = 0;
 | |
| 	int more2boost;
 | |
| 
 | |
| 	trace_rcu_utilization(TPS("Start boost kthread@init"));
 | |
| 	for (;;) {
 | |
| 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
 | |
| 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
 | |
| 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
 | |
| 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
 | |
| 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
 | |
| 		more2boost = rcu_boost(rnp);
 | |
| 		if (more2boost)
 | |
| 			spincnt++;
 | |
| 		else
 | |
| 			spincnt = 0;
 | |
| 		if (spincnt > 10) {
 | |
| 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
 | |
| 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
 | |
| 			schedule_timeout_interruptible(2);
 | |
| 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
 | |
| 			spincnt = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	/* NOTREACHED */
 | |
| 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if it is time to start boosting RCU readers that are
 | |
|  * blocking the current grace period, and, if so, tell the per-rcu_node
 | |
|  * kthread to start boosting them.  If there is an expedited grace
 | |
|  * period in progress, it is always time to boost.
 | |
|  *
 | |
|  * The caller must hold rnp->lock, which this function releases.
 | |
|  * The ->boost_kthread_task is immortal, so we don't need to worry
 | |
|  * about it going away.
 | |
|  */
 | |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
 | |
| 		rnp->n_balk_exp_gp_tasks++;
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (rnp->exp_tasks != NULL ||
 | |
| 	    (rnp->gp_tasks != NULL &&
 | |
| 	     rnp->boost_tasks == NULL &&
 | |
| 	     rnp->qsmask == 0 &&
 | |
| 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
 | |
| 		if (rnp->exp_tasks == NULL)
 | |
| 			rnp->boost_tasks = rnp->gp_tasks;
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		t = rnp->boost_kthread_task;
 | |
| 		if (t)
 | |
| 			rcu_wake_cond(t, rnp->boost_kthread_status);
 | |
| 	} else {
 | |
| 		rcu_initiate_boost_trace(rnp);
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up the per-CPU kthread to invoke RCU callbacks.
 | |
|  */
 | |
| static void invoke_rcu_callbacks_kthread(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	__this_cpu_write(rcu_cpu_has_work, 1);
 | |
| 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
 | |
| 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
 | |
| 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
 | |
| 			      __this_cpu_read(rcu_cpu_kthread_status));
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the current CPU running the RCU-callbacks kthread?
 | |
|  * Caller must have preemption disabled.
 | |
|  */
 | |
| static bool rcu_is_callbacks_kthread(void)
 | |
| {
 | |
| 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
 | |
| }
 | |
| 
 | |
| #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
 | |
| 
 | |
| /*
 | |
|  * Do priority-boost accounting for the start of a new grace period.
 | |
|  */
 | |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
 | |
| {
 | |
| 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create an RCU-boost kthread for the specified node if one does not
 | |
|  * already exist.  We only create this kthread for preemptible RCU.
 | |
|  * Returns zero if all is well, a negated errno otherwise.
 | |
|  */
 | |
| static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
 | |
| 						 struct rcu_node *rnp)
 | |
| {
 | |
| 	int rnp_index = rnp - &rsp->node[0];
 | |
| 	unsigned long flags;
 | |
| 	struct sched_param sp;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	if (&rcu_preempt_state != rsp)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	rsp->boost = 1;
 | |
| 	if (rnp->boost_kthread_task != NULL)
 | |
| 		return 0;
 | |
| 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
 | |
| 			   "rcub/%d", rnp_index);
 | |
| 	if (IS_ERR(t))
 | |
| 		return PTR_ERR(t);
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	smp_mb__after_unlock_lock();
 | |
| 	rnp->boost_kthread_task = t;
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 	sp.sched_priority = RCU_BOOST_PRIO;
 | |
| 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 | |
| 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rcu_kthread_do_work(void)
 | |
| {
 | |
| 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
 | |
| 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
 | |
| 	rcu_preempt_do_callbacks();
 | |
| }
 | |
| 
 | |
| static void rcu_cpu_kthread_setup(unsigned int cpu)
 | |
| {
 | |
| 	struct sched_param sp;
 | |
| 
 | |
| 	sp.sched_priority = RCU_KTHREAD_PRIO;
 | |
| 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
 | |
| }
 | |
| 
 | |
| static void rcu_cpu_kthread_park(unsigned int cpu)
 | |
| {
 | |
| 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
 | |
| }
 | |
| 
 | |
| static int rcu_cpu_kthread_should_run(unsigned int cpu)
 | |
| {
 | |
| 	return __this_cpu_read(rcu_cpu_has_work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
 | |
|  * RCU softirq used in flavors and configurations of RCU that do not
 | |
|  * support RCU priority boosting.
 | |
|  */
 | |
| static void rcu_cpu_kthread(unsigned int cpu)
 | |
| {
 | |
| 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
 | |
| 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
 | |
| 	int spincnt;
 | |
| 
 | |
| 	for (spincnt = 0; spincnt < 10; spincnt++) {
 | |
| 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
 | |
| 		local_bh_disable();
 | |
| 		*statusp = RCU_KTHREAD_RUNNING;
 | |
| 		this_cpu_inc(rcu_cpu_kthread_loops);
 | |
| 		local_irq_disable();
 | |
| 		work = *workp;
 | |
| 		*workp = 0;
 | |
| 		local_irq_enable();
 | |
| 		if (work)
 | |
| 			rcu_kthread_do_work();
 | |
| 		local_bh_enable();
 | |
| 		if (*workp == 0) {
 | |
| 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
 | |
| 			*statusp = RCU_KTHREAD_WAITING;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	*statusp = RCU_KTHREAD_YIELDING;
 | |
| 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
 | |
| 	schedule_timeout_interruptible(2);
 | |
| 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
 | |
| 	*statusp = RCU_KTHREAD_WAITING;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 | |
|  * served by the rcu_node in question.  The CPU hotplug lock is still
 | |
|  * held, so the value of rnp->qsmaskinit will be stable.
 | |
|  *
 | |
|  * We don't include outgoingcpu in the affinity set, use -1 if there is
 | |
|  * no outgoing CPU.  If there are no CPUs left in the affinity set,
 | |
|  * this function allows the kthread to execute on any CPU.
 | |
|  */
 | |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
 | |
| {
 | |
| 	struct task_struct *t = rnp->boost_kthread_task;
 | |
| 	unsigned long mask = rnp->qsmaskinit;
 | |
| 	cpumask_var_t cm;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!t)
 | |
| 		return;
 | |
| 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
 | |
| 		return;
 | |
| 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
 | |
| 		if ((mask & 0x1) && cpu != outgoingcpu)
 | |
| 			cpumask_set_cpu(cpu, cm);
 | |
| 	if (cpumask_weight(cm) == 0) {
 | |
| 		cpumask_setall(cm);
 | |
| 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
 | |
| 			cpumask_clear_cpu(cpu, cm);
 | |
| 		WARN_ON_ONCE(cpumask_weight(cm) == 0);
 | |
| 	}
 | |
| 	set_cpus_allowed_ptr(t, cm);
 | |
| 	free_cpumask_var(cm);
 | |
| }
 | |
| 
 | |
| static struct smp_hotplug_thread rcu_cpu_thread_spec = {
 | |
| 	.store			= &rcu_cpu_kthread_task,
 | |
| 	.thread_should_run	= rcu_cpu_kthread_should_run,
 | |
| 	.thread_fn		= rcu_cpu_kthread,
 | |
| 	.thread_comm		= "rcuc/%u",
 | |
| 	.setup			= rcu_cpu_kthread_setup,
 | |
| 	.park			= rcu_cpu_kthread_park,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Spawn all kthreads -- called as soon as the scheduler is running.
 | |
|  */
 | |
| static int __init rcu_spawn_kthreads(void)
 | |
| {
 | |
| 	struct rcu_node *rnp;
 | |
| 	int cpu;
 | |
| 
 | |
| 	rcu_scheduler_fully_active = 1;
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		per_cpu(rcu_cpu_has_work, cpu) = 0;
 | |
| 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
 | |
| 	rnp = rcu_get_root(rcu_state);
 | |
| 	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
 | |
| 	if (NUM_RCU_NODES > 1) {
 | |
| 		rcu_for_each_leaf_node(rcu_state, rnp)
 | |
| 			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(rcu_spawn_kthreads);
 | |
| 
 | |
| static void rcu_prepare_kthreads(int cpu)
 | |
| {
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
 | |
| 	struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
 | |
| 	if (rcu_scheduler_fully_active)
 | |
| 		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_BOOST */
 | |
| 
 | |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
 | |
| {
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| }
 | |
| 
 | |
| static void invoke_rcu_callbacks_kthread(void)
 | |
| {
 | |
| 	WARN_ON_ONCE(1);
 | |
| }
 | |
| 
 | |
| static bool rcu_is_callbacks_kthread(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int __init rcu_scheduler_really_started(void)
 | |
| {
 | |
| 	rcu_scheduler_fully_active = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(rcu_scheduler_really_started);
 | |
| 
 | |
| static void rcu_prepare_kthreads(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_BOOST */
 | |
| 
 | |
| #if !defined(CONFIG_RCU_FAST_NO_HZ)
 | |
| 
 | |
| /*
 | |
|  * Check to see if any future RCU-related work will need to be done
 | |
|  * by the current CPU, even if none need be done immediately, returning
 | |
|  * 1 if so.  This function is part of the RCU implementation; it is -not-
 | |
|  * an exported member of the RCU API.
 | |
|  *
 | |
|  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 | |
|  * any flavor of RCU.
 | |
|  */
 | |
| #ifndef CONFIG_RCU_NOCB_CPU_ALL
 | |
| int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
 | |
| {
 | |
| 	*delta_jiffies = ULONG_MAX;
 | |
| 	return rcu_cpu_has_callbacks(cpu, NULL);
 | |
| }
 | |
| #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
 | |
| 
 | |
| /*
 | |
|  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 | |
|  * after it.
 | |
|  */
 | |
| static void rcu_cleanup_after_idle(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
 | |
|  * is nothing.
 | |
|  */
 | |
| static void rcu_prepare_for_idle(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Don't bother keeping a running count of the number of RCU callbacks
 | |
|  * posted because CONFIG_RCU_FAST_NO_HZ=n.
 | |
|  */
 | |
| static void rcu_idle_count_callbacks_posted(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
 | |
| 
 | |
| /*
 | |
|  * This code is invoked when a CPU goes idle, at which point we want
 | |
|  * to have the CPU do everything required for RCU so that it can enter
 | |
|  * the energy-efficient dyntick-idle mode.  This is handled by a
 | |
|  * state machine implemented by rcu_prepare_for_idle() below.
 | |
|  *
 | |
|  * The following three proprocessor symbols control this state machine:
 | |
|  *
 | |
|  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 | |
|  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 | |
|  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 | |
|  *	benchmarkers who might otherwise be tempted to set this to a large
 | |
|  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 | |
|  *	system.  And if you are -that- concerned about energy efficiency,
 | |
|  *	just power the system down and be done with it!
 | |
|  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 | |
|  *	permitted to sleep in dyntick-idle mode with only lazy RCU
 | |
|  *	callbacks pending.  Setting this too high can OOM your system.
 | |
|  *
 | |
|  * The values below work well in practice.  If future workloads require
 | |
|  * adjustment, they can be converted into kernel config parameters, though
 | |
|  * making the state machine smarter might be a better option.
 | |
|  */
 | |
| #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
 | |
| #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
 | |
| 
 | |
| static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
 | |
| module_param(rcu_idle_gp_delay, int, 0644);
 | |
| static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
 | |
| module_param(rcu_idle_lazy_gp_delay, int, 0644);
 | |
| 
 | |
| extern int tick_nohz_active;
 | |
| 
 | |
| /*
 | |
|  * Try to advance callbacks for all flavors of RCU on the current CPU, but
 | |
|  * only if it has been awhile since the last time we did so.  Afterwards,
 | |
|  * if there are any callbacks ready for immediate invocation, return true.
 | |
|  */
 | |
| static bool __maybe_unused rcu_try_advance_all_cbs(void)
 | |
| {
 | |
| 	bool cbs_ready = false;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 	struct rcu_node *rnp;
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	/* Exit early if we advanced recently. */
 | |
| 	if (jiffies == rdtp->last_advance_all)
 | |
| 		return 0;
 | |
| 	rdtp->last_advance_all = jiffies;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		rdp = this_cpu_ptr(rsp->rda);
 | |
| 		rnp = rdp->mynode;
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't bother checking unless a grace period has
 | |
| 		 * completed since we last checked and there are
 | |
| 		 * callbacks not yet ready to invoke.
 | |
| 		 */
 | |
| 		if (rdp->completed != rnp->completed &&
 | |
| 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
 | |
| 			note_gp_changes(rsp, rdp);
 | |
| 
 | |
| 		if (cpu_has_callbacks_ready_to_invoke(rdp))
 | |
| 			cbs_ready = true;
 | |
| 	}
 | |
| 	return cbs_ready;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 | |
|  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 | |
|  * caller to set the timeout based on whether or not there are non-lazy
 | |
|  * callbacks.
 | |
|  *
 | |
|  * The caller must have disabled interrupts.
 | |
|  */
 | |
| #ifndef CONFIG_RCU_NOCB_CPU_ALL
 | |
| int rcu_needs_cpu(int cpu, unsigned long *dj)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 | |
| 
 | |
| 	/* Snapshot to detect later posting of non-lazy callback. */
 | |
| 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
 | |
| 
 | |
| 	/* If no callbacks, RCU doesn't need the CPU. */
 | |
| 	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
 | |
| 		*dj = ULONG_MAX;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Attempt to advance callbacks. */
 | |
| 	if (rcu_try_advance_all_cbs()) {
 | |
| 		/* Some ready to invoke, so initiate later invocation. */
 | |
| 		invoke_rcu_core();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	rdtp->last_accelerate = jiffies;
 | |
| 
 | |
| 	/* Request timer delay depending on laziness, and round. */
 | |
| 	if (!rdtp->all_lazy) {
 | |
| 		*dj = round_up(rcu_idle_gp_delay + jiffies,
 | |
| 			       rcu_idle_gp_delay) - jiffies;
 | |
| 	} else {
 | |
| 		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
 | |
| 
 | |
| /*
 | |
|  * Prepare a CPU for idle from an RCU perspective.  The first major task
 | |
|  * is to sense whether nohz mode has been enabled or disabled via sysfs.
 | |
|  * The second major task is to check to see if a non-lazy callback has
 | |
|  * arrived at a CPU that previously had only lazy callbacks.  The third
 | |
|  * major task is to accelerate (that is, assign grace-period numbers to)
 | |
|  * any recently arrived callbacks.
 | |
|  *
 | |
|  * The caller must have disabled interrupts.
 | |
|  */
 | |
| static void rcu_prepare_for_idle(int cpu)
 | |
| {
 | |
| #ifndef CONFIG_RCU_NOCB_CPU_ALL
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 | |
| 	struct rcu_node *rnp;
 | |
| 	struct rcu_state *rsp;
 | |
| 	int tne;
 | |
| 
 | |
| 	/* Handle nohz enablement switches conservatively. */
 | |
| 	tne = ACCESS_ONCE(tick_nohz_active);
 | |
| 	if (tne != rdtp->tick_nohz_enabled_snap) {
 | |
| 		if (rcu_cpu_has_callbacks(cpu, NULL))
 | |
| 			invoke_rcu_core(); /* force nohz to see update. */
 | |
| 		rdtp->tick_nohz_enabled_snap = tne;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!tne)
 | |
| 		return;
 | |
| 
 | |
| 	/* If this is a no-CBs CPU, no callbacks, just return. */
 | |
| 	if (rcu_is_nocb_cpu(cpu))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If a non-lazy callback arrived at a CPU having only lazy
 | |
| 	 * callbacks, invoke RCU core for the side-effect of recalculating
 | |
| 	 * idle duration on re-entry to idle.
 | |
| 	 */
 | |
| 	if (rdtp->all_lazy &&
 | |
| 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
 | |
| 		rdtp->all_lazy = false;
 | |
| 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
 | |
| 		invoke_rcu_core();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have not yet accelerated this jiffy, accelerate all
 | |
| 	 * callbacks on this CPU.
 | |
| 	 */
 | |
| 	if (rdtp->last_accelerate == jiffies)
 | |
| 		return;
 | |
| 	rdtp->last_accelerate = jiffies;
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 		if (!*rdp->nxttail[RCU_DONE_TAIL])
 | |
| 			continue;
 | |
| 		rnp = rdp->mynode;
 | |
| 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
 | |
| 		smp_mb__after_unlock_lock();
 | |
| 		rcu_accelerate_cbs(rsp, rnp, rdp);
 | |
| 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
 | |
| 	}
 | |
| #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean up for exit from idle.  Attempt to advance callbacks based on
 | |
|  * any grace periods that elapsed while the CPU was idle, and if any
 | |
|  * callbacks are now ready to invoke, initiate invocation.
 | |
|  */
 | |
| static void rcu_cleanup_after_idle(int cpu)
 | |
| {
 | |
| #ifndef CONFIG_RCU_NOCB_CPU_ALL
 | |
| 	if (rcu_is_nocb_cpu(cpu))
 | |
| 		return;
 | |
| 	if (rcu_try_advance_all_cbs())
 | |
| 		invoke_rcu_core();
 | |
| #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Keep a running count of the number of non-lazy callbacks posted
 | |
|  * on this CPU.  This running counter (which is never decremented) allows
 | |
|  * rcu_prepare_for_idle() to detect when something out of the idle loop
 | |
|  * posts a callback, even if an equal number of callbacks are invoked.
 | |
|  * Of course, callbacks should only be posted from within a trace event
 | |
|  * designed to be called from idle or from within RCU_NONIDLE().
 | |
|  */
 | |
| static void rcu_idle_count_callbacks_posted(void)
 | |
| {
 | |
| 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Data for flushing lazy RCU callbacks at OOM time.
 | |
|  */
 | |
| static atomic_t oom_callback_count;
 | |
| static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
 | |
| 
 | |
| /*
 | |
|  * RCU OOM callback -- decrement the outstanding count and deliver the
 | |
|  * wake-up if we are the last one.
 | |
|  */
 | |
| static void rcu_oom_callback(struct rcu_head *rhp)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&oom_callback_count))
 | |
| 		wake_up(&oom_callback_wq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Post an rcu_oom_notify callback on the current CPU if it has at
 | |
|  * least one lazy callback.  This will unnecessarily post callbacks
 | |
|  * to CPUs that already have a non-lazy callback at the end of their
 | |
|  * callback list, but this is an infrequent operation, so accept some
 | |
|  * extra overhead to keep things simple.
 | |
|  */
 | |
| static void rcu_oom_notify_cpu(void *unused)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 	struct rcu_data *rdp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		rdp = __this_cpu_ptr(rsp->rda);
 | |
| 		if (rdp->qlen_lazy != 0) {
 | |
| 			atomic_inc(&oom_callback_count);
 | |
| 			rsp->call(&rdp->oom_head, rcu_oom_callback);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If low on memory, ensure that each CPU has a non-lazy callback.
 | |
|  * This will wake up CPUs that have only lazy callbacks, in turn
 | |
|  * ensuring that they free up the corresponding memory in a timely manner.
 | |
|  * Because an uncertain amount of memory will be freed in some uncertain
 | |
|  * timeframe, we do not claim to have freed anything.
 | |
|  */
 | |
| static int rcu_oom_notify(struct notifier_block *self,
 | |
| 			  unsigned long notused, void *nfreed)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* Wait for callbacks from earlier instance to complete. */
 | |
| 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
 | |
| 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent premature wakeup: ensure that all increments happen
 | |
| 	 * before there is a chance of the counter reaching zero.
 | |
| 	 */
 | |
| 	atomic_set(&oom_callback_count, 1);
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	/* Unconditionally decrement: no need to wake ourselves up. */
 | |
| 	atomic_dec(&oom_callback_count);
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block rcu_oom_nb = {
 | |
| 	.notifier_call = rcu_oom_notify
 | |
| };
 | |
| 
 | |
| static int __init rcu_register_oom_notifier(void)
 | |
| {
 | |
| 	register_oom_notifier(&rcu_oom_nb);
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(rcu_register_oom_notifier);
 | |
| 
 | |
| #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
 | |
| 
 | |
| #ifdef CONFIG_RCU_CPU_STALL_INFO
 | |
| 
 | |
| #ifdef CONFIG_RCU_FAST_NO_HZ
 | |
| 
 | |
| static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 | |
| 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
 | |
| 
 | |
| 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
 | |
| 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
 | |
| 		ulong2long(nlpd),
 | |
| 		rdtp->all_lazy ? 'L' : '.',
 | |
| 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
 | |
| 
 | |
| static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
 | |
| {
 | |
| 	*cp = '\0';
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
 | |
| 
 | |
| /* Initiate the stall-info list. */
 | |
| static void print_cpu_stall_info_begin(void)
 | |
| {
 | |
| 	pr_cont("\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print out diagnostic information for the specified stalled CPU.
 | |
|  *
 | |
|  * If the specified CPU is aware of the current RCU grace period
 | |
|  * (flavor specified by rsp), then print the number of scheduling
 | |
|  * clock interrupts the CPU has taken during the time that it has
 | |
|  * been aware.  Otherwise, print the number of RCU grace periods
 | |
|  * that this CPU is ignorant of, for example, "1" if the CPU was
 | |
|  * aware of the previous grace period.
 | |
|  *
 | |
|  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 | |
|  */
 | |
| static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
 | |
| {
 | |
| 	char fast_no_hz[72];
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 	struct rcu_dynticks *rdtp = rdp->dynticks;
 | |
| 	char *ticks_title;
 | |
| 	unsigned long ticks_value;
 | |
| 
 | |
| 	if (rsp->gpnum == rdp->gpnum) {
 | |
| 		ticks_title = "ticks this GP";
 | |
| 		ticks_value = rdp->ticks_this_gp;
 | |
| 	} else {
 | |
| 		ticks_title = "GPs behind";
 | |
| 		ticks_value = rsp->gpnum - rdp->gpnum;
 | |
| 	}
 | |
| 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
 | |
| 	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
 | |
| 	       cpu, ticks_value, ticks_title,
 | |
| 	       atomic_read(&rdtp->dynticks) & 0xfff,
 | |
| 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
 | |
| 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
 | |
| 	       fast_no_hz);
 | |
| }
 | |
| 
 | |
| /* Terminate the stall-info list. */
 | |
| static void print_cpu_stall_info_end(void)
 | |
| {
 | |
| 	pr_err("\t");
 | |
| }
 | |
| 
 | |
| /* Zero ->ticks_this_gp for all flavors of RCU. */
 | |
| static void zero_cpu_stall_ticks(struct rcu_data *rdp)
 | |
| {
 | |
| 	rdp->ticks_this_gp = 0;
 | |
| 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
 | |
| }
 | |
| 
 | |
| /* Increment ->ticks_this_gp for all flavors of RCU. */
 | |
| static void increment_cpu_stall_ticks(void)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp)
 | |
| 		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
 | |
| 
 | |
| static void print_cpu_stall_info_begin(void)
 | |
| {
 | |
| 	pr_cont(" {");
 | |
| }
 | |
| 
 | |
| static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
 | |
| {
 | |
| 	pr_cont(" %d", cpu);
 | |
| }
 | |
| 
 | |
| static void print_cpu_stall_info_end(void)
 | |
| {
 | |
| 	pr_cont("} ");
 | |
| }
 | |
| 
 | |
| static void zero_cpu_stall_ticks(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void increment_cpu_stall_ticks(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
 | |
| 
 | |
| #ifdef CONFIG_RCU_NOCB_CPU
 | |
| 
 | |
| /*
 | |
|  * Offload callback processing from the boot-time-specified set of CPUs
 | |
|  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 | |
|  * kthread created that pulls the callbacks from the corresponding CPU,
 | |
|  * waits for a grace period to elapse, and invokes the callbacks.
 | |
|  * The no-CBs CPUs do a wake_up() on their kthread when they insert
 | |
|  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 | |
|  * has been specified, in which case each kthread actively polls its
 | |
|  * CPU.  (Which isn't so great for energy efficiency, but which does
 | |
|  * reduce RCU's overhead on that CPU.)
 | |
|  *
 | |
|  * This is intended to be used in conjunction with Frederic Weisbecker's
 | |
|  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 | |
|  * running CPU-bound user-mode computations.
 | |
|  *
 | |
|  * Offloading of callback processing could also in theory be used as
 | |
|  * an energy-efficiency measure because CPUs with no RCU callbacks
 | |
|  * queued are more aggressive about entering dyntick-idle mode.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
 | |
| static int __init rcu_nocb_setup(char *str)
 | |
| {
 | |
| 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
 | |
| 	have_rcu_nocb_mask = true;
 | |
| 	cpulist_parse(str, rcu_nocb_mask);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("rcu_nocbs=", rcu_nocb_setup);
 | |
| 
 | |
| static int __init parse_rcu_nocb_poll(char *arg)
 | |
| {
 | |
| 	rcu_nocb_poll = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
 | |
| 
 | |
| /*
 | |
|  * Do any no-CBs CPUs need another grace period?
 | |
|  *
 | |
|  * Interrupts must be disabled.  If the caller does not hold the root
 | |
|  * rnp_node structure's ->lock, the results are advisory only.
 | |
|  */
 | |
| static int rcu_nocb_needs_gp(struct rcu_state *rsp)
 | |
| {
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 | |
|  * grace period.
 | |
|  */
 | |
| static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
 | |
| {
 | |
| 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the root rcu_node structure's ->need_future_gp field
 | |
|  * based on the sum of those of all rcu_node structures.  This does
 | |
|  * double-count the root rcu_node structure's requests, but this
 | |
|  * is necessary to handle the possibility of a rcu_nocb_kthread()
 | |
|  * having awakened during the time that the rcu_node structures
 | |
|  * were being updated for the end of the previous grace period.
 | |
|  */
 | |
| static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
 | |
| {
 | |
| 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
 | |
| }
 | |
| 
 | |
| static void rcu_init_one_nocb(struct rcu_node *rnp)
 | |
| {
 | |
| 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
 | |
| 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_RCU_NOCB_CPU_ALL
 | |
| /* Is the specified CPU a no-CPUs CPU? */
 | |
| bool rcu_is_nocb_cpu(int cpu)
 | |
| {
 | |
| 	if (have_rcu_nocb_mask)
 | |
| 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
 | |
| 	return false;
 | |
| }
 | |
| #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
 | |
| 
 | |
| /*
 | |
|  * Enqueue the specified string of rcu_head structures onto the specified
 | |
|  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 | |
|  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 | |
|  * counts are supplied by rhcount and rhcount_lazy.
 | |
|  *
 | |
|  * If warranted, also wake up the kthread servicing this CPUs queues.
 | |
|  */
 | |
| static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
 | |
| 				    struct rcu_head *rhp,
 | |
| 				    struct rcu_head **rhtp,
 | |
| 				    int rhcount, int rhcount_lazy,
 | |
| 				    unsigned long flags)
 | |
| {
 | |
| 	int len;
 | |
| 	struct rcu_head **old_rhpp;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	/* Enqueue the callback on the nocb list and update counts. */
 | |
| 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
 | |
| 	ACCESS_ONCE(*old_rhpp) = rhp;
 | |
| 	atomic_long_add(rhcount, &rdp->nocb_q_count);
 | |
| 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
 | |
| 
 | |
| 	/* If we are not being polled and there is a kthread, awaken it ... */
 | |
| 	t = ACCESS_ONCE(rdp->nocb_kthread);
 | |
| 	if (rcu_nocb_poll || !t) {
 | |
| 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
 | |
| 				    TPS("WakeNotPoll"));
 | |
| 		return;
 | |
| 	}
 | |
| 	len = atomic_long_read(&rdp->nocb_q_count);
 | |
| 	if (old_rhpp == &rdp->nocb_head) {
 | |
| 		if (!irqs_disabled_flags(flags)) {
 | |
| 			wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
 | |
| 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
 | |
| 					    TPS("WakeEmpty"));
 | |
| 		} else {
 | |
| 			rdp->nocb_defer_wakeup = true;
 | |
| 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
 | |
| 					    TPS("WakeEmptyIsDeferred"));
 | |
| 		}
 | |
| 		rdp->qlen_last_fqs_check = 0;
 | |
| 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
 | |
| 		wake_up_process(t); /* ... or if many callbacks queued. */
 | |
| 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
 | |
| 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
 | |
| 	} else {
 | |
| 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a helper for __call_rcu(), which invokes this when the normal
 | |
|  * callback queue is inoperable.  If this is not a no-CBs CPU, this
 | |
|  * function returns failure back to __call_rcu(), which can complain
 | |
|  * appropriately.
 | |
|  *
 | |
|  * Otherwise, this function queues the callback where the corresponding
 | |
|  * "rcuo" kthread can find it.
 | |
|  */
 | |
| static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 			    bool lazy, unsigned long flags)
 | |
| {
 | |
| 
 | |
| 	if (!rcu_is_nocb_cpu(rdp->cpu))
 | |
| 		return 0;
 | |
| 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
 | |
| 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
 | |
| 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
 | |
| 					 (unsigned long)rhp->func,
 | |
| 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
 | |
| 					 -atomic_long_read(&rdp->nocb_q_count));
 | |
| 	else
 | |
| 		trace_rcu_callback(rdp->rsp->name, rhp,
 | |
| 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
 | |
| 				   -atomic_long_read(&rdp->nocb_q_count));
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 | |
|  * not a no-CBs CPU.
 | |
|  */
 | |
| static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
 | |
| 						     struct rcu_data *rdp,
 | |
| 						     unsigned long flags)
 | |
| {
 | |
| 	long ql = rsp->qlen;
 | |
| 	long qll = rsp->qlen_lazy;
 | |
| 
 | |
| 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
 | |
| 	if (!rcu_is_nocb_cpu(smp_processor_id()))
 | |
| 		return 0;
 | |
| 	rsp->qlen = 0;
 | |
| 	rsp->qlen_lazy = 0;
 | |
| 
 | |
| 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
 | |
| 	if (rsp->orphan_donelist != NULL) {
 | |
| 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
 | |
| 					rsp->orphan_donetail, ql, qll, flags);
 | |
| 		ql = qll = 0;
 | |
| 		rsp->orphan_donelist = NULL;
 | |
| 		rsp->orphan_donetail = &rsp->orphan_donelist;
 | |
| 	}
 | |
| 	if (rsp->orphan_nxtlist != NULL) {
 | |
| 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
 | |
| 					rsp->orphan_nxttail, ql, qll, flags);
 | |
| 		ql = qll = 0;
 | |
| 		rsp->orphan_nxtlist = NULL;
 | |
| 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If necessary, kick off a new grace period, and either way wait
 | |
|  * for a subsequent grace period to complete.
 | |
|  */
 | |
| static void rcu_nocb_wait_gp(struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long c;
 | |
| 	bool d;
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	smp_mb__after_unlock_lock();
 | |
| 	c = rcu_start_future_gp(rnp, rdp);
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the grace period.  Do so interruptibly to avoid messing
 | |
| 	 * up the load average.
 | |
| 	 */
 | |
| 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
 | |
| 	for (;;) {
 | |
| 		wait_event_interruptible(
 | |
| 			rnp->nocb_gp_wq[c & 0x1],
 | |
| 			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
 | |
| 		if (likely(d))
 | |
| 			break;
 | |
| 		flush_signals(current);
 | |
| 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
 | |
| 	}
 | |
| 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
 | |
| 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
 | |
|  * callbacks queued by the corresponding no-CBs CPU.
 | |
|  */
 | |
| static int rcu_nocb_kthread(void *arg)
 | |
| {
 | |
| 	int c, cl;
 | |
| 	bool firsttime = 1;
 | |
| 	struct rcu_head *list;
 | |
| 	struct rcu_head *next;
 | |
| 	struct rcu_head **tail;
 | |
| 	struct rcu_data *rdp = arg;
 | |
| 
 | |
| 	/* Each pass through this loop invokes one batch of callbacks */
 | |
| 	for (;;) {
 | |
| 		/* If not polling, wait for next batch of callbacks. */
 | |
| 		if (!rcu_nocb_poll) {
 | |
| 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
 | |
| 					    TPS("Sleep"));
 | |
| 			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
 | |
| 			/* Memory barrier provide by xchg() below. */
 | |
| 		} else if (firsttime) {
 | |
| 			firsttime = 0;
 | |
| 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
 | |
| 					    TPS("Poll"));
 | |
| 		}
 | |
| 		list = ACCESS_ONCE(rdp->nocb_head);
 | |
| 		if (!list) {
 | |
| 			if (!rcu_nocb_poll)
 | |
| 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
 | |
| 						    TPS("WokeEmpty"));
 | |
| 			schedule_timeout_interruptible(1);
 | |
| 			flush_signals(current);
 | |
| 			continue;
 | |
| 		}
 | |
| 		firsttime = 1;
 | |
| 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
 | |
| 				    TPS("WokeNonEmpty"));
 | |
| 
 | |
| 		/*
 | |
| 		 * Extract queued callbacks, update counts, and wait
 | |
| 		 * for a grace period to elapse.
 | |
| 		 */
 | |
| 		ACCESS_ONCE(rdp->nocb_head) = NULL;
 | |
| 		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
 | |
| 		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
 | |
| 		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
 | |
| 		ACCESS_ONCE(rdp->nocb_p_count) += c;
 | |
| 		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
 | |
| 		rcu_nocb_wait_gp(rdp);
 | |
| 
 | |
| 		/* Each pass through the following loop invokes a callback. */
 | |
| 		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
 | |
| 		c = cl = 0;
 | |
| 		while (list) {
 | |
| 			next = list->next;
 | |
| 			/* Wait for enqueuing to complete, if needed. */
 | |
| 			while (next == NULL && &list->next != tail) {
 | |
| 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
 | |
| 						    TPS("WaitQueue"));
 | |
| 				schedule_timeout_interruptible(1);
 | |
| 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
 | |
| 						    TPS("WokeQueue"));
 | |
| 				next = list->next;
 | |
| 			}
 | |
| 			debug_rcu_head_unqueue(list);
 | |
| 			local_bh_disable();
 | |
| 			if (__rcu_reclaim(rdp->rsp->name, list))
 | |
| 				cl++;
 | |
| 			c++;
 | |
| 			local_bh_enable();
 | |
| 			list = next;
 | |
| 		}
 | |
| 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
 | |
| 		ACCESS_ONCE(rdp->nocb_p_count) -= c;
 | |
| 		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
 | |
| 		rdp->n_nocbs_invoked += c;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Is a deferred wakeup of rcu_nocb_kthread() required? */
 | |
| static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
 | |
| {
 | |
| 	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
 | |
| }
 | |
| 
 | |
| /* Do a deferred wakeup of rcu_nocb_kthread(). */
 | |
| static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
 | |
| {
 | |
| 	if (!rcu_nocb_need_deferred_wakeup(rdp))
 | |
| 		return;
 | |
| 	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
 | |
| 	wake_up(&rdp->nocb_wq);
 | |
| 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
 | |
| }
 | |
| 
 | |
| /* Initialize per-rcu_data variables for no-CBs CPUs. */
 | |
| static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
 | |
| {
 | |
| 	rdp->nocb_tail = &rdp->nocb_head;
 | |
| 	init_waitqueue_head(&rdp->nocb_wq);
 | |
| }
 | |
| 
 | |
| /* Create a kthread for each RCU flavor for each no-CBs CPU. */
 | |
| static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	if (rcu_nocb_mask == NULL)
 | |
| 		return;
 | |
| 	for_each_cpu(cpu, rcu_nocb_mask) {
 | |
| 		rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 		t = kthread_run(rcu_nocb_kthread, rdp,
 | |
| 				"rcuo%c/%d", rsp->abbr, cpu);
 | |
| 		BUG_ON(IS_ERR(t));
 | |
| 		ACCESS_ONCE(rdp->nocb_kthread) = t;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
 | |
| static bool init_nocb_callback_list(struct rcu_data *rdp)
 | |
| {
 | |
| 	if (rcu_nocb_mask == NULL ||
 | |
| 	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
 | |
| 		return false;
 | |
| 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| 
 | |
| static int rcu_nocb_needs_gp(struct rcu_state *rsp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_init_one_nocb(struct rcu_node *rnp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 			    bool lazy, unsigned long flags)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
 | |
| 						     struct rcu_data *rdp,
 | |
| 						     unsigned long flags)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static bool init_nocb_callback_list(struct rcu_data *rdp)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| 
 | |
| /*
 | |
|  * An adaptive-ticks CPU can potentially execute in kernel mode for an
 | |
|  * arbitrarily long period of time with the scheduling-clock tick turned
 | |
|  * off.  RCU will be paying attention to this CPU because it is in the
 | |
|  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 | |
|  * machine because the scheduling-clock tick has been disabled.  Therefore,
 | |
|  * if an adaptive-ticks CPU is failing to respond to the current grace
 | |
|  * period and has not be idle from an RCU perspective, kick it.
 | |
|  */
 | |
| static void rcu_kick_nohz_cpu(int cpu)
 | |
| {
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 	if (tick_nohz_full_cpu(cpu))
 | |
| 		smp_send_reschedule(cpu);
 | |
| #endif /* #ifdef CONFIG_NO_HZ_FULL */
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 | |
| 
 | |
| /*
 | |
|  * Define RCU flavor that holds sysidle state.  This needs to be the
 | |
|  * most active flavor of RCU.
 | |
|  */
 | |
| #ifdef CONFIG_PREEMPT_RCU
 | |
| static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
 | |
| #else /* #ifdef CONFIG_PREEMPT_RCU */
 | |
| static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
 | |
| #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 | |
| 
 | |
| static int full_sysidle_state;		/* Current system-idle state. */
 | |
| #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
 | |
| #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
 | |
| #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
 | |
| #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
 | |
| #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
 | |
| 
 | |
| /*
 | |
|  * Invoked to note exit from irq or task transition to idle.  Note that
 | |
|  * usermode execution does -not- count as idle here!  After all, we want
 | |
|  * to detect full-system idle states, not RCU quiescent states and grace
 | |
|  * periods.  The caller must have disabled interrupts.
 | |
|  */
 | |
| static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
 | |
| {
 | |
| 	unsigned long j;
 | |
| 
 | |
| 	/* Adjust nesting, check for fully idle. */
 | |
| 	if (irq) {
 | |
| 		rdtp->dynticks_idle_nesting--;
 | |
| 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
 | |
| 		if (rdtp->dynticks_idle_nesting != 0)
 | |
| 			return;  /* Still not fully idle. */
 | |
| 	} else {
 | |
| 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
 | |
| 		    DYNTICK_TASK_NEST_VALUE) {
 | |
| 			rdtp->dynticks_idle_nesting = 0;
 | |
| 		} else {
 | |
| 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
 | |
| 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
 | |
| 			return;  /* Still not fully idle. */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Record start of fully idle period. */
 | |
| 	j = jiffies;
 | |
| 	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
 | |
| 	smp_mb__before_atomic_inc();
 | |
| 	atomic_inc(&rdtp->dynticks_idle);
 | |
| 	smp_mb__after_atomic_inc();
 | |
| 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unconditionally force exit from full system-idle state.  This is
 | |
|  * invoked when a normal CPU exits idle, but must be called separately
 | |
|  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 | |
|  * is that the timekeeping CPU is permitted to take scheduling-clock
 | |
|  * interrupts while the system is in system-idle state, and of course
 | |
|  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 | |
|  * interrupt from any other type of interrupt.
 | |
|  */
 | |
| void rcu_sysidle_force_exit(void)
 | |
| {
 | |
| 	int oldstate = ACCESS_ONCE(full_sysidle_state);
 | |
| 	int newoldstate;
 | |
| 
 | |
| 	/*
 | |
| 	 * Each pass through the following loop attempts to exit full
 | |
| 	 * system-idle state.  If contention proves to be a problem,
 | |
| 	 * a trylock-based contention tree could be used here.
 | |
| 	 */
 | |
| 	while (oldstate > RCU_SYSIDLE_SHORT) {
 | |
| 		newoldstate = cmpxchg(&full_sysidle_state,
 | |
| 				      oldstate, RCU_SYSIDLE_NOT);
 | |
| 		if (oldstate == newoldstate &&
 | |
| 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
 | |
| 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
 | |
| 			return; /* We cleared it, done! */
 | |
| 		}
 | |
| 		oldstate = newoldstate;
 | |
| 	}
 | |
| 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoked to note entry to irq or task transition from idle.  Note that
 | |
|  * usermode execution does -not- count as idle here!  The caller must
 | |
|  * have disabled interrupts.
 | |
|  */
 | |
| static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
 | |
| {
 | |
| 	/* Adjust nesting, check for already non-idle. */
 | |
| 	if (irq) {
 | |
| 		rdtp->dynticks_idle_nesting++;
 | |
| 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
 | |
| 		if (rdtp->dynticks_idle_nesting != 1)
 | |
| 			return; /* Already non-idle. */
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Allow for irq misnesting.  Yes, it really is possible
 | |
| 		 * to enter an irq handler then never leave it, and maybe
 | |
| 		 * also vice versa.  Handle both possibilities.
 | |
| 		 */
 | |
| 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
 | |
| 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
 | |
| 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
 | |
| 			return; /* Already non-idle. */
 | |
| 		} else {
 | |
| 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Record end of idle period. */
 | |
| 	smp_mb__before_atomic_inc();
 | |
| 	atomic_inc(&rdtp->dynticks_idle);
 | |
| 	smp_mb__after_atomic_inc();
 | |
| 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are the timekeeping CPU, we are permitted to be non-idle
 | |
| 	 * during a system-idle state.  This must be the case, because
 | |
| 	 * the timekeeping CPU has to take scheduling-clock interrupts
 | |
| 	 * during the time that the system is transitioning to full
 | |
| 	 * system-idle state.  This means that the timekeeping CPU must
 | |
| 	 * invoke rcu_sysidle_force_exit() directly if it does anything
 | |
| 	 * more than take a scheduling-clock interrupt.
 | |
| 	 */
 | |
| 	if (smp_processor_id() == tick_do_timer_cpu)
 | |
| 		return;
 | |
| 
 | |
| 	/* Update system-idle state: We are clearly no longer fully idle! */
 | |
| 	rcu_sysidle_force_exit();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if the current CPU is idle.  Note that usermode execution
 | |
|  * does not count as idle.  The caller must have disabled interrupts.
 | |
|  */
 | |
| static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
 | |
| 				  unsigned long *maxj)
 | |
| {
 | |
| 	int cur;
 | |
| 	unsigned long j;
 | |
| 	struct rcu_dynticks *rdtp = rdp->dynticks;
 | |
| 
 | |
| 	/*
 | |
| 	 * If some other CPU has already reported non-idle, if this is
 | |
| 	 * not the flavor of RCU that tracks sysidle state, or if this
 | |
| 	 * is an offline or the timekeeping CPU, nothing to do.
 | |
| 	 */
 | |
| 	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
 | |
| 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
 | |
| 		return;
 | |
| 	if (rcu_gp_in_progress(rdp->rsp))
 | |
| 		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
 | |
| 
 | |
| 	/* Pick up current idle and NMI-nesting counter and check. */
 | |
| 	cur = atomic_read(&rdtp->dynticks_idle);
 | |
| 	if (cur & 0x1) {
 | |
| 		*isidle = false; /* We are not idle! */
 | |
| 		return;
 | |
| 	}
 | |
| 	smp_mb(); /* Read counters before timestamps. */
 | |
| 
 | |
| 	/* Pick up timestamps. */
 | |
| 	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
 | |
| 	/* If this CPU entered idle more recently, update maxj timestamp. */
 | |
| 	if (ULONG_CMP_LT(*maxj, j))
 | |
| 		*maxj = j;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is this the flavor of RCU that is handling full-system idle?
 | |
|  */
 | |
| static bool is_sysidle_rcu_state(struct rcu_state *rsp)
 | |
| {
 | |
| 	return rsp == rcu_sysidle_state;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bind the grace-period kthread for the sysidle flavor of RCU to the
 | |
|  * timekeeping CPU.
 | |
|  */
 | |
| static void rcu_bind_gp_kthread(void)
 | |
| {
 | |
| 	int cpu = ACCESS_ONCE(tick_do_timer_cpu);
 | |
| 
 | |
| 	if (cpu < 0 || cpu >= nr_cpu_ids)
 | |
| 		return;
 | |
| 	if (raw_smp_processor_id() != cpu)
 | |
| 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a delay in jiffies based on the number of CPUs, rcu_node
 | |
|  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 | |
|  * systems more time to transition to full-idle state in order to
 | |
|  * avoid the cache thrashing that otherwise occur on the state variable.
 | |
|  * Really small systems (less than a couple of tens of CPUs) should
 | |
|  * instead use a single global atomically incremented counter, and later
 | |
|  * versions of this will automatically reconfigure themselves accordingly.
 | |
|  */
 | |
| static unsigned long rcu_sysidle_delay(void)
 | |
| {
 | |
| 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
 | |
| 		return 0;
 | |
| 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Advance the full-system-idle state.  This is invoked when all of
 | |
|  * the non-timekeeping CPUs are idle.
 | |
|  */
 | |
| static void rcu_sysidle(unsigned long j)
 | |
| {
 | |
| 	/* Check the current state. */
 | |
| 	switch (ACCESS_ONCE(full_sysidle_state)) {
 | |
| 	case RCU_SYSIDLE_NOT:
 | |
| 
 | |
| 		/* First time all are idle, so note a short idle period. */
 | |
| 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
 | |
| 		break;
 | |
| 
 | |
| 	case RCU_SYSIDLE_SHORT:
 | |
| 
 | |
| 		/*
 | |
| 		 * Idle for a bit, time to advance to next state?
 | |
| 		 * cmpxchg failure means race with non-idle, let them win.
 | |
| 		 */
 | |
| 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
 | |
| 			(void)cmpxchg(&full_sysidle_state,
 | |
| 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
 | |
| 		break;
 | |
| 
 | |
| 	case RCU_SYSIDLE_LONG:
 | |
| 
 | |
| 		/*
 | |
| 		 * Do an additional check pass before advancing to full.
 | |
| 		 * cmpxchg failure means race with non-idle, let them win.
 | |
| 		 */
 | |
| 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
 | |
| 			(void)cmpxchg(&full_sysidle_state,
 | |
| 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 | |
|  * back to the beginning.
 | |
|  */
 | |
| static void rcu_sysidle_cancel(void)
 | |
| {
 | |
| 	smp_mb();
 | |
| 	ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the sysidle state based on the results of a force-quiescent-state
 | |
|  * scan of the CPUs' dyntick-idle state.
 | |
|  */
 | |
| static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
 | |
| 			       unsigned long maxj, bool gpkt)
 | |
| {
 | |
| 	if (rsp != rcu_sysidle_state)
 | |
| 		return;  /* Wrong flavor, ignore. */
 | |
| 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
 | |
| 		return;  /* Running state machine from timekeeping CPU. */
 | |
| 	if (isidle)
 | |
| 		rcu_sysidle(maxj);    /* More idle! */
 | |
| 	else
 | |
| 		rcu_sysidle_cancel(); /* Idle is over. */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper for rcu_sysidle_report() when called from the grace-period
 | |
|  * kthread's context.
 | |
|  */
 | |
| static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
 | |
| 				  unsigned long maxj)
 | |
| {
 | |
| 	rcu_sysidle_report(rsp, isidle, maxj, true);
 | |
| }
 | |
| 
 | |
| /* Callback and function for forcing an RCU grace period. */
 | |
| struct rcu_sysidle_head {
 | |
| 	struct rcu_head rh;
 | |
| 	int inuse;
 | |
| };
 | |
| 
 | |
| static void rcu_sysidle_cb(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct rcu_sysidle_head *rshp;
 | |
| 
 | |
| 	/*
 | |
| 	 * The following memory barrier is needed to replace the
 | |
| 	 * memory barriers that would normally be in the memory
 | |
| 	 * allocator.
 | |
| 	 */
 | |
| 	smp_mb();  /* grace period precedes setting inuse. */
 | |
| 
 | |
| 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
 | |
| 	ACCESS_ONCE(rshp->inuse) = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if the system is fully idle, other than the timekeeping CPU.
 | |
|  * The caller must have disabled interrupts.
 | |
|  */
 | |
| bool rcu_sys_is_idle(void)
 | |
| {
 | |
| 	static struct rcu_sysidle_head rsh;
 | |
| 	int rss = ACCESS_ONCE(full_sysidle_state);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Handle small-system case by doing a full scan of CPUs. */
 | |
| 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
 | |
| 		int oldrss = rss - 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * One pass to advance to each state up to _FULL.
 | |
| 		 * Give up if any pass fails to advance the state.
 | |
| 		 */
 | |
| 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
 | |
| 			int cpu;
 | |
| 			bool isidle = true;
 | |
| 			unsigned long maxj = jiffies - ULONG_MAX / 4;
 | |
| 			struct rcu_data *rdp;
 | |
| 
 | |
| 			/* Scan all the CPUs looking for nonidle CPUs. */
 | |
| 			for_each_possible_cpu(cpu) {
 | |
| 				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
 | |
| 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
 | |
| 				if (!isidle)
 | |
| 					break;
 | |
| 			}
 | |
| 			rcu_sysidle_report(rcu_sysidle_state,
 | |
| 					   isidle, maxj, false);
 | |
| 			oldrss = rss;
 | |
| 			rss = ACCESS_ONCE(full_sysidle_state);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If this is the first observation of an idle period, record it. */
 | |
| 	if (rss == RCU_SYSIDLE_FULL) {
 | |
| 		rss = cmpxchg(&full_sysidle_state,
 | |
| 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
 | |
| 		return rss == RCU_SYSIDLE_FULL;
 | |
| 	}
 | |
| 
 | |
| 	smp_mb(); /* ensure rss load happens before later caller actions. */
 | |
| 
 | |
| 	/* If already fully idle, tell the caller (in case of races). */
 | |
| 	if (rss == RCU_SYSIDLE_FULL_NOTED)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we aren't there yet, and a grace period is not in flight,
 | |
| 	 * initiate a grace period.  Either way, tell the caller that
 | |
| 	 * we are not there yet.  We use an xchg() rather than an assignment
 | |
| 	 * to make up for the memory barriers that would otherwise be
 | |
| 	 * provided by the memory allocator.
 | |
| 	 */
 | |
| 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
 | |
| 	    !rcu_gp_in_progress(rcu_sysidle_state) &&
 | |
| 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
 | |
| 		call_rcu(&rsh.rh, rcu_sysidle_cb);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize dynticks sysidle state for CPUs coming online.
 | |
|  */
 | |
| static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
 | |
| {
 | |
| 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 | |
| 
 | |
| static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
 | |
| 				  unsigned long *maxj)
 | |
| {
 | |
| }
 | |
| 
 | |
| static bool is_sysidle_rcu_state(struct rcu_state *rsp)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void rcu_bind_gp_kthread(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
 | |
| 				  unsigned long maxj)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 | |
| 
 | |
| /*
 | |
|  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 | |
|  * grace-period kthread will do force_quiescent_state() processing?
 | |
|  * The idea is to avoid waking up RCU core processing on such a
 | |
|  * CPU unless the grace period has extended for too long.
 | |
|  *
 | |
|  * This code relies on the fact that all NO_HZ_FULL CPUs are also
 | |
|  * CONFIG_RCU_NOCB_CPU CPUs.
 | |
|  */
 | |
| static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
 | |
| {
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 	if (tick_nohz_full_cpu(smp_processor_id()) &&
 | |
| 	    (!rcu_gp_in_progress(rsp) ||
 | |
| 	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
 | |
| 		return 1;
 | |
| #endif /* #ifdef CONFIG_NO_HZ_FULL */
 | |
| 	return 0;
 | |
| }
 |