 87de1cfdc5
			
		
	
	
	87de1cfdc5
	
	
	
		
			
			All of the RCU source files have the usual GPL header, which contains a long-obsolete postal address for FSF. To avoid the need to track the FSF office's movements, this commit substitutes the URL where GPL may be found. Reported-by: Greg KH <gregkh@linuxfoundation.org> Reported-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
		
			
				
	
	
		
			593 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			593 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 | |
|  * Internal non-public definitions.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, you can access it online at
 | |
|  * http://www.gnu.org/licenses/gpl-2.0.html.
 | |
|  *
 | |
|  * Copyright IBM Corporation, 2008
 | |
|  *
 | |
|  * Author: Ingo Molnar <mingo@elte.hu>
 | |
|  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/cache.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/seqlock.h>
 | |
| #include <linux/irq_work.h>
 | |
| 
 | |
| /*
 | |
|  * Define shape of hierarchy based on NR_CPUS, CONFIG_RCU_FANOUT, and
 | |
|  * CONFIG_RCU_FANOUT_LEAF.
 | |
|  * In theory, it should be possible to add more levels straightforwardly.
 | |
|  * In practice, this did work well going from three levels to four.
 | |
|  * Of course, your mileage may vary.
 | |
|  */
 | |
| #define MAX_RCU_LVLS 4
 | |
| #define RCU_FANOUT_1	      (CONFIG_RCU_FANOUT_LEAF)
 | |
| #define RCU_FANOUT_2	      (RCU_FANOUT_1 * CONFIG_RCU_FANOUT)
 | |
| #define RCU_FANOUT_3	      (RCU_FANOUT_2 * CONFIG_RCU_FANOUT)
 | |
| #define RCU_FANOUT_4	      (RCU_FANOUT_3 * CONFIG_RCU_FANOUT)
 | |
| 
 | |
| #if NR_CPUS <= RCU_FANOUT_1
 | |
| #  define RCU_NUM_LVLS	      1
 | |
| #  define NUM_RCU_LVL_0	      1
 | |
| #  define NUM_RCU_LVL_1	      (NR_CPUS)
 | |
| #  define NUM_RCU_LVL_2	      0
 | |
| #  define NUM_RCU_LVL_3	      0
 | |
| #  define NUM_RCU_LVL_4	      0
 | |
| #elif NR_CPUS <= RCU_FANOUT_2
 | |
| #  define RCU_NUM_LVLS	      2
 | |
| #  define NUM_RCU_LVL_0	      1
 | |
| #  define NUM_RCU_LVL_1	      DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
 | |
| #  define NUM_RCU_LVL_2	      (NR_CPUS)
 | |
| #  define NUM_RCU_LVL_3	      0
 | |
| #  define NUM_RCU_LVL_4	      0
 | |
| #elif NR_CPUS <= RCU_FANOUT_3
 | |
| #  define RCU_NUM_LVLS	      3
 | |
| #  define NUM_RCU_LVL_0	      1
 | |
| #  define NUM_RCU_LVL_1	      DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2)
 | |
| #  define NUM_RCU_LVL_2	      DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
 | |
| #  define NUM_RCU_LVL_3	      (NR_CPUS)
 | |
| #  define NUM_RCU_LVL_4	      0
 | |
| #elif NR_CPUS <= RCU_FANOUT_4
 | |
| #  define RCU_NUM_LVLS	      4
 | |
| #  define NUM_RCU_LVL_0	      1
 | |
| #  define NUM_RCU_LVL_1	      DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_3)
 | |
| #  define NUM_RCU_LVL_2	      DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2)
 | |
| #  define NUM_RCU_LVL_3	      DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
 | |
| #  define NUM_RCU_LVL_4	      (NR_CPUS)
 | |
| #else
 | |
| # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS"
 | |
| #endif /* #if (NR_CPUS) <= RCU_FANOUT_1 */
 | |
| 
 | |
| #define RCU_SUM (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3 + NUM_RCU_LVL_4)
 | |
| #define NUM_RCU_NODES (RCU_SUM - NR_CPUS)
 | |
| 
 | |
| extern int rcu_num_lvls;
 | |
| extern int rcu_num_nodes;
 | |
| 
 | |
| /*
 | |
|  * Dynticks per-CPU state.
 | |
|  */
 | |
| struct rcu_dynticks {
 | |
| 	long long dynticks_nesting; /* Track irq/process nesting level. */
 | |
| 				    /* Process level is worth LLONG_MAX/2. */
 | |
| 	int dynticks_nmi_nesting;   /* Track NMI nesting level. */
 | |
| 	atomic_t dynticks;	    /* Even value for idle, else odd. */
 | |
| #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 | |
| 	long long dynticks_idle_nesting;
 | |
| 				    /* irq/process nesting level from idle. */
 | |
| 	atomic_t dynticks_idle;	    /* Even value for idle, else odd. */
 | |
| 				    /*  "Idle" excludes userspace execution. */
 | |
| 	unsigned long dynticks_idle_jiffies;
 | |
| 				    /* End of last non-NMI non-idle period. */
 | |
| #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 | |
| #ifdef CONFIG_RCU_FAST_NO_HZ
 | |
| 	bool all_lazy;		    /* Are all CPU's CBs lazy? */
 | |
| 	unsigned long nonlazy_posted;
 | |
| 				    /* # times non-lazy CBs posted to CPU. */
 | |
| 	unsigned long nonlazy_posted_snap;
 | |
| 				    /* idle-period nonlazy_posted snapshot. */
 | |
| 	unsigned long last_accelerate;
 | |
| 				    /* Last jiffy CBs were accelerated. */
 | |
| 	unsigned long last_advance_all;
 | |
| 				    /* Last jiffy CBs were all advanced. */
 | |
| 	int tick_nohz_enabled_snap; /* Previously seen value from sysfs. */
 | |
| #endif /* #ifdef CONFIG_RCU_FAST_NO_HZ */
 | |
| };
 | |
| 
 | |
| /* RCU's kthread states for tracing. */
 | |
| #define RCU_KTHREAD_STOPPED  0
 | |
| #define RCU_KTHREAD_RUNNING  1
 | |
| #define RCU_KTHREAD_WAITING  2
 | |
| #define RCU_KTHREAD_OFFCPU   3
 | |
| #define RCU_KTHREAD_YIELDING 4
 | |
| #define RCU_KTHREAD_MAX      4
 | |
| 
 | |
| /*
 | |
|  * Definition for node within the RCU grace-period-detection hierarchy.
 | |
|  */
 | |
| struct rcu_node {
 | |
| 	raw_spinlock_t lock;	/* Root rcu_node's lock protects some */
 | |
| 				/*  rcu_state fields as well as following. */
 | |
| 	unsigned long gpnum;	/* Current grace period for this node. */
 | |
| 				/*  This will either be equal to or one */
 | |
| 				/*  behind the root rcu_node's gpnum. */
 | |
| 	unsigned long completed; /* Last GP completed for this node. */
 | |
| 				/*  This will either be equal to or one */
 | |
| 				/*  behind the root rcu_node's gpnum. */
 | |
| 	unsigned long qsmask;	/* CPUs or groups that need to switch in */
 | |
| 				/*  order for current grace period to proceed.*/
 | |
| 				/*  In leaf rcu_node, each bit corresponds to */
 | |
| 				/*  an rcu_data structure, otherwise, each */
 | |
| 				/*  bit corresponds to a child rcu_node */
 | |
| 				/*  structure. */
 | |
| 	unsigned long expmask;	/* Groups that have ->blkd_tasks */
 | |
| 				/*  elements that need to drain to allow the */
 | |
| 				/*  current expedited grace period to */
 | |
| 				/*  complete (only for TREE_PREEMPT_RCU). */
 | |
| 	unsigned long qsmaskinit;
 | |
| 				/* Per-GP initial value for qsmask & expmask. */
 | |
| 	unsigned long grpmask;	/* Mask to apply to parent qsmask. */
 | |
| 				/*  Only one bit will be set in this mask. */
 | |
| 	int	grplo;		/* lowest-numbered CPU or group here. */
 | |
| 	int	grphi;		/* highest-numbered CPU or group here. */
 | |
| 	u8	grpnum;		/* CPU/group number for next level up. */
 | |
| 	u8	level;		/* root is at level 0. */
 | |
| 	struct rcu_node *parent;
 | |
| 	struct list_head blkd_tasks;
 | |
| 				/* Tasks blocked in RCU read-side critical */
 | |
| 				/*  section.  Tasks are placed at the head */
 | |
| 				/*  of this list and age towards the tail. */
 | |
| 	struct list_head *gp_tasks;
 | |
| 				/* Pointer to the first task blocking the */
 | |
| 				/*  current grace period, or NULL if there */
 | |
| 				/*  is no such task. */
 | |
| 	struct list_head *exp_tasks;
 | |
| 				/* Pointer to the first task blocking the */
 | |
| 				/*  current expedited grace period, or NULL */
 | |
| 				/*  if there is no such task.  If there */
 | |
| 				/*  is no current expedited grace period, */
 | |
| 				/*  then there can cannot be any such task. */
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 	struct list_head *boost_tasks;
 | |
| 				/* Pointer to first task that needs to be */
 | |
| 				/*  priority boosted, or NULL if no priority */
 | |
| 				/*  boosting is needed for this rcu_node */
 | |
| 				/*  structure.  If there are no tasks */
 | |
| 				/*  queued on this rcu_node structure that */
 | |
| 				/*  are blocking the current grace period, */
 | |
| 				/*  there can be no such task. */
 | |
| 	unsigned long boost_time;
 | |
| 				/* When to start boosting (jiffies). */
 | |
| 	struct task_struct *boost_kthread_task;
 | |
| 				/* kthread that takes care of priority */
 | |
| 				/*  boosting for this rcu_node structure. */
 | |
| 	unsigned int boost_kthread_status;
 | |
| 				/* State of boost_kthread_task for tracing. */
 | |
| 	unsigned long n_tasks_boosted;
 | |
| 				/* Total number of tasks boosted. */
 | |
| 	unsigned long n_exp_boosts;
 | |
| 				/* Number of tasks boosted for expedited GP. */
 | |
| 	unsigned long n_normal_boosts;
 | |
| 				/* Number of tasks boosted for normal GP. */
 | |
| 	unsigned long n_balk_blkd_tasks;
 | |
| 				/* Refused to boost: no blocked tasks. */
 | |
| 	unsigned long n_balk_exp_gp_tasks;
 | |
| 				/* Refused to boost: nothing blocking GP. */
 | |
| 	unsigned long n_balk_boost_tasks;
 | |
| 				/* Refused to boost: already boosting. */
 | |
| 	unsigned long n_balk_notblocked;
 | |
| 				/* Refused to boost: RCU RS CS still running. */
 | |
| 	unsigned long n_balk_notyet;
 | |
| 				/* Refused to boost: not yet time. */
 | |
| 	unsigned long n_balk_nos;
 | |
| 				/* Refused to boost: not sure why, though. */
 | |
| 				/*  This can happen due to race conditions. */
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| #ifdef CONFIG_RCU_NOCB_CPU
 | |
| 	wait_queue_head_t nocb_gp_wq[2];
 | |
| 				/* Place for rcu_nocb_kthread() to wait GP. */
 | |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| 	int need_future_gp[2];
 | |
| 				/* Counts of upcoming no-CB GP requests. */
 | |
| 	raw_spinlock_t fqslock ____cacheline_internodealigned_in_smp;
 | |
| } ____cacheline_internodealigned_in_smp;
 | |
| 
 | |
| /*
 | |
|  * Do a full breadth-first scan of the rcu_node structures for the
 | |
|  * specified rcu_state structure.
 | |
|  */
 | |
| #define rcu_for_each_node_breadth_first(rsp, rnp) \
 | |
| 	for ((rnp) = &(rsp)->node[0]; \
 | |
| 	     (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
 | |
| 
 | |
| /*
 | |
|  * Do a breadth-first scan of the non-leaf rcu_node structures for the
 | |
|  * specified rcu_state structure.  Note that if there is a singleton
 | |
|  * rcu_node tree with but one rcu_node structure, this loop is a no-op.
 | |
|  */
 | |
| #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
 | |
| 	for ((rnp) = &(rsp)->node[0]; \
 | |
| 	     (rnp) < (rsp)->level[rcu_num_lvls - 1]; (rnp)++)
 | |
| 
 | |
| /*
 | |
|  * Scan the leaves of the rcu_node hierarchy for the specified rcu_state
 | |
|  * structure.  Note that if there is a singleton rcu_node tree with but
 | |
|  * one rcu_node structure, this loop -will- visit the rcu_node structure.
 | |
|  * It is still a leaf node, even if it is also the root node.
 | |
|  */
 | |
| #define rcu_for_each_leaf_node(rsp, rnp) \
 | |
| 	for ((rnp) = (rsp)->level[rcu_num_lvls - 1]; \
 | |
| 	     (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
 | |
| 
 | |
| /* Index values for nxttail array in struct rcu_data. */
 | |
| #define RCU_DONE_TAIL		0	/* Also RCU_WAIT head. */
 | |
| #define RCU_WAIT_TAIL		1	/* Also RCU_NEXT_READY head. */
 | |
| #define RCU_NEXT_READY_TAIL	2	/* Also RCU_NEXT head. */
 | |
| #define RCU_NEXT_TAIL		3
 | |
| #define RCU_NEXT_SIZE		4
 | |
| 
 | |
| /* Per-CPU data for read-copy update. */
 | |
| struct rcu_data {
 | |
| 	/* 1) quiescent-state and grace-period handling : */
 | |
| 	unsigned long	completed;	/* Track rsp->completed gp number */
 | |
| 					/*  in order to detect GP end. */
 | |
| 	unsigned long	gpnum;		/* Highest gp number that this CPU */
 | |
| 					/*  is aware of having started. */
 | |
| 	bool		passed_quiesce;	/* User-mode/idle loop etc. */
 | |
| 	bool		qs_pending;	/* Core waits for quiesc state. */
 | |
| 	bool		beenonline;	/* CPU online at least once. */
 | |
| 	bool		preemptible;	/* Preemptible RCU? */
 | |
| 	struct rcu_node *mynode;	/* This CPU's leaf of hierarchy */
 | |
| 	unsigned long grpmask;		/* Mask to apply to leaf qsmask. */
 | |
| #ifdef CONFIG_RCU_CPU_STALL_INFO
 | |
| 	unsigned long	ticks_this_gp;	/* The number of scheduling-clock */
 | |
| 					/*  ticks this CPU has handled */
 | |
| 					/*  during and after the last grace */
 | |
| 					/* period it is aware of. */
 | |
| #endif /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
 | |
| 
 | |
| 	/* 2) batch handling */
 | |
| 	/*
 | |
| 	 * If nxtlist is not NULL, it is partitioned as follows.
 | |
| 	 * Any of the partitions might be empty, in which case the
 | |
| 	 * pointer to that partition will be equal to the pointer for
 | |
| 	 * the following partition.  When the list is empty, all of
 | |
| 	 * the nxttail elements point to the ->nxtlist pointer itself,
 | |
| 	 * which in that case is NULL.
 | |
| 	 *
 | |
| 	 * [nxtlist, *nxttail[RCU_DONE_TAIL]):
 | |
| 	 *	Entries that batch # <= ->completed
 | |
| 	 *	The grace period for these entries has completed, and
 | |
| 	 *	the other grace-period-completed entries may be moved
 | |
| 	 *	here temporarily in rcu_process_callbacks().
 | |
| 	 * [*nxttail[RCU_DONE_TAIL], *nxttail[RCU_WAIT_TAIL]):
 | |
| 	 *	Entries that batch # <= ->completed - 1: waiting for current GP
 | |
| 	 * [*nxttail[RCU_WAIT_TAIL], *nxttail[RCU_NEXT_READY_TAIL]):
 | |
| 	 *	Entries known to have arrived before current GP ended
 | |
| 	 * [*nxttail[RCU_NEXT_READY_TAIL], *nxttail[RCU_NEXT_TAIL]):
 | |
| 	 *	Entries that might have arrived after current GP ended
 | |
| 	 *	Note that the value of *nxttail[RCU_NEXT_TAIL] will
 | |
| 	 *	always be NULL, as this is the end of the list.
 | |
| 	 */
 | |
| 	struct rcu_head *nxtlist;
 | |
| 	struct rcu_head **nxttail[RCU_NEXT_SIZE];
 | |
| 	unsigned long	nxtcompleted[RCU_NEXT_SIZE];
 | |
| 					/* grace periods for sublists. */
 | |
| 	long		qlen_lazy;	/* # of lazy queued callbacks */
 | |
| 	long		qlen;		/* # of queued callbacks, incl lazy */
 | |
| 	long		qlen_last_fqs_check;
 | |
| 					/* qlen at last check for QS forcing */
 | |
| 	unsigned long	n_cbs_invoked;	/* count of RCU cbs invoked. */
 | |
| 	unsigned long	n_nocbs_invoked; /* count of no-CBs RCU cbs invoked. */
 | |
| 	unsigned long   n_cbs_orphaned; /* RCU cbs orphaned by dying CPU */
 | |
| 	unsigned long   n_cbs_adopted;  /* RCU cbs adopted from dying CPU */
 | |
| 	unsigned long	n_force_qs_snap;
 | |
| 					/* did other CPU force QS recently? */
 | |
| 	long		blimit;		/* Upper limit on a processed batch */
 | |
| 
 | |
| 	/* 3) dynticks interface. */
 | |
| 	struct rcu_dynticks *dynticks;	/* Shared per-CPU dynticks state. */
 | |
| 	int dynticks_snap;		/* Per-GP tracking for dynticks. */
 | |
| 
 | |
| 	/* 4) reasons this CPU needed to be kicked by force_quiescent_state */
 | |
| 	unsigned long dynticks_fqs;	/* Kicked due to dynticks idle. */
 | |
| 	unsigned long offline_fqs;	/* Kicked due to being offline. */
 | |
| 
 | |
| 	/* 5) __rcu_pending() statistics. */
 | |
| 	unsigned long n_rcu_pending;	/* rcu_pending() calls since boot. */
 | |
| 	unsigned long n_rp_qs_pending;
 | |
| 	unsigned long n_rp_report_qs;
 | |
| 	unsigned long n_rp_cb_ready;
 | |
| 	unsigned long n_rp_cpu_needs_gp;
 | |
| 	unsigned long n_rp_gp_completed;
 | |
| 	unsigned long n_rp_gp_started;
 | |
| 	unsigned long n_rp_nocb_defer_wakeup;
 | |
| 	unsigned long n_rp_need_nothing;
 | |
| 
 | |
| 	/* 6) _rcu_barrier() and OOM callbacks. */
 | |
| 	struct rcu_head barrier_head;
 | |
| #ifdef CONFIG_RCU_FAST_NO_HZ
 | |
| 	struct rcu_head oom_head;
 | |
| #endif /* #ifdef CONFIG_RCU_FAST_NO_HZ */
 | |
| 
 | |
| 	/* 7) Callback offloading. */
 | |
| #ifdef CONFIG_RCU_NOCB_CPU
 | |
| 	struct rcu_head *nocb_head;	/* CBs waiting for kthread. */
 | |
| 	struct rcu_head **nocb_tail;
 | |
| 	atomic_long_t nocb_q_count;	/* # CBs waiting for kthread */
 | |
| 	atomic_long_t nocb_q_count_lazy; /*  (approximate). */
 | |
| 	int nocb_p_count;		/* # CBs being invoked by kthread */
 | |
| 	int nocb_p_count_lazy;		/*  (approximate). */
 | |
| 	wait_queue_head_t nocb_wq;	/* For nocb kthreads to sleep on. */
 | |
| 	struct task_struct *nocb_kthread;
 | |
| 	bool nocb_defer_wakeup;		/* Defer wakeup of nocb_kthread. */
 | |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| 
 | |
| 	/* 8) RCU CPU stall data. */
 | |
| #ifdef CONFIG_RCU_CPU_STALL_INFO
 | |
| 	unsigned int softirq_snap;	/* Snapshot of softirq activity. */
 | |
| #endif /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
 | |
| 
 | |
| 	int cpu;
 | |
| 	struct rcu_state *rsp;
 | |
| };
 | |
| 
 | |
| /* Values for fqs_state field in struct rcu_state. */
 | |
| #define RCU_GP_IDLE		0	/* No grace period in progress. */
 | |
| #define RCU_GP_INIT		1	/* Grace period being initialized. */
 | |
| #define RCU_SAVE_DYNTICK	2	/* Need to scan dyntick state. */
 | |
| #define RCU_FORCE_QS		3	/* Need to force quiescent state. */
 | |
| #define RCU_SIGNAL_INIT		RCU_SAVE_DYNTICK
 | |
| 
 | |
| #define RCU_JIFFIES_TILL_FORCE_QS (1 + (HZ > 250) + (HZ > 500))
 | |
| 					/* For jiffies_till_first_fqs and */
 | |
| 					/*  and jiffies_till_next_fqs. */
 | |
| 
 | |
| #define RCU_JIFFIES_FQS_DIV	256	/* Very large systems need more */
 | |
| 					/*  delay between bouts of */
 | |
| 					/*  quiescent-state forcing. */
 | |
| 
 | |
| #define RCU_STALL_RAT_DELAY	2	/* Allow other CPUs time to take */
 | |
| 					/*  at least one scheduling clock */
 | |
| 					/*  irq before ratting on them. */
 | |
| 
 | |
| #define rcu_wait(cond)							\
 | |
| do {									\
 | |
| 	for (;;) {							\
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);			\
 | |
| 		if (cond)						\
 | |
| 			break;						\
 | |
| 		schedule();						\
 | |
| 	}								\
 | |
| 	__set_current_state(TASK_RUNNING);				\
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * RCU global state, including node hierarchy.  This hierarchy is
 | |
|  * represented in "heap" form in a dense array.  The root (first level)
 | |
|  * of the hierarchy is in ->node[0] (referenced by ->level[0]), the second
 | |
|  * level in ->node[1] through ->node[m] (->node[1] referenced by ->level[1]),
 | |
|  * and the third level in ->node[m+1] and following (->node[m+1] referenced
 | |
|  * by ->level[2]).  The number of levels is determined by the number of
 | |
|  * CPUs and by CONFIG_RCU_FANOUT.  Small systems will have a "hierarchy"
 | |
|  * consisting of a single rcu_node.
 | |
|  */
 | |
| struct rcu_state {
 | |
| 	struct rcu_node node[NUM_RCU_NODES];	/* Hierarchy. */
 | |
| 	struct rcu_node *level[RCU_NUM_LVLS];	/* Hierarchy levels. */
 | |
| 	u32 levelcnt[MAX_RCU_LVLS + 1];		/* # nodes in each level. */
 | |
| 	u8 levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
 | |
| 	struct rcu_data __percpu *rda;		/* pointer of percu rcu_data. */
 | |
| 	void (*call)(struct rcu_head *head,	/* call_rcu() flavor. */
 | |
| 		     void (*func)(struct rcu_head *head));
 | |
| 
 | |
| 	/* The following fields are guarded by the root rcu_node's lock. */
 | |
| 
 | |
| 	u8	fqs_state ____cacheline_internodealigned_in_smp;
 | |
| 						/* Force QS state. */
 | |
| 	u8	boost;				/* Subject to priority boost. */
 | |
| 	unsigned long gpnum;			/* Current gp number. */
 | |
| 	unsigned long completed;		/* # of last completed gp. */
 | |
| 	struct task_struct *gp_kthread;		/* Task for grace periods. */
 | |
| 	wait_queue_head_t gp_wq;		/* Where GP task waits. */
 | |
| 	int gp_flags;				/* Commands for GP task. */
 | |
| 
 | |
| 	/* End of fields guarded by root rcu_node's lock. */
 | |
| 
 | |
| 	raw_spinlock_t orphan_lock ____cacheline_internodealigned_in_smp;
 | |
| 						/* Protect following fields. */
 | |
| 	struct rcu_head *orphan_nxtlist;	/* Orphaned callbacks that */
 | |
| 						/*  need a grace period. */
 | |
| 	struct rcu_head **orphan_nxttail;	/* Tail of above. */
 | |
| 	struct rcu_head *orphan_donelist;	/* Orphaned callbacks that */
 | |
| 						/*  are ready to invoke. */
 | |
| 	struct rcu_head **orphan_donetail;	/* Tail of above. */
 | |
| 	long qlen_lazy;				/* Number of lazy callbacks. */
 | |
| 	long qlen;				/* Total number of callbacks. */
 | |
| 	/* End of fields guarded by orphan_lock. */
 | |
| 
 | |
| 	struct mutex onoff_mutex;		/* Coordinate hotplug & GPs. */
 | |
| 
 | |
| 	struct mutex barrier_mutex;		/* Guards barrier fields. */
 | |
| 	atomic_t barrier_cpu_count;		/* # CPUs waiting on. */
 | |
| 	struct completion barrier_completion;	/* Wake at barrier end. */
 | |
| 	unsigned long n_barrier_done;		/* ++ at start and end of */
 | |
| 						/*  _rcu_barrier(). */
 | |
| 	/* End of fields guarded by barrier_mutex. */
 | |
| 
 | |
| 	atomic_long_t expedited_start;		/* Starting ticket. */
 | |
| 	atomic_long_t expedited_done;		/* Done ticket. */
 | |
| 	atomic_long_t expedited_wrap;		/* # near-wrap incidents. */
 | |
| 	atomic_long_t expedited_tryfail;	/* # acquisition failures. */
 | |
| 	atomic_long_t expedited_workdone1;	/* # done by others #1. */
 | |
| 	atomic_long_t expedited_workdone2;	/* # done by others #2. */
 | |
| 	atomic_long_t expedited_normal;		/* # fallbacks to normal. */
 | |
| 	atomic_long_t expedited_stoppedcpus;	/* # successful stop_cpus. */
 | |
| 	atomic_long_t expedited_done_tries;	/* # tries to update _done. */
 | |
| 	atomic_long_t expedited_done_lost;	/* # times beaten to _done. */
 | |
| 	atomic_long_t expedited_done_exit;	/* # times exited _done loop. */
 | |
| 
 | |
| 	unsigned long jiffies_force_qs;		/* Time at which to invoke */
 | |
| 						/*  force_quiescent_state(). */
 | |
| 	unsigned long n_force_qs;		/* Number of calls to */
 | |
| 						/*  force_quiescent_state(). */
 | |
| 	unsigned long n_force_qs_lh;		/* ~Number of calls leaving */
 | |
| 						/*  due to lock unavailable. */
 | |
| 	unsigned long n_force_qs_ngp;		/* Number of calls leaving */
 | |
| 						/*  due to no GP active. */
 | |
| 	unsigned long gp_start;			/* Time at which GP started, */
 | |
| 						/*  but in jiffies. */
 | |
| 	unsigned long jiffies_stall;		/* Time at which to check */
 | |
| 						/*  for CPU stalls. */
 | |
| 	unsigned long jiffies_resched;		/* Time at which to resched */
 | |
| 						/*  a reluctant CPU. */
 | |
| 	unsigned long gp_max;			/* Maximum GP duration in */
 | |
| 						/*  jiffies. */
 | |
| 	const char *name;			/* Name of structure. */
 | |
| 	char abbr;				/* Abbreviated name. */
 | |
| 	struct list_head flavors;		/* List of RCU flavors. */
 | |
| 	struct irq_work wakeup_work;		/* Postponed wakeups */
 | |
| };
 | |
| 
 | |
| /* Values for rcu_state structure's gp_flags field. */
 | |
| #define RCU_GP_FLAG_INIT 0x1	/* Need grace-period initialization. */
 | |
| #define RCU_GP_FLAG_FQS  0x2	/* Need grace-period quiescent-state forcing. */
 | |
| 
 | |
| extern struct list_head rcu_struct_flavors;
 | |
| 
 | |
| /* Sequence through rcu_state structures for each RCU flavor. */
 | |
| #define for_each_rcu_flavor(rsp) \
 | |
| 	list_for_each_entry((rsp), &rcu_struct_flavors, flavors)
 | |
| 
 | |
| /* Return values for rcu_preempt_offline_tasks(). */
 | |
| 
 | |
| #define RCU_OFL_TASKS_NORM_GP	0x1		/* Tasks blocking normal */
 | |
| 						/*  GP were moved to root. */
 | |
| #define RCU_OFL_TASKS_EXP_GP	0x2		/* Tasks blocking expedited */
 | |
| 						/*  GP were moved to root. */
 | |
| 
 | |
| /*
 | |
|  * RCU implementation internal declarations:
 | |
|  */
 | |
| extern struct rcu_state rcu_sched_state;
 | |
| DECLARE_PER_CPU(struct rcu_data, rcu_sched_data);
 | |
| 
 | |
| extern struct rcu_state rcu_bh_state;
 | |
| DECLARE_PER_CPU(struct rcu_data, rcu_bh_data);
 | |
| 
 | |
| #ifdef CONFIG_TREE_PREEMPT_RCU
 | |
| extern struct rcu_state rcu_preempt_state;
 | |
| DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data);
 | |
| #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
 | |
| 
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| DECLARE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
 | |
| DECLARE_PER_CPU(int, rcu_cpu_kthread_cpu);
 | |
| DECLARE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
 | |
| DECLARE_PER_CPU(char, rcu_cpu_has_work);
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| 
 | |
| #ifndef RCU_TREE_NONCORE
 | |
| 
 | |
| /* Forward declarations for rcutree_plugin.h */
 | |
| static void rcu_bootup_announce(void);
 | |
| long rcu_batches_completed(void);
 | |
| static void rcu_preempt_note_context_switch(int cpu);
 | |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp);
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp,
 | |
| 				      unsigned long flags);
 | |
| #endif /* #ifdef CONFIG_HOTPLUG_CPU */
 | |
| static void rcu_print_detail_task_stall(struct rcu_state *rsp);
 | |
| static int rcu_print_task_stall(struct rcu_node *rnp);
 | |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp);
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
 | |
| 				     struct rcu_node *rnp,
 | |
| 				     struct rcu_data *rdp);
 | |
| #endif /* #ifdef CONFIG_HOTPLUG_CPU */
 | |
| static void rcu_preempt_check_callbacks(int cpu);
 | |
| void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu));
 | |
| #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_TREE_PREEMPT_RCU)
 | |
| static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 | |
| 			       bool wake);
 | |
| #endif /* #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_TREE_PREEMPT_RCU) */
 | |
| static void __init __rcu_init_preempt(void);
 | |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags);
 | |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp);
 | |
| static void invoke_rcu_callbacks_kthread(void);
 | |
| static bool rcu_is_callbacks_kthread(void);
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| static void rcu_preempt_do_callbacks(void);
 | |
| static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
 | |
| 						 struct rcu_node *rnp);
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| static void rcu_prepare_kthreads(int cpu);
 | |
| static void rcu_cleanup_after_idle(int cpu);
 | |
| static void rcu_prepare_for_idle(int cpu);
 | |
| static void rcu_idle_count_callbacks_posted(void);
 | |
| static void print_cpu_stall_info_begin(void);
 | |
| static void print_cpu_stall_info(struct rcu_state *rsp, int cpu);
 | |
| static void print_cpu_stall_info_end(void);
 | |
| static void zero_cpu_stall_ticks(struct rcu_data *rdp);
 | |
| static void increment_cpu_stall_ticks(void);
 | |
| static int rcu_nocb_needs_gp(struct rcu_state *rsp);
 | |
| static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq);
 | |
| static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp);
 | |
| static void rcu_init_one_nocb(struct rcu_node *rnp);
 | |
| static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 			    bool lazy, unsigned long flags);
 | |
| static bool rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
 | |
| 				      struct rcu_data *rdp,
 | |
| 				      unsigned long flags);
 | |
| static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp);
 | |
| static void do_nocb_deferred_wakeup(struct rcu_data *rdp);
 | |
| static void rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp);
 | |
| static void rcu_spawn_nocb_kthreads(struct rcu_state *rsp);
 | |
| static void rcu_kick_nohz_cpu(int cpu);
 | |
| static bool init_nocb_callback_list(struct rcu_data *rdp);
 | |
| static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq);
 | |
| static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq);
 | |
| static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
 | |
| 				  unsigned long *maxj);
 | |
| static bool is_sysidle_rcu_state(struct rcu_state *rsp);
 | |
| static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
 | |
| 				  unsigned long maxj);
 | |
| static void rcu_bind_gp_kthread(void);
 | |
| static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp);
 | |
| static bool rcu_nohz_full_cpu(struct rcu_state *rsp);
 | |
| 
 | |
| #endif /* #ifndef RCU_TREE_NONCORE */
 | |
| 
 | |
| #ifdef CONFIG_RCU_TRACE
 | |
| #ifdef CONFIG_RCU_NOCB_CPU
 | |
| /* Sum up queue lengths for tracing. */
 | |
| static inline void rcu_nocb_q_lengths(struct rcu_data *rdp, long *ql, long *qll)
 | |
| {
 | |
| 	*ql = atomic_long_read(&rdp->nocb_q_count) + rdp->nocb_p_count;
 | |
| 	*qll = atomic_long_read(&rdp->nocb_q_count_lazy) + rdp->nocb_p_count_lazy;
 | |
| }
 | |
| #else /* #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| static inline void rcu_nocb_q_lengths(struct rcu_data *rdp, long *ql, long *qll)
 | |
| {
 | |
| 	*ql = 0;
 | |
| 	*qll = 0;
 | |
| }
 | |
| #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| #endif /* #ifdef CONFIG_RCU_TRACE */
 |