In charge/uncharge/reclaim path, usage_in_excess is calculated repeatedly and it takes res_counter's spin_lock every time. This patch removes unnecessary calls for res_count_soft_limit_excess. Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Paul Menage <menage@google.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			3201 lines
		
	
	
	
		
			79 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3201 lines
		
	
	
	
		
			79 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/* memcontrol.c - Memory Controller
 | 
						|
 *
 | 
						|
 * Copyright IBM Corporation, 2007
 | 
						|
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 | 
						|
 *
 | 
						|
 * Copyright 2007 OpenVZ SWsoft Inc
 | 
						|
 * Author: Pavel Emelianov <xemul@openvz.org>
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/res_counter.h>
 | 
						|
#include <linux/memcontrol.h>
 | 
						|
#include <linux/cgroup.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/page-flags.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/bit_spinlock.h>
 | 
						|
#include <linux/rcupdate.h>
 | 
						|
#include <linux/limits.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/rbtree.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/mm_inline.h>
 | 
						|
#include <linux/page_cgroup.h>
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
#include <asm/uaccess.h>
 | 
						|
 | 
						|
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
 | 
						|
#define MEM_CGROUP_RECLAIM_RETRIES	5
 | 
						|
struct mem_cgroup *root_mem_cgroup __read_mostly;
 | 
						|
 | 
						|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | 
						|
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
 | 
						|
int do_swap_account __read_mostly;
 | 
						|
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
 | 
						|
#else
 | 
						|
#define do_swap_account		(0)
 | 
						|
#endif
 | 
						|
 | 
						|
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
 | 
						|
#define SOFTLIMIT_EVENTS_THRESH (1000)
 | 
						|
 | 
						|
/*
 | 
						|
 * Statistics for memory cgroup.
 | 
						|
 */
 | 
						|
enum mem_cgroup_stat_index {
 | 
						|
	/*
 | 
						|
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
 | 
						|
	 */
 | 
						|
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
 | 
						|
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
 | 
						|
	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
 | 
						|
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
 | 
						|
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
 | 
						|
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
 | 
						|
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
 | 
						|
 | 
						|
	MEM_CGROUP_STAT_NSTATS,
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_stat_cpu {
 | 
						|
	s64 count[MEM_CGROUP_STAT_NSTATS];
 | 
						|
} ____cacheline_aligned_in_smp;
 | 
						|
 | 
						|
struct mem_cgroup_stat {
 | 
						|
	struct mem_cgroup_stat_cpu cpustat[0];
 | 
						|
};
 | 
						|
 | 
						|
static inline void
 | 
						|
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
 | 
						|
				enum mem_cgroup_stat_index idx)
 | 
						|
{
 | 
						|
	stat->count[idx] = 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline s64
 | 
						|
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
 | 
						|
				enum mem_cgroup_stat_index idx)
 | 
						|
{
 | 
						|
	return stat->count[idx];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For accounting under irq disable, no need for increment preempt count.
 | 
						|
 */
 | 
						|
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
 | 
						|
		enum mem_cgroup_stat_index idx, int val)
 | 
						|
{
 | 
						|
	stat->count[idx] += val;
 | 
						|
}
 | 
						|
 | 
						|
static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
 | 
						|
		enum mem_cgroup_stat_index idx)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	s64 ret = 0;
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		ret += stat->cpustat[cpu].count[idx];
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
 | 
						|
{
 | 
						|
	s64 ret;
 | 
						|
 | 
						|
	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
 | 
						|
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * per-zone information in memory controller.
 | 
						|
 */
 | 
						|
struct mem_cgroup_per_zone {
 | 
						|
	/*
 | 
						|
	 * spin_lock to protect the per cgroup LRU
 | 
						|
	 */
 | 
						|
	struct list_head	lists[NR_LRU_LISTS];
 | 
						|
	unsigned long		count[NR_LRU_LISTS];
 | 
						|
 | 
						|
	struct zone_reclaim_stat reclaim_stat;
 | 
						|
	struct rb_node		tree_node;	/* RB tree node */
 | 
						|
	unsigned long long	usage_in_excess;/* Set to the value by which */
 | 
						|
						/* the soft limit is exceeded*/
 | 
						|
	bool			on_tree;
 | 
						|
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
 | 
						|
						/* use container_of	   */
 | 
						|
};
 | 
						|
/* Macro for accessing counter */
 | 
						|
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
 | 
						|
 | 
						|
struct mem_cgroup_per_node {
 | 
						|
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_lru_info {
 | 
						|
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 | 
						|
 * their hierarchy representation
 | 
						|
 */
 | 
						|
 | 
						|
struct mem_cgroup_tree_per_zone {
 | 
						|
	struct rb_root rb_root;
 | 
						|
	spinlock_t lock;
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_tree_per_node {
 | 
						|
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 | 
						|
};
 | 
						|
 | 
						|
struct mem_cgroup_tree {
 | 
						|
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 | 
						|
};
 | 
						|
 | 
						|
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 | 
						|
 | 
						|
/*
 | 
						|
 * The memory controller data structure. The memory controller controls both
 | 
						|
 * page cache and RSS per cgroup. We would eventually like to provide
 | 
						|
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 | 
						|
 * to help the administrator determine what knobs to tune.
 | 
						|
 *
 | 
						|
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 | 
						|
 * we hit the water mark. May be even add a low water mark, such that
 | 
						|
 * no reclaim occurs from a cgroup at it's low water mark, this is
 | 
						|
 * a feature that will be implemented much later in the future.
 | 
						|
 */
 | 
						|
struct mem_cgroup {
 | 
						|
	struct cgroup_subsys_state css;
 | 
						|
	/*
 | 
						|
	 * the counter to account for memory usage
 | 
						|
	 */
 | 
						|
	struct res_counter res;
 | 
						|
	/*
 | 
						|
	 * the counter to account for mem+swap usage.
 | 
						|
	 */
 | 
						|
	struct res_counter memsw;
 | 
						|
	/*
 | 
						|
	 * Per cgroup active and inactive list, similar to the
 | 
						|
	 * per zone LRU lists.
 | 
						|
	 */
 | 
						|
	struct mem_cgroup_lru_info info;
 | 
						|
 | 
						|
	/*
 | 
						|
	  protect against reclaim related member.
 | 
						|
	*/
 | 
						|
	spinlock_t reclaim_param_lock;
 | 
						|
 | 
						|
	int	prev_priority;	/* for recording reclaim priority */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * While reclaiming in a hiearchy, we cache the last child we
 | 
						|
	 * reclaimed from.
 | 
						|
	 */
 | 
						|
	int last_scanned_child;
 | 
						|
	/*
 | 
						|
	 * Should the accounting and control be hierarchical, per subtree?
 | 
						|
	 */
 | 
						|
	bool use_hierarchy;
 | 
						|
	unsigned long	last_oom_jiffies;
 | 
						|
	atomic_t	refcnt;
 | 
						|
 | 
						|
	unsigned int	swappiness;
 | 
						|
 | 
						|
	/* set when res.limit == memsw.limit */
 | 
						|
	bool		memsw_is_minimum;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * statistics. This must be placed at the end of memcg.
 | 
						|
	 */
 | 
						|
	struct mem_cgroup_stat stat;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 | 
						|
 * limit reclaim to prevent infinite loops, if they ever occur.
 | 
						|
 */
 | 
						|
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
 | 
						|
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
 | 
						|
 | 
						|
enum charge_type {
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 | 
						|
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 | 
						|
	NR_CHARGE_TYPE,
 | 
						|
};
 | 
						|
 | 
						|
/* only for here (for easy reading.) */
 | 
						|
#define PCGF_CACHE	(1UL << PCG_CACHE)
 | 
						|
#define PCGF_USED	(1UL << PCG_USED)
 | 
						|
#define PCGF_LOCK	(1UL << PCG_LOCK)
 | 
						|
/* Not used, but added here for completeness */
 | 
						|
#define PCGF_ACCT	(1UL << PCG_ACCT)
 | 
						|
 | 
						|
/* for encoding cft->private value on file */
 | 
						|
#define _MEM			(0)
 | 
						|
#define _MEMSWAP		(1)
 | 
						|
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
 | 
						|
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
 | 
						|
#define MEMFILE_ATTR(val)	((val) & 0xffff)
 | 
						|
 | 
						|
/*
 | 
						|
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 | 
						|
 */
 | 
						|
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
 | 
						|
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 | 
						|
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
 | 
						|
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 | 
						|
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
 | 
						|
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
 | 
						|
 | 
						|
static void mem_cgroup_get(struct mem_cgroup *mem);
 | 
						|
static void mem_cgroup_put(struct mem_cgroup *mem);
 | 
						|
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
 | 
						|
{
 | 
						|
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
page_cgroup_zoneinfo(struct page_cgroup *pc)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem = pc->mem_cgroup;
 | 
						|
	int nid = page_cgroup_nid(pc);
 | 
						|
	int zid = page_cgroup_zid(pc);
 | 
						|
 | 
						|
	if (!mem)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return mem_cgroup_zoneinfo(mem, nid, zid);
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_tree_per_zone *
 | 
						|
soft_limit_tree_node_zone(int nid, int zid)
 | 
						|
{
 | 
						|
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_tree_per_zone *
 | 
						|
soft_limit_tree_from_page(struct page *page)
 | 
						|
{
 | 
						|
	int nid = page_to_nid(page);
 | 
						|
	int zid = page_zonenum(page);
 | 
						|
 | 
						|
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
 | 
						|
				struct mem_cgroup_per_zone *mz,
 | 
						|
				struct mem_cgroup_tree_per_zone *mctz,
 | 
						|
				unsigned long long new_usage_in_excess)
 | 
						|
{
 | 
						|
	struct rb_node **p = &mctz->rb_root.rb_node;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	struct mem_cgroup_per_zone *mz_node;
 | 
						|
 | 
						|
	if (mz->on_tree)
 | 
						|
		return;
 | 
						|
 | 
						|
	mz->usage_in_excess = new_usage_in_excess;
 | 
						|
	if (!mz->usage_in_excess)
 | 
						|
		return;
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 | 
						|
					tree_node);
 | 
						|
		if (mz->usage_in_excess < mz_node->usage_in_excess)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		/*
 | 
						|
		 * We can't avoid mem cgroups that are over their soft
 | 
						|
		 * limit by the same amount
 | 
						|
		 */
 | 
						|
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
	}
 | 
						|
	rb_link_node(&mz->tree_node, parent, p);
 | 
						|
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 | 
						|
	mz->on_tree = true;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 | 
						|
				struct mem_cgroup_per_zone *mz,
 | 
						|
				struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	if (!mz->on_tree)
 | 
						|
		return;
 | 
						|
	rb_erase(&mz->tree_node, &mctz->rb_root);
 | 
						|
	mz->on_tree = false;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 | 
						|
				struct mem_cgroup_per_zone *mz,
 | 
						|
				struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	spin_lock(&mctz->lock);
 | 
						|
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
 | 
						|
	spin_unlock(&mctz->lock);
 | 
						|
}
 | 
						|
 | 
						|
static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	bool ret = false;
 | 
						|
	int cpu;
 | 
						|
	s64 val;
 | 
						|
	struct mem_cgroup_stat_cpu *cpustat;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	cpustat = &mem->stat.cpustat[cpu];
 | 
						|
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
 | 
						|
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
 | 
						|
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
 | 
						|
		ret = true;
 | 
						|
	}
 | 
						|
	put_cpu();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
 | 
						|
{
 | 
						|
	unsigned long long excess;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct mem_cgroup_tree_per_zone *mctz;
 | 
						|
	int nid = page_to_nid(page);
 | 
						|
	int zid = page_zonenum(page);
 | 
						|
	mctz = soft_limit_tree_from_page(page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Necessary to update all ancestors when hierarchy is used.
 | 
						|
	 * because their event counter is not touched.
 | 
						|
	 */
 | 
						|
	for (; mem; mem = parent_mem_cgroup(mem)) {
 | 
						|
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
 | 
						|
		excess = res_counter_soft_limit_excess(&mem->res);
 | 
						|
		/*
 | 
						|
		 * We have to update the tree if mz is on RB-tree or
 | 
						|
		 * mem is over its softlimit.
 | 
						|
		 */
 | 
						|
		if (excess || mz->on_tree) {
 | 
						|
			spin_lock(&mctz->lock);
 | 
						|
			/* if on-tree, remove it */
 | 
						|
			if (mz->on_tree)
 | 
						|
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
 | 
						|
			/*
 | 
						|
			 * Insert again. mz->usage_in_excess will be updated.
 | 
						|
			 * If excess is 0, no tree ops.
 | 
						|
			 */
 | 
						|
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
 | 
						|
			spin_unlock(&mctz->lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	int node, zone;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct mem_cgroup_tree_per_zone *mctz;
 | 
						|
 | 
						|
	for_each_node_state(node, N_POSSIBLE) {
 | 
						|
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | 
						|
			mz = mem_cgroup_zoneinfo(mem, node, zone);
 | 
						|
			mctz = soft_limit_tree_node_zone(node, zone);
 | 
						|
			mem_cgroup_remove_exceeded(mem, mz, mctz);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	struct rb_node *rightmost = NULL;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
retry:
 | 
						|
	mz = NULL;
 | 
						|
	rightmost = rb_last(&mctz->rb_root);
 | 
						|
	if (!rightmost)
 | 
						|
		goto done;		/* Nothing to reclaim from */
 | 
						|
 | 
						|
	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 | 
						|
	/*
 | 
						|
	 * Remove the node now but someone else can add it back,
 | 
						|
	 * we will to add it back at the end of reclaim to its correct
 | 
						|
	 * position in the tree.
 | 
						|
	 */
 | 
						|
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
 | 
						|
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
 | 
						|
		!css_tryget(&mz->mem->css))
 | 
						|
		goto retry;
 | 
						|
done:
 | 
						|
	return mz;
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup_per_zone *
 | 
						|
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
	spin_lock(&mctz->lock);
 | 
						|
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 | 
						|
	spin_unlock(&mctz->lock);
 | 
						|
	return mz;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
 | 
						|
					 bool charge)
 | 
						|
{
 | 
						|
	int val = (charge) ? 1 : -1;
 | 
						|
	struct mem_cgroup_stat *stat = &mem->stat;
 | 
						|
	struct mem_cgroup_stat_cpu *cpustat;
 | 
						|
	int cpu = get_cpu();
 | 
						|
 | 
						|
	cpustat = &stat->cpustat[cpu];
 | 
						|
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
 | 
						|
	put_cpu();
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
 | 
						|
					 struct page_cgroup *pc,
 | 
						|
					 bool charge)
 | 
						|
{
 | 
						|
	int val = (charge) ? 1 : -1;
 | 
						|
	struct mem_cgroup_stat *stat = &mem->stat;
 | 
						|
	struct mem_cgroup_stat_cpu *cpustat;
 | 
						|
	int cpu = get_cpu();
 | 
						|
 | 
						|
	cpustat = &stat->cpustat[cpu];
 | 
						|
	if (PageCgroupCache(pc))
 | 
						|
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
 | 
						|
	else
 | 
						|
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
 | 
						|
 | 
						|
	if (charge)
 | 
						|
		__mem_cgroup_stat_add_safe(cpustat,
 | 
						|
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
 | 
						|
	else
 | 
						|
		__mem_cgroup_stat_add_safe(cpustat,
 | 
						|
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
 | 
						|
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
 | 
						|
	put_cpu();
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
 | 
						|
					enum lru_list idx)
 | 
						|
{
 | 
						|
	int nid, zid;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	u64 total = 0;
 | 
						|
 | 
						|
	for_each_online_node(nid)
 | 
						|
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | 
						|
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
 | 
						|
			total += MEM_CGROUP_ZSTAT(mz, idx);
 | 
						|
		}
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 | 
						|
{
 | 
						|
	return container_of(cgroup_subsys_state(cont,
 | 
						|
				mem_cgroup_subsys_id), struct mem_cgroup,
 | 
						|
				css);
 | 
						|
}
 | 
						|
 | 
						|
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * mm_update_next_owner() may clear mm->owner to NULL
 | 
						|
	 * if it races with swapoff, page migration, etc.
 | 
						|
	 * So this can be called with p == NULL.
 | 
						|
	 */
 | 
						|
	if (unlikely(!p))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 | 
						|
				struct mem_cgroup, css);
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem = NULL;
 | 
						|
 | 
						|
	if (!mm)
 | 
						|
		return NULL;
 | 
						|
	/*
 | 
						|
	 * Because we have no locks, mm->owner's may be being moved to other
 | 
						|
	 * cgroup. We use css_tryget() here even if this looks
 | 
						|
	 * pessimistic (rather than adding locks here).
 | 
						|
	 */
 | 
						|
	rcu_read_lock();
 | 
						|
	do {
 | 
						|
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | 
						|
		if (unlikely(!mem))
 | 
						|
			break;
 | 
						|
	} while (!css_tryget(&mem->css));
 | 
						|
	rcu_read_unlock();
 | 
						|
	return mem;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Call callback function against all cgroup under hierarchy tree.
 | 
						|
 */
 | 
						|
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
 | 
						|
			  int (*func)(struct mem_cgroup *, void *))
 | 
						|
{
 | 
						|
	int found, ret, nextid;
 | 
						|
	struct cgroup_subsys_state *css;
 | 
						|
	struct mem_cgroup *mem;
 | 
						|
 | 
						|
	if (!root->use_hierarchy)
 | 
						|
		return (*func)(root, data);
 | 
						|
 | 
						|
	nextid = 1;
 | 
						|
	do {
 | 
						|
		ret = 0;
 | 
						|
		mem = NULL;
 | 
						|
 | 
						|
		rcu_read_lock();
 | 
						|
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
 | 
						|
				   &found);
 | 
						|
		if (css && css_tryget(css))
 | 
						|
			mem = container_of(css, struct mem_cgroup, css);
 | 
						|
		rcu_read_unlock();
 | 
						|
 | 
						|
		if (mem) {
 | 
						|
			ret = (*func)(mem, data);
 | 
						|
			css_put(&mem->css);
 | 
						|
		}
 | 
						|
		nextid = found + 1;
 | 
						|
	} while (!ret && css);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	return (mem == root_mem_cgroup);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Following LRU functions are allowed to be used without PCG_LOCK.
 | 
						|
 * Operations are called by routine of global LRU independently from memcg.
 | 
						|
 * What we have to take care of here is validness of pc->mem_cgroup.
 | 
						|
 *
 | 
						|
 * Changes to pc->mem_cgroup happens when
 | 
						|
 * 1. charge
 | 
						|
 * 2. moving account
 | 
						|
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 | 
						|
 * It is added to LRU before charge.
 | 
						|
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 | 
						|
 * When moving account, the page is not on LRU. It's isolated.
 | 
						|
 */
 | 
						|
 | 
						|
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	/* can happen while we handle swapcache. */
 | 
						|
	if (!TestClearPageCgroupAcctLRU(pc))
 | 
						|
		return;
 | 
						|
	VM_BUG_ON(!pc->mem_cgroup);
 | 
						|
	/*
 | 
						|
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
 | 
						|
	 * removed from global LRU.
 | 
						|
	 */
 | 
						|
	mz = page_cgroup_zoneinfo(pc);
 | 
						|
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
 | 
						|
	if (mem_cgroup_is_root(pc->mem_cgroup))
 | 
						|
		return;
 | 
						|
	VM_BUG_ON(list_empty(&pc->lru));
 | 
						|
	list_del_init(&pc->lru);
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_del_lru(struct page *page)
 | 
						|
{
 | 
						|
	mem_cgroup_del_lru_list(page, page_lru(page));
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	/*
 | 
						|
	 * Used bit is set without atomic ops but after smp_wmb().
 | 
						|
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
 | 
						|
	 */
 | 
						|
	smp_rmb();
 | 
						|
	/* unused or root page is not rotated. */
 | 
						|
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
 | 
						|
		return;
 | 
						|
	mz = page_cgroup_zoneinfo(pc);
 | 
						|
	list_move(&pc->lru, &mz->lists[lru]);
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	VM_BUG_ON(PageCgroupAcctLRU(pc));
 | 
						|
	/*
 | 
						|
	 * Used bit is set without atomic ops but after smp_wmb().
 | 
						|
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
 | 
						|
	 */
 | 
						|
	smp_rmb();
 | 
						|
	if (!PageCgroupUsed(pc))
 | 
						|
		return;
 | 
						|
 | 
						|
	mz = page_cgroup_zoneinfo(pc);
 | 
						|
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
 | 
						|
	SetPageCgroupAcctLRU(pc);
 | 
						|
	if (mem_cgroup_is_root(pc->mem_cgroup))
 | 
						|
		return;
 | 
						|
	list_add(&pc->lru, &mz->lists[lru]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 | 
						|
 * lru because the page may.be reused after it's fully uncharged (because of
 | 
						|
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 | 
						|
 * it again. This function is only used to charge SwapCache. It's done under
 | 
						|
 * lock_page and expected that zone->lru_lock is never held.
 | 
						|
 */
 | 
						|
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct zone *zone = page_zone(page);
 | 
						|
	struct page_cgroup *pc = lookup_page_cgroup(page);
 | 
						|
 | 
						|
	spin_lock_irqsave(&zone->lru_lock, flags);
 | 
						|
	/*
 | 
						|
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
 | 
						|
	 * is guarded by lock_page() because the page is SwapCache.
 | 
						|
	 */
 | 
						|
	if (!PageCgroupUsed(pc))
 | 
						|
		mem_cgroup_del_lru_list(page, page_lru(page));
 | 
						|
	spin_unlock_irqrestore(&zone->lru_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct zone *zone = page_zone(page);
 | 
						|
	struct page_cgroup *pc = lookup_page_cgroup(page);
 | 
						|
 | 
						|
	spin_lock_irqsave(&zone->lru_lock, flags);
 | 
						|
	/* link when the page is linked to LRU but page_cgroup isn't */
 | 
						|
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
 | 
						|
		mem_cgroup_add_lru_list(page, page_lru(page));
 | 
						|
	spin_unlock_irqrestore(&zone->lru_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void mem_cgroup_move_lists(struct page *page,
 | 
						|
			   enum lru_list from, enum lru_list to)
 | 
						|
{
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
	mem_cgroup_del_lru_list(page, from);
 | 
						|
	mem_cgroup_add_lru_list(page, to);
 | 
						|
}
 | 
						|
 | 
						|
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct mem_cgroup *curr = NULL;
 | 
						|
 | 
						|
	task_lock(task);
 | 
						|
	rcu_read_lock();
 | 
						|
	curr = try_get_mem_cgroup_from_mm(task->mm);
 | 
						|
	rcu_read_unlock();
 | 
						|
	task_unlock(task);
 | 
						|
	if (!curr)
 | 
						|
		return 0;
 | 
						|
	if (curr->use_hierarchy)
 | 
						|
		ret = css_is_ancestor(&curr->css, &mem->css);
 | 
						|
	else
 | 
						|
		ret = (curr == mem);
 | 
						|
	css_put(&curr->css);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * prev_priority control...this will be used in memory reclaim path.
 | 
						|
 */
 | 
						|
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	int prev_priority;
 | 
						|
 | 
						|
	spin_lock(&mem->reclaim_param_lock);
 | 
						|
	prev_priority = mem->prev_priority;
 | 
						|
	spin_unlock(&mem->reclaim_param_lock);
 | 
						|
 | 
						|
	return prev_priority;
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
 | 
						|
{
 | 
						|
	spin_lock(&mem->reclaim_param_lock);
 | 
						|
	if (priority < mem->prev_priority)
 | 
						|
		mem->prev_priority = priority;
 | 
						|
	spin_unlock(&mem->reclaim_param_lock);
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
 | 
						|
{
 | 
						|
	spin_lock(&mem->reclaim_param_lock);
 | 
						|
	mem->prev_priority = priority;
 | 
						|
	spin_unlock(&mem->reclaim_param_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
 | 
						|
{
 | 
						|
	unsigned long active;
 | 
						|
	unsigned long inactive;
 | 
						|
	unsigned long gb;
 | 
						|
	unsigned long inactive_ratio;
 | 
						|
 | 
						|
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
 | 
						|
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
 | 
						|
 | 
						|
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
 | 
						|
	if (gb)
 | 
						|
		inactive_ratio = int_sqrt(10 * gb);
 | 
						|
	else
 | 
						|
		inactive_ratio = 1;
 | 
						|
 | 
						|
	if (present_pages) {
 | 
						|
		present_pages[0] = inactive;
 | 
						|
		present_pages[1] = active;
 | 
						|
	}
 | 
						|
 | 
						|
	return inactive_ratio;
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	unsigned long active;
 | 
						|
	unsigned long inactive;
 | 
						|
	unsigned long present_pages[2];
 | 
						|
	unsigned long inactive_ratio;
 | 
						|
 | 
						|
	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
 | 
						|
 | 
						|
	inactive = present_pages[0];
 | 
						|
	active = present_pages[1];
 | 
						|
 | 
						|
	if (inactive * inactive_ratio < active)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	unsigned long active;
 | 
						|
	unsigned long inactive;
 | 
						|
 | 
						|
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
 | 
						|
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
 | 
						|
 | 
						|
	return (active > inactive);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
 | 
						|
				       struct zone *zone,
 | 
						|
				       enum lru_list lru)
 | 
						|
{
 | 
						|
	int nid = zone->zone_pgdat->node_id;
 | 
						|
	int zid = zone_idx(zone);
 | 
						|
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 | 
						|
 | 
						|
	return MEM_CGROUP_ZSTAT(mz, lru);
 | 
						|
}
 | 
						|
 | 
						|
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
 | 
						|
						      struct zone *zone)
 | 
						|
{
 | 
						|
	int nid = zone->zone_pgdat->node_id;
 | 
						|
	int zid = zone_idx(zone);
 | 
						|
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 | 
						|
 | 
						|
	return &mz->reclaim_stat;
 | 
						|
}
 | 
						|
 | 
						|
struct zone_reclaim_stat *
 | 
						|
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	/*
 | 
						|
	 * Used bit is set without atomic ops but after smp_wmb().
 | 
						|
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
 | 
						|
	 */
 | 
						|
	smp_rmb();
 | 
						|
	if (!PageCgroupUsed(pc))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	mz = page_cgroup_zoneinfo(pc);
 | 
						|
	if (!mz)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return &mz->reclaim_stat;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
 | 
						|
					struct list_head *dst,
 | 
						|
					unsigned long *scanned, int order,
 | 
						|
					int mode, struct zone *z,
 | 
						|
					struct mem_cgroup *mem_cont,
 | 
						|
					int active, int file)
 | 
						|
{
 | 
						|
	unsigned long nr_taken = 0;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long scan;
 | 
						|
	LIST_HEAD(pc_list);
 | 
						|
	struct list_head *src;
 | 
						|
	struct page_cgroup *pc, *tmp;
 | 
						|
	int nid = z->zone_pgdat->node_id;
 | 
						|
	int zid = zone_idx(z);
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	int lru = LRU_FILE * file + active;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	BUG_ON(!mem_cont);
 | 
						|
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
 | 
						|
	src = &mz->lists[lru];
 | 
						|
 | 
						|
	scan = 0;
 | 
						|
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
 | 
						|
		if (scan >= nr_to_scan)
 | 
						|
			break;
 | 
						|
 | 
						|
		page = pc->page;
 | 
						|
		if (unlikely(!PageCgroupUsed(pc)))
 | 
						|
			continue;
 | 
						|
		if (unlikely(!PageLRU(page)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		scan++;
 | 
						|
		ret = __isolate_lru_page(page, mode, file);
 | 
						|
		switch (ret) {
 | 
						|
		case 0:
 | 
						|
			list_move(&page->lru, dst);
 | 
						|
			mem_cgroup_del_lru(page);
 | 
						|
			nr_taken++;
 | 
						|
			break;
 | 
						|
		case -EBUSY:
 | 
						|
			/* we don't affect global LRU but rotate in our LRU */
 | 
						|
			mem_cgroup_rotate_lru_list(page, page_lru(page));
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	*scanned = scan;
 | 
						|
	return nr_taken;
 | 
						|
}
 | 
						|
 | 
						|
#define mem_cgroup_from_res_counter(counter, member)	\
 | 
						|
	container_of(counter, struct mem_cgroup, member)
 | 
						|
 | 
						|
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	if (do_swap_account) {
 | 
						|
		if (res_counter_check_under_limit(&mem->res) &&
 | 
						|
			res_counter_check_under_limit(&mem->memsw))
 | 
						|
			return true;
 | 
						|
	} else
 | 
						|
		if (res_counter_check_under_limit(&mem->res))
 | 
						|
			return true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int get_swappiness(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct cgroup *cgrp = memcg->css.cgroup;
 | 
						|
	unsigned int swappiness;
 | 
						|
 | 
						|
	/* root ? */
 | 
						|
	if (cgrp->parent == NULL)
 | 
						|
		return vm_swappiness;
 | 
						|
 | 
						|
	spin_lock(&memcg->reclaim_param_lock);
 | 
						|
	swappiness = memcg->swappiness;
 | 
						|
	spin_unlock(&memcg->reclaim_param_lock);
 | 
						|
 | 
						|
	return swappiness;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
 | 
						|
{
 | 
						|
	int *val = data;
 | 
						|
	(*val)++;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 | 
						|
 * @memcg: The memory cgroup that went over limit
 | 
						|
 * @p: Task that is going to be killed
 | 
						|
 *
 | 
						|
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 | 
						|
 * enabled
 | 
						|
 */
 | 
						|
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
 | 
						|
{
 | 
						|
	struct cgroup *task_cgrp;
 | 
						|
	struct cgroup *mem_cgrp;
 | 
						|
	/*
 | 
						|
	 * Need a buffer in BSS, can't rely on allocations. The code relies
 | 
						|
	 * on the assumption that OOM is serialized for memory controller.
 | 
						|
	 * If this assumption is broken, revisit this code.
 | 
						|
	 */
 | 
						|
	static char memcg_name[PATH_MAX];
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!memcg)
 | 
						|
		return;
 | 
						|
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	mem_cgrp = memcg->css.cgroup;
 | 
						|
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
 | 
						|
 | 
						|
	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
 | 
						|
	if (ret < 0) {
 | 
						|
		/*
 | 
						|
		 * Unfortunately, we are unable to convert to a useful name
 | 
						|
		 * But we'll still print out the usage information
 | 
						|
		 */
 | 
						|
		rcu_read_unlock();
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	printk(KERN_INFO "Task in %s killed", memcg_name);
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
 | 
						|
	if (ret < 0) {
 | 
						|
		rcu_read_unlock();
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Continues from above, so we don't need an KERN_ level
 | 
						|
	 */
 | 
						|
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
 | 
						|
done:
 | 
						|
 | 
						|
	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
 | 
						|
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
 | 
						|
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
 | 
						|
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
 | 
						|
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
 | 
						|
		"failcnt %llu\n",
 | 
						|
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
 | 
						|
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
 | 
						|
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function returns the number of memcg under hierarchy tree. Returns
 | 
						|
 * 1(self count) if no children.
 | 
						|
 */
 | 
						|
static int mem_cgroup_count_children(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	int num = 0;
 | 
						|
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
 | 
						|
	return num;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Visit the first child (need not be the first child as per the ordering
 | 
						|
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 | 
						|
 * that to reclaim free pages from.
 | 
						|
 */
 | 
						|
static struct mem_cgroup *
 | 
						|
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
 | 
						|
{
 | 
						|
	struct mem_cgroup *ret = NULL;
 | 
						|
	struct cgroup_subsys_state *css;
 | 
						|
	int nextid, found;
 | 
						|
 | 
						|
	if (!root_mem->use_hierarchy) {
 | 
						|
		css_get(&root_mem->css);
 | 
						|
		ret = root_mem;
 | 
						|
	}
 | 
						|
 | 
						|
	while (!ret) {
 | 
						|
		rcu_read_lock();
 | 
						|
		nextid = root_mem->last_scanned_child + 1;
 | 
						|
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
 | 
						|
				   &found);
 | 
						|
		if (css && css_tryget(css))
 | 
						|
			ret = container_of(css, struct mem_cgroup, css);
 | 
						|
 | 
						|
		rcu_read_unlock();
 | 
						|
		/* Updates scanning parameter */
 | 
						|
		spin_lock(&root_mem->reclaim_param_lock);
 | 
						|
		if (!css) {
 | 
						|
			/* this means start scan from ID:1 */
 | 
						|
			root_mem->last_scanned_child = 0;
 | 
						|
		} else
 | 
						|
			root_mem->last_scanned_child = found;
 | 
						|
		spin_unlock(&root_mem->reclaim_param_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 | 
						|
 * we reclaimed from, so that we don't end up penalizing one child extensively
 | 
						|
 * based on its position in the children list.
 | 
						|
 *
 | 
						|
 * root_mem is the original ancestor that we've been reclaim from.
 | 
						|
 *
 | 
						|
 * We give up and return to the caller when we visit root_mem twice.
 | 
						|
 * (other groups can be removed while we're walking....)
 | 
						|
 *
 | 
						|
 * If shrink==true, for avoiding to free too much, this returns immedieately.
 | 
						|
 */
 | 
						|
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
 | 
						|
						struct zone *zone,
 | 
						|
						gfp_t gfp_mask,
 | 
						|
						unsigned long reclaim_options)
 | 
						|
{
 | 
						|
	struct mem_cgroup *victim;
 | 
						|
	int ret, total = 0;
 | 
						|
	int loop = 0;
 | 
						|
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
 | 
						|
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
 | 
						|
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
 | 
						|
	unsigned long excess = mem_cgroup_get_excess(root_mem);
 | 
						|
 | 
						|
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
 | 
						|
	if (root_mem->memsw_is_minimum)
 | 
						|
		noswap = true;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		victim = mem_cgroup_select_victim(root_mem);
 | 
						|
		if (victim == root_mem) {
 | 
						|
			loop++;
 | 
						|
			if (loop >= 2) {
 | 
						|
				/*
 | 
						|
				 * If we have not been able to reclaim
 | 
						|
				 * anything, it might because there are
 | 
						|
				 * no reclaimable pages under this hierarchy
 | 
						|
				 */
 | 
						|
				if (!check_soft || !total) {
 | 
						|
					css_put(&victim->css);
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				/*
 | 
						|
				 * We want to do more targetted reclaim.
 | 
						|
				 * excess >> 2 is not to excessive so as to
 | 
						|
				 * reclaim too much, nor too less that we keep
 | 
						|
				 * coming back to reclaim from this cgroup
 | 
						|
				 */
 | 
						|
				if (total >= (excess >> 2) ||
 | 
						|
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
 | 
						|
					css_put(&victim->css);
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!mem_cgroup_local_usage(&victim->stat)) {
 | 
						|
			/* this cgroup's local usage == 0 */
 | 
						|
			css_put(&victim->css);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		/* we use swappiness of local cgroup */
 | 
						|
		if (check_soft)
 | 
						|
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
 | 
						|
				noswap, get_swappiness(victim), zone,
 | 
						|
				zone->zone_pgdat->node_id);
 | 
						|
		else
 | 
						|
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
 | 
						|
						noswap, get_swappiness(victim));
 | 
						|
		css_put(&victim->css);
 | 
						|
		/*
 | 
						|
		 * At shrinking usage, we can't check we should stop here or
 | 
						|
		 * reclaim more. It's depends on callers. last_scanned_child
 | 
						|
		 * will work enough for keeping fairness under tree.
 | 
						|
		 */
 | 
						|
		if (shrink)
 | 
						|
			return ret;
 | 
						|
		total += ret;
 | 
						|
		if (check_soft) {
 | 
						|
			if (res_counter_check_under_soft_limit(&root_mem->res))
 | 
						|
				return total;
 | 
						|
		} else if (mem_cgroup_check_under_limit(root_mem))
 | 
						|
			return 1 + total;
 | 
						|
	}
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
bool mem_cgroup_oom_called(struct task_struct *task)
 | 
						|
{
 | 
						|
	bool ret = false;
 | 
						|
	struct mem_cgroup *mem;
 | 
						|
	struct mm_struct *mm;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	mm = task->mm;
 | 
						|
	if (!mm)
 | 
						|
		mm = &init_mm;
 | 
						|
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | 
						|
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
 | 
						|
		ret = true;
 | 
						|
	rcu_read_unlock();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
 | 
						|
{
 | 
						|
	mem->last_oom_jiffies = jiffies;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void record_last_oom(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Currently used to update mapped file statistics, but the routine can be
 | 
						|
 * generalized to update other statistics as well.
 | 
						|
 */
 | 
						|
void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem;
 | 
						|
	struct mem_cgroup_stat *stat;
 | 
						|
	struct mem_cgroup_stat_cpu *cpustat;
 | 
						|
	int cpu;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
 | 
						|
	if (!page_is_file_cache(page))
 | 
						|
		return;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	if (unlikely(!pc))
 | 
						|
		return;
 | 
						|
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	mem = pc->mem_cgroup;
 | 
						|
	if (!mem)
 | 
						|
		goto done;
 | 
						|
 | 
						|
	if (!PageCgroupUsed(pc))
 | 
						|
		goto done;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Preemption is already disabled, we don't need get_cpu()
 | 
						|
	 */
 | 
						|
	cpu = smp_processor_id();
 | 
						|
	stat = &mem->stat;
 | 
						|
	cpustat = &stat->cpustat[cpu];
 | 
						|
 | 
						|
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
 | 
						|
done:
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 | 
						|
 * oom-killer can be invoked.
 | 
						|
 */
 | 
						|
static int __mem_cgroup_try_charge(struct mm_struct *mm,
 | 
						|
			gfp_t gfp_mask, struct mem_cgroup **memcg,
 | 
						|
			bool oom, struct page *page)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem, *mem_over_limit;
 | 
						|
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | 
						|
	struct res_counter *fail_res;
 | 
						|
 | 
						|
	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
 | 
						|
		/* Don't account this! */
 | 
						|
		*memcg = NULL;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We always charge the cgroup the mm_struct belongs to.
 | 
						|
	 * The mm_struct's mem_cgroup changes on task migration if the
 | 
						|
	 * thread group leader migrates. It's possible that mm is not
 | 
						|
	 * set, if so charge the init_mm (happens for pagecache usage).
 | 
						|
	 */
 | 
						|
	mem = *memcg;
 | 
						|
	if (likely(!mem)) {
 | 
						|
		mem = try_get_mem_cgroup_from_mm(mm);
 | 
						|
		*memcg = mem;
 | 
						|
	} else {
 | 
						|
		css_get(&mem->css);
 | 
						|
	}
 | 
						|
	if (unlikely(!mem))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	VM_BUG_ON(css_is_removed(&mem->css));
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		int ret = 0;
 | 
						|
		unsigned long flags = 0;
 | 
						|
 | 
						|
		if (mem_cgroup_is_root(mem))
 | 
						|
			goto done;
 | 
						|
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
 | 
						|
		if (likely(!ret)) {
 | 
						|
			if (!do_swap_account)
 | 
						|
				break;
 | 
						|
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
 | 
						|
							&fail_res);
 | 
						|
			if (likely(!ret))
 | 
						|
				break;
 | 
						|
			/* mem+swap counter fails */
 | 
						|
			res_counter_uncharge(&mem->res, PAGE_SIZE);
 | 
						|
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
 | 
						|
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
 | 
						|
									memsw);
 | 
						|
		} else
 | 
						|
			/* mem counter fails */
 | 
						|
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
 | 
						|
									res);
 | 
						|
 | 
						|
		if (!(gfp_mask & __GFP_WAIT))
 | 
						|
			goto nomem;
 | 
						|
 | 
						|
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
 | 
						|
						gfp_mask, flags);
 | 
						|
		if (ret)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * try_to_free_mem_cgroup_pages() might not give us a full
 | 
						|
		 * picture of reclaim. Some pages are reclaimed and might be
 | 
						|
		 * moved to swap cache or just unmapped from the cgroup.
 | 
						|
		 * Check the limit again to see if the reclaim reduced the
 | 
						|
		 * current usage of the cgroup before giving up
 | 
						|
		 *
 | 
						|
		 */
 | 
						|
		if (mem_cgroup_check_under_limit(mem_over_limit))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!nr_retries--) {
 | 
						|
			if (oom) {
 | 
						|
				mutex_lock(&memcg_tasklist);
 | 
						|
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
 | 
						|
				mutex_unlock(&memcg_tasklist);
 | 
						|
				record_last_oom(mem_over_limit);
 | 
						|
			}
 | 
						|
			goto nomem;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
 | 
						|
	 * if they exceeds softlimit.
 | 
						|
	 */
 | 
						|
	if (mem_cgroup_soft_limit_check(mem))
 | 
						|
		mem_cgroup_update_tree(mem, page);
 | 
						|
done:
 | 
						|
	return 0;
 | 
						|
nomem:
 | 
						|
	css_put(&mem->css);
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A helper function to get mem_cgroup from ID. must be called under
 | 
						|
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 | 
						|
 * it's concern. (dropping refcnt from swap can be called against removed
 | 
						|
 * memcg.)
 | 
						|
 */
 | 
						|
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
 | 
						|
{
 | 
						|
	struct cgroup_subsys_state *css;
 | 
						|
 | 
						|
	/* ID 0 is unused ID */
 | 
						|
	if (!id)
 | 
						|
		return NULL;
 | 
						|
	css = css_lookup(&mem_cgroup_subsys, id);
 | 
						|
	if (!css)
 | 
						|
		return NULL;
 | 
						|
	return container_of(css, struct mem_cgroup, css);
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	unsigned short id;
 | 
						|
	swp_entry_t ent;
 | 
						|
 | 
						|
	VM_BUG_ON(!PageLocked(page));
 | 
						|
 | 
						|
	if (!PageSwapCache(page))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	if (PageCgroupUsed(pc)) {
 | 
						|
		mem = pc->mem_cgroup;
 | 
						|
		if (mem && !css_tryget(&mem->css))
 | 
						|
			mem = NULL;
 | 
						|
	} else {
 | 
						|
		ent.val = page_private(page);
 | 
						|
		id = lookup_swap_cgroup(ent);
 | 
						|
		rcu_read_lock();
 | 
						|
		mem = mem_cgroup_lookup(id);
 | 
						|
		if (mem && !css_tryget(&mem->css))
 | 
						|
			mem = NULL;
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
	return mem;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
 | 
						|
 * USED state. If already USED, uncharge and return.
 | 
						|
 */
 | 
						|
 | 
						|
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
 | 
						|
				     struct page_cgroup *pc,
 | 
						|
				     enum charge_type ctype)
 | 
						|
{
 | 
						|
	/* try_charge() can return NULL to *memcg, taking care of it. */
 | 
						|
	if (!mem)
 | 
						|
		return;
 | 
						|
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	if (unlikely(PageCgroupUsed(pc))) {
 | 
						|
		unlock_page_cgroup(pc);
 | 
						|
		if (!mem_cgroup_is_root(mem)) {
 | 
						|
			res_counter_uncharge(&mem->res, PAGE_SIZE);
 | 
						|
			if (do_swap_account)
 | 
						|
				res_counter_uncharge(&mem->memsw, PAGE_SIZE);
 | 
						|
		}
 | 
						|
		css_put(&mem->css);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	pc->mem_cgroup = mem;
 | 
						|
	/*
 | 
						|
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
 | 
						|
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
 | 
						|
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
 | 
						|
	 * before USED bit, we need memory barrier here.
 | 
						|
	 * See mem_cgroup_add_lru_list(), etc.
 | 
						|
 	 */
 | 
						|
	smp_wmb();
 | 
						|
	switch (ctype) {
 | 
						|
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
 | 
						|
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
 | 
						|
		SetPageCgroupCache(pc);
 | 
						|
		SetPageCgroupUsed(pc);
 | 
						|
		break;
 | 
						|
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
 | 
						|
		ClearPageCgroupCache(pc);
 | 
						|
		SetPageCgroupUsed(pc);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	mem_cgroup_charge_statistics(mem, pc, true);
 | 
						|
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mem_cgroup_move_account - move account of the page
 | 
						|
 * @pc:	page_cgroup of the page.
 | 
						|
 * @from: mem_cgroup which the page is moved from.
 | 
						|
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 | 
						|
 *
 | 
						|
 * The caller must confirm following.
 | 
						|
 * - page is not on LRU (isolate_page() is useful.)
 | 
						|
 *
 | 
						|
 * returns 0 at success,
 | 
						|
 * returns -EBUSY when lock is busy or "pc" is unstable.
 | 
						|
 *
 | 
						|
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 | 
						|
 * new cgroup. It should be done by a caller.
 | 
						|
 */
 | 
						|
 | 
						|
static int mem_cgroup_move_account(struct page_cgroup *pc,
 | 
						|
	struct mem_cgroup *from, struct mem_cgroup *to)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_zone *from_mz, *to_mz;
 | 
						|
	int nid, zid;
 | 
						|
	int ret = -EBUSY;
 | 
						|
	struct page *page;
 | 
						|
	int cpu;
 | 
						|
	struct mem_cgroup_stat *stat;
 | 
						|
	struct mem_cgroup_stat_cpu *cpustat;
 | 
						|
 | 
						|
	VM_BUG_ON(from == to);
 | 
						|
	VM_BUG_ON(PageLRU(pc->page));
 | 
						|
 | 
						|
	nid = page_cgroup_nid(pc);
 | 
						|
	zid = page_cgroup_zid(pc);
 | 
						|
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
 | 
						|
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
 | 
						|
 | 
						|
	if (!trylock_page_cgroup(pc))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (!PageCgroupUsed(pc))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (pc->mem_cgroup != from)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (!mem_cgroup_is_root(from))
 | 
						|
		res_counter_uncharge(&from->res, PAGE_SIZE);
 | 
						|
	mem_cgroup_charge_statistics(from, pc, false);
 | 
						|
 | 
						|
	page = pc->page;
 | 
						|
	if (page_is_file_cache(page) && page_mapped(page)) {
 | 
						|
		cpu = smp_processor_id();
 | 
						|
		/* Update mapped_file data for mem_cgroup "from" */
 | 
						|
		stat = &from->stat;
 | 
						|
		cpustat = &stat->cpustat[cpu];
 | 
						|
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
 | 
						|
						-1);
 | 
						|
 | 
						|
		/* Update mapped_file data for mem_cgroup "to" */
 | 
						|
		stat = &to->stat;
 | 
						|
		cpustat = &stat->cpustat[cpu];
 | 
						|
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
 | 
						|
						1);
 | 
						|
	}
 | 
						|
 | 
						|
	if (do_swap_account && !mem_cgroup_is_root(from))
 | 
						|
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
 | 
						|
	css_put(&from->css);
 | 
						|
 | 
						|
	css_get(&to->css);
 | 
						|
	pc->mem_cgroup = to;
 | 
						|
	mem_cgroup_charge_statistics(to, pc, true);
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
	/*
 | 
						|
	 * We charges against "to" which may not have any tasks. Then, "to"
 | 
						|
	 * can be under rmdir(). But in current implementation, caller of
 | 
						|
	 * this function is just force_empty() and it's garanteed that
 | 
						|
	 * "to" is never removed. So, we don't check rmdir status here.
 | 
						|
	 */
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * move charges to its parent.
 | 
						|
 */
 | 
						|
 | 
						|
static int mem_cgroup_move_parent(struct page_cgroup *pc,
 | 
						|
				  struct mem_cgroup *child,
 | 
						|
				  gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct page *page = pc->page;
 | 
						|
	struct cgroup *cg = child->css.cgroup;
 | 
						|
	struct cgroup *pcg = cg->parent;
 | 
						|
	struct mem_cgroup *parent;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Is ROOT ? */
 | 
						|
	if (!pcg)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
 | 
						|
	parent = mem_cgroup_from_cont(pcg);
 | 
						|
 | 
						|
 | 
						|
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
 | 
						|
	if (ret || !parent)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (!get_page_unless_zero(page)) {
 | 
						|
		ret = -EBUSY;
 | 
						|
		goto uncharge;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = isolate_lru_page(page);
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		goto cancel;
 | 
						|
 | 
						|
	ret = mem_cgroup_move_account(pc, child, parent);
 | 
						|
 | 
						|
	putback_lru_page(page);
 | 
						|
	if (!ret) {
 | 
						|
		put_page(page);
 | 
						|
		/* drop extra refcnt by try_charge() */
 | 
						|
		css_put(&parent->css);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
cancel:
 | 
						|
	put_page(page);
 | 
						|
uncharge:
 | 
						|
	/* drop extra refcnt by try_charge() */
 | 
						|
	css_put(&parent->css);
 | 
						|
	/* uncharge if move fails */
 | 
						|
	if (!mem_cgroup_is_root(parent)) {
 | 
						|
		res_counter_uncharge(&parent->res, PAGE_SIZE);
 | 
						|
		if (do_swap_account)
 | 
						|
			res_counter_uncharge(&parent->memsw, PAGE_SIZE);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Charge the memory controller for page usage.
 | 
						|
 * Return
 | 
						|
 * 0 if the charge was successful
 | 
						|
 * < 0 if the cgroup is over its limit
 | 
						|
 */
 | 
						|
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
 | 
						|
				gfp_t gfp_mask, enum charge_type ctype,
 | 
						|
				struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	/* can happen at boot */
 | 
						|
	if (unlikely(!pc))
 | 
						|
		return 0;
 | 
						|
	prefetchw(pc);
 | 
						|
 | 
						|
	mem = memcg;
 | 
						|
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
 | 
						|
	if (ret || !mem)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	__mem_cgroup_commit_charge(mem, pc, ctype);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_newpage_charge(struct page *page,
 | 
						|
			      struct mm_struct *mm, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return 0;
 | 
						|
	if (PageCompound(page))
 | 
						|
		return 0;
 | 
						|
	/*
 | 
						|
	 * If already mapped, we don't have to account.
 | 
						|
	 * If page cache, page->mapping has address_space.
 | 
						|
	 * But page->mapping may have out-of-use anon_vma pointer,
 | 
						|
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
 | 
						|
	 * is NULL.
 | 
						|
  	 */
 | 
						|
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
 | 
						|
		return 0;
 | 
						|
	if (unlikely(!mm))
 | 
						|
		mm = &init_mm;
 | 
						|
	return mem_cgroup_charge_common(page, mm, gfp_mask,
 | 
						|
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
 | 
						|
					enum charge_type ctype);
 | 
						|
 | 
						|
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
 | 
						|
				gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem = NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return 0;
 | 
						|
	if (PageCompound(page))
 | 
						|
		return 0;
 | 
						|
	/*
 | 
						|
	 * Corner case handling. This is called from add_to_page_cache()
 | 
						|
	 * in usual. But some FS (shmem) precharges this page before calling it
 | 
						|
	 * and call add_to_page_cache() with GFP_NOWAIT.
 | 
						|
	 *
 | 
						|
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
 | 
						|
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
 | 
						|
	 * charge twice. (It works but has to pay a bit larger cost.)
 | 
						|
	 * And when the page is SwapCache, it should take swap information
 | 
						|
	 * into account. This is under lock_page() now.
 | 
						|
	 */
 | 
						|
	if (!(gfp_mask & __GFP_WAIT)) {
 | 
						|
		struct page_cgroup *pc;
 | 
						|
 | 
						|
 | 
						|
		pc = lookup_page_cgroup(page);
 | 
						|
		if (!pc)
 | 
						|
			return 0;
 | 
						|
		lock_page_cgroup(pc);
 | 
						|
		if (PageCgroupUsed(pc)) {
 | 
						|
			unlock_page_cgroup(pc);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		unlock_page_cgroup(pc);
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(!mm && !mem))
 | 
						|
		mm = &init_mm;
 | 
						|
 | 
						|
	if (page_is_file_cache(page))
 | 
						|
		return mem_cgroup_charge_common(page, mm, gfp_mask,
 | 
						|
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
 | 
						|
 | 
						|
	/* shmem */
 | 
						|
	if (PageSwapCache(page)) {
 | 
						|
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
 | 
						|
		if (!ret)
 | 
						|
			__mem_cgroup_commit_charge_swapin(page, mem,
 | 
						|
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
 | 
						|
	} else
 | 
						|
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
 | 
						|
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 | 
						|
 * And when try_charge() successfully returns, one refcnt to memcg without
 | 
						|
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 | 
						|
 * "commit()" or removed by "cancel()"
 | 
						|
 */
 | 
						|
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
 | 
						|
				 struct page *page,
 | 
						|
				 gfp_t mask, struct mem_cgroup **ptr)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!do_swap_account)
 | 
						|
		goto charge_cur_mm;
 | 
						|
	/*
 | 
						|
	 * A racing thread's fault, or swapoff, may have already updated
 | 
						|
	 * the pte, and even removed page from swap cache: return success
 | 
						|
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
 | 
						|
	 */
 | 
						|
	if (!PageSwapCache(page))
 | 
						|
		return 0;
 | 
						|
	mem = try_get_mem_cgroup_from_swapcache(page);
 | 
						|
	if (!mem)
 | 
						|
		goto charge_cur_mm;
 | 
						|
	*ptr = mem;
 | 
						|
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
 | 
						|
	/* drop extra refcnt from tryget */
 | 
						|
	css_put(&mem->css);
 | 
						|
	return ret;
 | 
						|
charge_cur_mm:
 | 
						|
	if (unlikely(!mm))
 | 
						|
		mm = &init_mm;
 | 
						|
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
 | 
						|
					enum charge_type ctype)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
	if (!ptr)
 | 
						|
		return;
 | 
						|
	cgroup_exclude_rmdir(&ptr->css);
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	mem_cgroup_lru_del_before_commit_swapcache(page);
 | 
						|
	__mem_cgroup_commit_charge(ptr, pc, ctype);
 | 
						|
	mem_cgroup_lru_add_after_commit_swapcache(page);
 | 
						|
	/*
 | 
						|
	 * Now swap is on-memory. This means this page may be
 | 
						|
	 * counted both as mem and swap....double count.
 | 
						|
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
 | 
						|
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
 | 
						|
	 * may call delete_from_swap_cache() before reach here.
 | 
						|
	 */
 | 
						|
	if (do_swap_account && PageSwapCache(page)) {
 | 
						|
		swp_entry_t ent = {.val = page_private(page)};
 | 
						|
		unsigned short id;
 | 
						|
		struct mem_cgroup *memcg;
 | 
						|
 | 
						|
		id = swap_cgroup_record(ent, 0);
 | 
						|
		rcu_read_lock();
 | 
						|
		memcg = mem_cgroup_lookup(id);
 | 
						|
		if (memcg) {
 | 
						|
			/*
 | 
						|
			 * This recorded memcg can be obsolete one. So, avoid
 | 
						|
			 * calling css_tryget
 | 
						|
			 */
 | 
						|
			if (!mem_cgroup_is_root(memcg))
 | 
						|
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
 | 
						|
			mem_cgroup_swap_statistics(memcg, false);
 | 
						|
			mem_cgroup_put(memcg);
 | 
						|
		}
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * At swapin, we may charge account against cgroup which has no tasks.
 | 
						|
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
 | 
						|
	 * In that case, we need to call pre_destroy() again. check it here.
 | 
						|
	 */
 | 
						|
	cgroup_release_and_wakeup_rmdir(&ptr->css);
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
 | 
						|
{
 | 
						|
	__mem_cgroup_commit_charge_swapin(page, ptr,
 | 
						|
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return;
 | 
						|
	if (!mem)
 | 
						|
		return;
 | 
						|
	if (!mem_cgroup_is_root(mem)) {
 | 
						|
		res_counter_uncharge(&mem->res, PAGE_SIZE);
 | 
						|
		if (do_swap_account)
 | 
						|
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
 | 
						|
	}
 | 
						|
	css_put(&mem->css);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * uncharge if !page_mapped(page)
 | 
						|
 */
 | 
						|
static struct mem_cgroup *
 | 
						|
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	struct mem_cgroup *mem = NULL;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (PageSwapCache(page))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check if our page_cgroup is valid
 | 
						|
	 */
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	if (unlikely(!pc || !PageCgroupUsed(pc)))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
 | 
						|
	mem = pc->mem_cgroup;
 | 
						|
 | 
						|
	if (!PageCgroupUsed(pc))
 | 
						|
		goto unlock_out;
 | 
						|
 | 
						|
	switch (ctype) {
 | 
						|
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
 | 
						|
	case MEM_CGROUP_CHARGE_TYPE_DROP:
 | 
						|
		if (page_mapped(page))
 | 
						|
			goto unlock_out;
 | 
						|
		break;
 | 
						|
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
 | 
						|
		if (!PageAnon(page)) {	/* Shared memory */
 | 
						|
			if (page->mapping && !page_is_file_cache(page))
 | 
						|
				goto unlock_out;
 | 
						|
		} else if (page_mapped(page)) /* Anon */
 | 
						|
				goto unlock_out;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!mem_cgroup_is_root(mem)) {
 | 
						|
		res_counter_uncharge(&mem->res, PAGE_SIZE);
 | 
						|
		if (do_swap_account &&
 | 
						|
				(ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
 | 
						|
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
 | 
						|
	}
 | 
						|
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
 | 
						|
		mem_cgroup_swap_statistics(mem, true);
 | 
						|
	mem_cgroup_charge_statistics(mem, pc, false);
 | 
						|
 | 
						|
	ClearPageCgroupUsed(pc);
 | 
						|
	/*
 | 
						|
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
 | 
						|
	 * freed from LRU. This is safe because uncharged page is expected not
 | 
						|
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
 | 
						|
	 * special functions.
 | 
						|
	 */
 | 
						|
 | 
						|
	mz = page_cgroup_zoneinfo(pc);
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
 | 
						|
	if (mem_cgroup_soft_limit_check(mem))
 | 
						|
		mem_cgroup_update_tree(mem, page);
 | 
						|
	/* at swapout, this memcg will be accessed to record to swap */
 | 
						|
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
 | 
						|
		css_put(&mem->css);
 | 
						|
 | 
						|
	return mem;
 | 
						|
 | 
						|
unlock_out:
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_uncharge_page(struct page *page)
 | 
						|
{
 | 
						|
	/* early check. */
 | 
						|
	if (page_mapped(page))
 | 
						|
		return;
 | 
						|
	if (page->mapping && !PageAnon(page))
 | 
						|
		return;
 | 
						|
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
 | 
						|
}
 | 
						|
 | 
						|
void mem_cgroup_uncharge_cache_page(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON(page_mapped(page));
 | 
						|
	VM_BUG_ON(page->mapping);
 | 
						|
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SWAP
 | 
						|
/*
 | 
						|
 * called after __delete_from_swap_cache() and drop "page" account.
 | 
						|
 * memcg information is recorded to swap_cgroup of "ent"
 | 
						|
 */
 | 
						|
void
 | 
						|
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
 | 
						|
 | 
						|
	if (!swapout) /* this was a swap cache but the swap is unused ! */
 | 
						|
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
 | 
						|
 | 
						|
	memcg = __mem_cgroup_uncharge_common(page, ctype);
 | 
						|
 | 
						|
	/* record memcg information */
 | 
						|
	if (do_swap_account && swapout && memcg) {
 | 
						|
		swap_cgroup_record(ent, css_id(&memcg->css));
 | 
						|
		mem_cgroup_get(memcg);
 | 
						|
	}
 | 
						|
	if (swapout && memcg)
 | 
						|
		css_put(&memcg->css);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | 
						|
/*
 | 
						|
 * called from swap_entry_free(). remove record in swap_cgroup and
 | 
						|
 * uncharge "memsw" account.
 | 
						|
 */
 | 
						|
void mem_cgroup_uncharge_swap(swp_entry_t ent)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	unsigned short id;
 | 
						|
 | 
						|
	if (!do_swap_account)
 | 
						|
		return;
 | 
						|
 | 
						|
	id = swap_cgroup_record(ent, 0);
 | 
						|
	rcu_read_lock();
 | 
						|
	memcg = mem_cgroup_lookup(id);
 | 
						|
	if (memcg) {
 | 
						|
		/*
 | 
						|
		 * We uncharge this because swap is freed.
 | 
						|
		 * This memcg can be obsolete one. We avoid calling css_tryget
 | 
						|
		 */
 | 
						|
		if (!mem_cgroup_is_root(memcg))
 | 
						|
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
 | 
						|
		mem_cgroup_swap_statistics(memcg, false);
 | 
						|
		mem_cgroup_put(memcg);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 | 
						|
 * page belongs to.
 | 
						|
 */
 | 
						|
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
 | 
						|
{
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	struct mem_cgroup *mem = NULL;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(page);
 | 
						|
	lock_page_cgroup(pc);
 | 
						|
	if (PageCgroupUsed(pc)) {
 | 
						|
		mem = pc->mem_cgroup;
 | 
						|
		css_get(&mem->css);
 | 
						|
	}
 | 
						|
	unlock_page_cgroup(pc);
 | 
						|
 | 
						|
	if (mem) {
 | 
						|
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
 | 
						|
						page);
 | 
						|
		css_put(&mem->css);
 | 
						|
	}
 | 
						|
	*ptr = mem;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* remove redundant charge if migration failed*/
 | 
						|
void mem_cgroup_end_migration(struct mem_cgroup *mem,
 | 
						|
		struct page *oldpage, struct page *newpage)
 | 
						|
{
 | 
						|
	struct page *target, *unused;
 | 
						|
	struct page_cgroup *pc;
 | 
						|
	enum charge_type ctype;
 | 
						|
 | 
						|
	if (!mem)
 | 
						|
		return;
 | 
						|
	cgroup_exclude_rmdir(&mem->css);
 | 
						|
	/* at migration success, oldpage->mapping is NULL. */
 | 
						|
	if (oldpage->mapping) {
 | 
						|
		target = oldpage;
 | 
						|
		unused = NULL;
 | 
						|
	} else {
 | 
						|
		target = newpage;
 | 
						|
		unused = oldpage;
 | 
						|
	}
 | 
						|
 | 
						|
	if (PageAnon(target))
 | 
						|
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
 | 
						|
	else if (page_is_file_cache(target))
 | 
						|
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
 | 
						|
	else
 | 
						|
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
 | 
						|
 | 
						|
	/* unused page is not on radix-tree now. */
 | 
						|
	if (unused)
 | 
						|
		__mem_cgroup_uncharge_common(unused, ctype);
 | 
						|
 | 
						|
	pc = lookup_page_cgroup(target);
 | 
						|
	/*
 | 
						|
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
 | 
						|
	 * So, double-counting is effectively avoided.
 | 
						|
	 */
 | 
						|
	__mem_cgroup_commit_charge(mem, pc, ctype);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Both of oldpage and newpage are still under lock_page().
 | 
						|
	 * Then, we don't have to care about race in radix-tree.
 | 
						|
	 * But we have to be careful that this page is unmapped or not.
 | 
						|
	 *
 | 
						|
	 * There is a case for !page_mapped(). At the start of
 | 
						|
	 * migration, oldpage was mapped. But now, it's zapped.
 | 
						|
	 * But we know *target* page is not freed/reused under us.
 | 
						|
	 * mem_cgroup_uncharge_page() does all necessary checks.
 | 
						|
	 */
 | 
						|
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
 | 
						|
		mem_cgroup_uncharge_page(target);
 | 
						|
	/*
 | 
						|
	 * At migration, we may charge account against cgroup which has no tasks
 | 
						|
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
 | 
						|
	 * In that case, we need to call pre_destroy() again. check it here.
 | 
						|
	 */
 | 
						|
	cgroup_release_and_wakeup_rmdir(&mem->css);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 | 
						|
 * Calling hierarchical_reclaim is not enough because we should update
 | 
						|
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 | 
						|
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 | 
						|
 * not from the memcg which this page would be charged to.
 | 
						|
 * try_charge_swapin does all of these works properly.
 | 
						|
 */
 | 
						|
int mem_cgroup_shmem_charge_fallback(struct page *page,
 | 
						|
			    struct mm_struct *mm,
 | 
						|
			    gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem = NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (mem_cgroup_disabled())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
 | 
						|
	if (!ret)
 | 
						|
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static DEFINE_MUTEX(set_limit_mutex);
 | 
						|
 | 
						|
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
 | 
						|
				unsigned long long val)
 | 
						|
{
 | 
						|
	int retry_count;
 | 
						|
	int progress;
 | 
						|
	u64 memswlimit;
 | 
						|
	int ret = 0;
 | 
						|
	int children = mem_cgroup_count_children(memcg);
 | 
						|
	u64 curusage, oldusage;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For keeping hierarchical_reclaim simple, how long we should retry
 | 
						|
	 * is depends on callers. We set our retry-count to be function
 | 
						|
	 * of # of children which we should visit in this loop.
 | 
						|
	 */
 | 
						|
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
 | 
						|
 | 
						|
	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
 | 
						|
 | 
						|
	while (retry_count) {
 | 
						|
		if (signal_pending(current)) {
 | 
						|
			ret = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Rather than hide all in some function, I do this in
 | 
						|
		 * open coded manner. You see what this really does.
 | 
						|
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
 | 
						|
		 */
 | 
						|
		mutex_lock(&set_limit_mutex);
 | 
						|
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | 
						|
		if (memswlimit < val) {
 | 
						|
			ret = -EINVAL;
 | 
						|
			mutex_unlock(&set_limit_mutex);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		ret = res_counter_set_limit(&memcg->res, val);
 | 
						|
		if (!ret) {
 | 
						|
			if (memswlimit == val)
 | 
						|
				memcg->memsw_is_minimum = true;
 | 
						|
			else
 | 
						|
				memcg->memsw_is_minimum = false;
 | 
						|
		}
 | 
						|
		mutex_unlock(&set_limit_mutex);
 | 
						|
 | 
						|
		if (!ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
 | 
						|
						GFP_KERNEL,
 | 
						|
						MEM_CGROUP_RECLAIM_SHRINK);
 | 
						|
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
 | 
						|
		/* Usage is reduced ? */
 | 
						|
  		if (curusage >= oldusage)
 | 
						|
			retry_count--;
 | 
						|
		else
 | 
						|
			oldusage = curusage;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
 | 
						|
					unsigned long long val)
 | 
						|
{
 | 
						|
	int retry_count;
 | 
						|
	u64 memlimit, oldusage, curusage;
 | 
						|
	int children = mem_cgroup_count_children(memcg);
 | 
						|
	int ret = -EBUSY;
 | 
						|
 | 
						|
	/* see mem_cgroup_resize_res_limit */
 | 
						|
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
 | 
						|
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
 | 
						|
	while (retry_count) {
 | 
						|
		if (signal_pending(current)) {
 | 
						|
			ret = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Rather than hide all in some function, I do this in
 | 
						|
		 * open coded manner. You see what this really does.
 | 
						|
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
 | 
						|
		 */
 | 
						|
		mutex_lock(&set_limit_mutex);
 | 
						|
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | 
						|
		if (memlimit > val) {
 | 
						|
			ret = -EINVAL;
 | 
						|
			mutex_unlock(&set_limit_mutex);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		ret = res_counter_set_limit(&memcg->memsw, val);
 | 
						|
		if (!ret) {
 | 
						|
			if (memlimit == val)
 | 
						|
				memcg->memsw_is_minimum = true;
 | 
						|
			else
 | 
						|
				memcg->memsw_is_minimum = false;
 | 
						|
		}
 | 
						|
		mutex_unlock(&set_limit_mutex);
 | 
						|
 | 
						|
		if (!ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
 | 
						|
						MEM_CGROUP_RECLAIM_NOSWAP |
 | 
						|
						MEM_CGROUP_RECLAIM_SHRINK);
 | 
						|
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
 | 
						|
		/* Usage is reduced ? */
 | 
						|
		if (curusage >= oldusage)
 | 
						|
			retry_count--;
 | 
						|
		else
 | 
						|
			oldusage = curusage;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
 | 
						|
						gfp_t gfp_mask, int nid,
 | 
						|
						int zid)
 | 
						|
{
 | 
						|
	unsigned long nr_reclaimed = 0;
 | 
						|
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
 | 
						|
	unsigned long reclaimed;
 | 
						|
	int loop = 0;
 | 
						|
	struct mem_cgroup_tree_per_zone *mctz;
 | 
						|
	unsigned long long excess;
 | 
						|
 | 
						|
	if (order > 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mctz = soft_limit_tree_node_zone(nid, zid);
 | 
						|
	/*
 | 
						|
	 * This loop can run a while, specially if mem_cgroup's continuously
 | 
						|
	 * keep exceeding their soft limit and putting the system under
 | 
						|
	 * pressure
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		if (next_mz)
 | 
						|
			mz = next_mz;
 | 
						|
		else
 | 
						|
			mz = mem_cgroup_largest_soft_limit_node(mctz);
 | 
						|
		if (!mz)
 | 
						|
			break;
 | 
						|
 | 
						|
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
 | 
						|
						gfp_mask,
 | 
						|
						MEM_CGROUP_RECLAIM_SOFT);
 | 
						|
		nr_reclaimed += reclaimed;
 | 
						|
		spin_lock(&mctz->lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we failed to reclaim anything from this memory cgroup
 | 
						|
		 * it is time to move on to the next cgroup
 | 
						|
		 */
 | 
						|
		next_mz = NULL;
 | 
						|
		if (!reclaimed) {
 | 
						|
			do {
 | 
						|
				/*
 | 
						|
				 * Loop until we find yet another one.
 | 
						|
				 *
 | 
						|
				 * By the time we get the soft_limit lock
 | 
						|
				 * again, someone might have aded the
 | 
						|
				 * group back on the RB tree. Iterate to
 | 
						|
				 * make sure we get a different mem.
 | 
						|
				 * mem_cgroup_largest_soft_limit_node returns
 | 
						|
				 * NULL if no other cgroup is present on
 | 
						|
				 * the tree
 | 
						|
				 */
 | 
						|
				next_mz =
 | 
						|
				__mem_cgroup_largest_soft_limit_node(mctz);
 | 
						|
				if (next_mz == mz) {
 | 
						|
					css_put(&next_mz->mem->css);
 | 
						|
					next_mz = NULL;
 | 
						|
				} else /* next_mz == NULL or other memcg */
 | 
						|
					break;
 | 
						|
			} while (1);
 | 
						|
		}
 | 
						|
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
 | 
						|
		excess = res_counter_soft_limit_excess(&mz->mem->res);
 | 
						|
		/*
 | 
						|
		 * One school of thought says that we should not add
 | 
						|
		 * back the node to the tree if reclaim returns 0.
 | 
						|
		 * But our reclaim could return 0, simply because due
 | 
						|
		 * to priority we are exposing a smaller subset of
 | 
						|
		 * memory to reclaim from. Consider this as a longer
 | 
						|
		 * term TODO.
 | 
						|
		 */
 | 
						|
		/* If excess == 0, no tree ops */
 | 
						|
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
 | 
						|
		spin_unlock(&mctz->lock);
 | 
						|
		css_put(&mz->mem->css);
 | 
						|
		loop++;
 | 
						|
		/*
 | 
						|
		 * Could not reclaim anything and there are no more
 | 
						|
		 * mem cgroups to try or we seem to be looping without
 | 
						|
		 * reclaiming anything.
 | 
						|
		 */
 | 
						|
		if (!nr_reclaimed &&
 | 
						|
			(next_mz == NULL ||
 | 
						|
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
 | 
						|
			break;
 | 
						|
	} while (!nr_reclaimed);
 | 
						|
	if (next_mz)
 | 
						|
		css_put(&next_mz->mem->css);
 | 
						|
	return nr_reclaimed;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine traverse page_cgroup in given list and drop them all.
 | 
						|
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 | 
						|
 */
 | 
						|
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
 | 
						|
				int node, int zid, enum lru_list lru)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	struct page_cgroup *pc, *busy;
 | 
						|
	unsigned long flags, loop;
 | 
						|
	struct list_head *list;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	zone = &NODE_DATA(node)->node_zones[zid];
 | 
						|
	mz = mem_cgroup_zoneinfo(mem, node, zid);
 | 
						|
	list = &mz->lists[lru];
 | 
						|
 | 
						|
	loop = MEM_CGROUP_ZSTAT(mz, lru);
 | 
						|
	/* give some margin against EBUSY etc...*/
 | 
						|
	loop += 256;
 | 
						|
	busy = NULL;
 | 
						|
	while (loop--) {
 | 
						|
		ret = 0;
 | 
						|
		spin_lock_irqsave(&zone->lru_lock, flags);
 | 
						|
		if (list_empty(list)) {
 | 
						|
			spin_unlock_irqrestore(&zone->lru_lock, flags);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		pc = list_entry(list->prev, struct page_cgroup, lru);
 | 
						|
		if (busy == pc) {
 | 
						|
			list_move(&pc->lru, list);
 | 
						|
			busy = 0;
 | 
						|
			spin_unlock_irqrestore(&zone->lru_lock, flags);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | 
						|
 | 
						|
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
 | 
						|
		if (ret == -ENOMEM)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (ret == -EBUSY || ret == -EINVAL) {
 | 
						|
			/* found lock contention or "pc" is obsolete. */
 | 
						|
			busy = pc;
 | 
						|
			cond_resched();
 | 
						|
		} else
 | 
						|
			busy = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!ret && !list_empty(list))
 | 
						|
		return -EBUSY;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * make mem_cgroup's charge to be 0 if there is no task.
 | 
						|
 * This enables deleting this mem_cgroup.
 | 
						|
 */
 | 
						|
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	int node, zid, shrink;
 | 
						|
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | 
						|
	struct cgroup *cgrp = mem->css.cgroup;
 | 
						|
 | 
						|
	css_get(&mem->css);
 | 
						|
 | 
						|
	shrink = 0;
 | 
						|
	/* should free all ? */
 | 
						|
	if (free_all)
 | 
						|
		goto try_to_free;
 | 
						|
move_account:
 | 
						|
	while (mem->res.usage > 0) {
 | 
						|
		ret = -EBUSY;
 | 
						|
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
 | 
						|
			goto out;
 | 
						|
		ret = -EINTR;
 | 
						|
		if (signal_pending(current))
 | 
						|
			goto out;
 | 
						|
		/* This is for making all *used* pages to be on LRU. */
 | 
						|
		lru_add_drain_all();
 | 
						|
		ret = 0;
 | 
						|
		for_each_node_state(node, N_HIGH_MEMORY) {
 | 
						|
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
 | 
						|
				enum lru_list l;
 | 
						|
				for_each_lru(l) {
 | 
						|
					ret = mem_cgroup_force_empty_list(mem,
 | 
						|
							node, zid, l);
 | 
						|
					if (ret)
 | 
						|
						break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		/* it seems parent cgroup doesn't have enough mem */
 | 
						|
		if (ret == -ENOMEM)
 | 
						|
			goto try_to_free;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	css_put(&mem->css);
 | 
						|
	return ret;
 | 
						|
 | 
						|
try_to_free:
 | 
						|
	/* returns EBUSY if there is a task or if we come here twice. */
 | 
						|
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
 | 
						|
		ret = -EBUSY;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	/* we call try-to-free pages for make this cgroup empty */
 | 
						|
	lru_add_drain_all();
 | 
						|
	/* try to free all pages in this cgroup */
 | 
						|
	shrink = 1;
 | 
						|
	while (nr_retries && mem->res.usage > 0) {
 | 
						|
		int progress;
 | 
						|
 | 
						|
		if (signal_pending(current)) {
 | 
						|
			ret = -EINTR;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
 | 
						|
						false, get_swappiness(mem));
 | 
						|
		if (!progress) {
 | 
						|
			nr_retries--;
 | 
						|
			/* maybe some writeback is necessary */
 | 
						|
			congestion_wait(BLK_RW_ASYNC, HZ/10);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	lru_add_drain();
 | 
						|
	/* try move_account...there may be some *locked* pages. */
 | 
						|
	if (mem->res.usage)
 | 
						|
		goto move_account;
 | 
						|
	ret = 0;
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
 | 
						|
{
 | 
						|
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
 | 
						|
{
 | 
						|
	return mem_cgroup_from_cont(cont)->use_hierarchy;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
 | 
						|
					u64 val)
 | 
						|
{
 | 
						|
	int retval = 0;
 | 
						|
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | 
						|
	struct cgroup *parent = cont->parent;
 | 
						|
	struct mem_cgroup *parent_mem = NULL;
 | 
						|
 | 
						|
	if (parent)
 | 
						|
		parent_mem = mem_cgroup_from_cont(parent);
 | 
						|
 | 
						|
	cgroup_lock();
 | 
						|
	/*
 | 
						|
	 * If parent's use_hiearchy is set, we can't make any modifications
 | 
						|
	 * in the child subtrees. If it is unset, then the change can
 | 
						|
	 * occur, provided the current cgroup has no children.
 | 
						|
	 *
 | 
						|
	 * For the root cgroup, parent_mem is NULL, we allow value to be
 | 
						|
	 * set if there are no children.
 | 
						|
	 */
 | 
						|
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
 | 
						|
				(val == 1 || val == 0)) {
 | 
						|
		if (list_empty(&cont->children))
 | 
						|
			mem->use_hierarchy = val;
 | 
						|
		else
 | 
						|
			retval = -EBUSY;
 | 
						|
	} else
 | 
						|
		retval = -EINVAL;
 | 
						|
	cgroup_unlock();
 | 
						|
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
struct mem_cgroup_idx_data {
 | 
						|
	s64 val;
 | 
						|
	enum mem_cgroup_stat_index idx;
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
 | 
						|
{
 | 
						|
	struct mem_cgroup_idx_data *d = data;
 | 
						|
	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
 | 
						|
				enum mem_cgroup_stat_index idx, s64 *val)
 | 
						|
{
 | 
						|
	struct mem_cgroup_idx_data d;
 | 
						|
	d.idx = idx;
 | 
						|
	d.val = 0;
 | 
						|
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
 | 
						|
	*val = d.val;
 | 
						|
}
 | 
						|
 | 
						|
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | 
						|
	u64 idx_val, val;
 | 
						|
	int type, name;
 | 
						|
 | 
						|
	type = MEMFILE_TYPE(cft->private);
 | 
						|
	name = MEMFILE_ATTR(cft->private);
 | 
						|
	switch (type) {
 | 
						|
	case _MEM:
 | 
						|
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
 | 
						|
			mem_cgroup_get_recursive_idx_stat(mem,
 | 
						|
				MEM_CGROUP_STAT_CACHE, &idx_val);
 | 
						|
			val = idx_val;
 | 
						|
			mem_cgroup_get_recursive_idx_stat(mem,
 | 
						|
				MEM_CGROUP_STAT_RSS, &idx_val);
 | 
						|
			val += idx_val;
 | 
						|
			val <<= PAGE_SHIFT;
 | 
						|
		} else
 | 
						|
			val = res_counter_read_u64(&mem->res, name);
 | 
						|
		break;
 | 
						|
	case _MEMSWAP:
 | 
						|
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
 | 
						|
			mem_cgroup_get_recursive_idx_stat(mem,
 | 
						|
				MEM_CGROUP_STAT_CACHE, &idx_val);
 | 
						|
			val = idx_val;
 | 
						|
			mem_cgroup_get_recursive_idx_stat(mem,
 | 
						|
				MEM_CGROUP_STAT_RSS, &idx_val);
 | 
						|
			val += idx_val;
 | 
						|
			mem_cgroup_get_recursive_idx_stat(mem,
 | 
						|
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
 | 
						|
			val <<= PAGE_SHIFT;
 | 
						|
		} else
 | 
						|
			val = res_counter_read_u64(&mem->memsw, name);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return val;
 | 
						|
}
 | 
						|
/*
 | 
						|
 * The user of this function is...
 | 
						|
 * RES_LIMIT.
 | 
						|
 */
 | 
						|
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
 | 
						|
			    const char *buffer)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 | 
						|
	int type, name;
 | 
						|
	unsigned long long val;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	type = MEMFILE_TYPE(cft->private);
 | 
						|
	name = MEMFILE_ATTR(cft->private);
 | 
						|
	switch (name) {
 | 
						|
	case RES_LIMIT:
 | 
						|
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
 | 
						|
			ret = -EINVAL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/* This function does all necessary parse...reuse it */
 | 
						|
		ret = res_counter_memparse_write_strategy(buffer, &val);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
		if (type == _MEM)
 | 
						|
			ret = mem_cgroup_resize_limit(memcg, val);
 | 
						|
		else
 | 
						|
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
 | 
						|
		break;
 | 
						|
	case RES_SOFT_LIMIT:
 | 
						|
		ret = res_counter_memparse_write_strategy(buffer, &val);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
		/*
 | 
						|
		 * For memsw, soft limits are hard to implement in terms
 | 
						|
		 * of semantics, for now, we support soft limits for
 | 
						|
		 * control without swap
 | 
						|
		 */
 | 
						|
		if (type == _MEM)
 | 
						|
			ret = res_counter_set_soft_limit(&memcg->res, val);
 | 
						|
		else
 | 
						|
			ret = -EINVAL;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		ret = -EINVAL; /* should be BUG() ? */
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
 | 
						|
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
 | 
						|
{
 | 
						|
	struct cgroup *cgroup;
 | 
						|
	unsigned long long min_limit, min_memsw_limit, tmp;
 | 
						|
 | 
						|
	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | 
						|
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | 
						|
	cgroup = memcg->css.cgroup;
 | 
						|
	if (!memcg->use_hierarchy)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	while (cgroup->parent) {
 | 
						|
		cgroup = cgroup->parent;
 | 
						|
		memcg = mem_cgroup_from_cont(cgroup);
 | 
						|
		if (!memcg->use_hierarchy)
 | 
						|
			break;
 | 
						|
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | 
						|
		min_limit = min(min_limit, tmp);
 | 
						|
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | 
						|
		min_memsw_limit = min(min_memsw_limit, tmp);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	*mem_limit = min_limit;
 | 
						|
	*memsw_limit = min_memsw_limit;
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem;
 | 
						|
	int type, name;
 | 
						|
 | 
						|
	mem = mem_cgroup_from_cont(cont);
 | 
						|
	type = MEMFILE_TYPE(event);
 | 
						|
	name = MEMFILE_ATTR(event);
 | 
						|
	switch (name) {
 | 
						|
	case RES_MAX_USAGE:
 | 
						|
		if (type == _MEM)
 | 
						|
			res_counter_reset_max(&mem->res);
 | 
						|
		else
 | 
						|
			res_counter_reset_max(&mem->memsw);
 | 
						|
		break;
 | 
						|
	case RES_FAILCNT:
 | 
						|
		if (type == _MEM)
 | 
						|
			res_counter_reset_failcnt(&mem->res);
 | 
						|
		else
 | 
						|
			res_counter_reset_failcnt(&mem->memsw);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* For read statistics */
 | 
						|
enum {
 | 
						|
	MCS_CACHE,
 | 
						|
	MCS_RSS,
 | 
						|
	MCS_MAPPED_FILE,
 | 
						|
	MCS_PGPGIN,
 | 
						|
	MCS_PGPGOUT,
 | 
						|
	MCS_SWAP,
 | 
						|
	MCS_INACTIVE_ANON,
 | 
						|
	MCS_ACTIVE_ANON,
 | 
						|
	MCS_INACTIVE_FILE,
 | 
						|
	MCS_ACTIVE_FILE,
 | 
						|
	MCS_UNEVICTABLE,
 | 
						|
	NR_MCS_STAT,
 | 
						|
};
 | 
						|
 | 
						|
struct mcs_total_stat {
 | 
						|
	s64 stat[NR_MCS_STAT];
 | 
						|
};
 | 
						|
 | 
						|
struct {
 | 
						|
	char *local_name;
 | 
						|
	char *total_name;
 | 
						|
} memcg_stat_strings[NR_MCS_STAT] = {
 | 
						|
	{"cache", "total_cache"},
 | 
						|
	{"rss", "total_rss"},
 | 
						|
	{"mapped_file", "total_mapped_file"},
 | 
						|
	{"pgpgin", "total_pgpgin"},
 | 
						|
	{"pgpgout", "total_pgpgout"},
 | 
						|
	{"swap", "total_swap"},
 | 
						|
	{"inactive_anon", "total_inactive_anon"},
 | 
						|
	{"active_anon", "total_active_anon"},
 | 
						|
	{"inactive_file", "total_inactive_file"},
 | 
						|
	{"active_file", "total_active_file"},
 | 
						|
	{"unevictable", "total_unevictable"}
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
 | 
						|
{
 | 
						|
	struct mcs_total_stat *s = data;
 | 
						|
	s64 val;
 | 
						|
 | 
						|
	/* per cpu stat */
 | 
						|
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
 | 
						|
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
 | 
						|
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
 | 
						|
	s->stat[MCS_RSS] += val * PAGE_SIZE;
 | 
						|
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
 | 
						|
	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
 | 
						|
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
 | 
						|
	s->stat[MCS_PGPGIN] += val;
 | 
						|
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
 | 
						|
	s->stat[MCS_PGPGOUT] += val;
 | 
						|
	if (do_swap_account) {
 | 
						|
		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
 | 
						|
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	/* per zone stat */
 | 
						|
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
 | 
						|
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
 | 
						|
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
 | 
						|
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
 | 
						|
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
 | 
						|
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
 | 
						|
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
 | 
						|
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
 | 
						|
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
 | 
						|
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
 | 
						|
{
 | 
						|
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
 | 
						|
				 struct cgroup_map_cb *cb)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
 | 
						|
	struct mcs_total_stat mystat;
 | 
						|
	int i;
 | 
						|
 | 
						|
	memset(&mystat, 0, sizeof(mystat));
 | 
						|
	mem_cgroup_get_local_stat(mem_cont, &mystat);
 | 
						|
 | 
						|
	for (i = 0; i < NR_MCS_STAT; i++) {
 | 
						|
		if (i == MCS_SWAP && !do_swap_account)
 | 
						|
			continue;
 | 
						|
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Hierarchical information */
 | 
						|
	{
 | 
						|
		unsigned long long limit, memsw_limit;
 | 
						|
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
 | 
						|
		cb->fill(cb, "hierarchical_memory_limit", limit);
 | 
						|
		if (do_swap_account)
 | 
						|
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
 | 
						|
	}
 | 
						|
 | 
						|
	memset(&mystat, 0, sizeof(mystat));
 | 
						|
	mem_cgroup_get_total_stat(mem_cont, &mystat);
 | 
						|
	for (i = 0; i < NR_MCS_STAT; i++) {
 | 
						|
		if (i == MCS_SWAP && !do_swap_account)
 | 
						|
			continue;
 | 
						|
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
 | 
						|
 | 
						|
	{
 | 
						|
		int nid, zid;
 | 
						|
		struct mem_cgroup_per_zone *mz;
 | 
						|
		unsigned long recent_rotated[2] = {0, 0};
 | 
						|
		unsigned long recent_scanned[2] = {0, 0};
 | 
						|
 | 
						|
		for_each_online_node(nid)
 | 
						|
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | 
						|
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
 | 
						|
 | 
						|
				recent_rotated[0] +=
 | 
						|
					mz->reclaim_stat.recent_rotated[0];
 | 
						|
				recent_rotated[1] +=
 | 
						|
					mz->reclaim_stat.recent_rotated[1];
 | 
						|
				recent_scanned[0] +=
 | 
						|
					mz->reclaim_stat.recent_scanned[0];
 | 
						|
				recent_scanned[1] +=
 | 
						|
					mz->reclaim_stat.recent_scanned[1];
 | 
						|
			}
 | 
						|
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
 | 
						|
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
 | 
						|
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
 | 
						|
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 | 
						|
 | 
						|
	return get_swappiness(memcg);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
 | 
						|
				       u64 val)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 | 
						|
	struct mem_cgroup *parent;
 | 
						|
 | 
						|
	if (val > 100)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (cgrp->parent == NULL)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	parent = mem_cgroup_from_cont(cgrp->parent);
 | 
						|
 | 
						|
	cgroup_lock();
 | 
						|
 | 
						|
	/* If under hierarchy, only empty-root can set this value */
 | 
						|
	if ((parent->use_hierarchy) ||
 | 
						|
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
 | 
						|
		cgroup_unlock();
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&memcg->reclaim_param_lock);
 | 
						|
	memcg->swappiness = val;
 | 
						|
	spin_unlock(&memcg->reclaim_param_lock);
 | 
						|
 | 
						|
	cgroup_unlock();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static struct cftype mem_cgroup_files[] = {
 | 
						|
	{
 | 
						|
		.name = "usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
 | 
						|
		.read_u64 = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "max_usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
 | 
						|
		.trigger = mem_cgroup_reset,
 | 
						|
		.read_u64 = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
 | 
						|
		.write_string = mem_cgroup_write,
 | 
						|
		.read_u64 = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "soft_limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
 | 
						|
		.write_string = mem_cgroup_write,
 | 
						|
		.read_u64 = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "failcnt",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
 | 
						|
		.trigger = mem_cgroup_reset,
 | 
						|
		.read_u64 = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "stat",
 | 
						|
		.read_map = mem_control_stat_show,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "force_empty",
 | 
						|
		.trigger = mem_cgroup_force_empty_write,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "use_hierarchy",
 | 
						|
		.write_u64 = mem_cgroup_hierarchy_write,
 | 
						|
		.read_u64 = mem_cgroup_hierarchy_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "swappiness",
 | 
						|
		.read_u64 = mem_cgroup_swappiness_read,
 | 
						|
		.write_u64 = mem_cgroup_swappiness_write,
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | 
						|
static struct cftype memsw_cgroup_files[] = {
 | 
						|
	{
 | 
						|
		.name = "memsw.usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
 | 
						|
		.read_u64 = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "memsw.max_usage_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
 | 
						|
		.trigger = mem_cgroup_reset,
 | 
						|
		.read_u64 = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "memsw.limit_in_bytes",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
 | 
						|
		.write_string = mem_cgroup_write,
 | 
						|
		.read_u64 = mem_cgroup_read,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "memsw.failcnt",
 | 
						|
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
 | 
						|
		.trigger = mem_cgroup_reset,
 | 
						|
		.read_u64 = mem_cgroup_read,
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
 | 
						|
{
 | 
						|
	if (!do_swap_account)
 | 
						|
		return 0;
 | 
						|
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
 | 
						|
				ARRAY_SIZE(memsw_cgroup_files));
 | 
						|
};
 | 
						|
#else
 | 
						|
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
 | 
						|
{
 | 
						|
	struct mem_cgroup_per_node *pn;
 | 
						|
	struct mem_cgroup_per_zone *mz;
 | 
						|
	enum lru_list l;
 | 
						|
	int zone, tmp = node;
 | 
						|
	/*
 | 
						|
	 * This routine is called against possible nodes.
 | 
						|
	 * But it's BUG to call kmalloc() against offline node.
 | 
						|
	 *
 | 
						|
	 * TODO: this routine can waste much memory for nodes which will
 | 
						|
	 *       never be onlined. It's better to use memory hotplug callback
 | 
						|
	 *       function.
 | 
						|
	 */
 | 
						|
	if (!node_state(node, N_NORMAL_MEMORY))
 | 
						|
		tmp = -1;
 | 
						|
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
 | 
						|
	if (!pn)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	mem->info.nodeinfo[node] = pn;
 | 
						|
	memset(pn, 0, sizeof(*pn));
 | 
						|
 | 
						|
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | 
						|
		mz = &pn->zoneinfo[zone];
 | 
						|
		for_each_lru(l)
 | 
						|
			INIT_LIST_HEAD(&mz->lists[l]);
 | 
						|
		mz->usage_in_excess = 0;
 | 
						|
		mz->on_tree = false;
 | 
						|
		mz->mem = mem;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
 | 
						|
{
 | 
						|
	kfree(mem->info.nodeinfo[node]);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_size(void)
 | 
						|
{
 | 
						|
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
 | 
						|
	return sizeof(struct mem_cgroup) + cpustat_size;
 | 
						|
}
 | 
						|
 | 
						|
static struct mem_cgroup *mem_cgroup_alloc(void)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem;
 | 
						|
	int size = mem_cgroup_size();
 | 
						|
 | 
						|
	if (size < PAGE_SIZE)
 | 
						|
		mem = kmalloc(size, GFP_KERNEL);
 | 
						|
	else
 | 
						|
		mem = vmalloc(size);
 | 
						|
 | 
						|
	if (mem)
 | 
						|
		memset(mem, 0, size);
 | 
						|
	return mem;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 | 
						|
 * (scanning all at force_empty is too costly...)
 | 
						|
 *
 | 
						|
 * Instead of clearing all references at force_empty, we remember
 | 
						|
 * the number of reference from swap_cgroup and free mem_cgroup when
 | 
						|
 * it goes down to 0.
 | 
						|
 *
 | 
						|
 * Removal of cgroup itself succeeds regardless of refs from swap.
 | 
						|
 */
 | 
						|
 | 
						|
static void __mem_cgroup_free(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	int node;
 | 
						|
 | 
						|
	mem_cgroup_remove_from_trees(mem);
 | 
						|
	free_css_id(&mem_cgroup_subsys, &mem->css);
 | 
						|
 | 
						|
	for_each_node_state(node, N_POSSIBLE)
 | 
						|
		free_mem_cgroup_per_zone_info(mem, node);
 | 
						|
 | 
						|
	if (mem_cgroup_size() < PAGE_SIZE)
 | 
						|
		kfree(mem);
 | 
						|
	else
 | 
						|
		vfree(mem);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_get(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	atomic_inc(&mem->refcnt);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_put(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	if (atomic_dec_and_test(&mem->refcnt)) {
 | 
						|
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
 | 
						|
		__mem_cgroup_free(mem);
 | 
						|
		if (parent)
 | 
						|
			mem_cgroup_put(parent);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 | 
						|
 */
 | 
						|
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
 | 
						|
{
 | 
						|
	if (!mem->res.parent)
 | 
						|
		return NULL;
 | 
						|
	return mem_cgroup_from_res_counter(mem->res.parent, res);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | 
						|
static void __init enable_swap_cgroup(void)
 | 
						|
{
 | 
						|
	if (!mem_cgroup_disabled() && really_do_swap_account)
 | 
						|
		do_swap_account = 1;
 | 
						|
}
 | 
						|
#else
 | 
						|
static void __init enable_swap_cgroup(void)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int mem_cgroup_soft_limit_tree_init(void)
 | 
						|
{
 | 
						|
	struct mem_cgroup_tree_per_node *rtpn;
 | 
						|
	struct mem_cgroup_tree_per_zone *rtpz;
 | 
						|
	int tmp, node, zone;
 | 
						|
 | 
						|
	for_each_node_state(node, N_POSSIBLE) {
 | 
						|
		tmp = node;
 | 
						|
		if (!node_state(node, N_NORMAL_MEMORY))
 | 
						|
			tmp = -1;
 | 
						|
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
 | 
						|
		if (!rtpn)
 | 
						|
			return 1;
 | 
						|
 | 
						|
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
 | 
						|
 | 
						|
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | 
						|
			rtpz = &rtpn->rb_tree_per_zone[zone];
 | 
						|
			rtpz->rb_root = RB_ROOT;
 | 
						|
			spin_lock_init(&rtpz->lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct cgroup_subsys_state * __ref
 | 
						|
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem, *parent;
 | 
						|
	long error = -ENOMEM;
 | 
						|
	int node;
 | 
						|
 | 
						|
	mem = mem_cgroup_alloc();
 | 
						|
	if (!mem)
 | 
						|
		return ERR_PTR(error);
 | 
						|
 | 
						|
	for_each_node_state(node, N_POSSIBLE)
 | 
						|
		if (alloc_mem_cgroup_per_zone_info(mem, node))
 | 
						|
			goto free_out;
 | 
						|
 | 
						|
	/* root ? */
 | 
						|
	if (cont->parent == NULL) {
 | 
						|
		enable_swap_cgroup();
 | 
						|
		parent = NULL;
 | 
						|
		root_mem_cgroup = mem;
 | 
						|
		if (mem_cgroup_soft_limit_tree_init())
 | 
						|
			goto free_out;
 | 
						|
 | 
						|
	} else {
 | 
						|
		parent = mem_cgroup_from_cont(cont->parent);
 | 
						|
		mem->use_hierarchy = parent->use_hierarchy;
 | 
						|
	}
 | 
						|
 | 
						|
	if (parent && parent->use_hierarchy) {
 | 
						|
		res_counter_init(&mem->res, &parent->res);
 | 
						|
		res_counter_init(&mem->memsw, &parent->memsw);
 | 
						|
		/*
 | 
						|
		 * We increment refcnt of the parent to ensure that we can
 | 
						|
		 * safely access it on res_counter_charge/uncharge.
 | 
						|
		 * This refcnt will be decremented when freeing this
 | 
						|
		 * mem_cgroup(see mem_cgroup_put).
 | 
						|
		 */
 | 
						|
		mem_cgroup_get(parent);
 | 
						|
	} else {
 | 
						|
		res_counter_init(&mem->res, NULL);
 | 
						|
		res_counter_init(&mem->memsw, NULL);
 | 
						|
	}
 | 
						|
	mem->last_scanned_child = 0;
 | 
						|
	spin_lock_init(&mem->reclaim_param_lock);
 | 
						|
 | 
						|
	if (parent)
 | 
						|
		mem->swappiness = get_swappiness(parent);
 | 
						|
	atomic_set(&mem->refcnt, 1);
 | 
						|
	return &mem->css;
 | 
						|
free_out:
 | 
						|
	__mem_cgroup_free(mem);
 | 
						|
	root_mem_cgroup = NULL;
 | 
						|
	return ERR_PTR(error);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
 | 
						|
					struct cgroup *cont)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | 
						|
 | 
						|
	return mem_cgroup_force_empty(mem, false);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
 | 
						|
				struct cgroup *cont)
 | 
						|
{
 | 
						|
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | 
						|
 | 
						|
	mem_cgroup_put(mem);
 | 
						|
}
 | 
						|
 | 
						|
static int mem_cgroup_populate(struct cgroup_subsys *ss,
 | 
						|
				struct cgroup *cont)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
 | 
						|
				ARRAY_SIZE(mem_cgroup_files));
 | 
						|
 | 
						|
	if (!ret)
 | 
						|
		ret = register_memsw_files(cont, ss);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
 | 
						|
				struct cgroup *cont,
 | 
						|
				struct cgroup *old_cont,
 | 
						|
				struct task_struct *p,
 | 
						|
				bool threadgroup)
 | 
						|
{
 | 
						|
	mutex_lock(&memcg_tasklist);
 | 
						|
	/*
 | 
						|
	 * FIXME: It's better to move charges of this process from old
 | 
						|
	 * memcg to new memcg. But it's just on TODO-List now.
 | 
						|
	 */
 | 
						|
	mutex_unlock(&memcg_tasklist);
 | 
						|
}
 | 
						|
 | 
						|
struct cgroup_subsys mem_cgroup_subsys = {
 | 
						|
	.name = "memory",
 | 
						|
	.subsys_id = mem_cgroup_subsys_id,
 | 
						|
	.create = mem_cgroup_create,
 | 
						|
	.pre_destroy = mem_cgroup_pre_destroy,
 | 
						|
	.destroy = mem_cgroup_destroy,
 | 
						|
	.populate = mem_cgroup_populate,
 | 
						|
	.attach = mem_cgroup_move_task,
 | 
						|
	.early_init = 0,
 | 
						|
	.use_id = 1,
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | 
						|
 | 
						|
static int __init disable_swap_account(char *s)
 | 
						|
{
 | 
						|
	really_do_swap_account = 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("noswapaccount", disable_swap_account);
 | 
						|
#endif
 |