 2a74dbb9a8
			
		
	
	
	2a74dbb9a8
	
	
	
		
			
			Pull security subsystem updates from James Morris: "A quiet cycle for the security subsystem with just a few maintenance updates." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: Smack: create a sysfs mount point for smackfs Smack: use select not depends in Kconfig Yama: remove locking from delete path Yama: add RCU to drop read locking drivers/char/tpm: remove tasklet and cleanup KEYS: Use keyring_alloc() to create special keyrings KEYS: Reduce initial permissions on keys KEYS: Make the session and process keyrings per-thread seccomp: Make syscall skipping and nr changes more consistent key: Fix resource leak keys: Fix unreachable code KEYS: Add payload preparsing opportunity prior to key instantiate or update
		
			
				
	
	
		
			1099 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1099 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Basic authentication token and access key management
 | |
|  *
 | |
|  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
 | |
|  * Written by David Howells (dhowells@redhat.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/err.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| struct kmem_cache *key_jar;
 | |
| struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
 | |
| DEFINE_SPINLOCK(key_serial_lock);
 | |
| 
 | |
| struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
 | |
| DEFINE_SPINLOCK(key_user_lock);
 | |
| 
 | |
| unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
 | |
| unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
 | |
| unsigned int key_quota_maxkeys = 200;		/* general key count quota */
 | |
| unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
 | |
| 
 | |
| static LIST_HEAD(key_types_list);
 | |
| static DECLARE_RWSEM(key_types_sem);
 | |
| 
 | |
| /* We serialise key instantiation and link */
 | |
| DEFINE_MUTEX(key_construction_mutex);
 | |
| 
 | |
| #ifdef KEY_DEBUGGING
 | |
| void __key_check(const struct key *key)
 | |
| {
 | |
| 	printk("__key_check: key %p {%08x} should be {%08x}\n",
 | |
| 	       key, key->magic, KEY_DEBUG_MAGIC);
 | |
| 	BUG();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Get the key quota record for a user, allocating a new record if one doesn't
 | |
|  * already exist.
 | |
|  */
 | |
| struct key_user *key_user_lookup(kuid_t uid)
 | |
| {
 | |
| 	struct key_user *candidate = NULL, *user;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct rb_node **p;
 | |
| 
 | |
| try_again:
 | |
| 	p = &key_user_tree.rb_node;
 | |
| 	spin_lock(&key_user_lock);
 | |
| 
 | |
| 	/* search the tree for a user record with a matching UID */
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		user = rb_entry(parent, struct key_user, node);
 | |
| 
 | |
| 		if (uid_lt(uid, user->uid))
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (uid_gt(uid, user->uid))
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			goto found;
 | |
| 	}
 | |
| 
 | |
| 	/* if we get here, we failed to find a match in the tree */
 | |
| 	if (!candidate) {
 | |
| 		/* allocate a candidate user record if we don't already have
 | |
| 		 * one */
 | |
| 		spin_unlock(&key_user_lock);
 | |
| 
 | |
| 		user = NULL;
 | |
| 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
 | |
| 		if (unlikely(!candidate))
 | |
| 			goto out;
 | |
| 
 | |
| 		/* the allocation may have scheduled, so we need to repeat the
 | |
| 		 * search lest someone else added the record whilst we were
 | |
| 		 * asleep */
 | |
| 		goto try_again;
 | |
| 	}
 | |
| 
 | |
| 	/* if we get here, then the user record still hadn't appeared on the
 | |
| 	 * second pass - so we use the candidate record */
 | |
| 	atomic_set(&candidate->usage, 1);
 | |
| 	atomic_set(&candidate->nkeys, 0);
 | |
| 	atomic_set(&candidate->nikeys, 0);
 | |
| 	candidate->uid = uid;
 | |
| 	candidate->qnkeys = 0;
 | |
| 	candidate->qnbytes = 0;
 | |
| 	spin_lock_init(&candidate->lock);
 | |
| 	mutex_init(&candidate->cons_lock);
 | |
| 
 | |
| 	rb_link_node(&candidate->node, parent, p);
 | |
| 	rb_insert_color(&candidate->node, &key_user_tree);
 | |
| 	spin_unlock(&key_user_lock);
 | |
| 	user = candidate;
 | |
| 	goto out;
 | |
| 
 | |
| 	/* okay - we found a user record for this UID */
 | |
| found:
 | |
| 	atomic_inc(&user->usage);
 | |
| 	spin_unlock(&key_user_lock);
 | |
| 	kfree(candidate);
 | |
| out:
 | |
| 	return user;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dispose of a user structure
 | |
|  */
 | |
| void key_user_put(struct key_user *user)
 | |
| {
 | |
| 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 | |
| 		rb_erase(&user->node, &key_user_tree);
 | |
| 		spin_unlock(&key_user_lock);
 | |
| 
 | |
| 		kfree(user);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a serial number for a key.  These are assigned randomly to avoid
 | |
|  * security issues through covert channel problems.
 | |
|  */
 | |
| static inline void key_alloc_serial(struct key *key)
 | |
| {
 | |
| 	struct rb_node *parent, **p;
 | |
| 	struct key *xkey;
 | |
| 
 | |
| 	/* propose a random serial number and look for a hole for it in the
 | |
| 	 * serial number tree */
 | |
| 	do {
 | |
| 		get_random_bytes(&key->serial, sizeof(key->serial));
 | |
| 
 | |
| 		key->serial >>= 1; /* negative numbers are not permitted */
 | |
| 	} while (key->serial < 3);
 | |
| 
 | |
| 	spin_lock(&key_serial_lock);
 | |
| 
 | |
| attempt_insertion:
 | |
| 	parent = NULL;
 | |
| 	p = &key_serial_tree.rb_node;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		xkey = rb_entry(parent, struct key, serial_node);
 | |
| 
 | |
| 		if (key->serial < xkey->serial)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (key->serial > xkey->serial)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			goto serial_exists;
 | |
| 	}
 | |
| 
 | |
| 	/* we've found a suitable hole - arrange for this key to occupy it */
 | |
| 	rb_link_node(&key->serial_node, parent, p);
 | |
| 	rb_insert_color(&key->serial_node, &key_serial_tree);
 | |
| 
 | |
| 	spin_unlock(&key_serial_lock);
 | |
| 	return;
 | |
| 
 | |
| 	/* we found a key with the proposed serial number - walk the tree from
 | |
| 	 * that point looking for the next unused serial number */
 | |
| serial_exists:
 | |
| 	for (;;) {
 | |
| 		key->serial++;
 | |
| 		if (key->serial < 3) {
 | |
| 			key->serial = 3;
 | |
| 			goto attempt_insertion;
 | |
| 		}
 | |
| 
 | |
| 		parent = rb_next(parent);
 | |
| 		if (!parent)
 | |
| 			goto attempt_insertion;
 | |
| 
 | |
| 		xkey = rb_entry(parent, struct key, serial_node);
 | |
| 		if (key->serial < xkey->serial)
 | |
| 			goto attempt_insertion;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * key_alloc - Allocate a key of the specified type.
 | |
|  * @type: The type of key to allocate.
 | |
|  * @desc: The key description to allow the key to be searched out.
 | |
|  * @uid: The owner of the new key.
 | |
|  * @gid: The group ID for the new key's group permissions.
 | |
|  * @cred: The credentials specifying UID namespace.
 | |
|  * @perm: The permissions mask of the new key.
 | |
|  * @flags: Flags specifying quota properties.
 | |
|  *
 | |
|  * Allocate a key of the specified type with the attributes given.  The key is
 | |
|  * returned in an uninstantiated state and the caller needs to instantiate the
 | |
|  * key before returning.
 | |
|  *
 | |
|  * The user's key count quota is updated to reflect the creation of the key and
 | |
|  * the user's key data quota has the default for the key type reserved.  The
 | |
|  * instantiation function should amend this as necessary.  If insufficient
 | |
|  * quota is available, -EDQUOT will be returned.
 | |
|  *
 | |
|  * The LSM security modules can prevent a key being created, in which case
 | |
|  * -EACCES will be returned.
 | |
|  *
 | |
|  * Returns a pointer to the new key if successful and an error code otherwise.
 | |
|  *
 | |
|  * Note that the caller needs to ensure the key type isn't uninstantiated.
 | |
|  * Internally this can be done by locking key_types_sem.  Externally, this can
 | |
|  * be done by either never unregistering the key type, or making sure
 | |
|  * key_alloc() calls don't race with module unloading.
 | |
|  */
 | |
| struct key *key_alloc(struct key_type *type, const char *desc,
 | |
| 		      kuid_t uid, kgid_t gid, const struct cred *cred,
 | |
| 		      key_perm_t perm, unsigned long flags)
 | |
| {
 | |
| 	struct key_user *user = NULL;
 | |
| 	struct key *key;
 | |
| 	size_t desclen, quotalen;
 | |
| 	int ret;
 | |
| 
 | |
| 	key = ERR_PTR(-EINVAL);
 | |
| 	if (!desc || !*desc)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (type->vet_description) {
 | |
| 		ret = type->vet_description(desc);
 | |
| 		if (ret < 0) {
 | |
| 			key = ERR_PTR(ret);
 | |
| 			goto error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	desclen = strlen(desc) + 1;
 | |
| 	quotalen = desclen + type->def_datalen;
 | |
| 
 | |
| 	/* get hold of the key tracking for this user */
 | |
| 	user = key_user_lookup(uid);
 | |
| 	if (!user)
 | |
| 		goto no_memory_1;
 | |
| 
 | |
| 	/* check that the user's quota permits allocation of another key and
 | |
| 	 * its description */
 | |
| 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 | |
| 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 | |
| 			key_quota_root_maxkeys : key_quota_maxkeys;
 | |
| 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 | |
| 			key_quota_root_maxbytes : key_quota_maxbytes;
 | |
| 
 | |
| 		spin_lock(&user->lock);
 | |
| 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 | |
| 			if (user->qnkeys + 1 >= maxkeys ||
 | |
| 			    user->qnbytes + quotalen >= maxbytes ||
 | |
| 			    user->qnbytes + quotalen < user->qnbytes)
 | |
| 				goto no_quota;
 | |
| 		}
 | |
| 
 | |
| 		user->qnkeys++;
 | |
| 		user->qnbytes += quotalen;
 | |
| 		spin_unlock(&user->lock);
 | |
| 	}
 | |
| 
 | |
| 	/* allocate and initialise the key and its description */
 | |
| 	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
 | |
| 	if (!key)
 | |
| 		goto no_memory_2;
 | |
| 
 | |
| 	if (desc) {
 | |
| 		key->description = kmemdup(desc, desclen, GFP_KERNEL);
 | |
| 		if (!key->description)
 | |
| 			goto no_memory_3;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&key->usage, 1);
 | |
| 	init_rwsem(&key->sem);
 | |
| 	lockdep_set_class(&key->sem, &type->lock_class);
 | |
| 	key->type = type;
 | |
| 	key->user = user;
 | |
| 	key->quotalen = quotalen;
 | |
| 	key->datalen = type->def_datalen;
 | |
| 	key->uid = uid;
 | |
| 	key->gid = gid;
 | |
| 	key->perm = perm;
 | |
| 	key->flags = 0;
 | |
| 	key->expiry = 0;
 | |
| 	key->payload.data = NULL;
 | |
| 	key->security = NULL;
 | |
| 
 | |
| 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 | |
| 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 | |
| 
 | |
| 	memset(&key->type_data, 0, sizeof(key->type_data));
 | |
| 
 | |
| #ifdef KEY_DEBUGGING
 | |
| 	key->magic = KEY_DEBUG_MAGIC;
 | |
| #endif
 | |
| 
 | |
| 	/* let the security module know about the key */
 | |
| 	ret = security_key_alloc(key, cred, flags);
 | |
| 	if (ret < 0)
 | |
| 		goto security_error;
 | |
| 
 | |
| 	/* publish the key by giving it a serial number */
 | |
| 	atomic_inc(&user->nkeys);
 | |
| 	key_alloc_serial(key);
 | |
| 
 | |
| error:
 | |
| 	return key;
 | |
| 
 | |
| security_error:
 | |
| 	kfree(key->description);
 | |
| 	kmem_cache_free(key_jar, key);
 | |
| 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 | |
| 		spin_lock(&user->lock);
 | |
| 		user->qnkeys--;
 | |
| 		user->qnbytes -= quotalen;
 | |
| 		spin_unlock(&user->lock);
 | |
| 	}
 | |
| 	key_user_put(user);
 | |
| 	key = ERR_PTR(ret);
 | |
| 	goto error;
 | |
| 
 | |
| no_memory_3:
 | |
| 	kmem_cache_free(key_jar, key);
 | |
| no_memory_2:
 | |
| 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 | |
| 		spin_lock(&user->lock);
 | |
| 		user->qnkeys--;
 | |
| 		user->qnbytes -= quotalen;
 | |
| 		spin_unlock(&user->lock);
 | |
| 	}
 | |
| 	key_user_put(user);
 | |
| no_memory_1:
 | |
| 	key = ERR_PTR(-ENOMEM);
 | |
| 	goto error;
 | |
| 
 | |
| no_quota:
 | |
| 	spin_unlock(&user->lock);
 | |
| 	key_user_put(user);
 | |
| 	key = ERR_PTR(-EDQUOT);
 | |
| 	goto error;
 | |
| }
 | |
| EXPORT_SYMBOL(key_alloc);
 | |
| 
 | |
| /**
 | |
|  * key_payload_reserve - Adjust data quota reservation for the key's payload
 | |
|  * @key: The key to make the reservation for.
 | |
|  * @datalen: The amount of data payload the caller now wants.
 | |
|  *
 | |
|  * Adjust the amount of the owning user's key data quota that a key reserves.
 | |
|  * If the amount is increased, then -EDQUOT may be returned if there isn't
 | |
|  * enough free quota available.
 | |
|  *
 | |
|  * If successful, 0 is returned.
 | |
|  */
 | |
| int key_payload_reserve(struct key *key, size_t datalen)
 | |
| {
 | |
| 	int delta = (int)datalen - key->datalen;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	key_check(key);
 | |
| 
 | |
| 	/* contemplate the quota adjustment */
 | |
| 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 | |
| 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 | |
| 			key_quota_root_maxbytes : key_quota_maxbytes;
 | |
| 
 | |
| 		spin_lock(&key->user->lock);
 | |
| 
 | |
| 		if (delta > 0 &&
 | |
| 		    (key->user->qnbytes + delta >= maxbytes ||
 | |
| 		     key->user->qnbytes + delta < key->user->qnbytes)) {
 | |
| 			ret = -EDQUOT;
 | |
| 		}
 | |
| 		else {
 | |
| 			key->user->qnbytes += delta;
 | |
| 			key->quotalen += delta;
 | |
| 		}
 | |
| 		spin_unlock(&key->user->lock);
 | |
| 	}
 | |
| 
 | |
| 	/* change the recorded data length if that didn't generate an error */
 | |
| 	if (ret == 0)
 | |
| 		key->datalen = datalen;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(key_payload_reserve);
 | |
| 
 | |
| /*
 | |
|  * Instantiate a key and link it into the target keyring atomically.  Must be
 | |
|  * called with the target keyring's semaphore writelocked.  The target key's
 | |
|  * semaphore need not be locked as instantiation is serialised by
 | |
|  * key_construction_mutex.
 | |
|  */
 | |
| static int __key_instantiate_and_link(struct key *key,
 | |
| 				      struct key_preparsed_payload *prep,
 | |
| 				      struct key *keyring,
 | |
| 				      struct key *authkey,
 | |
| 				      unsigned long *_prealloc)
 | |
| {
 | |
| 	int ret, awaken;
 | |
| 
 | |
| 	key_check(key);
 | |
| 	key_check(keyring);
 | |
| 
 | |
| 	awaken = 0;
 | |
| 	ret = -EBUSY;
 | |
| 
 | |
| 	mutex_lock(&key_construction_mutex);
 | |
| 
 | |
| 	/* can't instantiate twice */
 | |
| 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 | |
| 		/* instantiate the key */
 | |
| 		ret = key->type->instantiate(key, prep);
 | |
| 
 | |
| 		if (ret == 0) {
 | |
| 			/* mark the key as being instantiated */
 | |
| 			atomic_inc(&key->user->nikeys);
 | |
| 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 | |
| 
 | |
| 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 | |
| 				awaken = 1;
 | |
| 
 | |
| 			/* and link it into the destination keyring */
 | |
| 			if (keyring)
 | |
| 				__key_link(keyring, key, _prealloc);
 | |
| 
 | |
| 			/* disable the authorisation key */
 | |
| 			if (authkey)
 | |
| 				key_revoke(authkey);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&key_construction_mutex);
 | |
| 
 | |
| 	/* wake up anyone waiting for a key to be constructed */
 | |
| 	if (awaken)
 | |
| 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 | |
|  * @key: The key to instantiate.
 | |
|  * @data: The data to use to instantiate the keyring.
 | |
|  * @datalen: The length of @data.
 | |
|  * @keyring: Keyring to create a link in on success (or NULL).
 | |
|  * @authkey: The authorisation token permitting instantiation.
 | |
|  *
 | |
|  * Instantiate a key that's in the uninstantiated state using the provided data
 | |
|  * and, if successful, link it in to the destination keyring if one is
 | |
|  * supplied.
 | |
|  *
 | |
|  * If successful, 0 is returned, the authorisation token is revoked and anyone
 | |
|  * waiting for the key is woken up.  If the key was already instantiated,
 | |
|  * -EBUSY will be returned.
 | |
|  */
 | |
| int key_instantiate_and_link(struct key *key,
 | |
| 			     const void *data,
 | |
| 			     size_t datalen,
 | |
| 			     struct key *keyring,
 | |
| 			     struct key *authkey)
 | |
| {
 | |
| 	struct key_preparsed_payload prep;
 | |
| 	unsigned long prealloc;
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(&prep, 0, sizeof(prep));
 | |
| 	prep.data = data;
 | |
| 	prep.datalen = datalen;
 | |
| 	prep.quotalen = key->type->def_datalen;
 | |
| 	if (key->type->preparse) {
 | |
| 		ret = key->type->preparse(&prep);
 | |
| 		if (ret < 0)
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (keyring) {
 | |
| 		ret = __key_link_begin(keyring, key->type, key->description,
 | |
| 				       &prealloc);
 | |
| 		if (ret < 0)
 | |
| 			goto error_free_preparse;
 | |
| 	}
 | |
| 
 | |
| 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey,
 | |
| 					 &prealloc);
 | |
| 
 | |
| 	if (keyring)
 | |
| 		__key_link_end(keyring, key->type, prealloc);
 | |
| 
 | |
| error_free_preparse:
 | |
| 	if (key->type->preparse)
 | |
| 		key->type->free_preparse(&prep);
 | |
| error:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(key_instantiate_and_link);
 | |
| 
 | |
| /**
 | |
|  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 | |
|  * @key: The key to instantiate.
 | |
|  * @timeout: The timeout on the negative key.
 | |
|  * @error: The error to return when the key is hit.
 | |
|  * @keyring: Keyring to create a link in on success (or NULL).
 | |
|  * @authkey: The authorisation token permitting instantiation.
 | |
|  *
 | |
|  * Negatively instantiate a key that's in the uninstantiated state and, if
 | |
|  * successful, set its timeout and stored error and link it in to the
 | |
|  * destination keyring if one is supplied.  The key and any links to the key
 | |
|  * will be automatically garbage collected after the timeout expires.
 | |
|  *
 | |
|  * Negative keys are used to rate limit repeated request_key() calls by causing
 | |
|  * them to return the stored error code (typically ENOKEY) until the negative
 | |
|  * key expires.
 | |
|  *
 | |
|  * If successful, 0 is returned, the authorisation token is revoked and anyone
 | |
|  * waiting for the key is woken up.  If the key was already instantiated,
 | |
|  * -EBUSY will be returned.
 | |
|  */
 | |
| int key_reject_and_link(struct key *key,
 | |
| 			unsigned timeout,
 | |
| 			unsigned error,
 | |
| 			struct key *keyring,
 | |
| 			struct key *authkey)
 | |
| {
 | |
| 	unsigned long prealloc;
 | |
| 	struct timespec now;
 | |
| 	int ret, awaken, link_ret = 0;
 | |
| 
 | |
| 	key_check(key);
 | |
| 	key_check(keyring);
 | |
| 
 | |
| 	awaken = 0;
 | |
| 	ret = -EBUSY;
 | |
| 
 | |
| 	if (keyring)
 | |
| 		link_ret = __key_link_begin(keyring, key->type,
 | |
| 					    key->description, &prealloc);
 | |
| 
 | |
| 	mutex_lock(&key_construction_mutex);
 | |
| 
 | |
| 	/* can't instantiate twice */
 | |
| 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 | |
| 		/* mark the key as being negatively instantiated */
 | |
| 		atomic_inc(&key->user->nikeys);
 | |
| 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 | |
| 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 | |
| 		key->type_data.reject_error = -error;
 | |
| 		now = current_kernel_time();
 | |
| 		key->expiry = now.tv_sec + timeout;
 | |
| 		key_schedule_gc(key->expiry + key_gc_delay);
 | |
| 
 | |
| 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 | |
| 			awaken = 1;
 | |
| 
 | |
| 		ret = 0;
 | |
| 
 | |
| 		/* and link it into the destination keyring */
 | |
| 		if (keyring && link_ret == 0)
 | |
| 			__key_link(keyring, key, &prealloc);
 | |
| 
 | |
| 		/* disable the authorisation key */
 | |
| 		if (authkey)
 | |
| 			key_revoke(authkey);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&key_construction_mutex);
 | |
| 
 | |
| 	if (keyring)
 | |
| 		__key_link_end(keyring, key->type, prealloc);
 | |
| 
 | |
| 	/* wake up anyone waiting for a key to be constructed */
 | |
| 	if (awaken)
 | |
| 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 | |
| 
 | |
| 	return ret == 0 ? link_ret : ret;
 | |
| }
 | |
| EXPORT_SYMBOL(key_reject_and_link);
 | |
| 
 | |
| /**
 | |
|  * key_put - Discard a reference to a key.
 | |
|  * @key: The key to discard a reference from.
 | |
|  *
 | |
|  * Discard a reference to a key, and when all the references are gone, we
 | |
|  * schedule the cleanup task to come and pull it out of the tree in process
 | |
|  * context at some later time.
 | |
|  */
 | |
| void key_put(struct key *key)
 | |
| {
 | |
| 	if (key) {
 | |
| 		key_check(key);
 | |
| 
 | |
| 		if (atomic_dec_and_test(&key->usage))
 | |
| 			schedule_work(&key_gc_work);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(key_put);
 | |
| 
 | |
| /*
 | |
|  * Find a key by its serial number.
 | |
|  */
 | |
| struct key *key_lookup(key_serial_t id)
 | |
| {
 | |
| 	struct rb_node *n;
 | |
| 	struct key *key;
 | |
| 
 | |
| 	spin_lock(&key_serial_lock);
 | |
| 
 | |
| 	/* search the tree for the specified key */
 | |
| 	n = key_serial_tree.rb_node;
 | |
| 	while (n) {
 | |
| 		key = rb_entry(n, struct key, serial_node);
 | |
| 
 | |
| 		if (id < key->serial)
 | |
| 			n = n->rb_left;
 | |
| 		else if (id > key->serial)
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			goto found;
 | |
| 	}
 | |
| 
 | |
| not_found:
 | |
| 	key = ERR_PTR(-ENOKEY);
 | |
| 	goto error;
 | |
| 
 | |
| found:
 | |
| 	/* pretend it doesn't exist if it is awaiting deletion */
 | |
| 	if (atomic_read(&key->usage) == 0)
 | |
| 		goto not_found;
 | |
| 
 | |
| 	/* this races with key_put(), but that doesn't matter since key_put()
 | |
| 	 * doesn't actually change the key
 | |
| 	 */
 | |
| 	atomic_inc(&key->usage);
 | |
| 
 | |
| error:
 | |
| 	spin_unlock(&key_serial_lock);
 | |
| 	return key;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find and lock the specified key type against removal.
 | |
|  *
 | |
|  * We return with the sem read-locked if successful.  If the type wasn't
 | |
|  * available -ENOKEY is returned instead.
 | |
|  */
 | |
| struct key_type *key_type_lookup(const char *type)
 | |
| {
 | |
| 	struct key_type *ktype;
 | |
| 
 | |
| 	down_read(&key_types_sem);
 | |
| 
 | |
| 	/* look up the key type to see if it's one of the registered kernel
 | |
| 	 * types */
 | |
| 	list_for_each_entry(ktype, &key_types_list, link) {
 | |
| 		if (strcmp(ktype->name, type) == 0)
 | |
| 			goto found_kernel_type;
 | |
| 	}
 | |
| 
 | |
| 	up_read(&key_types_sem);
 | |
| 	ktype = ERR_PTR(-ENOKEY);
 | |
| 
 | |
| found_kernel_type:
 | |
| 	return ktype;
 | |
| }
 | |
| 
 | |
| void key_set_timeout(struct key *key, unsigned timeout)
 | |
| {
 | |
| 	struct timespec now;
 | |
| 	time_t expiry = 0;
 | |
| 
 | |
| 	/* make the changes with the locks held to prevent races */
 | |
| 	down_write(&key->sem);
 | |
| 
 | |
| 	if (timeout > 0) {
 | |
| 		now = current_kernel_time();
 | |
| 		expiry = now.tv_sec + timeout;
 | |
| 	}
 | |
| 
 | |
| 	key->expiry = expiry;
 | |
| 	key_schedule_gc(key->expiry + key_gc_delay);
 | |
| 
 | |
| 	up_write(&key->sem);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(key_set_timeout);
 | |
| 
 | |
| /*
 | |
|  * Unlock a key type locked by key_type_lookup().
 | |
|  */
 | |
| void key_type_put(struct key_type *ktype)
 | |
| {
 | |
| 	up_read(&key_types_sem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to update an existing key.
 | |
|  *
 | |
|  * The key is given to us with an incremented refcount that we need to discard
 | |
|  * if we get an error.
 | |
|  */
 | |
| static inline key_ref_t __key_update(key_ref_t key_ref,
 | |
| 				     struct key_preparsed_payload *prep)
 | |
| {
 | |
| 	struct key *key = key_ref_to_ptr(key_ref);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* need write permission on the key to update it */
 | |
| 	ret = key_permission(key_ref, KEY_WRITE);
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	ret = -EEXIST;
 | |
| 	if (!key->type->update)
 | |
| 		goto error;
 | |
| 
 | |
| 	down_write(&key->sem);
 | |
| 
 | |
| 	ret = key->type->update(key, prep);
 | |
| 	if (ret == 0)
 | |
| 		/* updating a negative key instantiates it */
 | |
| 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 | |
| 
 | |
| 	up_write(&key->sem);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| out:
 | |
| 	return key_ref;
 | |
| 
 | |
| error:
 | |
| 	key_put(key);
 | |
| 	key_ref = ERR_PTR(ret);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * key_create_or_update - Update or create and instantiate a key.
 | |
|  * @keyring_ref: A pointer to the destination keyring with possession flag.
 | |
|  * @type: The type of key.
 | |
|  * @description: The searchable description for the key.
 | |
|  * @payload: The data to use to instantiate or update the key.
 | |
|  * @plen: The length of @payload.
 | |
|  * @perm: The permissions mask for a new key.
 | |
|  * @flags: The quota flags for a new key.
 | |
|  *
 | |
|  * Search the destination keyring for a key of the same description and if one
 | |
|  * is found, update it, otherwise create and instantiate a new one and create a
 | |
|  * link to it from that keyring.
 | |
|  *
 | |
|  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 | |
|  * concocted.
 | |
|  *
 | |
|  * Returns a pointer to the new key if successful, -ENODEV if the key type
 | |
|  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 | |
|  * caller isn't permitted to modify the keyring or the LSM did not permit
 | |
|  * creation of the key.
 | |
|  *
 | |
|  * On success, the possession flag from the keyring ref will be tacked on to
 | |
|  * the key ref before it is returned.
 | |
|  */
 | |
| key_ref_t key_create_or_update(key_ref_t keyring_ref,
 | |
| 			       const char *type,
 | |
| 			       const char *description,
 | |
| 			       const void *payload,
 | |
| 			       size_t plen,
 | |
| 			       key_perm_t perm,
 | |
| 			       unsigned long flags)
 | |
| {
 | |
| 	unsigned long prealloc;
 | |
| 	struct key_preparsed_payload prep;
 | |
| 	const struct cred *cred = current_cred();
 | |
| 	struct key_type *ktype;
 | |
| 	struct key *keyring, *key = NULL;
 | |
| 	key_ref_t key_ref;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* look up the key type to see if it's one of the registered kernel
 | |
| 	 * types */
 | |
| 	ktype = key_type_lookup(type);
 | |
| 	if (IS_ERR(ktype)) {
 | |
| 		key_ref = ERR_PTR(-ENODEV);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	key_ref = ERR_PTR(-EINVAL);
 | |
| 	if (!ktype->match || !ktype->instantiate ||
 | |
| 	    (!description && !ktype->preparse))
 | |
| 		goto error_put_type;
 | |
| 
 | |
| 	keyring = key_ref_to_ptr(keyring_ref);
 | |
| 
 | |
| 	key_check(keyring);
 | |
| 
 | |
| 	key_ref = ERR_PTR(-ENOTDIR);
 | |
| 	if (keyring->type != &key_type_keyring)
 | |
| 		goto error_put_type;
 | |
| 
 | |
| 	memset(&prep, 0, sizeof(prep));
 | |
| 	prep.data = payload;
 | |
| 	prep.datalen = plen;
 | |
| 	prep.quotalen = ktype->def_datalen;
 | |
| 	if (ktype->preparse) {
 | |
| 		ret = ktype->preparse(&prep);
 | |
| 		if (ret < 0) {
 | |
| 			key_ref = ERR_PTR(ret);
 | |
| 			goto error_put_type;
 | |
| 		}
 | |
| 		if (!description)
 | |
| 			description = prep.description;
 | |
| 		key_ref = ERR_PTR(-EINVAL);
 | |
| 		if (!description)
 | |
| 			goto error_free_prep;
 | |
| 	}
 | |
| 
 | |
| 	ret = __key_link_begin(keyring, ktype, description, &prealloc);
 | |
| 	if (ret < 0) {
 | |
| 		key_ref = ERR_PTR(ret);
 | |
| 		goto error_free_prep;
 | |
| 	}
 | |
| 
 | |
| 	/* if we're going to allocate a new key, we're going to have
 | |
| 	 * to modify the keyring */
 | |
| 	ret = key_permission(keyring_ref, KEY_WRITE);
 | |
| 	if (ret < 0) {
 | |
| 		key_ref = ERR_PTR(ret);
 | |
| 		goto error_link_end;
 | |
| 	}
 | |
| 
 | |
| 	/* if it's possible to update this type of key, search for an existing
 | |
| 	 * key of the same type and description in the destination keyring and
 | |
| 	 * update that instead if possible
 | |
| 	 */
 | |
| 	if (ktype->update) {
 | |
| 		key_ref = __keyring_search_one(keyring_ref, ktype, description,
 | |
| 					       0);
 | |
| 		if (!IS_ERR(key_ref))
 | |
| 			goto found_matching_key;
 | |
| 	}
 | |
| 
 | |
| 	/* if the client doesn't provide, decide on the permissions we want */
 | |
| 	if (perm == KEY_PERM_UNDEF) {
 | |
| 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 | |
| 		perm |= KEY_USR_VIEW;
 | |
| 
 | |
| 		if (ktype->read)
 | |
| 			perm |= KEY_POS_READ;
 | |
| 
 | |
| 		if (ktype == &key_type_keyring || ktype->update)
 | |
| 			perm |= KEY_POS_WRITE;
 | |
| 	}
 | |
| 
 | |
| 	/* allocate a new key */
 | |
| 	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
 | |
| 			perm, flags);
 | |
| 	if (IS_ERR(key)) {
 | |
| 		key_ref = ERR_CAST(key);
 | |
| 		goto error_link_end;
 | |
| 	}
 | |
| 
 | |
| 	/* instantiate it and link it into the target keyring */
 | |
| 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &prealloc);
 | |
| 	if (ret < 0) {
 | |
| 		key_put(key);
 | |
| 		key_ref = ERR_PTR(ret);
 | |
| 		goto error_link_end;
 | |
| 	}
 | |
| 
 | |
| 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 | |
| 
 | |
| error_link_end:
 | |
| 	__key_link_end(keyring, ktype, prealloc);
 | |
| error_free_prep:
 | |
| 	if (ktype->preparse)
 | |
| 		ktype->free_preparse(&prep);
 | |
| error_put_type:
 | |
| 	key_type_put(ktype);
 | |
| error:
 | |
| 	return key_ref;
 | |
| 
 | |
|  found_matching_key:
 | |
| 	/* we found a matching key, so we're going to try to update it
 | |
| 	 * - we can drop the locks first as we have the key pinned
 | |
| 	 */
 | |
| 	__key_link_end(keyring, ktype, prealloc);
 | |
| 
 | |
| 	key_ref = __key_update(key_ref, &prep);
 | |
| 	goto error_free_prep;
 | |
| }
 | |
| EXPORT_SYMBOL(key_create_or_update);
 | |
| 
 | |
| /**
 | |
|  * key_update - Update a key's contents.
 | |
|  * @key_ref: The pointer (plus possession flag) to the key.
 | |
|  * @payload: The data to be used to update the key.
 | |
|  * @plen: The length of @payload.
 | |
|  *
 | |
|  * Attempt to update the contents of a key with the given payload data.  The
 | |
|  * caller must be granted Write permission on the key.  Negative keys can be
 | |
|  * instantiated by this method.
 | |
|  *
 | |
|  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 | |
|  * type does not support updating.  The key type may return other errors.
 | |
|  */
 | |
| int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 | |
| {
 | |
| 	struct key_preparsed_payload prep;
 | |
| 	struct key *key = key_ref_to_ptr(key_ref);
 | |
| 	int ret;
 | |
| 
 | |
| 	key_check(key);
 | |
| 
 | |
| 	/* the key must be writable */
 | |
| 	ret = key_permission(key_ref, KEY_WRITE);
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* attempt to update it if supported */
 | |
| 	ret = -EOPNOTSUPP;
 | |
| 	if (!key->type->update)
 | |
| 		goto error;
 | |
| 
 | |
| 	memset(&prep, 0, sizeof(prep));
 | |
| 	prep.data = payload;
 | |
| 	prep.datalen = plen;
 | |
| 	prep.quotalen = key->type->def_datalen;
 | |
| 	if (key->type->preparse) {
 | |
| 		ret = key->type->preparse(&prep);
 | |
| 		if (ret < 0)
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	down_write(&key->sem);
 | |
| 
 | |
| 	ret = key->type->update(key, &prep);
 | |
| 	if (ret == 0)
 | |
| 		/* updating a negative key instantiates it */
 | |
| 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 | |
| 
 | |
| 	up_write(&key->sem);
 | |
| 
 | |
| 	if (key->type->preparse)
 | |
| 		key->type->free_preparse(&prep);
 | |
| error:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(key_update);
 | |
| 
 | |
| /**
 | |
|  * key_revoke - Revoke a key.
 | |
|  * @key: The key to be revoked.
 | |
|  *
 | |
|  * Mark a key as being revoked and ask the type to free up its resources.  The
 | |
|  * revocation timeout is set and the key and all its links will be
 | |
|  * automatically garbage collected after key_gc_delay amount of time if they
 | |
|  * are not manually dealt with first.
 | |
|  */
 | |
| void key_revoke(struct key *key)
 | |
| {
 | |
| 	struct timespec now;
 | |
| 	time_t time;
 | |
| 
 | |
| 	key_check(key);
 | |
| 
 | |
| 	/* make sure no one's trying to change or use the key when we mark it
 | |
| 	 * - we tell lockdep that we might nest because we might be revoking an
 | |
| 	 *   authorisation key whilst holding the sem on a key we've just
 | |
| 	 *   instantiated
 | |
| 	 */
 | |
| 	down_write_nested(&key->sem, 1);
 | |
| 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 | |
| 	    key->type->revoke)
 | |
| 		key->type->revoke(key);
 | |
| 
 | |
| 	/* set the death time to no more than the expiry time */
 | |
| 	now = current_kernel_time();
 | |
| 	time = now.tv_sec;
 | |
| 	if (key->revoked_at == 0 || key->revoked_at > time) {
 | |
| 		key->revoked_at = time;
 | |
| 		key_schedule_gc(key->revoked_at + key_gc_delay);
 | |
| 	}
 | |
| 
 | |
| 	up_write(&key->sem);
 | |
| }
 | |
| EXPORT_SYMBOL(key_revoke);
 | |
| 
 | |
| /**
 | |
|  * key_invalidate - Invalidate a key.
 | |
|  * @key: The key to be invalidated.
 | |
|  *
 | |
|  * Mark a key as being invalidated and have it cleaned up immediately.  The key
 | |
|  * is ignored by all searches and other operations from this point.
 | |
|  */
 | |
| void key_invalidate(struct key *key)
 | |
| {
 | |
| 	kenter("%d", key_serial(key));
 | |
| 
 | |
| 	key_check(key);
 | |
| 
 | |
| 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
 | |
| 		down_write_nested(&key->sem, 1);
 | |
| 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
 | |
| 			key_schedule_gc_links();
 | |
| 		up_write(&key->sem);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(key_invalidate);
 | |
| 
 | |
| /**
 | |
|  * register_key_type - Register a type of key.
 | |
|  * @ktype: The new key type.
 | |
|  *
 | |
|  * Register a new key type.
 | |
|  *
 | |
|  * Returns 0 on success or -EEXIST if a type of this name already exists.
 | |
|  */
 | |
| int register_key_type(struct key_type *ktype)
 | |
| {
 | |
| 	struct key_type *p;
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
 | |
| 
 | |
| 	ret = -EEXIST;
 | |
| 	down_write(&key_types_sem);
 | |
| 
 | |
| 	/* disallow key types with the same name */
 | |
| 	list_for_each_entry(p, &key_types_list, link) {
 | |
| 		if (strcmp(p->name, ktype->name) == 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* store the type */
 | |
| 	list_add(&ktype->link, &key_types_list);
 | |
| 
 | |
| 	pr_notice("Key type %s registered\n", ktype->name);
 | |
| 	ret = 0;
 | |
| 
 | |
| out:
 | |
| 	up_write(&key_types_sem);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(register_key_type);
 | |
| 
 | |
| /**
 | |
|  * unregister_key_type - Unregister a type of key.
 | |
|  * @ktype: The key type.
 | |
|  *
 | |
|  * Unregister a key type and mark all the extant keys of this type as dead.
 | |
|  * Those keys of this type are then destroyed to get rid of their payloads and
 | |
|  * they and their links will be garbage collected as soon as possible.
 | |
|  */
 | |
| void unregister_key_type(struct key_type *ktype)
 | |
| {
 | |
| 	down_write(&key_types_sem);
 | |
| 	list_del_init(&ktype->link);
 | |
| 	downgrade_write(&key_types_sem);
 | |
| 	key_gc_keytype(ktype);
 | |
| 	pr_notice("Key type %s unregistered\n", ktype->name);
 | |
| 	up_read(&key_types_sem);
 | |
| }
 | |
| EXPORT_SYMBOL(unregister_key_type);
 | |
| 
 | |
| /*
 | |
|  * Initialise the key management state.
 | |
|  */
 | |
| void __init key_init(void)
 | |
| {
 | |
| 	/* allocate a slab in which we can store keys */
 | |
| 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
 | |
| 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
 | |
| 
 | |
| 	/* add the special key types */
 | |
| 	list_add_tail(&key_type_keyring.link, &key_types_list);
 | |
| 	list_add_tail(&key_type_dead.link, &key_types_list);
 | |
| 	list_add_tail(&key_type_user.link, &key_types_list);
 | |
| 	list_add_tail(&key_type_logon.link, &key_types_list);
 | |
| 
 | |
| 	/* record the root user tracking */
 | |
| 	rb_link_node(&root_key_user.node,
 | |
| 		     NULL,
 | |
| 		     &key_user_tree.rb_node);
 | |
| 
 | |
| 	rb_insert_color(&root_key_user.node,
 | |
| 			&key_user_tree);
 | |
| }
 |