 b1983b0a75
			
		
	
	
	b1983b0a75
	
	
	
		
			
			The __vvar_page relocation should actually be listed in S_REL instead of S_ABS. Oddly, this didn't always cause things to break, presumably because there are no users for relocation information on 64 bits yet. [ hpa: Not for stable - new code in 3.10 ] Signed-off-by: Kees Cook <keescook@chromium.org> Link: http://lkml.kernel.org/r/20130611185652.GA23674@www.outflux.net Reported-by: Michael Davidson <md@google.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
		
			
				
	
	
		
			1044 lines
		
	
	
	
		
			25 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1044 lines
		
	
	
	
		
			25 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This is included from relocs_32/64.c */
 | |
| 
 | |
| #define ElfW(type)		_ElfW(ELF_BITS, type)
 | |
| #define _ElfW(bits, type)	__ElfW(bits, type)
 | |
| #define __ElfW(bits, type)	Elf##bits##_##type
 | |
| 
 | |
| #define Elf_Addr		ElfW(Addr)
 | |
| #define Elf_Ehdr		ElfW(Ehdr)
 | |
| #define Elf_Phdr		ElfW(Phdr)
 | |
| #define Elf_Shdr		ElfW(Shdr)
 | |
| #define Elf_Sym			ElfW(Sym)
 | |
| 
 | |
| static Elf_Ehdr ehdr;
 | |
| 
 | |
| struct relocs {
 | |
| 	uint32_t	*offset;
 | |
| 	unsigned long	count;
 | |
| 	unsigned long	size;
 | |
| };
 | |
| 
 | |
| static struct relocs relocs16;
 | |
| static struct relocs relocs32;
 | |
| static struct relocs relocs64;
 | |
| 
 | |
| struct section {
 | |
| 	Elf_Shdr       shdr;
 | |
| 	struct section *link;
 | |
| 	Elf_Sym        *symtab;
 | |
| 	Elf_Rel        *reltab;
 | |
| 	char           *strtab;
 | |
| };
 | |
| static struct section *secs;
 | |
| 
 | |
| static const char * const sym_regex_kernel[S_NSYMTYPES] = {
 | |
| /*
 | |
|  * Following symbols have been audited. There values are constant and do
 | |
|  * not change if bzImage is loaded at a different physical address than
 | |
|  * the address for which it has been compiled. Don't warn user about
 | |
|  * absolute relocations present w.r.t these symbols.
 | |
|  */
 | |
| 	[S_ABS] =
 | |
| 	"^(xen_irq_disable_direct_reloc$|"
 | |
| 	"xen_save_fl_direct_reloc$|"
 | |
| 	"VDSO|"
 | |
| 	"__crc_)",
 | |
| 
 | |
| /*
 | |
|  * These symbols are known to be relative, even if the linker marks them
 | |
|  * as absolute (typically defined outside any section in the linker script.)
 | |
|  */
 | |
| 	[S_REL] =
 | |
| 	"^(__init_(begin|end)|"
 | |
| 	"__x86_cpu_dev_(start|end)|"
 | |
| 	"(__parainstructions|__alt_instructions)(|_end)|"
 | |
| 	"(__iommu_table|__apicdrivers|__smp_locks)(|_end)|"
 | |
| 	"__(start|end)_pci_.*|"
 | |
| 	"__(start|end)_builtin_fw|"
 | |
| 	"__(start|stop)___ksymtab(|_gpl|_unused|_unused_gpl|_gpl_future)|"
 | |
| 	"__(start|stop)___kcrctab(|_gpl|_unused|_unused_gpl|_gpl_future)|"
 | |
| 	"__(start|stop)___param|"
 | |
| 	"__(start|stop)___modver|"
 | |
| 	"__(start|stop)___bug_table|"
 | |
| 	"__tracedata_(start|end)|"
 | |
| 	"__(start|stop)_notes|"
 | |
| 	"__end_rodata|"
 | |
| 	"__initramfs_start|"
 | |
| 	"(jiffies|jiffies_64)|"
 | |
| #if ELF_BITS == 64
 | |
| 	"__per_cpu_load|"
 | |
| 	"init_per_cpu__.*|"
 | |
| 	"__end_rodata_hpage_align|"
 | |
| 	"__vvar_page|"
 | |
| #endif
 | |
| 	"_end)$"
 | |
| };
 | |
| 
 | |
| 
 | |
| static const char * const sym_regex_realmode[S_NSYMTYPES] = {
 | |
| /*
 | |
|  * These symbols are known to be relative, even if the linker marks them
 | |
|  * as absolute (typically defined outside any section in the linker script.)
 | |
|  */
 | |
| 	[S_REL] =
 | |
| 	"^pa_",
 | |
| 
 | |
| /*
 | |
|  * These are 16-bit segment symbols when compiling 16-bit code.
 | |
|  */
 | |
| 	[S_SEG] =
 | |
| 	"^real_mode_seg$",
 | |
| 
 | |
| /*
 | |
|  * These are offsets belonging to segments, as opposed to linear addresses,
 | |
|  * when compiling 16-bit code.
 | |
|  */
 | |
| 	[S_LIN] =
 | |
| 	"^pa_",
 | |
| };
 | |
| 
 | |
| static const char * const *sym_regex;
 | |
| 
 | |
| static regex_t sym_regex_c[S_NSYMTYPES];
 | |
| static int is_reloc(enum symtype type, const char *sym_name)
 | |
| {
 | |
| 	return sym_regex[type] &&
 | |
| 		!regexec(&sym_regex_c[type], sym_name, 0, NULL, 0);
 | |
| }
 | |
| 
 | |
| static void regex_init(int use_real_mode)
 | |
| {
 | |
|         char errbuf[128];
 | |
|         int err;
 | |
| 	int i;
 | |
| 
 | |
| 	if (use_real_mode)
 | |
| 		sym_regex = sym_regex_realmode;
 | |
| 	else
 | |
| 		sym_regex = sym_regex_kernel;
 | |
| 
 | |
| 	for (i = 0; i < S_NSYMTYPES; i++) {
 | |
| 		if (!sym_regex[i])
 | |
| 			continue;
 | |
| 
 | |
| 		err = regcomp(&sym_regex_c[i], sym_regex[i],
 | |
| 			      REG_EXTENDED|REG_NOSUB);
 | |
| 
 | |
| 		if (err) {
 | |
| 			regerror(err, &sym_regex_c[i], errbuf, sizeof errbuf);
 | |
| 			die("%s", errbuf);
 | |
| 		}
 | |
|         }
 | |
| }
 | |
| 
 | |
| static const char *sym_type(unsigned type)
 | |
| {
 | |
| 	static const char *type_name[] = {
 | |
| #define SYM_TYPE(X) [X] = #X
 | |
| 		SYM_TYPE(STT_NOTYPE),
 | |
| 		SYM_TYPE(STT_OBJECT),
 | |
| 		SYM_TYPE(STT_FUNC),
 | |
| 		SYM_TYPE(STT_SECTION),
 | |
| 		SYM_TYPE(STT_FILE),
 | |
| 		SYM_TYPE(STT_COMMON),
 | |
| 		SYM_TYPE(STT_TLS),
 | |
| #undef SYM_TYPE
 | |
| 	};
 | |
| 	const char *name = "unknown sym type name";
 | |
| 	if (type < ARRAY_SIZE(type_name)) {
 | |
| 		name = type_name[type];
 | |
| 	}
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| static const char *sym_bind(unsigned bind)
 | |
| {
 | |
| 	static const char *bind_name[] = {
 | |
| #define SYM_BIND(X) [X] = #X
 | |
| 		SYM_BIND(STB_LOCAL),
 | |
| 		SYM_BIND(STB_GLOBAL),
 | |
| 		SYM_BIND(STB_WEAK),
 | |
| #undef SYM_BIND
 | |
| 	};
 | |
| 	const char *name = "unknown sym bind name";
 | |
| 	if (bind < ARRAY_SIZE(bind_name)) {
 | |
| 		name = bind_name[bind];
 | |
| 	}
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| static const char *sym_visibility(unsigned visibility)
 | |
| {
 | |
| 	static const char *visibility_name[] = {
 | |
| #define SYM_VISIBILITY(X) [X] = #X
 | |
| 		SYM_VISIBILITY(STV_DEFAULT),
 | |
| 		SYM_VISIBILITY(STV_INTERNAL),
 | |
| 		SYM_VISIBILITY(STV_HIDDEN),
 | |
| 		SYM_VISIBILITY(STV_PROTECTED),
 | |
| #undef SYM_VISIBILITY
 | |
| 	};
 | |
| 	const char *name = "unknown sym visibility name";
 | |
| 	if (visibility < ARRAY_SIZE(visibility_name)) {
 | |
| 		name = visibility_name[visibility];
 | |
| 	}
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| static const char *rel_type(unsigned type)
 | |
| {
 | |
| 	static const char *type_name[] = {
 | |
| #define REL_TYPE(X) [X] = #X
 | |
| #if ELF_BITS == 64
 | |
| 		REL_TYPE(R_X86_64_NONE),
 | |
| 		REL_TYPE(R_X86_64_64),
 | |
| 		REL_TYPE(R_X86_64_PC32),
 | |
| 		REL_TYPE(R_X86_64_GOT32),
 | |
| 		REL_TYPE(R_X86_64_PLT32),
 | |
| 		REL_TYPE(R_X86_64_COPY),
 | |
| 		REL_TYPE(R_X86_64_GLOB_DAT),
 | |
| 		REL_TYPE(R_X86_64_JUMP_SLOT),
 | |
| 		REL_TYPE(R_X86_64_RELATIVE),
 | |
| 		REL_TYPE(R_X86_64_GOTPCREL),
 | |
| 		REL_TYPE(R_X86_64_32),
 | |
| 		REL_TYPE(R_X86_64_32S),
 | |
| 		REL_TYPE(R_X86_64_16),
 | |
| 		REL_TYPE(R_X86_64_PC16),
 | |
| 		REL_TYPE(R_X86_64_8),
 | |
| 		REL_TYPE(R_X86_64_PC8),
 | |
| #else
 | |
| 		REL_TYPE(R_386_NONE),
 | |
| 		REL_TYPE(R_386_32),
 | |
| 		REL_TYPE(R_386_PC32),
 | |
| 		REL_TYPE(R_386_GOT32),
 | |
| 		REL_TYPE(R_386_PLT32),
 | |
| 		REL_TYPE(R_386_COPY),
 | |
| 		REL_TYPE(R_386_GLOB_DAT),
 | |
| 		REL_TYPE(R_386_JMP_SLOT),
 | |
| 		REL_TYPE(R_386_RELATIVE),
 | |
| 		REL_TYPE(R_386_GOTOFF),
 | |
| 		REL_TYPE(R_386_GOTPC),
 | |
| 		REL_TYPE(R_386_8),
 | |
| 		REL_TYPE(R_386_PC8),
 | |
| 		REL_TYPE(R_386_16),
 | |
| 		REL_TYPE(R_386_PC16),
 | |
| #endif
 | |
| #undef REL_TYPE
 | |
| 	};
 | |
| 	const char *name = "unknown type rel type name";
 | |
| 	if (type < ARRAY_SIZE(type_name) && type_name[type]) {
 | |
| 		name = type_name[type];
 | |
| 	}
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| static const char *sec_name(unsigned shndx)
 | |
| {
 | |
| 	const char *sec_strtab;
 | |
| 	const char *name;
 | |
| 	sec_strtab = secs[ehdr.e_shstrndx].strtab;
 | |
| 	name = "<noname>";
 | |
| 	if (shndx < ehdr.e_shnum) {
 | |
| 		name = sec_strtab + secs[shndx].shdr.sh_name;
 | |
| 	}
 | |
| 	else if (shndx == SHN_ABS) {
 | |
| 		name = "ABSOLUTE";
 | |
| 	}
 | |
| 	else if (shndx == SHN_COMMON) {
 | |
| 		name = "COMMON";
 | |
| 	}
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| static const char *sym_name(const char *sym_strtab, Elf_Sym *sym)
 | |
| {
 | |
| 	const char *name;
 | |
| 	name = "<noname>";
 | |
| 	if (sym->st_name) {
 | |
| 		name = sym_strtab + sym->st_name;
 | |
| 	}
 | |
| 	else {
 | |
| 		name = sec_name(sym->st_shndx);
 | |
| 	}
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| static Elf_Sym *sym_lookup(const char *symname)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < ehdr.e_shnum; i++) {
 | |
| 		struct section *sec = &secs[i];
 | |
| 		long nsyms;
 | |
| 		char *strtab;
 | |
| 		Elf_Sym *symtab;
 | |
| 		Elf_Sym *sym;
 | |
| 
 | |
| 		if (sec->shdr.sh_type != SHT_SYMTAB)
 | |
| 			continue;
 | |
| 
 | |
| 		nsyms = sec->shdr.sh_size/sizeof(Elf_Sym);
 | |
| 		symtab = sec->symtab;
 | |
| 		strtab = sec->link->strtab;
 | |
| 
 | |
| 		for (sym = symtab; --nsyms >= 0; sym++) {
 | |
| 			if (!sym->st_name)
 | |
| 				continue;
 | |
| 			if (strcmp(symname, strtab + sym->st_name) == 0)
 | |
| 				return sym;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if BYTE_ORDER == LITTLE_ENDIAN
 | |
| #define le16_to_cpu(val) (val)
 | |
| #define le32_to_cpu(val) (val)
 | |
| #define le64_to_cpu(val) (val)
 | |
| #endif
 | |
| #if BYTE_ORDER == BIG_ENDIAN
 | |
| #define le16_to_cpu(val) bswap_16(val)
 | |
| #define le32_to_cpu(val) bswap_32(val)
 | |
| #define le64_to_cpu(val) bswap_64(val)
 | |
| #endif
 | |
| 
 | |
| static uint16_t elf16_to_cpu(uint16_t val)
 | |
| {
 | |
| 	return le16_to_cpu(val);
 | |
| }
 | |
| 
 | |
| static uint32_t elf32_to_cpu(uint32_t val)
 | |
| {
 | |
| 	return le32_to_cpu(val);
 | |
| }
 | |
| 
 | |
| #define elf_half_to_cpu(x)	elf16_to_cpu(x)
 | |
| #define elf_word_to_cpu(x)	elf32_to_cpu(x)
 | |
| 
 | |
| #if ELF_BITS == 64
 | |
| static uint64_t elf64_to_cpu(uint64_t val)
 | |
| {
 | |
|         return le64_to_cpu(val);
 | |
| }
 | |
| #define elf_addr_to_cpu(x)	elf64_to_cpu(x)
 | |
| #define elf_off_to_cpu(x)	elf64_to_cpu(x)
 | |
| #define elf_xword_to_cpu(x)	elf64_to_cpu(x)
 | |
| #else
 | |
| #define elf_addr_to_cpu(x)	elf32_to_cpu(x)
 | |
| #define elf_off_to_cpu(x)	elf32_to_cpu(x)
 | |
| #define elf_xword_to_cpu(x)	elf32_to_cpu(x)
 | |
| #endif
 | |
| 
 | |
| static void read_ehdr(FILE *fp)
 | |
| {
 | |
| 	if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) {
 | |
| 		die("Cannot read ELF header: %s\n",
 | |
| 			strerror(errno));
 | |
| 	}
 | |
| 	if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) {
 | |
| 		die("No ELF magic\n");
 | |
| 	}
 | |
| 	if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) {
 | |
| 		die("Not a %d bit executable\n", ELF_BITS);
 | |
| 	}
 | |
| 	if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) {
 | |
| 		die("Not a LSB ELF executable\n");
 | |
| 	}
 | |
| 	if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
 | |
| 		die("Unknown ELF version\n");
 | |
| 	}
 | |
| 	/* Convert the fields to native endian */
 | |
| 	ehdr.e_type      = elf_half_to_cpu(ehdr.e_type);
 | |
| 	ehdr.e_machine   = elf_half_to_cpu(ehdr.e_machine);
 | |
| 	ehdr.e_version   = elf_word_to_cpu(ehdr.e_version);
 | |
| 	ehdr.e_entry     = elf_addr_to_cpu(ehdr.e_entry);
 | |
| 	ehdr.e_phoff     = elf_off_to_cpu(ehdr.e_phoff);
 | |
| 	ehdr.e_shoff     = elf_off_to_cpu(ehdr.e_shoff);
 | |
| 	ehdr.e_flags     = elf_word_to_cpu(ehdr.e_flags);
 | |
| 	ehdr.e_ehsize    = elf_half_to_cpu(ehdr.e_ehsize);
 | |
| 	ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize);
 | |
| 	ehdr.e_phnum     = elf_half_to_cpu(ehdr.e_phnum);
 | |
| 	ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize);
 | |
| 	ehdr.e_shnum     = elf_half_to_cpu(ehdr.e_shnum);
 | |
| 	ehdr.e_shstrndx  = elf_half_to_cpu(ehdr.e_shstrndx);
 | |
| 
 | |
| 	if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN)) {
 | |
| 		die("Unsupported ELF header type\n");
 | |
| 	}
 | |
| 	if (ehdr.e_machine != ELF_MACHINE) {
 | |
| 		die("Not for %s\n", ELF_MACHINE_NAME);
 | |
| 	}
 | |
| 	if (ehdr.e_version != EV_CURRENT) {
 | |
| 		die("Unknown ELF version\n");
 | |
| 	}
 | |
| 	if (ehdr.e_ehsize != sizeof(Elf_Ehdr)) {
 | |
| 		die("Bad Elf header size\n");
 | |
| 	}
 | |
| 	if (ehdr.e_phentsize != sizeof(Elf_Phdr)) {
 | |
| 		die("Bad program header entry\n");
 | |
| 	}
 | |
| 	if (ehdr.e_shentsize != sizeof(Elf_Shdr)) {
 | |
| 		die("Bad section header entry\n");
 | |
| 	}
 | |
| 	if (ehdr.e_shstrndx >= ehdr.e_shnum) {
 | |
| 		die("String table index out of bounds\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void read_shdrs(FILE *fp)
 | |
| {
 | |
| 	int i;
 | |
| 	Elf_Shdr shdr;
 | |
| 
 | |
| 	secs = calloc(ehdr.e_shnum, sizeof(struct section));
 | |
| 	if (!secs) {
 | |
| 		die("Unable to allocate %d section headers\n",
 | |
| 		    ehdr.e_shnum);
 | |
| 	}
 | |
| 	if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) {
 | |
| 		die("Seek to %d failed: %s\n",
 | |
| 			ehdr.e_shoff, strerror(errno));
 | |
| 	}
 | |
| 	for (i = 0; i < ehdr.e_shnum; i++) {
 | |
| 		struct section *sec = &secs[i];
 | |
| 		if (fread(&shdr, sizeof shdr, 1, fp) != 1)
 | |
| 			die("Cannot read ELF section headers %d/%d: %s\n",
 | |
| 			    i, ehdr.e_shnum, strerror(errno));
 | |
| 		sec->shdr.sh_name      = elf_word_to_cpu(shdr.sh_name);
 | |
| 		sec->shdr.sh_type      = elf_word_to_cpu(shdr.sh_type);
 | |
| 		sec->shdr.sh_flags     = elf_xword_to_cpu(shdr.sh_flags);
 | |
| 		sec->shdr.sh_addr      = elf_addr_to_cpu(shdr.sh_addr);
 | |
| 		sec->shdr.sh_offset    = elf_off_to_cpu(shdr.sh_offset);
 | |
| 		sec->shdr.sh_size      = elf_xword_to_cpu(shdr.sh_size);
 | |
| 		sec->shdr.sh_link      = elf_word_to_cpu(shdr.sh_link);
 | |
| 		sec->shdr.sh_info      = elf_word_to_cpu(shdr.sh_info);
 | |
| 		sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign);
 | |
| 		sec->shdr.sh_entsize   = elf_xword_to_cpu(shdr.sh_entsize);
 | |
| 		if (sec->shdr.sh_link < ehdr.e_shnum)
 | |
| 			sec->link = &secs[sec->shdr.sh_link];
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static void read_strtabs(FILE *fp)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < ehdr.e_shnum; i++) {
 | |
| 		struct section *sec = &secs[i];
 | |
| 		if (sec->shdr.sh_type != SHT_STRTAB) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		sec->strtab = malloc(sec->shdr.sh_size);
 | |
| 		if (!sec->strtab) {
 | |
| 			die("malloc of %d bytes for strtab failed\n",
 | |
| 				sec->shdr.sh_size);
 | |
| 		}
 | |
| 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
 | |
| 			die("Seek to %d failed: %s\n",
 | |
| 				sec->shdr.sh_offset, strerror(errno));
 | |
| 		}
 | |
| 		if (fread(sec->strtab, 1, sec->shdr.sh_size, fp)
 | |
| 		    != sec->shdr.sh_size) {
 | |
| 			die("Cannot read symbol table: %s\n",
 | |
| 				strerror(errno));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void read_symtabs(FILE *fp)
 | |
| {
 | |
| 	int i,j;
 | |
| 	for (i = 0; i < ehdr.e_shnum; i++) {
 | |
| 		struct section *sec = &secs[i];
 | |
| 		if (sec->shdr.sh_type != SHT_SYMTAB) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		sec->symtab = malloc(sec->shdr.sh_size);
 | |
| 		if (!sec->symtab) {
 | |
| 			die("malloc of %d bytes for symtab failed\n",
 | |
| 				sec->shdr.sh_size);
 | |
| 		}
 | |
| 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
 | |
| 			die("Seek to %d failed: %s\n",
 | |
| 				sec->shdr.sh_offset, strerror(errno));
 | |
| 		}
 | |
| 		if (fread(sec->symtab, 1, sec->shdr.sh_size, fp)
 | |
| 		    != sec->shdr.sh_size) {
 | |
| 			die("Cannot read symbol table: %s\n",
 | |
| 				strerror(errno));
 | |
| 		}
 | |
| 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
 | |
| 			Elf_Sym *sym = &sec->symtab[j];
 | |
| 			sym->st_name  = elf_word_to_cpu(sym->st_name);
 | |
| 			sym->st_value = elf_addr_to_cpu(sym->st_value);
 | |
| 			sym->st_size  = elf_xword_to_cpu(sym->st_size);
 | |
| 			sym->st_shndx = elf_half_to_cpu(sym->st_shndx);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void read_relocs(FILE *fp)
 | |
| {
 | |
| 	int i,j;
 | |
| 	for (i = 0; i < ehdr.e_shnum; i++) {
 | |
| 		struct section *sec = &secs[i];
 | |
| 		if (sec->shdr.sh_type != SHT_REL_TYPE) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		sec->reltab = malloc(sec->shdr.sh_size);
 | |
| 		if (!sec->reltab) {
 | |
| 			die("malloc of %d bytes for relocs failed\n",
 | |
| 				sec->shdr.sh_size);
 | |
| 		}
 | |
| 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
 | |
| 			die("Seek to %d failed: %s\n",
 | |
| 				sec->shdr.sh_offset, strerror(errno));
 | |
| 		}
 | |
| 		if (fread(sec->reltab, 1, sec->shdr.sh_size, fp)
 | |
| 		    != sec->shdr.sh_size) {
 | |
| 			die("Cannot read symbol table: %s\n",
 | |
| 				strerror(errno));
 | |
| 		}
 | |
| 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
 | |
| 			Elf_Rel *rel = &sec->reltab[j];
 | |
| 			rel->r_offset = elf_addr_to_cpu(rel->r_offset);
 | |
| 			rel->r_info   = elf_xword_to_cpu(rel->r_info);
 | |
| #if (SHT_REL_TYPE == SHT_RELA)
 | |
| 			rel->r_addend = elf_xword_to_cpu(rel->r_addend);
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void print_absolute_symbols(void)
 | |
| {
 | |
| 	int i;
 | |
| 	const char *format;
 | |
| 
 | |
| 	if (ELF_BITS == 64)
 | |
| 		format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n";
 | |
| 	else
 | |
| 		format = "%5d %08"PRIx32"  %5"PRId32" %10s %10s %12s %s\n";
 | |
| 
 | |
| 	printf("Absolute symbols\n");
 | |
| 	printf(" Num:    Value Size  Type       Bind        Visibility  Name\n");
 | |
| 	for (i = 0; i < ehdr.e_shnum; i++) {
 | |
| 		struct section *sec = &secs[i];
 | |
| 		char *sym_strtab;
 | |
| 		int j;
 | |
| 
 | |
| 		if (sec->shdr.sh_type != SHT_SYMTAB) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		sym_strtab = sec->link->strtab;
 | |
| 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
 | |
| 			Elf_Sym *sym;
 | |
| 			const char *name;
 | |
| 			sym = &sec->symtab[j];
 | |
| 			name = sym_name(sym_strtab, sym);
 | |
| 			if (sym->st_shndx != SHN_ABS) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			printf(format,
 | |
| 				j, sym->st_value, sym->st_size,
 | |
| 				sym_type(ELF_ST_TYPE(sym->st_info)),
 | |
| 				sym_bind(ELF_ST_BIND(sym->st_info)),
 | |
| 				sym_visibility(ELF_ST_VISIBILITY(sym->st_other)),
 | |
| 				name);
 | |
| 		}
 | |
| 	}
 | |
| 	printf("\n");
 | |
| }
 | |
| 
 | |
| static void print_absolute_relocs(void)
 | |
| {
 | |
| 	int i, printed = 0;
 | |
| 	const char *format;
 | |
| 
 | |
| 	if (ELF_BITS == 64)
 | |
| 		format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64"  %s\n";
 | |
| 	else
 | |
| 		format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32"  %s\n";
 | |
| 
 | |
| 	for (i = 0; i < ehdr.e_shnum; i++) {
 | |
| 		struct section *sec = &secs[i];
 | |
| 		struct section *sec_applies, *sec_symtab;
 | |
| 		char *sym_strtab;
 | |
| 		Elf_Sym *sh_symtab;
 | |
| 		int j;
 | |
| 		if (sec->shdr.sh_type != SHT_REL_TYPE) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		sec_symtab  = sec->link;
 | |
| 		sec_applies = &secs[sec->shdr.sh_info];
 | |
| 		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		sh_symtab  = sec_symtab->symtab;
 | |
| 		sym_strtab = sec_symtab->link->strtab;
 | |
| 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
 | |
| 			Elf_Rel *rel;
 | |
| 			Elf_Sym *sym;
 | |
| 			const char *name;
 | |
| 			rel = &sec->reltab[j];
 | |
| 			sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
 | |
| 			name = sym_name(sym_strtab, sym);
 | |
| 			if (sym->st_shndx != SHN_ABS) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* Absolute symbols are not relocated if bzImage is
 | |
| 			 * loaded at a non-compiled address. Display a warning
 | |
| 			 * to user at compile time about the absolute
 | |
| 			 * relocations present.
 | |
| 			 *
 | |
| 			 * User need to audit the code to make sure
 | |
| 			 * some symbols which should have been section
 | |
| 			 * relative have not become absolute because of some
 | |
| 			 * linker optimization or wrong programming usage.
 | |
| 			 *
 | |
| 			 * Before warning check if this absolute symbol
 | |
| 			 * relocation is harmless.
 | |
| 			 */
 | |
| 			if (is_reloc(S_ABS, name) || is_reloc(S_REL, name))
 | |
| 				continue;
 | |
| 
 | |
| 			if (!printed) {
 | |
| 				printf("WARNING: Absolute relocations"
 | |
| 					" present\n");
 | |
| 				printf("Offset     Info     Type     Sym.Value "
 | |
| 					"Sym.Name\n");
 | |
| 				printed = 1;
 | |
| 			}
 | |
| 
 | |
| 			printf(format,
 | |
| 				rel->r_offset,
 | |
| 				rel->r_info,
 | |
| 				rel_type(ELF_R_TYPE(rel->r_info)),
 | |
| 				sym->st_value,
 | |
| 				name);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (printed)
 | |
| 		printf("\n");
 | |
| }
 | |
| 
 | |
| static void add_reloc(struct relocs *r, uint32_t offset)
 | |
| {
 | |
| 	if (r->count == r->size) {
 | |
| 		unsigned long newsize = r->size + 50000;
 | |
| 		void *mem = realloc(r->offset, newsize * sizeof(r->offset[0]));
 | |
| 
 | |
| 		if (!mem)
 | |
| 			die("realloc of %ld entries for relocs failed\n",
 | |
|                                 newsize);
 | |
| 		r->offset = mem;
 | |
| 		r->size = newsize;
 | |
| 	}
 | |
| 	r->offset[r->count++] = offset;
 | |
| }
 | |
| 
 | |
| static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel,
 | |
| 			Elf_Sym *sym, const char *symname))
 | |
| {
 | |
| 	int i;
 | |
| 	/* Walk through the relocations */
 | |
| 	for (i = 0; i < ehdr.e_shnum; i++) {
 | |
| 		char *sym_strtab;
 | |
| 		Elf_Sym *sh_symtab;
 | |
| 		struct section *sec_applies, *sec_symtab;
 | |
| 		int j;
 | |
| 		struct section *sec = &secs[i];
 | |
| 
 | |
| 		if (sec->shdr.sh_type != SHT_REL_TYPE) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		sec_symtab  = sec->link;
 | |
| 		sec_applies = &secs[sec->shdr.sh_info];
 | |
| 		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		sh_symtab = sec_symtab->symtab;
 | |
| 		sym_strtab = sec_symtab->link->strtab;
 | |
| 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
 | |
| 			Elf_Rel *rel = &sec->reltab[j];
 | |
| 			Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
 | |
| 			const char *symname = sym_name(sym_strtab, sym);
 | |
| 
 | |
| 			process(sec, rel, sym, symname);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The .data..percpu section is a special case for x86_64 SMP kernels.
 | |
|  * It is used to initialize the actual per_cpu areas and to provide
 | |
|  * definitions for the per_cpu variables that correspond to their offsets
 | |
|  * within the percpu area. Since the values of all of the symbols need
 | |
|  * to be offsets from the start of the per_cpu area the virtual address
 | |
|  * (sh_addr) of .data..percpu is 0 in SMP kernels.
 | |
|  *
 | |
|  * This means that:
 | |
|  *
 | |
|  *	Relocations that reference symbols in the per_cpu area do not
 | |
|  *	need further relocation (since the value is an offset relative
 | |
|  *	to the start of the per_cpu area that does not change).
 | |
|  *
 | |
|  *	Relocations that apply to the per_cpu area need to have their
 | |
|  *	offset adjusted by by the value of __per_cpu_load to make them
 | |
|  *	point to the correct place in the loaded image (because the
 | |
|  *	virtual address of .data..percpu is 0).
 | |
|  *
 | |
|  * For non SMP kernels .data..percpu is linked as part of the normal
 | |
|  * kernel data and does not require special treatment.
 | |
|  *
 | |
|  */
 | |
| static int per_cpu_shndx	= -1;
 | |
| Elf_Addr per_cpu_load_addr;
 | |
| 
 | |
| static void percpu_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < ehdr.e_shnum; i++) {
 | |
| 		ElfW(Sym) *sym;
 | |
| 		if (strcmp(sec_name(i), ".data..percpu"))
 | |
| 			continue;
 | |
| 
 | |
| 		if (secs[i].shdr.sh_addr != 0)	/* non SMP kernel */
 | |
| 			return;
 | |
| 
 | |
| 		sym = sym_lookup("__per_cpu_load");
 | |
| 		if (!sym)
 | |
| 			die("can't find __per_cpu_load\n");
 | |
| 
 | |
| 		per_cpu_shndx = i;
 | |
| 		per_cpu_load_addr = sym->st_value;
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if ELF_BITS == 64
 | |
| 
 | |
| /*
 | |
|  * Check to see if a symbol lies in the .data..percpu section.
 | |
|  * For some as yet not understood reason the "__init_begin"
 | |
|  * symbol which immediately preceeds the .data..percpu section
 | |
|  * also shows up as it it were part of it so we do an explict
 | |
|  * check for that symbol name and ignore it.
 | |
|  */
 | |
| static int is_percpu_sym(ElfW(Sym) *sym, const char *symname)
 | |
| {
 | |
| 	return (sym->st_shndx == per_cpu_shndx) &&
 | |
| 		strcmp(symname, "__init_begin");
 | |
| }
 | |
| 
 | |
| 
 | |
| static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
 | |
| 		      const char *symname)
 | |
| {
 | |
| 	unsigned r_type = ELF64_R_TYPE(rel->r_info);
 | |
| 	ElfW(Addr) offset = rel->r_offset;
 | |
| 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
 | |
| 
 | |
| 	if (sym->st_shndx == SHN_UNDEF)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust the offset if this reloc applies to the percpu section.
 | |
| 	 */
 | |
| 	if (sec->shdr.sh_info == per_cpu_shndx)
 | |
| 		offset += per_cpu_load_addr;
 | |
| 
 | |
| 	switch (r_type) {
 | |
| 	case R_X86_64_NONE:
 | |
| 	case R_X86_64_PC32:
 | |
| 		/*
 | |
| 		 * NONE can be ignored and PC relative relocations don't
 | |
| 		 * need to be adjusted.
 | |
| 		 */
 | |
| 		break;
 | |
| 
 | |
| 	case R_X86_64_32:
 | |
| 	case R_X86_64_32S:
 | |
| 	case R_X86_64_64:
 | |
| 		/*
 | |
| 		 * References to the percpu area don't need to be adjusted.
 | |
| 		 */
 | |
| 		if (is_percpu_sym(sym, symname))
 | |
| 			break;
 | |
| 
 | |
| 		if (shn_abs) {
 | |
| 			/*
 | |
| 			 * Whitelisted absolute symbols do not require
 | |
| 			 * relocation.
 | |
| 			 */
 | |
| 			if (is_reloc(S_ABS, symname))
 | |
| 				break;
 | |
| 
 | |
| 			die("Invalid absolute %s relocation: %s\n",
 | |
| 			    rel_type(r_type), symname);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Relocation offsets for 64 bit kernels are output
 | |
| 		 * as 32 bits and sign extended back to 64 bits when
 | |
| 		 * the relocations are processed.
 | |
| 		 * Make sure that the offset will fit.
 | |
| 		 */
 | |
| 		if ((int32_t)offset != (int64_t)offset)
 | |
| 			die("Relocation offset doesn't fit in 32 bits\n");
 | |
| 
 | |
| 		if (r_type == R_X86_64_64)
 | |
| 			add_reloc(&relocs64, offset);
 | |
| 		else
 | |
| 			add_reloc(&relocs32, offset);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		die("Unsupported relocation type: %s (%d)\n",
 | |
| 		    rel_type(r_type), r_type);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
 | |
| 		      const char *symname)
 | |
| {
 | |
| 	unsigned r_type = ELF32_R_TYPE(rel->r_info);
 | |
| 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
 | |
| 
 | |
| 	switch (r_type) {
 | |
| 	case R_386_NONE:
 | |
| 	case R_386_PC32:
 | |
| 	case R_386_PC16:
 | |
| 	case R_386_PC8:
 | |
| 		/*
 | |
| 		 * NONE can be ignored and PC relative relocations don't
 | |
| 		 * need to be adjusted.
 | |
| 		 */
 | |
| 		break;
 | |
| 
 | |
| 	case R_386_32:
 | |
| 		if (shn_abs) {
 | |
| 			/*
 | |
| 			 * Whitelisted absolute symbols do not require
 | |
| 			 * relocation.
 | |
| 			 */
 | |
| 			if (is_reloc(S_ABS, symname))
 | |
| 				break;
 | |
| 
 | |
| 			die("Invalid absolute %s relocation: %s\n",
 | |
| 			    rel_type(r_type), symname);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		add_reloc(&relocs32, rel->r_offset);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		die("Unsupported relocation type: %s (%d)\n",
 | |
| 		    rel_type(r_type), r_type);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
 | |
| 			 const char *symname)
 | |
| {
 | |
| 	unsigned r_type = ELF32_R_TYPE(rel->r_info);
 | |
| 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
 | |
| 
 | |
| 	switch (r_type) {
 | |
| 	case R_386_NONE:
 | |
| 	case R_386_PC32:
 | |
| 	case R_386_PC16:
 | |
| 	case R_386_PC8:
 | |
| 		/*
 | |
| 		 * NONE can be ignored and PC relative relocations don't
 | |
| 		 * need to be adjusted.
 | |
| 		 */
 | |
| 		break;
 | |
| 
 | |
| 	case R_386_16:
 | |
| 		if (shn_abs) {
 | |
| 			/*
 | |
| 			 * Whitelisted absolute symbols do not require
 | |
| 			 * relocation.
 | |
| 			 */
 | |
| 			if (is_reloc(S_ABS, symname))
 | |
| 				break;
 | |
| 
 | |
| 			if (is_reloc(S_SEG, symname)) {
 | |
| 				add_reloc(&relocs16, rel->r_offset);
 | |
| 				break;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (!is_reloc(S_LIN, symname))
 | |
| 				break;
 | |
| 		}
 | |
| 		die("Invalid %s %s relocation: %s\n",
 | |
| 		    shn_abs ? "absolute" : "relative",
 | |
| 		    rel_type(r_type), symname);
 | |
| 		break;
 | |
| 
 | |
| 	case R_386_32:
 | |
| 		if (shn_abs) {
 | |
| 			/*
 | |
| 			 * Whitelisted absolute symbols do not require
 | |
| 			 * relocation.
 | |
| 			 */
 | |
| 			if (is_reloc(S_ABS, symname))
 | |
| 				break;
 | |
| 
 | |
| 			if (is_reloc(S_REL, symname)) {
 | |
| 				add_reloc(&relocs32, rel->r_offset);
 | |
| 				break;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (is_reloc(S_LIN, symname))
 | |
| 				add_reloc(&relocs32, rel->r_offset);
 | |
| 			break;
 | |
| 		}
 | |
| 		die("Invalid %s %s relocation: %s\n",
 | |
| 		    shn_abs ? "absolute" : "relative",
 | |
| 		    rel_type(r_type), symname);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		die("Unsupported relocation type: %s (%d)\n",
 | |
| 		    rel_type(r_type), r_type);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int cmp_relocs(const void *va, const void *vb)
 | |
| {
 | |
| 	const uint32_t *a, *b;
 | |
| 	a = va; b = vb;
 | |
| 	return (*a == *b)? 0 : (*a > *b)? 1 : -1;
 | |
| }
 | |
| 
 | |
| static void sort_relocs(struct relocs *r)
 | |
| {
 | |
| 	qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs);
 | |
| }
 | |
| 
 | |
| static int write32(uint32_t v, FILE *f)
 | |
| {
 | |
| 	unsigned char buf[4];
 | |
| 
 | |
| 	put_unaligned_le32(v, buf);
 | |
| 	return fwrite(buf, 1, 4, f) == 4 ? 0 : -1;
 | |
| }
 | |
| 
 | |
| static int write32_as_text(uint32_t v, FILE *f)
 | |
| {
 | |
| 	return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1;
 | |
| }
 | |
| 
 | |
| static void emit_relocs(int as_text, int use_real_mode)
 | |
| {
 | |
| 	int i;
 | |
| 	int (*write_reloc)(uint32_t, FILE *) = write32;
 | |
| 	int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
 | |
| 			const char *symname);
 | |
| 
 | |
| #if ELF_BITS == 64
 | |
| 	if (!use_real_mode)
 | |
| 		do_reloc = do_reloc64;
 | |
| 	else
 | |
| 		die("--realmode not valid for a 64-bit ELF file");
 | |
| #else
 | |
| 	if (!use_real_mode)
 | |
| 		do_reloc = do_reloc32;
 | |
| 	else
 | |
| 		do_reloc = do_reloc_real;
 | |
| #endif
 | |
| 
 | |
| 	/* Collect up the relocations */
 | |
| 	walk_relocs(do_reloc);
 | |
| 
 | |
| 	if (relocs16.count && !use_real_mode)
 | |
| 		die("Segment relocations found but --realmode not specified\n");
 | |
| 
 | |
| 	/* Order the relocations for more efficient processing */
 | |
| 	sort_relocs(&relocs16);
 | |
| 	sort_relocs(&relocs32);
 | |
| 	sort_relocs(&relocs64);
 | |
| 
 | |
| 	/* Print the relocations */
 | |
| 	if (as_text) {
 | |
| 		/* Print the relocations in a form suitable that
 | |
| 		 * gas will like.
 | |
| 		 */
 | |
| 		printf(".section \".data.reloc\",\"a\"\n");
 | |
| 		printf(".balign 4\n");
 | |
| 		write_reloc = write32_as_text;
 | |
| 	}
 | |
| 
 | |
| 	if (use_real_mode) {
 | |
| 		write_reloc(relocs16.count, stdout);
 | |
| 		for (i = 0; i < relocs16.count; i++)
 | |
| 			write_reloc(relocs16.offset[i], stdout);
 | |
| 
 | |
| 		write_reloc(relocs32.count, stdout);
 | |
| 		for (i = 0; i < relocs32.count; i++)
 | |
| 			write_reloc(relocs32.offset[i], stdout);
 | |
| 	} else {
 | |
| 		if (ELF_BITS == 64) {
 | |
| 			/* Print a stop */
 | |
| 			write_reloc(0, stdout);
 | |
| 
 | |
| 			/* Now print each relocation */
 | |
| 			for (i = 0; i < relocs64.count; i++)
 | |
| 				write_reloc(relocs64.offset[i], stdout);
 | |
| 		}
 | |
| 
 | |
| 		/* Print a stop */
 | |
| 		write_reloc(0, stdout);
 | |
| 
 | |
| 		/* Now print each relocation */
 | |
| 		for (i = 0; i < relocs32.count; i++)
 | |
| 			write_reloc(relocs32.offset[i], stdout);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if ELF_BITS == 64
 | |
| # define process process_64
 | |
| #else
 | |
| # define process process_32
 | |
| #endif
 | |
| 
 | |
| void process(FILE *fp, int use_real_mode, int as_text,
 | |
| 	     int show_absolute_syms, int show_absolute_relocs)
 | |
| {
 | |
| 	regex_init(use_real_mode);
 | |
| 	read_ehdr(fp);
 | |
| 	read_shdrs(fp);
 | |
| 	read_strtabs(fp);
 | |
| 	read_symtabs(fp);
 | |
| 	read_relocs(fp);
 | |
| 	if (ELF_BITS == 64)
 | |
| 		percpu_init();
 | |
| 	if (show_absolute_syms) {
 | |
| 		print_absolute_symbols();
 | |
| 		return;
 | |
| 	}
 | |
| 	if (show_absolute_relocs) {
 | |
| 		print_absolute_relocs();
 | |
| 		return;
 | |
| 	}
 | |
| 	emit_relocs(as_text, use_real_mode);
 | |
| }
 |