 61c4628b53
			
		
	
	
	61c4628b53
	
	
	
		
			
			Split the FPU save area from the task struct. This allows easy migration of FPU context, and it's generally cleaner. It also allows the following two optimizations: 1) only allocate when the application actually uses FPU, so in the first lazy FPU trap. This could save memory for non-fpu using apps. Next patch does this lazy allocation. 2) allocate the right size for the actual cpu rather than 512 bytes always. Patches enabling xsave/xrstor support (coming shortly) will take advantage of this. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
		
			
				
	
	
		
			1219 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1219 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*---------------------------------------------------------------------------+
 | |
|  |  reg_ld_str.c                                                             |
 | |
|  |                                                                           |
 | |
|  | All of the functions which transfer data between user memory and FPU_REGs.|
 | |
|  |                                                                           |
 | |
|  | Copyright (C) 1992,1993,1994,1996,1997                                    |
 | |
|  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
 | |
|  |                  E-mail   billm@suburbia.net                              |
 | |
|  |                                                                           |
 | |
|  |                                                                           |
 | |
|  +---------------------------------------------------------------------------*/
 | |
| 
 | |
| /*---------------------------------------------------------------------------+
 | |
|  | Note:                                                                     |
 | |
|  |    The file contains code which accesses user memory.                     |
 | |
|  |    Emulator static data may change when user memory is accessed, due to   |
 | |
|  |    other processes using the emulator while swapping is in progress.      |
 | |
|  +---------------------------------------------------------------------------*/
 | |
| 
 | |
| #include "fpu_emu.h"
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| #include "fpu_system.h"
 | |
| #include "exception.h"
 | |
| #include "reg_constant.h"
 | |
| #include "control_w.h"
 | |
| #include "status_w.h"
 | |
| 
 | |
| #define DOUBLE_Emax 1023	/* largest valid exponent */
 | |
| #define DOUBLE_Ebias 1023
 | |
| #define DOUBLE_Emin (-1022)	/* smallest valid exponent */
 | |
| 
 | |
| #define SINGLE_Emax 127		/* largest valid exponent */
 | |
| #define SINGLE_Ebias 127
 | |
| #define SINGLE_Emin (-126)	/* smallest valid exponent */
 | |
| 
 | |
| static u_char normalize_no_excep(FPU_REG *r, int exp, int sign)
 | |
| {
 | |
| 	u_char tag;
 | |
| 
 | |
| 	setexponent16(r, exp);
 | |
| 
 | |
| 	tag = FPU_normalize_nuo(r);
 | |
| 	stdexp(r);
 | |
| 	if (sign)
 | |
| 		setnegative(r);
 | |
| 
 | |
| 	return tag;
 | |
| }
 | |
| 
 | |
| int FPU_tagof(FPU_REG *ptr)
 | |
| {
 | |
| 	int exp;
 | |
| 
 | |
| 	exp = exponent16(ptr) & 0x7fff;
 | |
| 	if (exp == 0) {
 | |
| 		if (!(ptr->sigh | ptr->sigl)) {
 | |
| 			return TAG_Zero;
 | |
| 		}
 | |
| 		/* The number is a de-normal or pseudodenormal. */
 | |
| 		return TAG_Special;
 | |
| 	}
 | |
| 
 | |
| 	if (exp == 0x7fff) {
 | |
| 		/* Is an Infinity, a NaN, or an unsupported data type. */
 | |
| 		return TAG_Special;
 | |
| 	}
 | |
| 
 | |
| 	if (!(ptr->sigh & 0x80000000)) {
 | |
| 		/* Unsupported data type. */
 | |
| 		/* Valid numbers have the ms bit set to 1. */
 | |
| 		/* Unnormal. */
 | |
| 		return TAG_Special;
 | |
| 	}
 | |
| 
 | |
| 	return TAG_Valid;
 | |
| }
 | |
| 
 | |
| /* Get a long double from user memory */
 | |
| int FPU_load_extended(long double __user *s, int stnr)
 | |
| {
 | |
| 	FPU_REG *sti_ptr = &st(stnr);
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_READ, s, 10);
 | |
| 	__copy_from_user(sti_ptr, s, 10);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	return FPU_tagof(sti_ptr);
 | |
| }
 | |
| 
 | |
| /* Get a double from user memory */
 | |
| int FPU_load_double(double __user *dfloat, FPU_REG *loaded_data)
 | |
| {
 | |
| 	int exp, tag, negative;
 | |
| 	unsigned m64, l64;
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_READ, dfloat, 8);
 | |
| 	FPU_get_user(m64, 1 + (unsigned long __user *)dfloat);
 | |
| 	FPU_get_user(l64, (unsigned long __user *)dfloat);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	negative = (m64 & 0x80000000) ? SIGN_Negative : SIGN_Positive;
 | |
| 	exp = ((m64 & 0x7ff00000) >> 20) - DOUBLE_Ebias + EXTENDED_Ebias;
 | |
| 	m64 &= 0xfffff;
 | |
| 	if (exp > DOUBLE_Emax + EXTENDED_Ebias) {
 | |
| 		/* Infinity or NaN */
 | |
| 		if ((m64 == 0) && (l64 == 0)) {
 | |
| 			/* +- infinity */
 | |
| 			loaded_data->sigh = 0x80000000;
 | |
| 			loaded_data->sigl = 0x00000000;
 | |
| 			exp = EXP_Infinity + EXTENDED_Ebias;
 | |
| 			tag = TAG_Special;
 | |
| 		} else {
 | |
| 			/* Must be a signaling or quiet NaN */
 | |
| 			exp = EXP_NaN + EXTENDED_Ebias;
 | |
| 			loaded_data->sigh = (m64 << 11) | 0x80000000;
 | |
| 			loaded_data->sigh |= l64 >> 21;
 | |
| 			loaded_data->sigl = l64 << 11;
 | |
| 			tag = TAG_Special;	/* The calling function must look for NaNs */
 | |
| 		}
 | |
| 	} else if (exp < DOUBLE_Emin + EXTENDED_Ebias) {
 | |
| 		/* Zero or de-normal */
 | |
| 		if ((m64 == 0) && (l64 == 0)) {
 | |
| 			/* Zero */
 | |
| 			reg_copy(&CONST_Z, loaded_data);
 | |
| 			exp = 0;
 | |
| 			tag = TAG_Zero;
 | |
| 		} else {
 | |
| 			/* De-normal */
 | |
| 			loaded_data->sigh = m64 << 11;
 | |
| 			loaded_data->sigh |= l64 >> 21;
 | |
| 			loaded_data->sigl = l64 << 11;
 | |
| 
 | |
| 			return normalize_no_excep(loaded_data, DOUBLE_Emin,
 | |
| 						  negative)
 | |
| 			    | (denormal_operand() < 0 ? FPU_Exception : 0);
 | |
| 		}
 | |
| 	} else {
 | |
| 		loaded_data->sigh = (m64 << 11) | 0x80000000;
 | |
| 		loaded_data->sigh |= l64 >> 21;
 | |
| 		loaded_data->sigl = l64 << 11;
 | |
| 
 | |
| 		tag = TAG_Valid;
 | |
| 	}
 | |
| 
 | |
| 	setexponent16(loaded_data, exp | negative);
 | |
| 
 | |
| 	return tag;
 | |
| }
 | |
| 
 | |
| /* Get a float from user memory */
 | |
| int FPU_load_single(float __user *single, FPU_REG *loaded_data)
 | |
| {
 | |
| 	unsigned m32;
 | |
| 	int exp, tag, negative;
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_READ, single, 4);
 | |
| 	FPU_get_user(m32, (unsigned long __user *)single);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	negative = (m32 & 0x80000000) ? SIGN_Negative : SIGN_Positive;
 | |
| 
 | |
| 	if (!(m32 & 0x7fffffff)) {
 | |
| 		/* Zero */
 | |
| 		reg_copy(&CONST_Z, loaded_data);
 | |
| 		addexponent(loaded_data, negative);
 | |
| 		return TAG_Zero;
 | |
| 	}
 | |
| 	exp = ((m32 & 0x7f800000) >> 23) - SINGLE_Ebias + EXTENDED_Ebias;
 | |
| 	m32 = (m32 & 0x7fffff) << 8;
 | |
| 	if (exp < SINGLE_Emin + EXTENDED_Ebias) {
 | |
| 		/* De-normals */
 | |
| 		loaded_data->sigh = m32;
 | |
| 		loaded_data->sigl = 0;
 | |
| 
 | |
| 		return normalize_no_excep(loaded_data, SINGLE_Emin, negative)
 | |
| 		    | (denormal_operand() < 0 ? FPU_Exception : 0);
 | |
| 	} else if (exp > SINGLE_Emax + EXTENDED_Ebias) {
 | |
| 		/* Infinity or NaN */
 | |
| 		if (m32 == 0) {
 | |
| 			/* +- infinity */
 | |
| 			loaded_data->sigh = 0x80000000;
 | |
| 			loaded_data->sigl = 0x00000000;
 | |
| 			exp = EXP_Infinity + EXTENDED_Ebias;
 | |
| 			tag = TAG_Special;
 | |
| 		} else {
 | |
| 			/* Must be a signaling or quiet NaN */
 | |
| 			exp = EXP_NaN + EXTENDED_Ebias;
 | |
| 			loaded_data->sigh = m32 | 0x80000000;
 | |
| 			loaded_data->sigl = 0;
 | |
| 			tag = TAG_Special;	/* The calling function must look for NaNs */
 | |
| 		}
 | |
| 	} else {
 | |
| 		loaded_data->sigh = m32 | 0x80000000;
 | |
| 		loaded_data->sigl = 0;
 | |
| 		tag = TAG_Valid;
 | |
| 	}
 | |
| 
 | |
| 	setexponent16(loaded_data, exp | negative);	/* Set the sign. */
 | |
| 
 | |
| 	return tag;
 | |
| }
 | |
| 
 | |
| /* Get a long long from user memory */
 | |
| int FPU_load_int64(long long __user *_s)
 | |
| {
 | |
| 	long long s;
 | |
| 	int sign;
 | |
| 	FPU_REG *st0_ptr = &st(0);
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_READ, _s, 8);
 | |
| 	if (copy_from_user(&s, _s, 8))
 | |
| 		FPU_abort;
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	if (s == 0) {
 | |
| 		reg_copy(&CONST_Z, st0_ptr);
 | |
| 		return TAG_Zero;
 | |
| 	}
 | |
| 
 | |
| 	if (s > 0)
 | |
| 		sign = SIGN_Positive;
 | |
| 	else {
 | |
| 		s = -s;
 | |
| 		sign = SIGN_Negative;
 | |
| 	}
 | |
| 
 | |
| 	significand(st0_ptr) = s;
 | |
| 
 | |
| 	return normalize_no_excep(st0_ptr, 63, sign);
 | |
| }
 | |
| 
 | |
| /* Get a long from user memory */
 | |
| int FPU_load_int32(long __user *_s, FPU_REG *loaded_data)
 | |
| {
 | |
| 	long s;
 | |
| 	int negative;
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_READ, _s, 4);
 | |
| 	FPU_get_user(s, _s);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	if (s == 0) {
 | |
| 		reg_copy(&CONST_Z, loaded_data);
 | |
| 		return TAG_Zero;
 | |
| 	}
 | |
| 
 | |
| 	if (s > 0)
 | |
| 		negative = SIGN_Positive;
 | |
| 	else {
 | |
| 		s = -s;
 | |
| 		negative = SIGN_Negative;
 | |
| 	}
 | |
| 
 | |
| 	loaded_data->sigh = s;
 | |
| 	loaded_data->sigl = 0;
 | |
| 
 | |
| 	return normalize_no_excep(loaded_data, 31, negative);
 | |
| }
 | |
| 
 | |
| /* Get a short from user memory */
 | |
| int FPU_load_int16(short __user *_s, FPU_REG *loaded_data)
 | |
| {
 | |
| 	int s, negative;
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_READ, _s, 2);
 | |
| 	/* Cast as short to get the sign extended. */
 | |
| 	FPU_get_user(s, _s);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	if (s == 0) {
 | |
| 		reg_copy(&CONST_Z, loaded_data);
 | |
| 		return TAG_Zero;
 | |
| 	}
 | |
| 
 | |
| 	if (s > 0)
 | |
| 		negative = SIGN_Positive;
 | |
| 	else {
 | |
| 		s = -s;
 | |
| 		negative = SIGN_Negative;
 | |
| 	}
 | |
| 
 | |
| 	loaded_data->sigh = s << 16;
 | |
| 	loaded_data->sigl = 0;
 | |
| 
 | |
| 	return normalize_no_excep(loaded_data, 15, negative);
 | |
| }
 | |
| 
 | |
| /* Get a packed bcd array from user memory */
 | |
| int FPU_load_bcd(u_char __user *s)
 | |
| {
 | |
| 	FPU_REG *st0_ptr = &st(0);
 | |
| 	int pos;
 | |
| 	u_char bcd;
 | |
| 	long long l = 0;
 | |
| 	int sign;
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_READ, s, 10);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 	for (pos = 8; pos >= 0; pos--) {
 | |
| 		l *= 10;
 | |
| 		RE_ENTRANT_CHECK_OFF;
 | |
| 		FPU_get_user(bcd, s + pos);
 | |
| 		RE_ENTRANT_CHECK_ON;
 | |
| 		l += bcd >> 4;
 | |
| 		l *= 10;
 | |
| 		l += bcd & 0x0f;
 | |
| 	}
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_get_user(sign, s + 9);
 | |
| 	sign = sign & 0x80 ? SIGN_Negative : SIGN_Positive;
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	if (l == 0) {
 | |
| 		reg_copy(&CONST_Z, st0_ptr);
 | |
| 		addexponent(st0_ptr, sign);	/* Set the sign. */
 | |
| 		return TAG_Zero;
 | |
| 	} else {
 | |
| 		significand(st0_ptr) = l;
 | |
| 		return normalize_no_excep(st0_ptr, 63, sign);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*===========================================================================*/
 | |
| 
 | |
| /* Put a long double into user memory */
 | |
| int FPU_store_extended(FPU_REG *st0_ptr, u_char st0_tag,
 | |
| 		       long double __user * d)
 | |
| {
 | |
| 	/*
 | |
| 	   The only exception raised by an attempt to store to an
 | |
| 	   extended format is the Invalid Stack exception, i.e.
 | |
| 	   attempting to store from an empty register.
 | |
| 	 */
 | |
| 
 | |
| 	if (st0_tag != TAG_Empty) {
 | |
| 		RE_ENTRANT_CHECK_OFF;
 | |
| 		FPU_access_ok(VERIFY_WRITE, d, 10);
 | |
| 
 | |
| 		FPU_put_user(st0_ptr->sigl, (unsigned long __user *)d);
 | |
| 		FPU_put_user(st0_ptr->sigh,
 | |
| 			     (unsigned long __user *)((u_char __user *) d + 4));
 | |
| 		FPU_put_user(exponent16(st0_ptr),
 | |
| 			     (unsigned short __user *)((u_char __user *) d +
 | |
| 						       8));
 | |
| 		RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Empty register (stack underflow) */
 | |
| 	EXCEPTION(EX_StackUnder);
 | |
| 	if (control_word & CW_Invalid) {
 | |
| 		/* The masked response */
 | |
| 		/* Put out the QNaN indefinite */
 | |
| 		RE_ENTRANT_CHECK_OFF;
 | |
| 		FPU_access_ok(VERIFY_WRITE, d, 10);
 | |
| 		FPU_put_user(0, (unsigned long __user *)d);
 | |
| 		FPU_put_user(0xc0000000, 1 + (unsigned long __user *)d);
 | |
| 		FPU_put_user(0xffff, 4 + (short __user *)d);
 | |
| 		RE_ENTRANT_CHECK_ON;
 | |
| 		return 1;
 | |
| 	} else
 | |
| 		return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Put a double into user memory */
 | |
| int FPU_store_double(FPU_REG *st0_ptr, u_char st0_tag, double __user *dfloat)
 | |
| {
 | |
| 	unsigned long l[2];
 | |
| 	unsigned long increment = 0;	/* avoid gcc warnings */
 | |
| 	int precision_loss;
 | |
| 	int exp;
 | |
| 	FPU_REG tmp;
 | |
| 
 | |
| 	l[0] = 0;
 | |
| 	l[1] = 0;
 | |
| 	if (st0_tag == TAG_Valid) {
 | |
| 		reg_copy(st0_ptr, &tmp);
 | |
| 		exp = exponent(&tmp);
 | |
| 
 | |
| 		if (exp < DOUBLE_Emin) {	/* It may be a denormal */
 | |
| 			addexponent(&tmp, -DOUBLE_Emin + 52);	/* largest exp to be 51 */
 | |
| denormal_arg:
 | |
| 			if ((precision_loss = FPU_round_to_int(&tmp, st0_tag))) {
 | |
| #ifdef PECULIAR_486
 | |
| 				/* Did it round to a non-denormal ? */
 | |
| 				/* This behaviour might be regarded as peculiar, it appears
 | |
| 				   that the 80486 rounds to the dest precision, then
 | |
| 				   converts to decide underflow. */
 | |
| 				if (!
 | |
| 				    ((tmp.sigh == 0x00100000) && (tmp.sigl == 0)
 | |
| 				     && (st0_ptr->sigl & 0x000007ff)))
 | |
| #endif /* PECULIAR_486 */
 | |
| 				{
 | |
| 					EXCEPTION(EX_Underflow);
 | |
| 					/* This is a special case: see sec 16.2.5.1 of
 | |
| 					   the 80486 book */
 | |
| 					if (!(control_word & CW_Underflow))
 | |
| 						return 0;
 | |
| 				}
 | |
| 				EXCEPTION(precision_loss);
 | |
| 				if (!(control_word & CW_Precision))
 | |
| 					return 0;
 | |
| 			}
 | |
| 			l[0] = tmp.sigl;
 | |
| 			l[1] = tmp.sigh;
 | |
| 		} else {
 | |
| 			if (tmp.sigl & 0x000007ff) {
 | |
| 				precision_loss = 1;
 | |
| 				switch (control_word & CW_RC) {
 | |
| 				case RC_RND:
 | |
| 					/* Rounding can get a little messy.. */
 | |
| 					increment = ((tmp.sigl & 0x7ff) > 0x400) |	/* nearest */
 | |
| 					    ((tmp.sigl & 0xc00) == 0xc00);	/* odd -> even */
 | |
| 					break;
 | |
| 				case RC_DOWN:	/* towards -infinity */
 | |
| 					increment =
 | |
| 					    signpositive(&tmp) ? 0 : tmp.
 | |
| 					    sigl & 0x7ff;
 | |
| 					break;
 | |
| 				case RC_UP:	/* towards +infinity */
 | |
| 					increment =
 | |
| 					    signpositive(&tmp) ? tmp.
 | |
| 					    sigl & 0x7ff : 0;
 | |
| 					break;
 | |
| 				case RC_CHOP:
 | |
| 					increment = 0;
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				/* Truncate the mantissa */
 | |
| 				tmp.sigl &= 0xfffff800;
 | |
| 
 | |
| 				if (increment) {
 | |
| 					if (tmp.sigl >= 0xfffff800) {
 | |
| 						/* the sigl part overflows */
 | |
| 						if (tmp.sigh == 0xffffffff) {
 | |
| 							/* The sigh part overflows */
 | |
| 							tmp.sigh = 0x80000000;
 | |
| 							exp++;
 | |
| 							if (exp >= EXP_OVER)
 | |
| 								goto overflow;
 | |
| 						} else {
 | |
| 							tmp.sigh++;
 | |
| 						}
 | |
| 						tmp.sigl = 0x00000000;
 | |
| 					} else {
 | |
| 						/* We only need to increment sigl */
 | |
| 						tmp.sigl += 0x00000800;
 | |
| 					}
 | |
| 				}
 | |
| 			} else
 | |
| 				precision_loss = 0;
 | |
| 
 | |
| 			l[0] = (tmp.sigl >> 11) | (tmp.sigh << 21);
 | |
| 			l[1] = ((tmp.sigh >> 11) & 0xfffff);
 | |
| 
 | |
| 			if (exp > DOUBLE_Emax) {
 | |
| 			      overflow:
 | |
| 				EXCEPTION(EX_Overflow);
 | |
| 				if (!(control_word & CW_Overflow))
 | |
| 					return 0;
 | |
| 				set_precision_flag_up();
 | |
| 				if (!(control_word & CW_Precision))
 | |
| 					return 0;
 | |
| 
 | |
| 				/* This is a special case: see sec 16.2.5.1 of the 80486 book */
 | |
| 				/* Overflow to infinity */
 | |
| 				l[1] = 0x7ff00000;	/* Set to + INF */
 | |
| 			} else {
 | |
| 				if (precision_loss) {
 | |
| 					if (increment)
 | |
| 						set_precision_flag_up();
 | |
| 					else
 | |
| 						set_precision_flag_down();
 | |
| 				}
 | |
| 				/* Add the exponent */
 | |
| 				l[1] |= (((exp + DOUBLE_Ebias) & 0x7ff) << 20);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (st0_tag == TAG_Zero) {
 | |
| 		/* Number is zero */
 | |
| 	} else if (st0_tag == TAG_Special) {
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 		if (st0_tag == TW_Denormal) {
 | |
| 			/* A denormal will always underflow. */
 | |
| #ifndef PECULIAR_486
 | |
| 			/* An 80486 is supposed to be able to generate
 | |
| 			   a denormal exception here, but... */
 | |
| 			/* Underflow has priority. */
 | |
| 			if (control_word & CW_Underflow)
 | |
| 				denormal_operand();
 | |
| #endif /* PECULIAR_486 */
 | |
| 			reg_copy(st0_ptr, &tmp);
 | |
| 			goto denormal_arg;
 | |
| 		} else if (st0_tag == TW_Infinity) {
 | |
| 			l[1] = 0x7ff00000;
 | |
| 		} else if (st0_tag == TW_NaN) {
 | |
| 			/* Is it really a NaN ? */
 | |
| 			if ((exponent(st0_ptr) == EXP_OVER)
 | |
| 			    && (st0_ptr->sigh & 0x80000000)) {
 | |
| 				/* See if we can get a valid NaN from the FPU_REG */
 | |
| 				l[0] =
 | |
| 				    (st0_ptr->sigl >> 11) | (st0_ptr->
 | |
| 							     sigh << 21);
 | |
| 				l[1] = ((st0_ptr->sigh >> 11) & 0xfffff);
 | |
| 				if (!(st0_ptr->sigh & 0x40000000)) {
 | |
| 					/* It is a signalling NaN */
 | |
| 					EXCEPTION(EX_Invalid);
 | |
| 					if (!(control_word & CW_Invalid))
 | |
| 						return 0;
 | |
| 					l[1] |= (0x40000000 >> 11);
 | |
| 				}
 | |
| 				l[1] |= 0x7ff00000;
 | |
| 			} else {
 | |
| 				/* It is an unsupported data type */
 | |
| 				EXCEPTION(EX_Invalid);
 | |
| 				if (!(control_word & CW_Invalid))
 | |
| 					return 0;
 | |
| 				l[1] = 0xfff80000;
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (st0_tag == TAG_Empty) {
 | |
| 		/* Empty register (stack underflow) */
 | |
| 		EXCEPTION(EX_StackUnder);
 | |
| 		if (control_word & CW_Invalid) {
 | |
| 			/* The masked response */
 | |
| 			/* Put out the QNaN indefinite */
 | |
| 			RE_ENTRANT_CHECK_OFF;
 | |
| 			FPU_access_ok(VERIFY_WRITE, dfloat, 8);
 | |
| 			FPU_put_user(0, (unsigned long __user *)dfloat);
 | |
| 			FPU_put_user(0xfff80000,
 | |
| 				     1 + (unsigned long __user *)dfloat);
 | |
| 			RE_ENTRANT_CHECK_ON;
 | |
| 			return 1;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	}
 | |
| 	if (getsign(st0_ptr))
 | |
| 		l[1] |= 0x80000000;
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_WRITE, dfloat, 8);
 | |
| 	FPU_put_user(l[0], (unsigned long __user *)dfloat);
 | |
| 	FPU_put_user(l[1], 1 + (unsigned long __user *)dfloat);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Put a float into user memory */
 | |
| int FPU_store_single(FPU_REG *st0_ptr, u_char st0_tag, float __user *single)
 | |
| {
 | |
| 	long templ = 0;
 | |
| 	unsigned long increment = 0;	/* avoid gcc warnings */
 | |
| 	int precision_loss;
 | |
| 	int exp;
 | |
| 	FPU_REG tmp;
 | |
| 
 | |
| 	if (st0_tag == TAG_Valid) {
 | |
| 
 | |
| 		reg_copy(st0_ptr, &tmp);
 | |
| 		exp = exponent(&tmp);
 | |
| 
 | |
| 		if (exp < SINGLE_Emin) {
 | |
| 			addexponent(&tmp, -SINGLE_Emin + 23);	/* largest exp to be 22 */
 | |
| 
 | |
| 		      denormal_arg:
 | |
| 
 | |
| 			if ((precision_loss = FPU_round_to_int(&tmp, st0_tag))) {
 | |
| #ifdef PECULIAR_486
 | |
| 				/* Did it round to a non-denormal ? */
 | |
| 				/* This behaviour might be regarded as peculiar, it appears
 | |
| 				   that the 80486 rounds to the dest precision, then
 | |
| 				   converts to decide underflow. */
 | |
| 				if (!((tmp.sigl == 0x00800000) &&
 | |
| 				      ((st0_ptr->sigh & 0x000000ff)
 | |
| 				       || st0_ptr->sigl)))
 | |
| #endif /* PECULIAR_486 */
 | |
| 				{
 | |
| 					EXCEPTION(EX_Underflow);
 | |
| 					/* This is a special case: see sec 16.2.5.1 of
 | |
| 					   the 80486 book */
 | |
| 					if (!(control_word & CW_Underflow))
 | |
| 						return 0;
 | |
| 				}
 | |
| 				EXCEPTION(precision_loss);
 | |
| 				if (!(control_word & CW_Precision))
 | |
| 					return 0;
 | |
| 			}
 | |
| 			templ = tmp.sigl;
 | |
| 		} else {
 | |
| 			if (tmp.sigl | (tmp.sigh & 0x000000ff)) {
 | |
| 				unsigned long sigh = tmp.sigh;
 | |
| 				unsigned long sigl = tmp.sigl;
 | |
| 
 | |
| 				precision_loss = 1;
 | |
| 				switch (control_word & CW_RC) {
 | |
| 				case RC_RND:
 | |
| 					increment = ((sigh & 0xff) > 0x80)	/* more than half */
 | |
| 					    ||(((sigh & 0xff) == 0x80) && sigl)	/* more than half */
 | |
| 					    ||((sigh & 0x180) == 0x180);	/* round to even */
 | |
| 					break;
 | |
| 				case RC_DOWN:	/* towards -infinity */
 | |
| 					increment = signpositive(&tmp)
 | |
| 					    ? 0 : (sigl | (sigh & 0xff));
 | |
| 					break;
 | |
| 				case RC_UP:	/* towards +infinity */
 | |
| 					increment = signpositive(&tmp)
 | |
| 					    ? (sigl | (sigh & 0xff)) : 0;
 | |
| 					break;
 | |
| 				case RC_CHOP:
 | |
| 					increment = 0;
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				/* Truncate part of the mantissa */
 | |
| 				tmp.sigl = 0;
 | |
| 
 | |
| 				if (increment) {
 | |
| 					if (sigh >= 0xffffff00) {
 | |
| 						/* The sigh part overflows */
 | |
| 						tmp.sigh = 0x80000000;
 | |
| 						exp++;
 | |
| 						if (exp >= EXP_OVER)
 | |
| 							goto overflow;
 | |
| 					} else {
 | |
| 						tmp.sigh &= 0xffffff00;
 | |
| 						tmp.sigh += 0x100;
 | |
| 					}
 | |
| 				} else {
 | |
| 					tmp.sigh &= 0xffffff00;	/* Finish the truncation */
 | |
| 				}
 | |
| 			} else
 | |
| 				precision_loss = 0;
 | |
| 
 | |
| 			templ = (tmp.sigh >> 8) & 0x007fffff;
 | |
| 
 | |
| 			if (exp > SINGLE_Emax) {
 | |
| 			      overflow:
 | |
| 				EXCEPTION(EX_Overflow);
 | |
| 				if (!(control_word & CW_Overflow))
 | |
| 					return 0;
 | |
| 				set_precision_flag_up();
 | |
| 				if (!(control_word & CW_Precision))
 | |
| 					return 0;
 | |
| 
 | |
| 				/* This is a special case: see sec 16.2.5.1 of the 80486 book. */
 | |
| 				/* Masked response is overflow to infinity. */
 | |
| 				templ = 0x7f800000;
 | |
| 			} else {
 | |
| 				if (precision_loss) {
 | |
| 					if (increment)
 | |
| 						set_precision_flag_up();
 | |
| 					else
 | |
| 						set_precision_flag_down();
 | |
| 				}
 | |
| 				/* Add the exponent */
 | |
| 				templ |= ((exp + SINGLE_Ebias) & 0xff) << 23;
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (st0_tag == TAG_Zero) {
 | |
| 		templ = 0;
 | |
| 	} else if (st0_tag == TAG_Special) {
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 		if (st0_tag == TW_Denormal) {
 | |
| 			reg_copy(st0_ptr, &tmp);
 | |
| 
 | |
| 			/* A denormal will always underflow. */
 | |
| #ifndef PECULIAR_486
 | |
| 			/* An 80486 is supposed to be able to generate
 | |
| 			   a denormal exception here, but... */
 | |
| 			/* Underflow has priority. */
 | |
| 			if (control_word & CW_Underflow)
 | |
| 				denormal_operand();
 | |
| #endif /* PECULIAR_486 */
 | |
| 			goto denormal_arg;
 | |
| 		} else if (st0_tag == TW_Infinity) {
 | |
| 			templ = 0x7f800000;
 | |
| 		} else if (st0_tag == TW_NaN) {
 | |
| 			/* Is it really a NaN ? */
 | |
| 			if ((exponent(st0_ptr) == EXP_OVER)
 | |
| 			    && (st0_ptr->sigh & 0x80000000)) {
 | |
| 				/* See if we can get a valid NaN from the FPU_REG */
 | |
| 				templ = st0_ptr->sigh >> 8;
 | |
| 				if (!(st0_ptr->sigh & 0x40000000)) {
 | |
| 					/* It is a signalling NaN */
 | |
| 					EXCEPTION(EX_Invalid);
 | |
| 					if (!(control_word & CW_Invalid))
 | |
| 						return 0;
 | |
| 					templ |= (0x40000000 >> 8);
 | |
| 				}
 | |
| 				templ |= 0x7f800000;
 | |
| 			} else {
 | |
| 				/* It is an unsupported data type */
 | |
| 				EXCEPTION(EX_Invalid);
 | |
| 				if (!(control_word & CW_Invalid))
 | |
| 					return 0;
 | |
| 				templ = 0xffc00000;
 | |
| 			}
 | |
| 		}
 | |
| #ifdef PARANOID
 | |
| 		else {
 | |
| 			EXCEPTION(EX_INTERNAL | 0x164);
 | |
| 			return 0;
 | |
| 		}
 | |
| #endif
 | |
| 	} else if (st0_tag == TAG_Empty) {
 | |
| 		/* Empty register (stack underflow) */
 | |
| 		EXCEPTION(EX_StackUnder);
 | |
| 		if (control_word & EX_Invalid) {
 | |
| 			/* The masked response */
 | |
| 			/* Put out the QNaN indefinite */
 | |
| 			RE_ENTRANT_CHECK_OFF;
 | |
| 			FPU_access_ok(VERIFY_WRITE, single, 4);
 | |
| 			FPU_put_user(0xffc00000,
 | |
| 				     (unsigned long __user *)single);
 | |
| 			RE_ENTRANT_CHECK_ON;
 | |
| 			return 1;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	}
 | |
| #ifdef PARANOID
 | |
| 	else {
 | |
| 		EXCEPTION(EX_INTERNAL | 0x163);
 | |
| 		return 0;
 | |
| 	}
 | |
| #endif
 | |
| 	if (getsign(st0_ptr))
 | |
| 		templ |= 0x80000000;
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_WRITE, single, 4);
 | |
| 	FPU_put_user(templ, (unsigned long __user *)single);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Put a long long into user memory */
 | |
| int FPU_store_int64(FPU_REG *st0_ptr, u_char st0_tag, long long __user *d)
 | |
| {
 | |
| 	FPU_REG t;
 | |
| 	long long tll;
 | |
| 	int precision_loss;
 | |
| 
 | |
| 	if (st0_tag == TAG_Empty) {
 | |
| 		/* Empty register (stack underflow) */
 | |
| 		EXCEPTION(EX_StackUnder);
 | |
| 		goto invalid_operand;
 | |
| 	} else if (st0_tag == TAG_Special) {
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 		if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) {
 | |
| 			EXCEPTION(EX_Invalid);
 | |
| 			goto invalid_operand;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	reg_copy(st0_ptr, &t);
 | |
| 	precision_loss = FPU_round_to_int(&t, st0_tag);
 | |
| 	((long *)&tll)[0] = t.sigl;
 | |
| 	((long *)&tll)[1] = t.sigh;
 | |
| 	if ((precision_loss == 1) ||
 | |
| 	    ((t.sigh & 0x80000000) &&
 | |
| 	     !((t.sigh == 0x80000000) && (t.sigl == 0) && signnegative(&t)))) {
 | |
| 		EXCEPTION(EX_Invalid);
 | |
| 		/* This is a special case: see sec 16.2.5.1 of the 80486 book */
 | |
| 	      invalid_operand:
 | |
| 		if (control_word & EX_Invalid) {
 | |
| 			/* Produce something like QNaN "indefinite" */
 | |
| 			tll = 0x8000000000000000LL;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		if (precision_loss)
 | |
| 			set_precision_flag(precision_loss);
 | |
| 		if (signnegative(&t))
 | |
| 			tll = -tll;
 | |
| 	}
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_WRITE, d, 8);
 | |
| 	if (copy_to_user(d, &tll, 8))
 | |
| 		FPU_abort;
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Put a long into user memory */
 | |
| int FPU_store_int32(FPU_REG *st0_ptr, u_char st0_tag, long __user *d)
 | |
| {
 | |
| 	FPU_REG t;
 | |
| 	int precision_loss;
 | |
| 
 | |
| 	if (st0_tag == TAG_Empty) {
 | |
| 		/* Empty register (stack underflow) */
 | |
| 		EXCEPTION(EX_StackUnder);
 | |
| 		goto invalid_operand;
 | |
| 	} else if (st0_tag == TAG_Special) {
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 		if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) {
 | |
| 			EXCEPTION(EX_Invalid);
 | |
| 			goto invalid_operand;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	reg_copy(st0_ptr, &t);
 | |
| 	precision_loss = FPU_round_to_int(&t, st0_tag);
 | |
| 	if (t.sigh ||
 | |
| 	    ((t.sigl & 0x80000000) &&
 | |
| 	     !((t.sigl == 0x80000000) && signnegative(&t)))) {
 | |
| 		EXCEPTION(EX_Invalid);
 | |
| 		/* This is a special case: see sec 16.2.5.1 of the 80486 book */
 | |
| 	      invalid_operand:
 | |
| 		if (control_word & EX_Invalid) {
 | |
| 			/* Produce something like QNaN "indefinite" */
 | |
| 			t.sigl = 0x80000000;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		if (precision_loss)
 | |
| 			set_precision_flag(precision_loss);
 | |
| 		if (signnegative(&t))
 | |
| 			t.sigl = -(long)t.sigl;
 | |
| 	}
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_WRITE, d, 4);
 | |
| 	FPU_put_user(t.sigl, (unsigned long __user *)d);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Put a short into user memory */
 | |
| int FPU_store_int16(FPU_REG *st0_ptr, u_char st0_tag, short __user *d)
 | |
| {
 | |
| 	FPU_REG t;
 | |
| 	int precision_loss;
 | |
| 
 | |
| 	if (st0_tag == TAG_Empty) {
 | |
| 		/* Empty register (stack underflow) */
 | |
| 		EXCEPTION(EX_StackUnder);
 | |
| 		goto invalid_operand;
 | |
| 	} else if (st0_tag == TAG_Special) {
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 		if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) {
 | |
| 			EXCEPTION(EX_Invalid);
 | |
| 			goto invalid_operand;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	reg_copy(st0_ptr, &t);
 | |
| 	precision_loss = FPU_round_to_int(&t, st0_tag);
 | |
| 	if (t.sigh ||
 | |
| 	    ((t.sigl & 0xffff8000) &&
 | |
| 	     !((t.sigl == 0x8000) && signnegative(&t)))) {
 | |
| 		EXCEPTION(EX_Invalid);
 | |
| 		/* This is a special case: see sec 16.2.5.1 of the 80486 book */
 | |
| 	      invalid_operand:
 | |
| 		if (control_word & EX_Invalid) {
 | |
| 			/* Produce something like QNaN "indefinite" */
 | |
| 			t.sigl = 0x8000;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		if (precision_loss)
 | |
| 			set_precision_flag(precision_loss);
 | |
| 		if (signnegative(&t))
 | |
| 			t.sigl = -t.sigl;
 | |
| 	}
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_WRITE, d, 2);
 | |
| 	FPU_put_user((short)t.sigl, d);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Put a packed bcd array into user memory */
 | |
| int FPU_store_bcd(FPU_REG *st0_ptr, u_char st0_tag, u_char __user *d)
 | |
| {
 | |
| 	FPU_REG t;
 | |
| 	unsigned long long ll;
 | |
| 	u_char b;
 | |
| 	int i, precision_loss;
 | |
| 	u_char sign = (getsign(st0_ptr) == SIGN_NEG) ? 0x80 : 0;
 | |
| 
 | |
| 	if (st0_tag == TAG_Empty) {
 | |
| 		/* Empty register (stack underflow) */
 | |
| 		EXCEPTION(EX_StackUnder);
 | |
| 		goto invalid_operand;
 | |
| 	} else if (st0_tag == TAG_Special) {
 | |
| 		st0_tag = FPU_Special(st0_ptr);
 | |
| 		if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) {
 | |
| 			EXCEPTION(EX_Invalid);
 | |
| 			goto invalid_operand;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	reg_copy(st0_ptr, &t);
 | |
| 	precision_loss = FPU_round_to_int(&t, st0_tag);
 | |
| 	ll = significand(&t);
 | |
| 
 | |
| 	/* Check for overflow, by comparing with 999999999999999999 decimal. */
 | |
| 	if ((t.sigh > 0x0de0b6b3) ||
 | |
| 	    ((t.sigh == 0x0de0b6b3) && (t.sigl > 0xa763ffff))) {
 | |
| 		EXCEPTION(EX_Invalid);
 | |
| 		/* This is a special case: see sec 16.2.5.1 of the 80486 book */
 | |
| 	      invalid_operand:
 | |
| 		if (control_word & CW_Invalid) {
 | |
| 			/* Produce the QNaN "indefinite" */
 | |
| 			RE_ENTRANT_CHECK_OFF;
 | |
| 			FPU_access_ok(VERIFY_WRITE, d, 10);
 | |
| 			for (i = 0; i < 7; i++)
 | |
| 				FPU_put_user(0, d + i);	/* These bytes "undefined" */
 | |
| 			FPU_put_user(0xc0, d + 7);	/* This byte "undefined" */
 | |
| 			FPU_put_user(0xff, d + 8);
 | |
| 			FPU_put_user(0xff, d + 9);
 | |
| 			RE_ENTRANT_CHECK_ON;
 | |
| 			return 1;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	} else if (precision_loss) {
 | |
| 		/* Precision loss doesn't stop the data transfer */
 | |
| 		set_precision_flag(precision_loss);
 | |
| 	}
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_WRITE, d, 10);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 	for (i = 0; i < 9; i++) {
 | |
| 		b = FPU_div_small(&ll, 10);
 | |
| 		b |= (FPU_div_small(&ll, 10)) << 4;
 | |
| 		RE_ENTRANT_CHECK_OFF;
 | |
| 		FPU_put_user(b, d + i);
 | |
| 		RE_ENTRANT_CHECK_ON;
 | |
| 	}
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_put_user(sign, d + 9);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*/
 | |
| 
 | |
| /* r gets mangled such that sig is int, sign: 
 | |
|    it is NOT normalized */
 | |
| /* The return value (in eax) is zero if the result is exact,
 | |
|    if bits are changed due to rounding, truncation, etc, then
 | |
|    a non-zero value is returned */
 | |
| /* Overflow is signalled by a non-zero return value (in eax).
 | |
|    In the case of overflow, the returned significand always has the
 | |
|    largest possible value */
 | |
| int FPU_round_to_int(FPU_REG *r, u_char tag)
 | |
| {
 | |
| 	u_char very_big;
 | |
| 	unsigned eax;
 | |
| 
 | |
| 	if (tag == TAG_Zero) {
 | |
| 		/* Make sure that zero is returned */
 | |
| 		significand(r) = 0;
 | |
| 		return 0;	/* o.k. */
 | |
| 	}
 | |
| 
 | |
| 	if (exponent(r) > 63) {
 | |
| 		r->sigl = r->sigh = ~0;	/* The largest representable number */
 | |
| 		return 1;	/* overflow */
 | |
| 	}
 | |
| 
 | |
| 	eax = FPU_shrxs(&r->sigl, 63 - exponent(r));
 | |
| 	very_big = !(~(r->sigh) | ~(r->sigl));	/* test for 0xfff...fff */
 | |
| #define	half_or_more	(eax & 0x80000000)
 | |
| #define	frac_part	(eax)
 | |
| #define more_than_half  ((eax & 0x80000001) == 0x80000001)
 | |
| 	switch (control_word & CW_RC) {
 | |
| 	case RC_RND:
 | |
| 		if (more_than_half	/* nearest */
 | |
| 		    || (half_or_more && (r->sigl & 1))) {	/* odd -> even */
 | |
| 			if (very_big)
 | |
| 				return 1;	/* overflow */
 | |
| 			significand(r)++;
 | |
| 			return PRECISION_LOST_UP;
 | |
| 		}
 | |
| 		break;
 | |
| 	case RC_DOWN:
 | |
| 		if (frac_part && getsign(r)) {
 | |
| 			if (very_big)
 | |
| 				return 1;	/* overflow */
 | |
| 			significand(r)++;
 | |
| 			return PRECISION_LOST_UP;
 | |
| 		}
 | |
| 		break;
 | |
| 	case RC_UP:
 | |
| 		if (frac_part && !getsign(r)) {
 | |
| 			if (very_big)
 | |
| 				return 1;	/* overflow */
 | |
| 			significand(r)++;
 | |
| 			return PRECISION_LOST_UP;
 | |
| 		}
 | |
| 		break;
 | |
| 	case RC_CHOP:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return eax ? PRECISION_LOST_DOWN : 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*===========================================================================*/
 | |
| 
 | |
| u_char __user *fldenv(fpu_addr_modes addr_modes, u_char __user *s)
 | |
| {
 | |
| 	unsigned short tag_word = 0;
 | |
| 	u_char tag;
 | |
| 	int i;
 | |
| 
 | |
| 	if ((addr_modes.default_mode == VM86) ||
 | |
| 	    ((addr_modes.default_mode == PM16)
 | |
| 	     ^ (addr_modes.override.operand_size == OP_SIZE_PREFIX))) {
 | |
| 		RE_ENTRANT_CHECK_OFF;
 | |
| 		FPU_access_ok(VERIFY_READ, s, 0x0e);
 | |
| 		FPU_get_user(control_word, (unsigned short __user *)s);
 | |
| 		FPU_get_user(partial_status, (unsigned short __user *)(s + 2));
 | |
| 		FPU_get_user(tag_word, (unsigned short __user *)(s + 4));
 | |
| 		FPU_get_user(instruction_address.offset,
 | |
| 			     (unsigned short __user *)(s + 6));
 | |
| 		FPU_get_user(instruction_address.selector,
 | |
| 			     (unsigned short __user *)(s + 8));
 | |
| 		FPU_get_user(operand_address.offset,
 | |
| 			     (unsigned short __user *)(s + 0x0a));
 | |
| 		FPU_get_user(operand_address.selector,
 | |
| 			     (unsigned short __user *)(s + 0x0c));
 | |
| 		RE_ENTRANT_CHECK_ON;
 | |
| 		s += 0x0e;
 | |
| 		if (addr_modes.default_mode == VM86) {
 | |
| 			instruction_address.offset
 | |
| 			    += (instruction_address.selector & 0xf000) << 4;
 | |
| 			operand_address.offset +=
 | |
| 			    (operand_address.selector & 0xf000) << 4;
 | |
| 		}
 | |
| 	} else {
 | |
| 		RE_ENTRANT_CHECK_OFF;
 | |
| 		FPU_access_ok(VERIFY_READ, s, 0x1c);
 | |
| 		FPU_get_user(control_word, (unsigned short __user *)s);
 | |
| 		FPU_get_user(partial_status, (unsigned short __user *)(s + 4));
 | |
| 		FPU_get_user(tag_word, (unsigned short __user *)(s + 8));
 | |
| 		FPU_get_user(instruction_address.offset,
 | |
| 			     (unsigned long __user *)(s + 0x0c));
 | |
| 		FPU_get_user(instruction_address.selector,
 | |
| 			     (unsigned short __user *)(s + 0x10));
 | |
| 		FPU_get_user(instruction_address.opcode,
 | |
| 			     (unsigned short __user *)(s + 0x12));
 | |
| 		FPU_get_user(operand_address.offset,
 | |
| 			     (unsigned long __user *)(s + 0x14));
 | |
| 		FPU_get_user(operand_address.selector,
 | |
| 			     (unsigned long __user *)(s + 0x18));
 | |
| 		RE_ENTRANT_CHECK_ON;
 | |
| 		s += 0x1c;
 | |
| 	}
 | |
| 
 | |
| #ifdef PECULIAR_486
 | |
| 	control_word &= ~0xe080;
 | |
| #endif /* PECULIAR_486 */
 | |
| 
 | |
| 	top = (partial_status >> SW_Top_Shift) & 7;
 | |
| 
 | |
| 	if (partial_status & ~control_word & CW_Exceptions)
 | |
| 		partial_status |= (SW_Summary | SW_Backward);
 | |
| 	else
 | |
| 		partial_status &= ~(SW_Summary | SW_Backward);
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		tag = tag_word & 3;
 | |
| 		tag_word >>= 2;
 | |
| 
 | |
| 		if (tag == TAG_Empty)
 | |
| 			/* New tag is empty.  Accept it */
 | |
| 			FPU_settag(i, TAG_Empty);
 | |
| 		else if (FPU_gettag(i) == TAG_Empty) {
 | |
| 			/* Old tag is empty and new tag is not empty.  New tag is determined
 | |
| 			   by old reg contents */
 | |
| 			if (exponent(&fpu_register(i)) == -EXTENDED_Ebias) {
 | |
| 				if (!
 | |
| 				    (fpu_register(i).sigl | fpu_register(i).
 | |
| 				     sigh))
 | |
| 					FPU_settag(i, TAG_Zero);
 | |
| 				else
 | |
| 					FPU_settag(i, TAG_Special);
 | |
| 			} else if (exponent(&fpu_register(i)) ==
 | |
| 				   0x7fff - EXTENDED_Ebias) {
 | |
| 				FPU_settag(i, TAG_Special);
 | |
| 			} else if (fpu_register(i).sigh & 0x80000000)
 | |
| 				FPU_settag(i, TAG_Valid);
 | |
| 			else
 | |
| 				FPU_settag(i, TAG_Special);	/* An Un-normal */
 | |
| 		}
 | |
| 		/* Else old tag is not empty and new tag is not empty.  Old tag
 | |
| 		   remains correct */
 | |
| 	}
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| void frstor(fpu_addr_modes addr_modes, u_char __user *data_address)
 | |
| {
 | |
| 	int i, regnr;
 | |
| 	u_char __user *s = fldenv(addr_modes, data_address);
 | |
| 	int offset = (top & 7) * 10, other = 80 - offset;
 | |
| 
 | |
| 	/* Copy all registers in stack order. */
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_READ, s, 80);
 | |
| 	__copy_from_user(register_base + offset, s, other);
 | |
| 	if (offset)
 | |
| 		__copy_from_user(register_base, s + other, offset);
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		regnr = (i + top) & 7;
 | |
| 		if (FPU_gettag(regnr) != TAG_Empty)
 | |
| 			/* The loaded data over-rides all other cases. */
 | |
| 			FPU_settag(regnr, FPU_tagof(&st(i)));
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| u_char __user *fstenv(fpu_addr_modes addr_modes, u_char __user *d)
 | |
| {
 | |
| 	if ((addr_modes.default_mode == VM86) ||
 | |
| 	    ((addr_modes.default_mode == PM16)
 | |
| 	     ^ (addr_modes.override.operand_size == OP_SIZE_PREFIX))) {
 | |
| 		RE_ENTRANT_CHECK_OFF;
 | |
| 		FPU_access_ok(VERIFY_WRITE, d, 14);
 | |
| #ifdef PECULIAR_486
 | |
| 		FPU_put_user(control_word & ~0xe080, (unsigned long __user *)d);
 | |
| #else
 | |
| 		FPU_put_user(control_word, (unsigned short __user *)d);
 | |
| #endif /* PECULIAR_486 */
 | |
| 		FPU_put_user(status_word(), (unsigned short __user *)(d + 2));
 | |
| 		FPU_put_user(fpu_tag_word, (unsigned short __user *)(d + 4));
 | |
| 		FPU_put_user(instruction_address.offset,
 | |
| 			     (unsigned short __user *)(d + 6));
 | |
| 		FPU_put_user(operand_address.offset,
 | |
| 			     (unsigned short __user *)(d + 0x0a));
 | |
| 		if (addr_modes.default_mode == VM86) {
 | |
| 			FPU_put_user((instruction_address.
 | |
| 				      offset & 0xf0000) >> 4,
 | |
| 				     (unsigned short __user *)(d + 8));
 | |
| 			FPU_put_user((operand_address.offset & 0xf0000) >> 4,
 | |
| 				     (unsigned short __user *)(d + 0x0c));
 | |
| 		} else {
 | |
| 			FPU_put_user(instruction_address.selector,
 | |
| 				     (unsigned short __user *)(d + 8));
 | |
| 			FPU_put_user(operand_address.selector,
 | |
| 				     (unsigned short __user *)(d + 0x0c));
 | |
| 		}
 | |
| 		RE_ENTRANT_CHECK_ON;
 | |
| 		d += 0x0e;
 | |
| 	} else {
 | |
| 		RE_ENTRANT_CHECK_OFF;
 | |
| 		FPU_access_ok(VERIFY_WRITE, d, 7 * 4);
 | |
| #ifdef PECULIAR_486
 | |
| 		control_word &= ~0xe080;
 | |
| 		/* An 80486 sets nearly all of the reserved bits to 1. */
 | |
| 		control_word |= 0xffff0040;
 | |
| 		partial_status = status_word() | 0xffff0000;
 | |
| 		fpu_tag_word |= 0xffff0000;
 | |
| 		I387->soft.fcs &= ~0xf8000000;
 | |
| 		I387->soft.fos |= 0xffff0000;
 | |
| #endif /* PECULIAR_486 */
 | |
| 		if (__copy_to_user(d, &control_word, 7 * 4))
 | |
| 			FPU_abort;
 | |
| 		RE_ENTRANT_CHECK_ON;
 | |
| 		d += 0x1c;
 | |
| 	}
 | |
| 
 | |
| 	control_word |= CW_Exceptions;
 | |
| 	partial_status &= ~(SW_Summary | SW_Backward);
 | |
| 
 | |
| 	return d;
 | |
| }
 | |
| 
 | |
| void fsave(fpu_addr_modes addr_modes, u_char __user *data_address)
 | |
| {
 | |
| 	u_char __user *d;
 | |
| 	int offset = (top & 7) * 10, other = 80 - offset;
 | |
| 
 | |
| 	d = fstenv(addr_modes, data_address);
 | |
| 
 | |
| 	RE_ENTRANT_CHECK_OFF;
 | |
| 	FPU_access_ok(VERIFY_WRITE, d, 80);
 | |
| 
 | |
| 	/* Copy all registers in stack order. */
 | |
| 	if (__copy_to_user(d, register_base + offset, other))
 | |
| 		FPU_abort;
 | |
| 	if (offset)
 | |
| 		if (__copy_to_user(d + other, register_base, offset))
 | |
| 			FPU_abort;
 | |
| 	RE_ENTRANT_CHECK_ON;
 | |
| 
 | |
| 	finit();
 | |
| }
 | |
| 
 | |
| /*===========================================================================*/
 |