 ec8acf20af
			
		
	
	
	ec8acf20af
	
	
	
		
			
			swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			616 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			616 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2010 Tilera Corporation. All Rights Reserved.
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful, but
 | |
|  *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *   NON INFRINGEMENT.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/smp.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/homecache.h>
 | |
| 
 | |
| #define K(x) ((x) << (PAGE_SHIFT-10))
 | |
| 
 | |
| /*
 | |
|  * The normal show_free_areas() is too verbose on Tile, with dozens
 | |
|  * of processors and often four NUMA zones each with high and lowmem.
 | |
|  */
 | |
| void show_mem(unsigned int filter)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
 | |
| 	       " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
 | |
| 	       " pagecache:%lu swap:%lu\n",
 | |
| 	       (global_page_state(NR_ACTIVE_ANON) +
 | |
| 		global_page_state(NR_ACTIVE_FILE)),
 | |
| 	       (global_page_state(NR_INACTIVE_ANON) +
 | |
| 		global_page_state(NR_INACTIVE_FILE)),
 | |
| 	       global_page_state(NR_FILE_DIRTY),
 | |
| 	       global_page_state(NR_WRITEBACK),
 | |
| 	       global_page_state(NR_UNSTABLE_NFS),
 | |
| 	       global_page_state(NR_FREE_PAGES),
 | |
| 	       (global_page_state(NR_SLAB_RECLAIMABLE) +
 | |
| 		global_page_state(NR_SLAB_UNRECLAIMABLE)),
 | |
| 	       global_page_state(NR_FILE_MAPPED),
 | |
| 	       global_page_state(NR_PAGETABLE),
 | |
| 	       global_page_state(NR_BOUNCE),
 | |
| 	       global_page_state(NR_FILE_PAGES),
 | |
| 	       get_nr_swap_pages());
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		unsigned long flags, order, total = 0, largest_order = -1;
 | |
| 
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		for (order = 0; order < MAX_ORDER; order++) {
 | |
| 			int nr = zone->free_area[order].nr_free;
 | |
| 			total += nr << order;
 | |
| 			if (nr)
 | |
| 				largest_order = order;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 		pr_err("Node %d %7s: %lukB (largest %luKb)\n",
 | |
| 		       zone_to_nid(zone), zone->name,
 | |
| 		       K(total), largest_order ? K(1UL) << largest_order : 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Associate a virtual page frame with a given physical page frame
 | |
|  * and protection flags for that frame.
 | |
|  */
 | |
| static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pgd = swapper_pg_dir + pgd_index(vaddr);
 | |
| 	if (pgd_none(*pgd)) {
 | |
| 		BUG();
 | |
| 		return;
 | |
| 	}
 | |
| 	pud = pud_offset(pgd, vaddr);
 | |
| 	if (pud_none(*pud)) {
 | |
| 		BUG();
 | |
| 		return;
 | |
| 	}
 | |
| 	pmd = pmd_offset(pud, vaddr);
 | |
| 	if (pmd_none(*pmd)) {
 | |
| 		BUG();
 | |
| 		return;
 | |
| 	}
 | |
| 	pte = pte_offset_kernel(pmd, vaddr);
 | |
| 	/* <pfn,flags> stored as-is, to permit clearing entries */
 | |
| 	set_pte(pte, pfn_pte(pfn, flags));
 | |
| 
 | |
| 	/*
 | |
| 	 * It's enough to flush this one mapping.
 | |
| 	 * This appears conservative since it is only called
 | |
| 	 * from __set_fixmap.
 | |
| 	 */
 | |
| 	local_flush_tlb_page(NULL, vaddr, PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
 | |
| {
 | |
| 	unsigned long address = __fix_to_virt(idx);
 | |
| 
 | |
| 	if (idx >= __end_of_fixed_addresses) {
 | |
| 		BUG();
 | |
| 		return;
 | |
| 	}
 | |
| 	set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * shatter_huge_page() - ensure a given address is mapped by a small page.
 | |
|  *
 | |
|  * This function converts a huge PTE mapping kernel LOWMEM into a bunch
 | |
|  * of small PTEs with the same caching.  No cache flush required, but we
 | |
|  * must do a global TLB flush.
 | |
|  *
 | |
|  * Any caller that wishes to modify a kernel mapping that might
 | |
|  * have been made with a huge page should call this function,
 | |
|  * since doing so properly avoids race conditions with installing the
 | |
|  * newly-shattered page and then flushing all the TLB entries.
 | |
|  *
 | |
|  * @addr: Address at which to shatter any existing huge page.
 | |
|  */
 | |
| void shatter_huge_page(unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long flags = 0;  /* happy compiler */
 | |
| #ifdef __PAGETABLE_PMD_FOLDED
 | |
| 	struct list_head *pos;
 | |
| #endif
 | |
| 
 | |
| 	/* Get a pointer to the pmd entry that we need to change. */
 | |
| 	addr &= HPAGE_MASK;
 | |
| 	BUG_ON(pgd_addr_invalid(addr));
 | |
| 	BUG_ON(addr < PAGE_OFFSET);  /* only for kernel LOWMEM */
 | |
| 	pgd = swapper_pg_dir + pgd_index(addr);
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	BUG_ON(!pud_present(*pud));
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	BUG_ON(!pmd_present(*pmd));
 | |
| 	if (!pmd_huge_page(*pmd))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&init_mm.page_table_lock, flags);
 | |
| 	if (!pmd_huge_page(*pmd)) {
 | |
| 		/* Lost the race to convert the huge page. */
 | |
| 		spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Shatter the huge page into the preallocated L2 page table. */
 | |
| 	pmd_populate_kernel(&init_mm, pmd,
 | |
| 			    get_prealloc_pte(pte_pfn(*(pte_t *)pmd)));
 | |
| 
 | |
| #ifdef __PAGETABLE_PMD_FOLDED
 | |
| 	/* Walk every pgd on the system and update the pmd there. */
 | |
| 	spin_lock(&pgd_lock);
 | |
| 	list_for_each(pos, &pgd_list) {
 | |
| 		pmd_t *copy_pmd;
 | |
| 		pgd = list_to_pgd(pos) + pgd_index(addr);
 | |
| 		pud = pud_offset(pgd, addr);
 | |
| 		copy_pmd = pmd_offset(pud, addr);
 | |
| 		__set_pmd(copy_pmd, *pmd);
 | |
| 	}
 | |
| 	spin_unlock(&pgd_lock);
 | |
| #endif
 | |
| 
 | |
| 	/* Tell every cpu to notice the change. */
 | |
| 	flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
 | |
| 		     cpu_possible_mask, NULL, 0);
 | |
| 
 | |
| 	/* Hold the lock until the TLB flush is finished to avoid races. */
 | |
| 	spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * List of all pgd's needed so it can invalidate entries in both cached
 | |
|  * and uncached pgd's. This is essentially codepath-based locking
 | |
|  * against pageattr.c; it is the unique case in which a valid change
 | |
|  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 | |
|  * vmalloc faults work because attached pagetables are never freed.
 | |
|  *
 | |
|  * The lock is always taken with interrupts disabled, unlike on x86
 | |
|  * and other platforms, because we need to take the lock in
 | |
|  * shatter_huge_page(), which may be called from an interrupt context.
 | |
|  * We are not at risk from the tlbflush IPI deadlock that was seen on
 | |
|  * x86, since we use the flush_remote() API to have the hypervisor do
 | |
|  * the TLB flushes regardless of irq disabling.
 | |
|  */
 | |
| DEFINE_SPINLOCK(pgd_lock);
 | |
| LIST_HEAD(pgd_list);
 | |
| 
 | |
| static inline void pgd_list_add(pgd_t *pgd)
 | |
| {
 | |
| 	list_add(pgd_to_list(pgd), &pgd_list);
 | |
| }
 | |
| 
 | |
| static inline void pgd_list_del(pgd_t *pgd)
 | |
| {
 | |
| 	list_del(pgd_to_list(pgd));
 | |
| }
 | |
| 
 | |
| #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
 | |
| #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
 | |
| 
 | |
| static void pgd_ctor(pgd_t *pgd)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
 | |
| 	spin_lock_irqsave(&pgd_lock, flags);
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| 	/*
 | |
| 	 * Check that the user interrupt vector has no L2.
 | |
| 	 * It never should for the swapper, and new page tables
 | |
| 	 * should always start with an empty user interrupt vector.
 | |
| 	 */
 | |
| 	BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
 | |
| #endif
 | |
| 
 | |
| 	memcpy(pgd + KERNEL_PGD_INDEX_START,
 | |
| 	       swapper_pg_dir + KERNEL_PGD_INDEX_START,
 | |
| 	       KERNEL_PGD_PTRS * sizeof(pgd_t));
 | |
| 
 | |
| 	pgd_list_add(pgd);
 | |
| 	spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| }
 | |
| 
 | |
| static void pgd_dtor(pgd_t *pgd)
 | |
| {
 | |
| 	unsigned long flags; /* can be called from interrupt context */
 | |
| 
 | |
| 	spin_lock_irqsave(&pgd_lock, flags);
 | |
| 	pgd_list_del(pgd);
 | |
| 	spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| }
 | |
| 
 | |
| pgd_t *pgd_alloc(struct mm_struct *mm)
 | |
| {
 | |
| 	pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
 | |
| 	if (pgd)
 | |
| 		pgd_ctor(pgd);
 | |
| 	return pgd;
 | |
| }
 | |
| 
 | |
| void pgd_free(struct mm_struct *mm, pgd_t *pgd)
 | |
| {
 | |
| 	pgd_dtor(pgd);
 | |
| 	kmem_cache_free(pgd_cache, pgd);
 | |
| }
 | |
| 
 | |
| 
 | |
| #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
 | |
| 
 | |
| struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
 | |
| 			       int order)
 | |
| {
 | |
| 	gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
 | |
| 	struct page *p;
 | |
| 	int i;
 | |
| 
 | |
| 	p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
 | |
| 	if (p == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make every page have a page_count() of one, not just the first.
 | |
| 	 * We don't use __GFP_COMP since it doesn't look like it works
 | |
| 	 * correctly with tlb_remove_page().
 | |
| 	 */
 | |
| 	for (i = 1; i < order; ++i) {
 | |
| 		init_page_count(p+i);
 | |
| 		inc_zone_page_state(p+i, NR_PAGETABLE);
 | |
| 	}
 | |
| 
 | |
| 	pgtable_page_ctor(p);
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free page immediately (used in __pte_alloc if we raced with another
 | |
|  * process).  We have to correct whatever pte_alloc_one() did before
 | |
|  * returning the pages to the allocator.
 | |
|  */
 | |
| void pgtable_free(struct mm_struct *mm, struct page *p, int order)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pgtable_page_dtor(p);
 | |
| 	__free_page(p);
 | |
| 
 | |
| 	for (i = 1; i < order; ++i) {
 | |
| 		__free_page(p+i);
 | |
| 		dec_zone_page_state(p+i, NR_PAGETABLE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
 | |
| 			unsigned long address, int order)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pgtable_page_dtor(pte);
 | |
| 	tlb_remove_page(tlb, pte);
 | |
| 
 | |
| 	for (i = 1; i < order; ++i) {
 | |
| 		tlb_remove_page(tlb, pte + i);
 | |
| 		dec_zone_page_state(pte + i, NR_PAGETABLE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| 
 | |
| /*
 | |
|  * FIXME: needs to be atomic vs hypervisor writes.  For now we make the
 | |
|  * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
 | |
|  */
 | |
| int ptep_test_and_clear_young(struct vm_area_struct *vma,
 | |
| 			      unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
 | |
| # error Code assumes HV_PTE "accessed" bit in second byte
 | |
| #endif
 | |
| 	u8 *tmp = (u8 *)ptep;
 | |
| 	u8 second_byte = tmp[1];
 | |
| 	if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
 | |
| 		return 0;
 | |
| 	tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This implementation is atomic vs hypervisor writes, since the hypervisor
 | |
|  * always writes the low word (where "accessed" and "dirty" are) and this
 | |
|  * routine only writes the high word.
 | |
|  */
 | |
| void ptep_set_wrprotect(struct mm_struct *mm,
 | |
| 			unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| #if HV_PTE_INDEX_WRITABLE < 32
 | |
| # error Code assumes HV_PTE "writable" bit in high word
 | |
| #endif
 | |
| 	u32 *tmp = (u32 *)ptep;
 | |
| 	tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	if (pgd_addr_invalid(addr))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	if (!pud_present(*pud))
 | |
| 		return NULL;
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_huge_page(*pmd))
 | |
| 		return (pte_t *)pmd;
 | |
| 	if (!pmd_present(*pmd))
 | |
| 		return NULL;
 | |
| 	return pte_offset_kernel(pmd, addr);
 | |
| }
 | |
| 
 | |
| pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
 | |
| {
 | |
| 	unsigned int width = smp_width;
 | |
| 	int x = cpu % width;
 | |
| 	int y = cpu / width;
 | |
| 	BUG_ON(y >= smp_height);
 | |
| 	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
 | |
| 	BUG_ON(cpu < 0 || cpu >= NR_CPUS);
 | |
| 	BUG_ON(!cpu_is_valid_lotar(cpu));
 | |
| 	return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
 | |
| }
 | |
| 
 | |
| int get_remote_cache_cpu(pgprot_t prot)
 | |
| {
 | |
| 	HV_LOTAR lotar = hv_pte_get_lotar(prot);
 | |
| 	int x = HV_LOTAR_X(lotar);
 | |
| 	int y = HV_LOTAR_Y(lotar);
 | |
| 	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
 | |
| 	return x + y * smp_width;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a kernel VA to a PA and homing information.
 | |
|  */
 | |
| int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
 | |
| {
 | |
| 	struct page *page = virt_to_page(va);
 | |
| 	pte_t null_pte = { 0 };
 | |
| 
 | |
| 	*cpa = __pa(va);
 | |
| 
 | |
| 	/* Note that this is not writing a page table, just returning a pte. */
 | |
| 	*pte = pte_set_home(null_pte, page_home(page));
 | |
| 
 | |
| 	return 0; /* return non-zero if not hfh? */
 | |
| }
 | |
| EXPORT_SYMBOL(va_to_cpa_and_pte);
 | |
| 
 | |
| void __set_pte(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| #ifdef __tilegx__
 | |
| 	*ptep = pte;
 | |
| #else
 | |
| # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
 | |
| #  error Must write the present and migrating bits last
 | |
| # endif
 | |
| 	if (pte_present(pte)) {
 | |
| 		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
 | |
| 		barrier();
 | |
| 		((u32 *)ptep)[0] = (u32)(pte_val(pte));
 | |
| 	} else {
 | |
| 		((u32 *)ptep)[0] = (u32)(pte_val(pte));
 | |
| 		barrier();
 | |
| 		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
 | |
| 	}
 | |
| #endif /* __tilegx__ */
 | |
| }
 | |
| 
 | |
| void set_pte(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	if (pte_present(pte) &&
 | |
| 	    (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
 | |
| 		/* The PTE actually references physical memory. */
 | |
| 		unsigned long pfn = pte_pfn(pte);
 | |
| 		if (pfn_valid(pfn)) {
 | |
| 			/* Update the home of the PTE from the struct page. */
 | |
| 			pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
 | |
| 		} else if (hv_pte_get_mode(pte) == 0) {
 | |
| 			/* remap_pfn_range(), etc, must supply PTE mode. */
 | |
| 			panic("set_pte(): out-of-range PFN and mode 0\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	__set_pte(ptep, pte);
 | |
| }
 | |
| 
 | |
| /* Can this mm load a PTE with cached_priority set? */
 | |
| static inline int mm_is_priority_cached(struct mm_struct *mm)
 | |
| {
 | |
| 	return mm->context.priority_cached != 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a priority mapping to an mm_context and
 | |
|  * notify the hypervisor if this is the first one.
 | |
|  */
 | |
| void start_mm_caching(struct mm_struct *mm)
 | |
| {
 | |
| 	if (!mm_is_priority_cached(mm)) {
 | |
| 		mm->context.priority_cached = -1UL;
 | |
| 		hv_set_caching(-1UL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate and return the priority_cached flag.  We know if it's zero
 | |
|  * that we don't need to scan, since we immediately set it non-zero
 | |
|  * when we first consider a MAP_CACHE_PRIORITY mapping.
 | |
|  *
 | |
|  * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
 | |
|  * since we're in an interrupt context (servicing switch_mm) we don't
 | |
|  * worry about it and don't unset the "priority_cached" field.
 | |
|  * Presumably we'll come back later and have more luck and clear
 | |
|  * the value then; for now we'll just keep the cache marked for priority.
 | |
|  */
 | |
| static unsigned long update_priority_cached(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
 | |
| 		struct vm_area_struct *vm;
 | |
| 		for (vm = mm->mmap; vm; vm = vm->vm_next) {
 | |
| 			if (hv_pte_get_cached_priority(vm->vm_page_prot))
 | |
| 				break;
 | |
| 		}
 | |
| 		if (vm == NULL)
 | |
| 			mm->context.priority_cached = 0;
 | |
| 		up_write(&mm->mmap_sem);
 | |
| 	}
 | |
| 	return mm->context.priority_cached;
 | |
| }
 | |
| 
 | |
| /* Set caching correctly for an mm that we are switching to. */
 | |
| void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
 | |
| {
 | |
| 	if (!mm_is_priority_cached(next)) {
 | |
| 		/*
 | |
| 		 * If the new mm doesn't use priority caching, just see if we
 | |
| 		 * need the hv_set_caching(), or can assume it's already zero.
 | |
| 		 */
 | |
| 		if (mm_is_priority_cached(prev))
 | |
| 			hv_set_caching(0);
 | |
| 	} else {
 | |
| 		hv_set_caching(update_priority_cached(next));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if CHIP_HAS_MMIO()
 | |
| 
 | |
| /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
 | |
| void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
 | |
| 			   pgprot_t home)
 | |
| {
 | |
| 	void *addr;
 | |
| 	struct vm_struct *area;
 | |
| 	unsigned long offset, last_addr;
 | |
| 	pgprot_t pgprot;
 | |
| 
 | |
| 	/* Don't allow wraparound or zero size */
 | |
| 	last_addr = phys_addr + size - 1;
 | |
| 	if (!size || last_addr < phys_addr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Create a read/write, MMIO VA mapping homed at the requested shim. */
 | |
| 	pgprot = PAGE_KERNEL;
 | |
| 	pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
 | |
| 	pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
 | |
| 
 | |
| 	/*
 | |
| 	 * Mappings have to be page-aligned
 | |
| 	 */
 | |
| 	offset = phys_addr & ~PAGE_MASK;
 | |
| 	phys_addr &= PAGE_MASK;
 | |
| 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, go for it..
 | |
| 	 */
 | |
| 	area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
 | |
| 	if (!area)
 | |
| 		return NULL;
 | |
| 	area->phys_addr = phys_addr;
 | |
| 	addr = area->addr;
 | |
| 	if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
 | |
| 			       phys_addr, pgprot)) {
 | |
| 		remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (__force void __iomem *) (offset + (char *)addr);
 | |
| }
 | |
| EXPORT_SYMBOL(ioremap_prot);
 | |
| 
 | |
| /* Unmap an MMIO VA mapping. */
 | |
| void iounmap(volatile void __iomem *addr_in)
 | |
| {
 | |
| 	volatile void __iomem *addr = (volatile void __iomem *)
 | |
| 		(PAGE_MASK & (unsigned long __force)addr_in);
 | |
| #if 1
 | |
| 	vunmap((void * __force)addr);
 | |
| #else
 | |
| 	/* x86 uses this complicated flow instead of vunmap().  Is
 | |
| 	 * there any particular reason we should do the same? */
 | |
| 	struct vm_struct *p, *o;
 | |
| 
 | |
| 	/* Use the vm area unlocked, assuming the caller
 | |
| 	   ensures there isn't another iounmap for the same address
 | |
| 	   in parallel. Reuse of the virtual address is prevented by
 | |
| 	   leaving it in the global lists until we're done with it.
 | |
| 	   cpa takes care of the direct mappings. */
 | |
| 	read_lock(&vmlist_lock);
 | |
| 	for (p = vmlist; p; p = p->next) {
 | |
| 		if (p->addr == addr)
 | |
| 			break;
 | |
| 	}
 | |
| 	read_unlock(&vmlist_lock);
 | |
| 
 | |
| 	if (!p) {
 | |
| 		pr_err("iounmap: bad address %p\n", addr);
 | |
| 		dump_stack();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Finally remove it */
 | |
| 	o = remove_vm_area((void *)addr);
 | |
| 	BUG_ON(p != o || o == NULL);
 | |
| 	kfree(p);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(iounmap);
 | |
| 
 | |
| #endif /* CHIP_HAS_MMIO() */
 |