 13da9e200f
			
		
	
	
	13da9e200f
	
	
	
		
			
			This reverts commitb3b77c8cae, which was also totally broken (see commit0d2daf5cc8that reverted the crc32 version of it). As reported by Stephen Rothwell, it causes problems on big-endian machines: > In file included from fs/jfs/jfs_types.h:33, > from fs/jfs/jfs_incore.h:26, > from fs/jfs/file.c:22: > fs/jfs/endian24.h:36:101: warning: "__LITTLE_ENDIAN" is not defined The kernel has never had that crazy "__BYTE_ORDER == __LITTLE_ENDIAN" model. It's not how we do things, and it isn't how we _should_ do things. So don't go there. Requested-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			377 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			377 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Machine-dependent software floating-point definitions.  PPC version.
 | |
|    Copyright (C) 1997 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Library General Public License as
 | |
|    published by the Free Software Foundation; either version 2 of the
 | |
|    License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Library General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Library General Public
 | |
|    License along with the GNU C Library; see the file COPYING.LIB.  If
 | |
|    not, write to the Free Software Foundation, Inc.,
 | |
|    59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
| 
 | |
|    Actually, this is a PPC (32bit) version, written based on the
 | |
|    i386, sparc, and sparc64 versions, by me,
 | |
|    Peter Maydell (pmaydell@chiark.greenend.org.uk).
 | |
|    Comments are by and large also mine, although they may be inaccurate.
 | |
| 
 | |
|    In picking out asm fragments I've gone with the lowest common
 | |
|    denominator, which also happens to be the hardware I have :->
 | |
|    That is, a SPARC without hardware multiply and divide.
 | |
|  */
 | |
| 
 | |
| /* basic word size definitions */
 | |
| #define _FP_W_TYPE_SIZE		32
 | |
| #define _FP_W_TYPE		unsigned int
 | |
| #define _FP_WS_TYPE		signed int
 | |
| #define _FP_I_TYPE		int
 | |
| 
 | |
| #define __ll_B			((UWtype) 1 << (W_TYPE_SIZE / 2))
 | |
| #define __ll_lowpart(t)		((UWtype) (t) & (__ll_B - 1))
 | |
| #define __ll_highpart(t)	((UWtype) (t) >> (W_TYPE_SIZE / 2))
 | |
| 
 | |
| /* You can optionally code some things like addition in asm. For
 | |
|  * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't
 | |
|  * then you get a fragment of C code [if you change an #ifdef 0
 | |
|  * in op-2.h] or a call to add_ssaaaa (see below).
 | |
|  * Good places to look for asm fragments to use are gcc and glibc.
 | |
|  * gcc's longlong.h is useful.
 | |
|  */
 | |
| 
 | |
| /* We need to know how to multiply and divide. If the host word size
 | |
|  * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which
 | |
|  * codes the multiply with whatever gcc does to 'a * b'.
 | |
|  * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm
 | |
|  * function that can multiply two 1W values and get a 2W result.
 | |
|  * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which
 | |
|  * does bitshifting to avoid overflow.
 | |
|  * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size
 | |
|  * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or
 | |
|  * _FP_DIV_HELP_ldiv (see op-1.h).
 | |
|  * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W).
 | |
|  * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd
 | |
|  * to do this.]
 | |
|  * In general, 'n' is the number of words required to hold the type,
 | |
|  * and 't' is either S, D or Q for single/double/quad.
 | |
|  *           -- PMM
 | |
|  */
 | |
| /* Example: SPARC64:
 | |
|  * #define _FP_MUL_MEAT_S(R,X,Y)	_FP_MUL_MEAT_1_imm(S,R,X,Y)
 | |
|  * #define _FP_MUL_MEAT_D(R,X,Y)	_FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm)
 | |
|  * #define _FP_MUL_MEAT_Q(R,X,Y)	_FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm)
 | |
|  *
 | |
|  * #define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm)
 | |
|  * #define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_1_udiv(D,R,X,Y)
 | |
|  * #define _FP_DIV_MEAT_Q(R,X,Y)	_FP_DIV_MEAT_2_udiv_64(Q,R,X,Y)
 | |
|  *
 | |
|  * Example: i386:
 | |
|  * #define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64)
 | |
|  * #define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64)
 | |
|  *
 | |
|  * #define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32)
 | |
|  * #define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)
 | |
|  */
 | |
| 
 | |
| #define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
 | |
| #define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
 | |
| 
 | |
| #define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_udiv_norm(S,R,X,Y)
 | |
| #define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_2_udiv(D,R,X,Y)
 | |
| 
 | |
| /* These macros define what NaN looks like. They're supposed to expand to
 | |
|  * a comma-separated set of 32bit unsigned ints that encode NaN.
 | |
|  */
 | |
| #define _FP_NANFRAC_S		((_FP_QNANBIT_S << 1) - 1)
 | |
| #define _FP_NANFRAC_D		((_FP_QNANBIT_D << 1) - 1), -1
 | |
| #define _FP_NANFRAC_Q		((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1
 | |
| #define _FP_NANSIGN_S		0
 | |
| #define _FP_NANSIGN_D		0
 | |
| #define _FP_NANSIGN_Q		0
 | |
| 
 | |
| #define _FP_KEEPNANFRACP 1
 | |
| 
 | |
| #ifdef FP_EX_BOOKE_E500_SPE
 | |
| #define FP_EX_INEXACT		(1 << 21)
 | |
| #define FP_EX_INVALID		(1 << 20)
 | |
| #define FP_EX_DIVZERO		(1 << 19)
 | |
| #define FP_EX_UNDERFLOW		(1 << 18)
 | |
| #define FP_EX_OVERFLOW		(1 << 17)
 | |
| #define FP_INHIBIT_RESULTS	0
 | |
| 
 | |
| #define __FPU_FPSCR	(current->thread.spefscr)
 | |
| #define __FPU_ENABLED_EXC		\
 | |
| ({					\
 | |
| 	(__FPU_FPSCR >> 2) & 0x1f;	\
 | |
| })
 | |
| #else
 | |
| /* Exception flags.  We use the bit positions of the appropriate bits
 | |
|    in the FPSCR, which also correspond to the FE_* bits.  This makes
 | |
|    everything easier ;-).  */
 | |
| #define FP_EX_INVALID         (1 << (31 - 2))
 | |
| #define FP_EX_INVALID_SNAN	EFLAG_VXSNAN
 | |
| #define FP_EX_INVALID_ISI	EFLAG_VXISI
 | |
| #define FP_EX_INVALID_IDI	EFLAG_VXIDI
 | |
| #define FP_EX_INVALID_ZDZ	EFLAG_VXZDZ
 | |
| #define FP_EX_INVALID_IMZ	EFLAG_VXIMZ
 | |
| #define FP_EX_OVERFLOW        (1 << (31 - 3))
 | |
| #define FP_EX_UNDERFLOW       (1 << (31 - 4))
 | |
| #define FP_EX_DIVZERO         (1 << (31 - 5))
 | |
| #define FP_EX_INEXACT         (1 << (31 - 6))
 | |
| 
 | |
| #define __FPU_FPSCR	(current->thread.fpscr.val)
 | |
| 
 | |
| /* We only actually write to the destination register
 | |
|  * if exceptions signalled (if any) will not trap.
 | |
|  */
 | |
| #define __FPU_ENABLED_EXC \
 | |
| ({						\
 | |
| 	(__FPU_FPSCR >> 3) & 0x1f;	\
 | |
| })
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * If one NaN is signaling and the other is not,
 | |
|  * we choose that one, otherwise we choose X.
 | |
|  */
 | |
| #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP)			\
 | |
|   do {								\
 | |
|     if ((_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs)		\
 | |
| 	&& !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))	\
 | |
|       {								\
 | |
| 	R##_s = X##_s;						\
 | |
| 	_FP_FRAC_COPY_##wc(R,X);				\
 | |
|       }								\
 | |
|     else							\
 | |
|       {								\
 | |
| 	R##_s = Y##_s;						\
 | |
| 	_FP_FRAC_COPY_##wc(R,Y);				\
 | |
|       }								\
 | |
|     R##_c = FP_CLS_NAN;						\
 | |
|   } while (0)
 | |
| 
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| 
 | |
| #define __FPU_TRAP_P(bits) \
 | |
| 	((__FPU_ENABLED_EXC & (bits)) != 0)
 | |
| 
 | |
| #define __FP_PACK_S(val,X)			\
 | |
| ({  int __exc = _FP_PACK_CANONICAL(S,1,X);	\
 | |
|     if(!__exc || !__FPU_TRAP_P(__exc))		\
 | |
|         _FP_PACK_RAW_1_P(S,val,X);		\
 | |
|     __exc;					\
 | |
| })
 | |
| 
 | |
| #define __FP_PACK_D(val,X)			\
 | |
|    do {									\
 | |
| 	_FP_PACK_CANONICAL(D, 2, X);					\
 | |
| 	if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS))	\
 | |
| 		_FP_PACK_RAW_2_P(D, val, X);				\
 | |
|    } while (0)
 | |
| 
 | |
| #define __FP_PACK_DS(val,X)							\
 | |
|    do {										\
 | |
| 	   FP_DECL_S(__X);							\
 | |
| 	   FP_CONV(S, D, 1, 2, __X, X);						\
 | |
| 	   _FP_PACK_CANONICAL(S, 1, __X);					\
 | |
| 	   if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) {	\
 | |
| 		   _FP_UNPACK_CANONICAL(S, 1, __X);				\
 | |
| 		   FP_CONV(D, S, 2, 1, X, __X);					\
 | |
| 		   _FP_PACK_CANONICAL(D, 2, X);					\
 | |
| 		   if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS))	\
 | |
| 		   _FP_PACK_RAW_2_P(D, val, X);					\
 | |
| 	   }									\
 | |
|    } while (0)
 | |
| 
 | |
| /* Obtain the current rounding mode. */
 | |
| #define FP_ROUNDMODE			\
 | |
| ({					\
 | |
| 	__FPU_FPSCR & 0x3;		\
 | |
| })
 | |
| 
 | |
| /* the asm fragments go here: all these are taken from glibc-2.0.5's
 | |
|  * stdlib/longlong.h
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <asm/byteorder.h>
 | |
| 
 | |
| /* add_ssaaaa is used in op-2.h and should be equivalent to
 | |
|  * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al))
 | |
|  * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
 | |
|  * high_addend_2, low_addend_2) adds two UWtype integers, composed by
 | |
|  * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
 | |
|  * respectively.  The result is placed in HIGH_SUM and LOW_SUM.  Overflow
 | |
|  * (i.e. carry out) is not stored anywhere, and is lost.
 | |
|  */
 | |
| #define add_ssaaaa(sh, sl, ah, al, bh, bl)				\
 | |
|   do {									\
 | |
|     if (__builtin_constant_p (bh) && (bh) == 0)				\
 | |
|       __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2"		\
 | |
| 	     : "=r" ((USItype)(sh)),					\
 | |
| 	       "=&r" ((USItype)(sl))					\
 | |
| 	     : "%r" ((USItype)(ah)),					\
 | |
| 	       "%r" ((USItype)(al)),					\
 | |
| 	       "rI" ((USItype)(bl)));					\
 | |
|     else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0)		\
 | |
|       __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2"		\
 | |
| 	     : "=r" ((USItype)(sh)),					\
 | |
| 	       "=&r" ((USItype)(sl))					\
 | |
| 	     : "%r" ((USItype)(ah)),					\
 | |
| 	       "%r" ((USItype)(al)),					\
 | |
| 	       "rI" ((USItype)(bl)));					\
 | |
|     else								\
 | |
|       __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3"		\
 | |
| 	     : "=r" ((USItype)(sh)),					\
 | |
| 	       "=&r" ((USItype)(sl))					\
 | |
| 	     : "%r" ((USItype)(ah)),					\
 | |
| 	       "r" ((USItype)(bh)),					\
 | |
| 	       "%r" ((USItype)(al)),					\
 | |
| 	       "rI" ((USItype)(bl)));					\
 | |
|   } while (0)
 | |
| 
 | |
| /* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to
 | |
|  * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al))
 | |
|  * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
 | |
|  * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
 | |
|  * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
 | |
|  * LOW_SUBTRAHEND_2 respectively.  The result is placed in HIGH_DIFFERENCE
 | |
|  * and LOW_DIFFERENCE.  Overflow (i.e. carry out) is not stored anywhere,
 | |
|  * and is lost.
 | |
|  */
 | |
| #define sub_ddmmss(sh, sl, ah, al, bh, bl)				\
 | |
|   do {									\
 | |
|     if (__builtin_constant_p (ah) && (ah) == 0)				\
 | |
|       __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2"	\
 | |
| 	       : "=r" ((USItype)(sh)),					\
 | |
| 		 "=&r" ((USItype)(sl))					\
 | |
| 	       : "r" ((USItype)(bh)),					\
 | |
| 		 "rI" ((USItype)(al)),					\
 | |
| 		 "r" ((USItype)(bl)));					\
 | |
|     else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0)		\
 | |
|       __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2"	\
 | |
| 	       : "=r" ((USItype)(sh)),					\
 | |
| 		 "=&r" ((USItype)(sl))					\
 | |
| 	       : "r" ((USItype)(bh)),					\
 | |
| 		 "rI" ((USItype)(al)),					\
 | |
| 		 "r" ((USItype)(bl)));					\
 | |
|     else if (__builtin_constant_p (bh) && (bh) == 0)			\
 | |
|       __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2"		\
 | |
| 	       : "=r" ((USItype)(sh)),					\
 | |
| 		 "=&r" ((USItype)(sl))					\
 | |
| 	       : "r" ((USItype)(ah)),					\
 | |
| 		 "rI" ((USItype)(al)),					\
 | |
| 		 "r" ((USItype)(bl)));					\
 | |
|     else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0)		\
 | |
|       __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2"		\
 | |
| 	       : "=r" ((USItype)(sh)),					\
 | |
| 		 "=&r" ((USItype)(sl))					\
 | |
| 	       : "r" ((USItype)(ah)),					\
 | |
| 		 "rI" ((USItype)(al)),					\
 | |
| 		 "r" ((USItype)(bl)));					\
 | |
|     else								\
 | |
|       __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2"	\
 | |
| 	       : "=r" ((USItype)(sh)),					\
 | |
| 		 "=&r" ((USItype)(sl))					\
 | |
| 	       : "r" ((USItype)(ah)),					\
 | |
| 		 "r" ((USItype)(bh)),					\
 | |
| 		 "rI" ((USItype)(al)),					\
 | |
| 		 "r" ((USItype)(bl)));					\
 | |
|   } while (0)
 | |
| 
 | |
| /* asm fragments for mul and div */
 | |
| 
 | |
| /* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two
 | |
|  * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype
 | |
|  * word product in HIGH_PROD and LOW_PROD.
 | |
|  */
 | |
| #define umul_ppmm(ph, pl, m0, m1)					\
 | |
|   do {									\
 | |
|     USItype __m0 = (m0), __m1 = (m1);					\
 | |
|     __asm__ ("mulhwu %0,%1,%2"						\
 | |
| 	     : "=r" ((USItype)(ph))					\
 | |
| 	     : "%r" (__m0),						\
 | |
|                "r" (__m1));						\
 | |
|     (pl) = __m0 * __m1;							\
 | |
|   } while (0)
 | |
| 
 | |
| /* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
 | |
|  * denominator) divides a UDWtype, composed by the UWtype integers
 | |
|  * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
 | |
|  * in QUOTIENT and the remainder in REMAINDER.  HIGH_NUMERATOR must be less
 | |
|  * than DENOMINATOR for correct operation.  If, in addition, the most
 | |
|  * significant bit of DENOMINATOR must be 1, then the pre-processor symbol
 | |
|  * UDIV_NEEDS_NORMALIZATION is defined to 1.
 | |
|  */
 | |
| #define udiv_qrnnd(q, r, n1, n0, d)					\
 | |
|   do {									\
 | |
|     UWtype __d1, __d0, __q1, __q0, __r1, __r0, __m;			\
 | |
|     __d1 = __ll_highpart (d);						\
 | |
|     __d0 = __ll_lowpart (d);						\
 | |
| 									\
 | |
|     __r1 = (n1) % __d1;							\
 | |
|     __q1 = (n1) / __d1;							\
 | |
|     __m = (UWtype) __q1 * __d0;						\
 | |
|     __r1 = __r1 * __ll_B | __ll_highpart (n0);				\
 | |
|     if (__r1 < __m)							\
 | |
|       {									\
 | |
| 	__q1--, __r1 += (d);						\
 | |
| 	if (__r1 >= (d)) /* we didn't get carry when adding to __r1 */	\
 | |
| 	  if (__r1 < __m)						\
 | |
| 	    __q1--, __r1 += (d);					\
 | |
|       }									\
 | |
|     __r1 -= __m;							\
 | |
| 									\
 | |
|     __r0 = __r1 % __d1;							\
 | |
|     __q0 = __r1 / __d1;							\
 | |
|     __m = (UWtype) __q0 * __d0;						\
 | |
|     __r0 = __r0 * __ll_B | __ll_lowpart (n0);				\
 | |
|     if (__r0 < __m)							\
 | |
|       {									\
 | |
| 	__q0--, __r0 += (d);						\
 | |
| 	if (__r0 >= (d))						\
 | |
| 	  if (__r0 < __m)						\
 | |
| 	    __q0--, __r0 += (d);					\
 | |
|       }									\
 | |
|     __r0 -= __m;							\
 | |
| 									\
 | |
|     (q) = (UWtype) __q1 * __ll_B | __q0;				\
 | |
|     (r) = __r0;								\
 | |
|   } while (0)
 | |
| 
 | |
| #define UDIV_NEEDS_NORMALIZATION 1
 | |
| 
 | |
| #define abort()								\
 | |
| 	return 0
 | |
| 
 | |
| #ifdef __BIG_ENDIAN
 | |
| #define __BYTE_ORDER __BIG_ENDIAN
 | |
| #else
 | |
| #define __BYTE_ORDER __LITTLE_ENDIAN
 | |
| #endif
 | |
| 
 | |
| /* Exception flags. */
 | |
| #define EFLAG_INVALID		(1 << (31 - 2))
 | |
| #define EFLAG_OVERFLOW		(1 << (31 - 3))
 | |
| #define EFLAG_UNDERFLOW		(1 << (31 - 4))
 | |
| #define EFLAG_DIVZERO		(1 << (31 - 5))
 | |
| #define EFLAG_INEXACT		(1 << (31 - 6))
 | |
| 
 | |
| #define EFLAG_VXSNAN		(1 << (31 - 7))
 | |
| #define EFLAG_VXISI		(1 << (31 - 8))
 | |
| #define EFLAG_VXIDI		(1 << (31 - 9))
 | |
| #define EFLAG_VXZDZ		(1 << (31 - 10))
 | |
| #define EFLAG_VXIMZ		(1 << (31 - 11))
 | |
| #define EFLAG_VXVC		(1 << (31 - 12))
 | |
| #define EFLAG_VXSOFT		(1 << (31 - 21))
 | |
| #define EFLAG_VXSQRT		(1 << (31 - 22))
 | |
| #define EFLAG_VXCVI		(1 << (31 - 23))
 |