 aebb2afd54
			
		
	
	
	aebb2afd54
	
	
	
		
			
			Pull MIPS updates from Ralf Baechle:
 o Add basic support for the Mediatek/Ralink Wireless SoC family.
 o The Qualcomm Atheros platform is extended by support for the new
   QCA955X SoC series as well as a bunch of patches that get the code
   ready for OF support.
 o Lantiq and BCM47XX platform have a few improvements and bug fixes.
 o MIPS has sent a few patches that get the kernel ready for the
   upcoming microMIPS support.
 o The rest of the series is made up of small bug fixes and cleanups
   that relate to various parts of the MIPS code.  The biggy in there is
   a whitespace cleanup.  After I was sent another set of whitespace
   cleanup patches I decided it was the time to clean the whitespace
   "issues" for once and and that touches many files below arch/mips/.
Fix up silly conflicts, mostly due to whitespace cleanups.
* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus: (105 commits)
  MIPS: Quit exporting kernel internel break codes to uapi/asm/break.h
  MIPS: remove broken conditional inside vpe loader code
  MIPS: SMTC: fix implicit declaration of set_vi_handler
  MIPS: early_printk: drop __init annotations
  MIPS: Probe for and report hardware virtualization support.
  MIPS: ath79: add support for the Qualcomm Atheros AP136-010 board
  MIPS: ath79: add USB controller registration code for the QCA955X SoCs
  MIPS: ath79: add PCI controller registration code for the QCA955X SoCs
  MIPS: ath79: add WMAC registration code for the QCA955X SoCs
  MIPS: ath79: register UART for the QCA955X SoCs
  MIPS: ath79: add QCA955X specific glue to ath79_device_reset_{set, clear}
  MIPS: ath79: add GPIO setup code for the QCA955X SoCs
  MIPS: ath79: add IRQ handling code for the QCA955X SoCs
  MIPS: ath79: add clock setup code for the QCA955X SoCs
  MIPS: ath79: add SoC detection code for the QCA955X SoCs
  MIPS: ath79: add early printk support for the QCA955X SoCs
  MIPS: ath79: fix WMAC IRQ resource assignment
  mips: reserve elfcorehdr
  mips: Make sure kernel memory is in iomem
  MIPS: ath79: use dynamically allocated USB platform devices
  ...
		
	
			
		
			
				
	
	
		
			676 lines
		
	
	
	
		
			17 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			676 lines
		
	
	
	
		
			17 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Kernel Probes (KProbes)
 | |
|  *  arch/mips/kernel/kprobes.c
 | |
|  *
 | |
|  *  Copyright 2006 Sony Corp.
 | |
|  *  Copyright 2010 Cavium Networks
 | |
|  *
 | |
|  *  Some portions copied from the powerpc version.
 | |
|  *
 | |
|  *   Copyright (C) IBM Corporation, 2002, 2004
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; version 2 of the License.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; if not, write to the Free Software
 | |
|  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| 
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/branch.h>
 | |
| #include <asm/break.h>
 | |
| #include <asm/inst.h>
 | |
| 
 | |
| static const union mips_instruction breakpoint_insn = {
 | |
| 	.b_format = {
 | |
| 		.opcode = spec_op,
 | |
| 		.code = BRK_KPROBE_BP,
 | |
| 		.func = break_op
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static const union mips_instruction breakpoint2_insn = {
 | |
| 	.b_format = {
 | |
| 		.opcode = spec_op,
 | |
| 		.code = BRK_KPROBE_SSTEPBP,
 | |
| 		.func = break_op
 | |
| 	}
 | |
| };
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| static int __kprobes insn_has_delayslot(union mips_instruction insn)
 | |
| {
 | |
| 	switch (insn.i_format.opcode) {
 | |
| 
 | |
| 		/*
 | |
| 		 * This group contains:
 | |
| 		 * jr and jalr are in r_format format.
 | |
| 		 */
 | |
| 	case spec_op:
 | |
| 		switch (insn.r_format.func) {
 | |
| 		case jr_op:
 | |
| 		case jalr_op:
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto insn_ok;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This group contains:
 | |
| 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
 | |
| 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
 | |
| 		 */
 | |
| 	case bcond_op:
 | |
| 
 | |
| 		/*
 | |
| 		 * These are unconditional and in j_format.
 | |
| 		 */
 | |
| 	case jal_op:
 | |
| 	case j_op:
 | |
| 
 | |
| 		/*
 | |
| 		 * These are conditional and in i_format.
 | |
| 		 */
 | |
| 	case beq_op:
 | |
| 	case beql_op:
 | |
| 	case bne_op:
 | |
| 	case bnel_op:
 | |
| 	case blez_op:
 | |
| 	case blezl_op:
 | |
| 	case bgtz_op:
 | |
| 	case bgtzl_op:
 | |
| 
 | |
| 		/*
 | |
| 		 * These are the FPA/cp1 branch instructions.
 | |
| 		 */
 | |
| 	case cop1_op:
 | |
| 
 | |
| #ifdef CONFIG_CPU_CAVIUM_OCTEON
 | |
| 	case lwc2_op: /* This is bbit0 on Octeon */
 | |
| 	case ldc2_op: /* This is bbit032 on Octeon */
 | |
| 	case swc2_op: /* This is bbit1 on Octeon */
 | |
| 	case sdc2_op: /* This is bbit132 on Octeon */
 | |
| #endif
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| insn_ok:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * insn_has_ll_or_sc function checks whether instruction is ll or sc
 | |
|  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
 | |
|  * so we need to prevent it and refuse kprobes insertion for such
 | |
|  * instructions; cannot do much about breakpoint in the middle of
 | |
|  * ll/sc pair; it is upto user to avoid those places
 | |
|  */
 | |
| static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (insn.i_format.opcode) {
 | |
| 	case ll_op:
 | |
| 	case lld_op:
 | |
| 	case sc_op:
 | |
| 	case scd_op:
 | |
| 		ret = 1;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	union mips_instruction insn;
 | |
| 	union mips_instruction prev_insn;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	insn = p->addr[0];
 | |
| 
 | |
| 	if (insn_has_ll_or_sc(insn)) {
 | |
| 		pr_notice("Kprobes for ll and sc instructions are not"
 | |
| 			  "supported\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((probe_kernel_read(&prev_insn, p->addr - 1,
 | |
| 				sizeof(mips_instruction)) == 0) &&
 | |
| 				insn_has_delayslot(prev_insn)) {
 | |
| 		pr_notice("Kprobes for branch delayslot are not supported\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* insn: must be on special executable page on mips. */
 | |
| 	p->ainsn.insn = get_insn_slot();
 | |
| 	if (!p->ainsn.insn) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In the kprobe->ainsn.insn[] array we store the original
 | |
| 	 * instruction at index zero and a break trap instruction at
 | |
| 	 * index one.
 | |
| 	 *
 | |
| 	 * On MIPS arch if the instruction at probed address is a
 | |
| 	 * branch instruction, we need to execute the instruction at
 | |
| 	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
 | |
| 	 * doesn't have single stepping support, the BD instruction can
 | |
| 	 * not be executed in-line and it would be executed on SSOL slot
 | |
| 	 * using a normal breakpoint instruction in the next slot.
 | |
| 	 * So, read the instruction and save it for later execution.
 | |
| 	 */
 | |
| 	if (insn_has_delayslot(insn))
 | |
| 		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
 | |
| 	else
 | |
| 		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
 | |
| 
 | |
| 	p->ainsn.insn[1] = breakpoint2_insn;
 | |
| 	p->opcode = *p->addr;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = breakpoint_insn;
 | |
| 	flush_insn_slot(p);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = p->opcode;
 | |
| 	flush_insn_slot(p);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	free_insn_slot(p->ainsn.insn, 0);
 | |
| }
 | |
| 
 | |
| static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	kcb->prev_kprobe.kp = kprobe_running();
 | |
| 	kcb->prev_kprobe.status = kcb->kprobe_status;
 | |
| 	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
 | |
| 	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
 | |
| 	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
 | |
| }
 | |
| 
 | |
| static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe.status;
 | |
| 	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
 | |
| 	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
 | |
| 	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
 | |
| }
 | |
| 
 | |
| static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 | |
| 			       struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = p;
 | |
| 	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
 | |
| 	kcb->kprobe_saved_epc = regs->cp0_epc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * evaluate_branch_instrucion -
 | |
|  *
 | |
|  * Evaluate the branch instruction at probed address during probe hit. The
 | |
|  * result of evaluation would be the updated epc. The insturction in delayslot
 | |
|  * would actually be single stepped using a normal breakpoint) on SSOL slot.
 | |
|  *
 | |
|  * The result is also saved in the kprobe control block for later use,
 | |
|  * in case we need to execute the delayslot instruction. The latter will be
 | |
|  * false for NOP instruction in dealyslot and the branch-likely instructions
 | |
|  * when the branch is taken. And for those cases we set a flag as
 | |
|  * SKIP_DELAYSLOT in the kprobe control block
 | |
|  */
 | |
| static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
 | |
| 					struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	union mips_instruction insn = p->opcode;
 | |
| 	long epc;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	epc = regs->cp0_epc;
 | |
| 	if (epc & 3)
 | |
| 		goto unaligned;
 | |
| 
 | |
| 	if (p->ainsn.insn->word == 0)
 | |
| 		kcb->flags |= SKIP_DELAYSLOT;
 | |
| 	else
 | |
| 		kcb->flags &= ~SKIP_DELAYSLOT;
 | |
| 
 | |
| 	ret = __compute_return_epc_for_insn(regs, insn);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ret == BRANCH_LIKELY_TAKEN)
 | |
| 		kcb->flags |= SKIP_DELAYSLOT;
 | |
| 
 | |
| 	kcb->target_epc = regs->cp0_epc;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| unaligned:
 | |
| 	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
 | |
| 	force_sig(SIGBUS, current);
 | |
| 	return -EFAULT;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
 | |
| 						struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	regs->cp0_status &= ~ST0_IE;
 | |
| 
 | |
| 	/* single step inline if the instruction is a break */
 | |
| 	if (p->opcode.word == breakpoint_insn.word ||
 | |
| 	    p->opcode.word == breakpoint2_insn.word)
 | |
| 		regs->cp0_epc = (unsigned long)p->addr;
 | |
| 	else if (insn_has_delayslot(p->opcode)) {
 | |
| 		ret = evaluate_branch_instruction(p, regs, kcb);
 | |
| 		if (ret < 0) {
 | |
| 			pr_notice("Kprobes: Error in evaluating branch\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after single-stepping.  p->addr is the address of the
 | |
|  * instruction whose first byte has been replaced by the "break 0"
 | |
|  * instruction.	 To avoid the SMP problems that can occur when we
 | |
|  * temporarily put back the original opcode to single-step, we
 | |
|  * single-stepped a copy of the instruction.  The address of this
 | |
|  * copy is p->ainsn.insn.
 | |
|  *
 | |
|  * This function prepares to return from the post-single-step
 | |
|  * breakpoint trap. In case of branch instructions, the target
 | |
|  * epc to be restored.
 | |
|  */
 | |
| static void __kprobes resume_execution(struct kprobe *p,
 | |
| 				       struct pt_regs *regs,
 | |
| 				       struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	if (insn_has_delayslot(p->opcode))
 | |
| 		regs->cp0_epc = kcb->target_epc;
 | |
| 	else {
 | |
| 		unsigned long orig_epc = kcb->kprobe_saved_epc;
 | |
| 		regs->cp0_epc = orig_epc + 4;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __kprobes kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *p;
 | |
| 	int ret = 0;
 | |
| 	kprobe_opcode_t *addr;
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 
 | |
| 	addr = (kprobe_opcode_t *) regs->cp0_epc;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to be preempted for the entire
 | |
| 	 * duration of kprobe processing
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	/* Check we're not actually recursing */
 | |
| 	if (kprobe_running()) {
 | |
| 		p = get_kprobe(addr);
 | |
| 		if (p) {
 | |
| 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
 | |
| 			    p->ainsn.insn->word == breakpoint_insn.word) {
 | |
| 				regs->cp0_status &= ~ST0_IE;
 | |
| 				regs->cp0_status |= kcb->kprobe_saved_SR;
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * We have reentered the kprobe_handler(), since
 | |
| 			 * another probe was hit while within the handler.
 | |
| 			 * We here save the original kprobes variables and
 | |
| 			 * just single step on the instruction of the new probe
 | |
| 			 * without calling any user handlers.
 | |
| 			 */
 | |
| 			save_previous_kprobe(kcb);
 | |
| 			set_current_kprobe(p, regs, kcb);
 | |
| 			kprobes_inc_nmissed_count(p);
 | |
| 			prepare_singlestep(p, regs, kcb);
 | |
| 			kcb->kprobe_status = KPROBE_REENTER;
 | |
| 			if (kcb->flags & SKIP_DELAYSLOT) {
 | |
| 				resume_execution(p, regs, kcb);
 | |
| 				restore_previous_kprobe(kcb);
 | |
| 				preempt_enable_no_resched();
 | |
| 			}
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			if (addr->word != breakpoint_insn.word) {
 | |
| 				/*
 | |
| 				 * The breakpoint instruction was removed by
 | |
| 				 * another cpu right after we hit, no further
 | |
| 				 * handling of this interrupt is appropriate
 | |
| 				 */
 | |
| 				ret = 1;
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			p = __get_cpu_var(current_kprobe);
 | |
| 			if (p->break_handler && p->break_handler(p, regs))
 | |
| 				goto ss_probe;
 | |
| 		}
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	p = get_kprobe(addr);
 | |
| 	if (!p) {
 | |
| 		if (addr->word != breakpoint_insn.word) {
 | |
| 			/*
 | |
| 			 * The breakpoint instruction was removed right
 | |
| 			 * after we hit it.  Another cpu has removed
 | |
| 			 * either a probepoint or a debugger breakpoint
 | |
| 			 * at this address.  In either case, no further
 | |
| 			 * handling of this interrupt is appropriate.
 | |
| 			 */
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 		/* Not one of ours: let kernel handle it */
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	set_current_kprobe(p, regs, kcb);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 
 | |
| 	if (p->pre_handler && p->pre_handler(p, regs)) {
 | |
| 		/* handler has already set things up, so skip ss setup */
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| ss_probe:
 | |
| 	prepare_singlestep(p, regs, kcb);
 | |
| 	if (kcb->flags & SKIP_DELAYSLOT) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		if (p->post_handler)
 | |
| 			p->post_handler(p, regs, 0);
 | |
| 		resume_execution(p, regs, kcb);
 | |
| 		preempt_enable_no_resched();
 | |
| 	} else
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| no_kprobe:
 | |
| 	preempt_enable_no_resched();
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline int post_kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (!cur)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		cur->post_handler(cur, regs, 0);
 | |
| 	}
 | |
| 
 | |
| 	resume_execution(cur, regs, kcb);
 | |
| 
 | |
| 	regs->cp0_status |= kcb->kprobe_saved_SR;
 | |
| 
 | |
| 	/* Restore back the original saved kprobes variables and continue. */
 | |
| 	if (kcb->kprobe_status == KPROBE_REENTER) {
 | |
| 		restore_previous_kprobe(kcb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	reset_current_kprobe();
 | |
| out:
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kcb->kprobe_status & KPROBE_HIT_SS) {
 | |
| 		resume_execution(cur, regs, kcb);
 | |
| 		regs->cp0_status |= kcb->kprobe_old_SR;
 | |
| 
 | |
| 		reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper routine for handling exceptions.
 | |
|  */
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 
 | |
| 	struct die_args *args = (struct die_args *)data;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case DIE_BREAK:
 | |
| 		if (kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_SSTEPBP:
 | |
| 		if (post_kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 
 | |
| 	case DIE_PAGE_FAULT:
 | |
| 		/* kprobe_running() needs smp_processor_id() */
 | |
| 		preempt_disable();
 | |
| 
 | |
| 		if (kprobe_running()
 | |
| 		    && kprobe_fault_handler(args->regs, args->trapnr))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		preempt_enable();
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	kcb->jprobe_saved_regs = *regs;
 | |
| 	kcb->jprobe_saved_sp = regs->regs[29];
 | |
| 
 | |
| 	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
 | |
| 	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
 | |
| 
 | |
| 	regs->cp0_epc = (unsigned long)(jp->entry);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Defined in the inline asm below. */
 | |
| void jprobe_return_end(void);
 | |
| 
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| 	/* Assembler quirk necessitates this '0,code' business.	 */
 | |
| 	asm volatile(
 | |
| 		"break 0,%0\n\t"
 | |
| 		".globl jprobe_return_end\n"
 | |
| 		"jprobe_return_end:\n"
 | |
| 		: : "n" (BRK_KPROBE_BP) : "memory");
 | |
| }
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
 | |
| 	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
 | |
| 		*regs = kcb->jprobe_saved_regs;
 | |
| 		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
 | |
| 		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
 | |
| 		preempt_enable_no_resched();
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function return probe trampoline:
 | |
|  *	- init_kprobes() establishes a probepoint here
 | |
|  *	- When the probed function returns, this probe causes the
 | |
|  *	  handlers to fire
 | |
|  */
 | |
| static void __used kretprobe_trampoline_holder(void)
 | |
| {
 | |
| 	asm volatile(
 | |
| 		".set push\n\t"
 | |
| 		/* Keep the assembler from reordering and placing JR here. */
 | |
| 		".set noreorder\n\t"
 | |
| 		"nop\n\t"
 | |
| 		".global kretprobe_trampoline\n"
 | |
| 		"kretprobe_trampoline:\n\t"
 | |
| 		"nop\n\t"
 | |
| 		".set pop"
 | |
| 		: : : "memory");
 | |
| }
 | |
| 
 | |
| void kretprobe_trampoline(void);
 | |
| 
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 				      struct pt_regs *regs)
 | |
| {
 | |
| 	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr */
 | |
| 	regs->regs[31] = (unsigned long)kretprobe_trampoline;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the probe at kretprobe trampoline is hit
 | |
|  */
 | |
| static int __kprobes trampoline_probe_handler(struct kprobe *p,
 | |
| 						struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri = NULL;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *tmp;
 | |
| 	unsigned long flags, orig_ret_address = 0;
 | |
| 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	kretprobe_hash_lock(current, &head, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because an multiple functions in the call path
 | |
| 	 * have a return probe installed on them, and/or more than one return
 | |
| 	 * return probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always inserted at the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *	 function, the first instance's ret_addr will point to the
 | |
| 	 *	 real return address, and all the rest will point to
 | |
| 	 *	 kretprobe_trampoline
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler)
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address)
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 	instruction_pointer(regs) = orig_ret_address;
 | |
| 
 | |
| 	reset_current_kprobe();
 | |
| 	kretprobe_hash_unlock(current, &flags);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * By returning a non-zero value, we are telling
 | |
| 	 * kprobe_handler() that we don't want the post_handler
 | |
| 	 * to run (and have re-enabled preemption)
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct kprobe trampoline_p = {
 | |
| 	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
 | |
| 	.pre_handler = trampoline_probe_handler
 | |
| };
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	return register_kprobe(&trampoline_p);
 | |
| }
 |