 c11f11fcbd
			
		
	
	
	c11f11fcbd
	
	
	
		
			
			Do some ground preparatory work before adding guest_enter() and guest_exit() context tracking callbacks. Those will be later used to read the guest cputime safely when we run in full dynticks mode. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Gleb Natapov <gleb@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
		
			
				
	
	
		
			471 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			471 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/arch/ia64/kernel/time.c
 | |
|  *
 | |
|  * Copyright (C) 1998-2003 Hewlett-Packard Co
 | |
|  *	Stephane Eranian <eranian@hpl.hp.com>
 | |
|  *	David Mosberger <davidm@hpl.hp.com>
 | |
|  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
 | |
|  * Copyright (C) 1999-2000 VA Linux Systems
 | |
|  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/timekeeper_internal.h>
 | |
| #include <linux/platform_device.h>
 | |
| 
 | |
| #include <asm/machvec.h>
 | |
| #include <asm/delay.h>
 | |
| #include <asm/hw_irq.h>
 | |
| #include <asm/paravirt.h>
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/sal.h>
 | |
| #include <asm/sections.h>
 | |
| 
 | |
| #include "fsyscall_gtod_data.h"
 | |
| 
 | |
| static cycle_t itc_get_cycles(struct clocksource *cs);
 | |
| 
 | |
| struct fsyscall_gtod_data_t fsyscall_gtod_data;
 | |
| 
 | |
| struct itc_jitter_data_t itc_jitter_data;
 | |
| 
 | |
| volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
 | |
| 
 | |
| #ifdef CONFIG_IA64_DEBUG_IRQ
 | |
| 
 | |
| unsigned long last_cli_ip;
 | |
| EXPORT_SYMBOL(last_cli_ip);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| /* We need to define a real function for sched_clock, to override the
 | |
|    weak default version */
 | |
| unsigned long long sched_clock(void)
 | |
| {
 | |
|         return paravirt_sched_clock();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| static void
 | |
| paravirt_clocksource_resume(struct clocksource *cs)
 | |
| {
 | |
| 	if (pv_time_ops.clocksource_resume)
 | |
| 		pv_time_ops.clocksource_resume();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct clocksource clocksource_itc = {
 | |
| 	.name           = "itc",
 | |
| 	.rating         = 350,
 | |
| 	.read           = itc_get_cycles,
 | |
| 	.mask           = CLOCKSOURCE_MASK(64),
 | |
| 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| 	.resume		= paravirt_clocksource_resume,
 | |
| #endif
 | |
| };
 | |
| static struct clocksource *itc_clocksource;
 | |
| 
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 | |
| 
 | |
| #include <linux/kernel_stat.h>
 | |
| 
 | |
| extern cputime_t cycle_to_cputime(u64 cyc);
 | |
| 
 | |
| void vtime_account_user(struct task_struct *tsk)
 | |
| {
 | |
| 	cputime_t delta_utime;
 | |
| 	struct thread_info *ti = task_thread_info(tsk);
 | |
| 
 | |
| 	if (ti->ac_utime) {
 | |
| 		delta_utime = cycle_to_cputime(ti->ac_utime);
 | |
| 		account_user_time(tsk, delta_utime, delta_utime);
 | |
| 		ti->ac_utime = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from the context switch with interrupts disabled, to charge all
 | |
|  * accumulated times to the current process, and to prepare accounting on
 | |
|  * the next process.
 | |
|  */
 | |
| void arch_vtime_task_switch(struct task_struct *prev)
 | |
| {
 | |
| 	struct thread_info *pi = task_thread_info(prev);
 | |
| 	struct thread_info *ni = task_thread_info(current);
 | |
| 
 | |
| 	pi->ac_stamp = ni->ac_stamp;
 | |
| 	ni->ac_stime = ni->ac_utime = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account time for a transition between system, hard irq or soft irq state.
 | |
|  * Note that this function is called with interrupts enabled.
 | |
|  */
 | |
| static cputime_t vtime_delta(struct task_struct *tsk)
 | |
| {
 | |
| 	struct thread_info *ti = task_thread_info(tsk);
 | |
| 	cputime_t delta_stime;
 | |
| 	__u64 now;
 | |
| 
 | |
| 	WARN_ON_ONCE(!irqs_disabled());
 | |
| 
 | |
| 	now = ia64_get_itc();
 | |
| 
 | |
| 	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
 | |
| 	ti->ac_stime = 0;
 | |
| 	ti->ac_stamp = now;
 | |
| 
 | |
| 	return delta_stime;
 | |
| }
 | |
| 
 | |
| void vtime_account_system(struct task_struct *tsk)
 | |
| {
 | |
| 	cputime_t delta = vtime_delta(tsk);
 | |
| 
 | |
| 	account_system_time(tsk, 0, delta, delta);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vtime_account_system);
 | |
| 
 | |
| void vtime_account_idle(struct task_struct *tsk)
 | |
| {
 | |
| 	account_idle_time(vtime_delta(tsk));
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 | |
| 
 | |
| static irqreturn_t
 | |
| timer_interrupt (int irq, void *dev_id)
 | |
| {
 | |
| 	unsigned long new_itm;
 | |
| 
 | |
| 	if (cpu_is_offline(smp_processor_id())) {
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	platform_timer_interrupt(irq, dev_id);
 | |
| 
 | |
| 	new_itm = local_cpu_data->itm_next;
 | |
| 
 | |
| 	if (!time_after(ia64_get_itc(), new_itm))
 | |
| 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
 | |
| 		       ia64_get_itc(), new_itm);
 | |
| 
 | |
| 	profile_tick(CPU_PROFILING);
 | |
| 
 | |
| 	if (paravirt_do_steal_accounting(&new_itm))
 | |
| 		goto skip_process_time_accounting;
 | |
| 
 | |
| 	while (1) {
 | |
| 		update_process_times(user_mode(get_irq_regs()));
 | |
| 
 | |
| 		new_itm += local_cpu_data->itm_delta;
 | |
| 
 | |
| 		if (smp_processor_id() == time_keeper_id)
 | |
| 			xtime_update(1);
 | |
| 
 | |
| 		local_cpu_data->itm_next = new_itm;
 | |
| 
 | |
| 		if (time_after(new_itm, ia64_get_itc()))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Allow IPIs to interrupt the timer loop.
 | |
| 		 */
 | |
| 		local_irq_enable();
 | |
| 		local_irq_disable();
 | |
| 	}
 | |
| 
 | |
| skip_process_time_accounting:
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * If we're too close to the next clock tick for
 | |
| 		 * comfort, we increase the safety margin by
 | |
| 		 * intentionally dropping the next tick(s).  We do NOT
 | |
| 		 * update itm.next because that would force us to call
 | |
| 		 * xtime_update() which in turn would let our clock run
 | |
| 		 * too fast (with the potentially devastating effect
 | |
| 		 * of losing monotony of time).
 | |
| 		 */
 | |
| 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
 | |
| 			new_itm += local_cpu_data->itm_delta;
 | |
| 		ia64_set_itm(new_itm);
 | |
| 		/* double check, in case we got hit by a (slow) PMI: */
 | |
| 	} while (time_after_eq(ia64_get_itc(), new_itm));
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Encapsulate access to the itm structure for SMP.
 | |
|  */
 | |
| void
 | |
| ia64_cpu_local_tick (void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	unsigned long shift = 0, delta;
 | |
| 
 | |
| 	/* arrange for the cycle counter to generate a timer interrupt: */
 | |
| 	ia64_set_itv(IA64_TIMER_VECTOR);
 | |
| 
 | |
| 	delta = local_cpu_data->itm_delta;
 | |
| 	/*
 | |
| 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
 | |
| 	 * same time:
 | |
| 	 */
 | |
| 	if (cpu) {
 | |
| 		unsigned long hi = 1UL << ia64_fls(cpu);
 | |
| 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
 | |
| 	}
 | |
| 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
 | |
| 	ia64_set_itm(local_cpu_data->itm_next);
 | |
| }
 | |
| 
 | |
| static int nojitter;
 | |
| 
 | |
| static int __init nojitter_setup(char *str)
 | |
| {
 | |
| 	nojitter = 1;
 | |
| 	printk("Jitter checking for ITC timers disabled\n");
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("nojitter", nojitter_setup);
 | |
| 
 | |
| 
 | |
| void ia64_init_itm(void)
 | |
| {
 | |
| 	unsigned long platform_base_freq, itc_freq;
 | |
| 	struct pal_freq_ratio itc_ratio, proc_ratio;
 | |
| 	long status, platform_base_drift, itc_drift;
 | |
| 
 | |
| 	/*
 | |
| 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
 | |
| 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
 | |
| 	 * and the base frequency.
 | |
| 	 */
 | |
| 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
 | |
| 				    &platform_base_freq, &platform_base_drift);
 | |
| 	if (status != 0) {
 | |
| 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
 | |
| 	} else {
 | |
| 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
 | |
| 		if (status != 0)
 | |
| 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
 | |
| 	}
 | |
| 	if (status != 0) {
 | |
| 		/* invent "random" values */
 | |
| 		printk(KERN_ERR
 | |
| 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
 | |
| 		platform_base_freq = 100000000;
 | |
| 		platform_base_drift = -1;	/* no drift info */
 | |
| 		itc_ratio.num = 3;
 | |
| 		itc_ratio.den = 1;
 | |
| 	}
 | |
| 	if (platform_base_freq < 40000000) {
 | |
| 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
 | |
| 		       platform_base_freq);
 | |
| 		platform_base_freq = 75000000;
 | |
| 		platform_base_drift = -1;
 | |
| 	}
 | |
| 	if (!proc_ratio.den)
 | |
| 		proc_ratio.den = 1;	/* avoid division by zero */
 | |
| 	if (!itc_ratio.den)
 | |
| 		itc_ratio.den = 1;	/* avoid division by zero */
 | |
| 
 | |
| 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
 | |
| 
 | |
| 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
 | |
| 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
 | |
| 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
 | |
| 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
 | |
| 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
 | |
| 
 | |
| 	if (platform_base_drift != -1) {
 | |
| 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
 | |
| 		printk("+/-%ldppm\n", itc_drift);
 | |
| 	} else {
 | |
| 		itc_drift = -1;
 | |
| 		printk("\n");
 | |
| 	}
 | |
| 
 | |
| 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
 | |
| 	local_cpu_data->itc_freq = itc_freq;
 | |
| 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
 | |
| 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
 | |
| 					+ itc_freq/2)/itc_freq;
 | |
| 
 | |
| 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
 | |
| 		 * Jitter compensation requires a cmpxchg which may limit
 | |
| 		 * the scalability of the syscalls for retrieving time.
 | |
| 		 * The ITC synchronization is usually successful to within a few
 | |
| 		 * ITC ticks but this is not a sure thing. If you need to improve
 | |
| 		 * timer performance in SMP situations then boot the kernel with the
 | |
| 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
 | |
| 		 * even going backward) if the ITC offsets between the individual CPUs
 | |
| 		 * are too large.
 | |
| 		 */
 | |
| 		if (!nojitter)
 | |
| 			itc_jitter_data.itc_jitter = 1;
 | |
| #endif
 | |
| 	} else
 | |
| 		/*
 | |
| 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
 | |
| 		 * ITC values may fluctuate significantly between processors.
 | |
| 		 * Clock should not be used for hrtimers. Mark itc as only
 | |
| 		 * useful for boot and testing.
 | |
| 		 *
 | |
| 		 * Note that jitter compensation is off! There is no point of
 | |
| 		 * synchronizing ITCs since they may be large differentials
 | |
| 		 * that change over time.
 | |
| 		 *
 | |
| 		 * The only way to fix this would be to repeatedly sync the
 | |
| 		 * ITCs. Until that time we have to avoid ITC.
 | |
| 		 */
 | |
| 		clocksource_itc.rating = 50;
 | |
| 
 | |
| 	paravirt_init_missing_ticks_accounting(smp_processor_id());
 | |
| 
 | |
| 	/* avoid softlock up message when cpu is unplug and plugged again. */
 | |
| 	touch_softlockup_watchdog();
 | |
| 
 | |
| 	/* Setup the CPU local timer tick */
 | |
| 	ia64_cpu_local_tick();
 | |
| 
 | |
| 	if (!itc_clocksource) {
 | |
| 		clocksource_register_hz(&clocksource_itc,
 | |
| 						local_cpu_data->itc_freq);
 | |
| 		itc_clocksource = &clocksource_itc;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static cycle_t itc_get_cycles(struct clocksource *cs)
 | |
| {
 | |
| 	unsigned long lcycle, now, ret;
 | |
| 
 | |
| 	if (!itc_jitter_data.itc_jitter)
 | |
| 		return get_cycles();
 | |
| 
 | |
| 	lcycle = itc_jitter_data.itc_lastcycle;
 | |
| 	now = get_cycles();
 | |
| 	if (lcycle && time_after(lcycle, now))
 | |
| 		return lcycle;
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep track of the last timer value returned.
 | |
| 	 * In an SMP environment, you could lose out in contention of
 | |
| 	 * cmpxchg. If so, your cmpxchg returns new value which the
 | |
| 	 * winner of contention updated to. Use the new value instead.
 | |
| 	 */
 | |
| 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
 | |
| 	if (unlikely(ret != lcycle))
 | |
| 		return ret;
 | |
| 
 | |
| 	return now;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct irqaction timer_irqaction = {
 | |
| 	.handler =	timer_interrupt,
 | |
| 	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
 | |
| 	.name =		"timer"
 | |
| };
 | |
| 
 | |
| static struct platform_device rtc_efi_dev = {
 | |
| 	.name = "rtc-efi",
 | |
| 	.id = -1,
 | |
| };
 | |
| 
 | |
| static int __init rtc_init(void)
 | |
| {
 | |
| 	if (platform_device_register(&rtc_efi_dev) < 0)
 | |
| 		printk(KERN_ERR "unable to register rtc device...\n");
 | |
| 
 | |
| 	/* not necessarily an error */
 | |
| 	return 0;
 | |
| }
 | |
| module_init(rtc_init);
 | |
| 
 | |
| void read_persistent_clock(struct timespec *ts)
 | |
| {
 | |
| 	efi_gettimeofday(ts);
 | |
| }
 | |
| 
 | |
| void __init
 | |
| time_init (void)
 | |
| {
 | |
| 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
 | |
| 	ia64_init_itm();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic udelay assumes that if preemption is allowed and the thread
 | |
|  * migrates to another CPU, that the ITC values are synchronized across
 | |
|  * all CPUs.
 | |
|  */
 | |
| static void
 | |
| ia64_itc_udelay (unsigned long usecs)
 | |
| {
 | |
| 	unsigned long start = ia64_get_itc();
 | |
| 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
 | |
| 
 | |
| 	while (time_before(ia64_get_itc(), end))
 | |
| 		cpu_relax();
 | |
| }
 | |
| 
 | |
| void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
 | |
| 
 | |
| void
 | |
| udelay (unsigned long usecs)
 | |
| {
 | |
| 	(*ia64_udelay)(usecs);
 | |
| }
 | |
| EXPORT_SYMBOL(udelay);
 | |
| 
 | |
| /* IA64 doesn't cache the timezone */
 | |
| void update_vsyscall_tz(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void update_vsyscall_old(struct timespec *wall, struct timespec *wtm,
 | |
| 			struct clocksource *c, u32 mult)
 | |
| {
 | |
| 	write_seqcount_begin(&fsyscall_gtod_data.seq);
 | |
| 
 | |
|         /* copy fsyscall clock data */
 | |
|         fsyscall_gtod_data.clk_mask = c->mask;
 | |
|         fsyscall_gtod_data.clk_mult = mult;
 | |
|         fsyscall_gtod_data.clk_shift = c->shift;
 | |
|         fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
 | |
|         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
 | |
| 
 | |
| 	/* copy kernel time structures */
 | |
|         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
 | |
|         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
 | |
| 	fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
 | |
| 							+ wall->tv_sec;
 | |
| 	fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
 | |
| 							+ wall->tv_nsec;
 | |
| 
 | |
| 	/* normalize */
 | |
| 	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
 | |
| 		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
 | |
| 		fsyscall_gtod_data.monotonic_time.tv_sec++;
 | |
| 	}
 | |
| 
 | |
| 	write_seqcount_end(&fsyscall_gtod_data.seq);
 | |
| }
 | |
| 
 |