325 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			325 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  arch/arm/include/asm/pgtable.h
 | |
|  *
 | |
|  *  Copyright (C) 1995-2002 Russell King
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #ifndef _ASMARM_PGTABLE_H
 | |
| #define _ASMARM_PGTABLE_H
 | |
| 
 | |
| #include <linux/const.h>
 | |
| #include <asm/proc-fns.h>
 | |
| 
 | |
| #ifndef CONFIG_MMU
 | |
| 
 | |
| #include <asm-generic/4level-fixup.h>
 | |
| #include <asm/pgtable-nommu.h>
 | |
| 
 | |
| #else
 | |
| 
 | |
| #include <asm-generic/pgtable-nopud.h>
 | |
| #include <asm/memory.h>
 | |
| #include <asm/pgtable-hwdef.h>
 | |
| 
 | |
| #ifdef CONFIG_ARM_LPAE
 | |
| #include <asm/pgtable-3level.h>
 | |
| #else
 | |
| #include <asm/pgtable-2level.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Just any arbitrary offset to the start of the vmalloc VM area: the
 | |
|  * current 8MB value just means that there will be a 8MB "hole" after the
 | |
|  * physical memory until the kernel virtual memory starts.  That means that
 | |
|  * any out-of-bounds memory accesses will hopefully be caught.
 | |
|  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 | |
|  * area for the same reason. ;)
 | |
|  */
 | |
| #define VMALLOC_OFFSET		(8*1024*1024)
 | |
| #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 | |
| #define VMALLOC_END		0xff000000UL
 | |
| 
 | |
| #define LIBRARY_TEXT_START	0x0c000000
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| extern void __pte_error(const char *file, int line, pte_t);
 | |
| extern void __pmd_error(const char *file, int line, pmd_t);
 | |
| extern void __pgd_error(const char *file, int line, pgd_t);
 | |
| 
 | |
| #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 | |
| #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 | |
| #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 | |
| 
 | |
| /*
 | |
|  * This is the lowest virtual address we can permit any user space
 | |
|  * mapping to be mapped at.  This is particularly important for
 | |
|  * non-high vector CPUs.
 | |
|  */
 | |
| #define FIRST_USER_ADDRESS	PAGE_SIZE
 | |
| 
 | |
| /*
 | |
|  * The pgprot_* and protection_map entries will be fixed up in runtime
 | |
|  * to include the cachable and bufferable bits based on memory policy,
 | |
|  * as well as any architecture dependent bits like global/ASID and SMP
 | |
|  * shared mapping bits.
 | |
|  */
 | |
| #define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 | |
| 
 | |
| extern pgprot_t		pgprot_user;
 | |
| extern pgprot_t		pgprot_kernel;
 | |
| extern pgprot_t		pgprot_hyp_device;
 | |
| extern pgprot_t		pgprot_s2;
 | |
| extern pgprot_t		pgprot_s2_device;
 | |
| 
 | |
| #define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 | |
| 
 | |
| #define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
 | |
| #define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 | |
| #define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 | |
| #define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 | |
| #define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 | |
| #define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 | |
| #define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 | |
| #define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
 | |
| #define PAGE_KERNEL_EXEC	pgprot_kernel
 | |
| #define PAGE_HYP		_MOD_PROT(pgprot_kernel, L_PTE_HYP)
 | |
| #define PAGE_HYP_DEVICE		_MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
 | |
| #define PAGE_S2			_MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY)
 | |
| #define PAGE_S2_DEVICE		_MOD_PROT(pgprot_s2_device, L_PTE_USER | L_PTE_S2_RDONLY)
 | |
| 
 | |
| #define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
 | |
| #define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
 | |
| #define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
 | |
| #define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 | |
| #define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
 | |
| #define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 | |
| #define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
 | |
| 
 | |
| #define __pgprot_modify(prot,mask,bits)		\
 | |
| 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
 | |
| 
 | |
| #define pgprot_noncached(prot) \
 | |
| 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
 | |
| 
 | |
| #define pgprot_writecombine(prot) \
 | |
| 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
 | |
| 
 | |
| #define pgprot_stronglyordered(prot) \
 | |
| 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
 | |
| 
 | |
| #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 | |
| #define pgprot_dmacoherent(prot) \
 | |
| 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
 | |
| #define __HAVE_PHYS_MEM_ACCESS_PROT
 | |
| struct file;
 | |
| extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 | |
| 				     unsigned long size, pgprot_t vma_prot);
 | |
| #else
 | |
| #define pgprot_dmacoherent(prot) \
 | |
| 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
 | |
| #endif
 | |
| 
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| /*
 | |
|  * The table below defines the page protection levels that we insert into our
 | |
|  * Linux page table version.  These get translated into the best that the
 | |
|  * architecture can perform.  Note that on most ARM hardware:
 | |
|  *  1) We cannot do execute protection
 | |
|  *  2) If we could do execute protection, then read is implied
 | |
|  *  3) write implies read permissions
 | |
|  */
 | |
| #define __P000  __PAGE_NONE
 | |
| #define __P001  __PAGE_READONLY
 | |
| #define __P010  __PAGE_COPY
 | |
| #define __P011  __PAGE_COPY
 | |
| #define __P100  __PAGE_READONLY_EXEC
 | |
| #define __P101  __PAGE_READONLY_EXEC
 | |
| #define __P110  __PAGE_COPY_EXEC
 | |
| #define __P111  __PAGE_COPY_EXEC
 | |
| 
 | |
| #define __S000  __PAGE_NONE
 | |
| #define __S001  __PAGE_READONLY
 | |
| #define __S010  __PAGE_SHARED
 | |
| #define __S011  __PAGE_SHARED
 | |
| #define __S100  __PAGE_READONLY_EXEC
 | |
| #define __S101  __PAGE_READONLY_EXEC
 | |
| #define __S110  __PAGE_SHARED_EXEC
 | |
| #define __S111  __PAGE_SHARED_EXEC
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| /*
 | |
|  * ZERO_PAGE is a global shared page that is always zero: used
 | |
|  * for zero-mapped memory areas etc..
 | |
|  */
 | |
| extern struct page *empty_zero_page;
 | |
| #define ZERO_PAGE(vaddr)	(empty_zero_page)
 | |
| 
 | |
| 
 | |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 | |
| 
 | |
| /* to find an entry in a page-table-directory */
 | |
| #define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
 | |
| 
 | |
| #define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
 | |
| 
 | |
| /* to find an entry in a kernel page-table-directory */
 | |
| #define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
 | |
| 
 | |
| #define pmd_none(pmd)		(!pmd_val(pmd))
 | |
| #define pmd_present(pmd)	(pmd_val(pmd))
 | |
| 
 | |
| static inline pte_t *pmd_page_vaddr(pmd_t pmd)
 | |
| {
 | |
| 	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
 | |
| }
 | |
| 
 | |
| #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
 | |
| 
 | |
| #ifndef CONFIG_HIGHPTE
 | |
| #define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
 | |
| #define __pte_unmap(pte)	do { } while (0)
 | |
| #else
 | |
| #define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
 | |
| #define __pte_unmap(pte)	kunmap_atomic(pte)
 | |
| #endif
 | |
| 
 | |
| #define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 | |
| 
 | |
| #define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
 | |
| 
 | |
| #define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
 | |
| #define pte_unmap(pte)			__pte_unmap(pte)
 | |
| 
 | |
| #define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
 | |
| #define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
 | |
| 
 | |
| #define pte_page(pte)		pfn_to_page(pte_pfn(pte))
 | |
| #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
 | |
| 
 | |
| #define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
 | |
| 
 | |
| #define pte_none(pte)		(!pte_val(pte))
 | |
| #define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
 | |
| #define pte_write(pte)		(!(pte_val(pte) & L_PTE_RDONLY))
 | |
| #define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
 | |
| #define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
 | |
| #define pte_exec(pte)		(!(pte_val(pte) & L_PTE_XN))
 | |
| #define pte_special(pte)	(0)
 | |
| 
 | |
| #define pte_present_user(pte)  (pte_present(pte) && (pte_val(pte) & L_PTE_USER))
 | |
| 
 | |
| #if __LINUX_ARM_ARCH__ < 6
 | |
| static inline void __sync_icache_dcache(pte_t pteval)
 | |
| {
 | |
| }
 | |
| #else
 | |
| extern void __sync_icache_dcache(pte_t pteval);
 | |
| #endif
 | |
| 
 | |
| static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 | |
| 			      pte_t *ptep, pte_t pteval)
 | |
| {
 | |
| 	unsigned long ext = 0;
 | |
| 
 | |
| 	if (addr < TASK_SIZE && pte_present_user(pteval)) {
 | |
| 		__sync_icache_dcache(pteval);
 | |
| 		ext |= PTE_EXT_NG;
 | |
| 	}
 | |
| 
 | |
| 	set_pte_ext(ptep, pteval, ext);
 | |
| }
 | |
| 
 | |
| #define PTE_BIT_FUNC(fn,op) \
 | |
| static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
 | |
| 
 | |
| PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
 | |
| PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY);
 | |
| PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
 | |
| PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
 | |
| PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
 | |
| PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
 | |
| 
 | |
| static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
 | |
| 
 | |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 | |
| {
 | |
| 	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
 | |
| 		L_PTE_NONE | L_PTE_VALID;
 | |
| 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Encode and decode a swap entry.  Swap entries are stored in the Linux
 | |
|  * page tables as follows:
 | |
|  *
 | |
|  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 | |
|  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 | |
|  *   <--------------- offset ----------------------> < type -> 0 0 0
 | |
|  *
 | |
|  * This gives us up to 31 swap files and 64GB per swap file.  Note that
 | |
|  * the offset field is always non-zero.
 | |
|  */
 | |
| #define __SWP_TYPE_SHIFT	3
 | |
| #define __SWP_TYPE_BITS		5
 | |
| #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
 | |
| #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
 | |
| 
 | |
| #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
 | |
| #define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
 | |
| #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
 | |
| 
 | |
| #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
 | |
| #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
 | |
| 
 | |
| /*
 | |
|  * It is an error for the kernel to have more swap files than we can
 | |
|  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
 | |
|  * is increased beyond what we presently support.
 | |
|  */
 | |
| #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
 | |
| 
 | |
| /*
 | |
|  * Encode and decode a file entry.  File entries are stored in the Linux
 | |
|  * page tables as follows:
 | |
|  *
 | |
|  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 | |
|  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 | |
|  *   <----------------------- offset ------------------------> 1 0 0
 | |
|  */
 | |
| #define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
 | |
| #define pte_to_pgoff(x)		(pte_val(x) >> 3)
 | |
| #define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)
 | |
| 
 | |
| #define PTE_FILE_MAX_BITS	29
 | |
| 
 | |
| /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
 | |
| /* FIXME: this is not correct */
 | |
| #define kern_addr_valid(addr)	(1)
 | |
| 
 | |
| #include <asm-generic/pgtable.h>
 | |
| 
 | |
| /*
 | |
|  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
 | |
|  */
 | |
| #define HAVE_ARCH_UNMAPPED_AREA
 | |
| #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 | |
| 
 | |
| /*
 | |
|  * remap a physical page `pfn' of size `size' with page protection `prot'
 | |
|  * into virtual address `from'
 | |
|  */
 | |
| #define io_remap_pfn_range(vma,from,pfn,size,prot) \
 | |
| 		remap_pfn_range(vma, from, pfn, size, prot)
 | |
| 
 | |
| #define pgtable_cache_init() do { } while (0)
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| #endif /* _ASMARM_PGTABLE_H */
 | 
