 c8bf40ad4f
			
		
	
	
	c8bf40ad4f
	
	
	
		
			
			None of these files are actually using any __init type directives and hence don't need to include <linux/init.h>. Most are just a left over from __devinit and __cpuinit removal, or simply due to code getting copied from one driver to the next. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Acked-by: Larry Finger <Larry.Finger@lwfinger.net> Acked-by: Christian Lamparter <chunkeey@googlemail.com> Acked-by: Gertjan van Wingerde <gwingerde@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
		
			
				
	
	
		
			3114 lines
		
	
	
	
		
			94 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3114 lines
		
	
	
	
		
			94 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
 | |
| 	<http://rt2x00.serialmonkey.com>
 | |
| 
 | |
| 	This program is free software; you can redistribute it and/or modify
 | |
| 	it under the terms of the GNU General Public License as published by
 | |
| 	the Free Software Foundation; either version 2 of the License, or
 | |
| 	(at your option) any later version.
 | |
| 
 | |
| 	This program is distributed in the hope that it will be useful,
 | |
| 	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| 	GNU General Public License for more details.
 | |
| 
 | |
| 	You should have received a copy of the GNU General Public License
 | |
| 	along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /*
 | |
| 	Module: rt61pci
 | |
| 	Abstract: rt61pci device specific routines.
 | |
| 	Supported chipsets: RT2561, RT2561s, RT2661.
 | |
|  */
 | |
| 
 | |
| #include <linux/crc-itu-t.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/eeprom_93cx6.h>
 | |
| 
 | |
| #include "rt2x00.h"
 | |
| #include "rt2x00mmio.h"
 | |
| #include "rt2x00pci.h"
 | |
| #include "rt61pci.h"
 | |
| 
 | |
| /*
 | |
|  * Allow hardware encryption to be disabled.
 | |
|  */
 | |
| static bool modparam_nohwcrypt = false;
 | |
| module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
 | |
| MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
 | |
| 
 | |
| /*
 | |
|  * Register access.
 | |
|  * BBP and RF register require indirect register access,
 | |
|  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
 | |
|  * These indirect registers work with busy bits,
 | |
|  * and we will try maximal REGISTER_BUSY_COUNT times to access
 | |
|  * the register while taking a REGISTER_BUSY_DELAY us delay
 | |
|  * between each attempt. When the busy bit is still set at that time,
 | |
|  * the access attempt is considered to have failed,
 | |
|  * and we will print an error.
 | |
|  */
 | |
| #define WAIT_FOR_BBP(__dev, __reg) \
 | |
| 	rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
 | |
| #define WAIT_FOR_RF(__dev, __reg) \
 | |
| 	rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
 | |
| #define WAIT_FOR_MCU(__dev, __reg) \
 | |
| 	rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
 | |
| 				H2M_MAILBOX_CSR_OWNER, (__reg))
 | |
| 
 | |
| static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
 | |
| 			      const unsigned int word, const u8 value)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the BBP becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_BBP(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
 | |
| 		rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
 | |
| 		rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
 | |
| 		rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
 | |
| 
 | |
| 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
 | |
| 			     const unsigned int word, u8 *value)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the BBP becomes available, afterwards we
 | |
| 	 * can safely write the read request into the register.
 | |
| 	 * After the data has been written, we wait until hardware
 | |
| 	 * returns the correct value, if at any time the register
 | |
| 	 * doesn't become available in time, reg will be 0xffffffff
 | |
| 	 * which means we return 0xff to the caller.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_BBP(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
 | |
| 		rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
 | |
| 		rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
 | |
| 
 | |
| 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
 | |
| 
 | |
| 		WAIT_FOR_BBP(rt2x00dev, ®);
 | |
| 	}
 | |
| 
 | |
| 	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
 | |
| 			     const unsigned int word, const u32 value)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the RF becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_RF(rt2x00dev, ®)) {
 | |
| 		reg = 0;
 | |
| 		rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
 | |
| 		rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21);
 | |
| 		rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
 | |
| 		rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
 | |
| 
 | |
| 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
 | |
| 		rt2x00_rf_write(rt2x00dev, word, value);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| }
 | |
| 
 | |
| static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
 | |
| 				const u8 command, const u8 token,
 | |
| 				const u8 arg0, const u8 arg1)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mutex_lock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until the MCU becomes available, afterwards we
 | |
| 	 * can safely write the new data into the register.
 | |
| 	 */
 | |
| 	if (WAIT_FOR_MCU(rt2x00dev, ®)) {
 | |
| 		rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1);
 | |
| 		rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token);
 | |
| 		rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0);
 | |
| 		rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
 | |
| 
 | |
| 		rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, ®);
 | |
| 		rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command);
 | |
| 		rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rt2x00dev->csr_mutex);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = eeprom->data;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, ®);
 | |
| 
 | |
| 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
 | |
| 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
 | |
| 	eeprom->reg_data_clock =
 | |
| 	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
 | |
| 	eeprom->reg_chip_select =
 | |
| 	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
 | |
| }
 | |
| 
 | |
| static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = eeprom->data;
 | |
| 	u32 reg = 0;
 | |
| 
 | |
| 	rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
 | |
| 	rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
 | |
| 	rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK,
 | |
| 			   !!eeprom->reg_data_clock);
 | |
| 	rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT,
 | |
| 			   !!eeprom->reg_chip_select);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS
 | |
| static const struct rt2x00debug rt61pci_rt2x00debug = {
 | |
| 	.owner	= THIS_MODULE,
 | |
| 	.csr	= {
 | |
| 		.read		= rt2x00mmio_register_read,
 | |
| 		.write		= rt2x00mmio_register_write,
 | |
| 		.flags		= RT2X00DEBUGFS_OFFSET,
 | |
| 		.word_base	= CSR_REG_BASE,
 | |
| 		.word_size	= sizeof(u32),
 | |
| 		.word_count	= CSR_REG_SIZE / sizeof(u32),
 | |
| 	},
 | |
| 	.eeprom	= {
 | |
| 		.read		= rt2x00_eeprom_read,
 | |
| 		.write		= rt2x00_eeprom_write,
 | |
| 		.word_base	= EEPROM_BASE,
 | |
| 		.word_size	= sizeof(u16),
 | |
| 		.word_count	= EEPROM_SIZE / sizeof(u16),
 | |
| 	},
 | |
| 	.bbp	= {
 | |
| 		.read		= rt61pci_bbp_read,
 | |
| 		.write		= rt61pci_bbp_write,
 | |
| 		.word_base	= BBP_BASE,
 | |
| 		.word_size	= sizeof(u8),
 | |
| 		.word_count	= BBP_SIZE / sizeof(u8),
 | |
| 	},
 | |
| 	.rf	= {
 | |
| 		.read		= rt2x00_rf_read,
 | |
| 		.write		= rt61pci_rf_write,
 | |
| 		.word_base	= RF_BASE,
 | |
| 		.word_size	= sizeof(u32),
 | |
| 		.word_count	= RF_SIZE / sizeof(u32),
 | |
| 	},
 | |
| };
 | |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 | |
| 
 | |
| static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, ®);
 | |
| 	return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT2X00_LIB_LEDS
 | |
| static void rt61pci_brightness_set(struct led_classdev *led_cdev,
 | |
| 				   enum led_brightness brightness)
 | |
| {
 | |
| 	struct rt2x00_led *led =
 | |
| 	    container_of(led_cdev, struct rt2x00_led, led_dev);
 | |
| 	unsigned int enabled = brightness != LED_OFF;
 | |
| 	unsigned int a_mode =
 | |
| 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 | |
| 	unsigned int bg_mode =
 | |
| 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 | |
| 
 | |
| 	if (led->type == LED_TYPE_RADIO) {
 | |
| 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 | |
| 				   MCU_LEDCS_RADIO_STATUS, enabled);
 | |
| 
 | |
| 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 | |
| 				    (led->rt2x00dev->led_mcu_reg & 0xff),
 | |
| 				    ((led->rt2x00dev->led_mcu_reg >> 8)));
 | |
| 	} else if (led->type == LED_TYPE_ASSOC) {
 | |
| 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 | |
| 				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 | |
| 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 | |
| 				   MCU_LEDCS_LINK_A_STATUS, a_mode);
 | |
| 
 | |
| 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 | |
| 				    (led->rt2x00dev->led_mcu_reg & 0xff),
 | |
| 				    ((led->rt2x00dev->led_mcu_reg >> 8)));
 | |
| 	} else if (led->type == LED_TYPE_QUALITY) {
 | |
| 		/*
 | |
| 		 * The brightness is divided into 6 levels (0 - 5),
 | |
| 		 * this means we need to convert the brightness
 | |
| 		 * argument into the matching level within that range.
 | |
| 		 */
 | |
| 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
 | |
| 				    brightness / (LED_FULL / 6), 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int rt61pci_blink_set(struct led_classdev *led_cdev,
 | |
| 			     unsigned long *delay_on,
 | |
| 			     unsigned long *delay_off)
 | |
| {
 | |
| 	struct rt2x00_led *led =
 | |
| 	    container_of(led_cdev, struct rt2x00_led, led_dev);
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, ®);
 | |
| 	rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on);
 | |
| 	rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off);
 | |
| 	rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
 | |
| 			     struct rt2x00_led *led,
 | |
| 			     enum led_type type)
 | |
| {
 | |
| 	led->rt2x00dev = rt2x00dev;
 | |
| 	led->type = type;
 | |
| 	led->led_dev.brightness_set = rt61pci_brightness_set;
 | |
| 	led->led_dev.blink_set = rt61pci_blink_set;
 | |
| 	led->flags = LED_INITIALIZED;
 | |
| }
 | |
| #endif /* CONFIG_RT2X00_LIB_LEDS */
 | |
| 
 | |
| /*
 | |
|  * Configuration handlers.
 | |
|  */
 | |
| static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
 | |
| 				     struct rt2x00lib_crypto *crypto,
 | |
| 				     struct ieee80211_key_conf *key)
 | |
| {
 | |
| 	struct hw_key_entry key_entry;
 | |
| 	struct rt2x00_field32 field;
 | |
| 	u32 mask;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (crypto->cmd == SET_KEY) {
 | |
| 		/*
 | |
| 		 * rt2x00lib can't determine the correct free
 | |
| 		 * key_idx for shared keys. We have 1 register
 | |
| 		 * with key valid bits. The goal is simple, read
 | |
| 		 * the register, if that is full we have no slots
 | |
| 		 * left.
 | |
| 		 * Note that each BSS is allowed to have up to 4
 | |
| 		 * shared keys, so put a mask over the allowed
 | |
| 		 * entries.
 | |
| 		 */
 | |
| 		mask = (0xf << crypto->bssidx);
 | |
| 
 | |
| 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, ®);
 | |
| 		reg &= mask;
 | |
| 
 | |
| 		if (reg && reg == mask)
 | |
| 			return -ENOSPC;
 | |
| 
 | |
| 		key->hw_key_idx += reg ? ffz(reg) : 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Upload key to hardware
 | |
| 		 */
 | |
| 		memcpy(key_entry.key, crypto->key,
 | |
| 		       sizeof(key_entry.key));
 | |
| 		memcpy(key_entry.tx_mic, crypto->tx_mic,
 | |
| 		       sizeof(key_entry.tx_mic));
 | |
| 		memcpy(key_entry.rx_mic, crypto->rx_mic,
 | |
| 		       sizeof(key_entry.rx_mic));
 | |
| 
 | |
| 		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 | |
| 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 | |
| 					       &key_entry, sizeof(key_entry));
 | |
| 
 | |
| 		/*
 | |
| 		 * The cipher types are stored over 2 registers.
 | |
| 		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 | |
| 		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 | |
| 		 * Using the correct defines correctly will cause overhead,
 | |
| 		 * so just calculate the correct offset.
 | |
| 		 */
 | |
| 		if (key->hw_key_idx < 8) {
 | |
| 			field.bit_offset = (3 * key->hw_key_idx);
 | |
| 			field.bit_mask = 0x7 << field.bit_offset;
 | |
| 
 | |
| 			rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, ®);
 | |
| 			rt2x00_set_field32(®, field, crypto->cipher);
 | |
| 			rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
 | |
| 		} else {
 | |
| 			field.bit_offset = (3 * (key->hw_key_idx - 8));
 | |
| 			field.bit_mask = 0x7 << field.bit_offset;
 | |
| 
 | |
| 			rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, ®);
 | |
| 			rt2x00_set_field32(®, field, crypto->cipher);
 | |
| 			rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The driver does not support the IV/EIV generation
 | |
| 		 * in hardware. However it doesn't support the IV/EIV
 | |
| 		 * inside the ieee80211 frame either, but requires it
 | |
| 		 * to be provided separately for the descriptor.
 | |
| 		 * rt2x00lib will cut the IV/EIV data out of all frames
 | |
| 		 * given to us by mac80211, but we must tell mac80211
 | |
| 		 * to generate the IV/EIV data.
 | |
| 		 */
 | |
| 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * SEC_CSR0 contains only single-bit fields to indicate
 | |
| 	 * a particular key is valid. Because using the FIELD32()
 | |
| 	 * defines directly will cause a lot of overhead, we use
 | |
| 	 * a calculation to determine the correct bit directly.
 | |
| 	 */
 | |
| 	mask = 1 << key->hw_key_idx;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, ®);
 | |
| 	if (crypto->cmd == SET_KEY)
 | |
| 		reg |= mask;
 | |
| 	else if (crypto->cmd == DISABLE_KEY)
 | |
| 		reg &= ~mask;
 | |
| 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 | |
| 				       struct rt2x00lib_crypto *crypto,
 | |
| 				       struct ieee80211_key_conf *key)
 | |
| {
 | |
| 	struct hw_pairwise_ta_entry addr_entry;
 | |
| 	struct hw_key_entry key_entry;
 | |
| 	u32 mask;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (crypto->cmd == SET_KEY) {
 | |
| 		/*
 | |
| 		 * rt2x00lib can't determine the correct free
 | |
| 		 * key_idx for pairwise keys. We have 2 registers
 | |
| 		 * with key valid bits. The goal is simple: read
 | |
| 		 * the first register. If that is full, move to
 | |
| 		 * the next register.
 | |
| 		 * When both registers are full, we drop the key.
 | |
| 		 * Otherwise, we use the first invalid entry.
 | |
| 		 */
 | |
| 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, ®);
 | |
| 		if (reg && reg == ~0) {
 | |
| 			key->hw_key_idx = 32;
 | |
| 			rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, ®);
 | |
| 			if (reg && reg == ~0)
 | |
| 				return -ENOSPC;
 | |
| 		}
 | |
| 
 | |
| 		key->hw_key_idx += reg ? ffz(reg) : 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Upload key to hardware
 | |
| 		 */
 | |
| 		memcpy(key_entry.key, crypto->key,
 | |
| 		       sizeof(key_entry.key));
 | |
| 		memcpy(key_entry.tx_mic, crypto->tx_mic,
 | |
| 		       sizeof(key_entry.tx_mic));
 | |
| 		memcpy(key_entry.rx_mic, crypto->rx_mic,
 | |
| 		       sizeof(key_entry.rx_mic));
 | |
| 
 | |
| 		memset(&addr_entry, 0, sizeof(addr_entry));
 | |
| 		memcpy(&addr_entry, crypto->address, ETH_ALEN);
 | |
| 		addr_entry.cipher = crypto->cipher;
 | |
| 
 | |
| 		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 | |
| 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 | |
| 					       &key_entry, sizeof(key_entry));
 | |
| 
 | |
| 		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 | |
| 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 | |
| 					       &addr_entry, sizeof(addr_entry));
 | |
| 
 | |
| 		/*
 | |
| 		 * Enable pairwise lookup table for given BSS idx.
 | |
| 		 * Without this, received frames will not be decrypted
 | |
| 		 * by the hardware.
 | |
| 		 */
 | |
| 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, ®);
 | |
| 		reg |= (1 << crypto->bssidx);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
 | |
| 
 | |
| 		/*
 | |
| 		 * The driver does not support the IV/EIV generation
 | |
| 		 * in hardware. However it doesn't support the IV/EIV
 | |
| 		 * inside the ieee80211 frame either, but requires it
 | |
| 		 * to be provided separately for the descriptor.
 | |
| 		 * rt2x00lib will cut the IV/EIV data out of all frames
 | |
| 		 * given to us by mac80211, but we must tell mac80211
 | |
| 		 * to generate the IV/EIV data.
 | |
| 		 */
 | |
| 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 | |
| 	 * a particular key is valid. Because using the FIELD32()
 | |
| 	 * defines directly will cause a lot of overhead, we use
 | |
| 	 * a calculation to determine the correct bit directly.
 | |
| 	 */
 | |
| 	if (key->hw_key_idx < 32) {
 | |
| 		mask = 1 << key->hw_key_idx;
 | |
| 
 | |
| 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, ®);
 | |
| 		if (crypto->cmd == SET_KEY)
 | |
| 			reg |= mask;
 | |
| 		else if (crypto->cmd == DISABLE_KEY)
 | |
| 			reg &= ~mask;
 | |
| 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
 | |
| 	} else {
 | |
| 		mask = 1 << (key->hw_key_idx - 32);
 | |
| 
 | |
| 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, ®);
 | |
| 		if (crypto->cmd == SET_KEY)
 | |
| 			reg |= mask;
 | |
| 		else if (crypto->cmd == DISABLE_KEY)
 | |
| 			reg &= ~mask;
 | |
| 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
 | |
| 				  const unsigned int filter_flags)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start configuration steps.
 | |
| 	 * Note that the version error will always be dropped
 | |
| 	 * and broadcast frames will always be accepted since
 | |
| 	 * there is no filter for it at this time.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
 | |
| 			   !(filter_flags & FIF_FCSFAIL));
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
 | |
| 			   !(filter_flags & FIF_PLCPFAIL));
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
 | |
| 			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
 | |
| 			   !(filter_flags & FIF_PROMISC_IN_BSS));
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
 | |
| 			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
 | |
| 			   !rt2x00dev->intf_ap_count);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
 | |
| 			   !(filter_flags & FIF_ALLMULTI));
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS,
 | |
| 			   !(filter_flags & FIF_CONTROL));
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
 | |
| 				struct rt2x00_intf *intf,
 | |
| 				struct rt2x00intf_conf *conf,
 | |
| 				const unsigned int flags)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_TYPE) {
 | |
| 		/*
 | |
| 		 * Enable synchronisation.
 | |
| 		 */
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 | |
| 	}
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_MAC) {
 | |
| 		reg = le32_to_cpu(conf->mac[1]);
 | |
| 		rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 | |
| 		conf->mac[1] = cpu_to_le32(reg);
 | |
| 
 | |
| 		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
 | |
| 					       conf->mac, sizeof(conf->mac));
 | |
| 	}
 | |
| 
 | |
| 	if (flags & CONFIG_UPDATE_BSSID) {
 | |
| 		reg = le32_to_cpu(conf->bssid[1]);
 | |
| 		rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3);
 | |
| 		conf->bssid[1] = cpu_to_le32(reg);
 | |
| 
 | |
| 		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
 | |
| 					       conf->bssid,
 | |
| 					       sizeof(conf->bssid));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
 | |
| 			       struct rt2x00lib_erp *erp,
 | |
| 			       u32 changed)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, ®);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 | |
| 				   !!erp->short_preamble);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
 | |
| 	}
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_BASIC_RATES)
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
 | |
| 					  erp->basic_rates);
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_BEACON_INT) {
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
 | |
| 				   erp->beacon_int * 16);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 | |
| 	}
 | |
| 
 | |
| 	if (changed & BSS_CHANGED_ERP_SLOT) {
 | |
| 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, ®);
 | |
| 		rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
 | |
| 
 | |
| 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, ®);
 | |
| 		rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs);
 | |
| 		rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 | |
| 		rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 | |
| 				      struct antenna_setup *ant)
 | |
| {
 | |
| 	u8 r3;
 | |
| 	u8 r4;
 | |
| 	u8 r77;
 | |
| 
 | |
| 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 | |
| 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
 | |
| 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
 | |
| 
 | |
| 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the RX antenna.
 | |
| 	 */
 | |
| 	switch (ant->rx) {
 | |
| 	case ANTENNA_HW_DIVERSITY:
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 | |
| 				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
 | |
| 		break;
 | |
| 	case ANTENNA_A:
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 | |
| 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 | |
| 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 | |
| 		else
 | |
| 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 | |
| 		break;
 | |
| 	case ANTENNA_B:
 | |
| 	default:
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 | |
| 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 | |
| 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 | |
| 		else
 | |
| 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	rt61pci_bbp_write(rt2x00dev, 77, r77);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 3, r3);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 4, r4);
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 | |
| 				      struct antenna_setup *ant)
 | |
| {
 | |
| 	u8 r3;
 | |
| 	u8 r4;
 | |
| 	u8 r77;
 | |
| 
 | |
| 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 | |
| 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
 | |
| 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
 | |
| 
 | |
| 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
 | |
| 	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 | |
| 			  !rt2x00_has_cap_frame_type(rt2x00dev));
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the RX antenna.
 | |
| 	 */
 | |
| 	switch (ant->rx) {
 | |
| 	case ANTENNA_HW_DIVERSITY:
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 | |
| 		break;
 | |
| 	case ANTENNA_A:
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 | |
| 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 | |
| 		break;
 | |
| 	case ANTENNA_B:
 | |
| 	default:
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 | |
| 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	rt61pci_bbp_write(rt2x00dev, 77, r77);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 3, r3);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 4, r4);
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
 | |
| 					   const int p1, const int p2)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, ®);
 | |
| 
 | |
| 	rt2x00_set_field32(®, MAC_CSR13_DIR4, 0);
 | |
| 	rt2x00_set_field32(®, MAC_CSR13_VAL4, p1);
 | |
| 
 | |
| 	rt2x00_set_field32(®, MAC_CSR13_DIR3, 0);
 | |
| 	rt2x00_set_field32(®, MAC_CSR13_VAL3, !p2);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
 | |
| 					struct antenna_setup *ant)
 | |
| {
 | |
| 	u8 r3;
 | |
| 	u8 r4;
 | |
| 	u8 r77;
 | |
| 
 | |
| 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 | |
| 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
 | |
| 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the RX antenna.
 | |
| 	 */
 | |
| 	switch (ant->rx) {
 | |
| 	case ANTENNA_A:
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 | |
| 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 | |
| 		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
 | |
| 		break;
 | |
| 	case ANTENNA_HW_DIVERSITY:
 | |
| 		/*
 | |
| 		 * FIXME: Antenna selection for the rf 2529 is very confusing
 | |
| 		 * in the legacy driver. Just default to antenna B until the
 | |
| 		 * legacy code can be properly translated into rt2x00 code.
 | |
| 		 */
 | |
| 	case ANTENNA_B:
 | |
| 	default:
 | |
| 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 | |
| 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 | |
| 		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	rt61pci_bbp_write(rt2x00dev, 77, r77);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 3, r3);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 4, r4);
 | |
| }
 | |
| 
 | |
| struct antenna_sel {
 | |
| 	u8 word;
 | |
| 	/*
 | |
| 	 * value[0] -> non-LNA
 | |
| 	 * value[1] -> LNA
 | |
| 	 */
 | |
| 	u8 value[2];
 | |
| };
 | |
| 
 | |
| static const struct antenna_sel antenna_sel_a[] = {
 | |
| 	{ 96,  { 0x58, 0x78 } },
 | |
| 	{ 104, { 0x38, 0x48 } },
 | |
| 	{ 75,  { 0xfe, 0x80 } },
 | |
| 	{ 86,  { 0xfe, 0x80 } },
 | |
| 	{ 88,  { 0xfe, 0x80 } },
 | |
| 	{ 35,  { 0x60, 0x60 } },
 | |
| 	{ 97,  { 0x58, 0x58 } },
 | |
| 	{ 98,  { 0x58, 0x58 } },
 | |
| };
 | |
| 
 | |
| static const struct antenna_sel antenna_sel_bg[] = {
 | |
| 	{ 96,  { 0x48, 0x68 } },
 | |
| 	{ 104, { 0x2c, 0x3c } },
 | |
| 	{ 75,  { 0xfe, 0x80 } },
 | |
| 	{ 86,  { 0xfe, 0x80 } },
 | |
| 	{ 88,  { 0xfe, 0x80 } },
 | |
| 	{ 35,  { 0x50, 0x50 } },
 | |
| 	{ 97,  { 0x48, 0x48 } },
 | |
| 	{ 98,  { 0x48, 0x48 } },
 | |
| };
 | |
| 
 | |
| static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
 | |
| 			       struct antenna_setup *ant)
 | |
| {
 | |
| 	const struct antenna_sel *sel;
 | |
| 	unsigned int lna;
 | |
| 	unsigned int i;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should never come here because rt2x00lib is supposed
 | |
| 	 * to catch this and send us the correct antenna explicitely.
 | |
| 	 */
 | |
| 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 | |
| 	       ant->tx == ANTENNA_SW_DIVERSITY);
 | |
| 
 | |
| 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 | |
| 		sel = antenna_sel_a;
 | |
| 		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
 | |
| 	} else {
 | |
| 		sel = antenna_sel_bg;
 | |
| 		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 | |
| 		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, ®);
 | |
| 
 | |
| 	rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG,
 | |
| 			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 | |
| 	rt2x00_set_field32(®, PHY_CSR0_PA_PE_A,
 | |
| 			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
 | |
| 
 | |
| 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
 | |
| 		rt61pci_config_antenna_5x(rt2x00dev, ant);
 | |
| 	else if (rt2x00_rf(rt2x00dev, RF2527))
 | |
| 		rt61pci_config_antenna_2x(rt2x00dev, ant);
 | |
| 	else if (rt2x00_rf(rt2x00dev, RF2529)) {
 | |
| 		if (rt2x00_has_cap_double_antenna(rt2x00dev))
 | |
| 			rt61pci_config_antenna_2x(rt2x00dev, ant);
 | |
| 		else
 | |
| 			rt61pci_config_antenna_2529(rt2x00dev, ant);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 | |
| 				    struct rt2x00lib_conf *libconf)
 | |
| {
 | |
| 	u16 eeprom;
 | |
| 	short lna_gain = 0;
 | |
| 
 | |
| 	if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
 | |
| 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
 | |
| 			lna_gain += 14;
 | |
| 
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
 | |
| 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 | |
| 	} else {
 | |
| 		if (rt2x00_has_cap_external_lna_a(rt2x00dev))
 | |
| 			lna_gain += 14;
 | |
| 
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
 | |
| 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00dev->lna_gain = lna_gain;
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
 | |
| 				   struct rf_channel *rf, const int txpower)
 | |
| {
 | |
| 	u8 r3;
 | |
| 	u8 r94;
 | |
| 	u8 smart;
 | |
| 
 | |
| 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 | |
| 	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 | |
| 
 | |
| 	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
 | |
| 
 | |
| 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 | |
| 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 3, r3);
 | |
| 
 | |
| 	r94 = 6;
 | |
| 	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 | |
| 		r94 += txpower - MAX_TXPOWER;
 | |
| 	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 | |
| 		r94 += txpower;
 | |
| 	rt61pci_bbp_write(rt2x00dev, 94, r94);
 | |
| 
 | |
| 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 | |
| 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 | |
| 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 | |
| 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 | |
| 
 | |
| 	udelay(200);
 | |
| 
 | |
| 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 | |
| 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 | |
| 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 | |
| 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 | |
| 
 | |
| 	udelay(200);
 | |
| 
 | |
| 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 | |
| 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 | |
| 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 | |
| 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 | |
| 
 | |
| 	msleep(1);
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 | |
| 				   const int txpower)
 | |
| {
 | |
| 	struct rf_channel rf;
 | |
| 
 | |
| 	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
 | |
| 	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
 | |
| 	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
 | |
| 	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
 | |
| 
 | |
| 	rt61pci_config_channel(rt2x00dev, &rf, txpower);
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 | |
| 				    struct rt2x00lib_conf *libconf)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT,
 | |
| 			   libconf->conf->long_frame_max_tx_count);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT,
 | |
| 			   libconf->conf->short_frame_max_tx_count);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
 | |
| }
 | |
| 
 | |
| static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
 | |
| 				struct rt2x00lib_conf *libconf)
 | |
| {
 | |
| 	enum dev_state state =
 | |
| 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 | |
| 		STATE_SLEEP : STATE_AWAKE;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (state == STATE_SLEEP) {
 | |
| 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, ®);
 | |
| 		rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN,
 | |
| 				   rt2x00dev->beacon_int - 10);
 | |
| 		rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 | |
| 				   libconf->conf->listen_interval - 1);
 | |
| 		rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5);
 | |
| 
 | |
| 		/* We must first disable autowake before it can be enabled */
 | |
| 		rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 | |
| 
 | |
| 		rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 | |
| 
 | |
| 		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
 | |
| 					  0x00000005);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
 | |
| 
 | |
| 		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
 | |
| 	} else {
 | |
| 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, ®);
 | |
| 		rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 | |
| 		rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 | |
| 		rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
 | |
| 		rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 | |
| 
 | |
| 		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
 | |
| 					  0x00000007);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
 | |
| 
 | |
| 		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
 | |
| 			   struct rt2x00lib_conf *libconf,
 | |
| 			   const unsigned int flags)
 | |
| {
 | |
| 	/* Always recalculate LNA gain before changing configuration */
 | |
| 	rt61pci_config_lna_gain(rt2x00dev, libconf);
 | |
| 
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 | |
| 		rt61pci_config_channel(rt2x00dev, &libconf->rf,
 | |
| 				       libconf->conf->power_level);
 | |
| 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 | |
| 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 | |
| 		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 | |
| 		rt61pci_config_retry_limit(rt2x00dev, libconf);
 | |
| 	if (flags & IEEE80211_CONF_CHANGE_PS)
 | |
| 		rt61pci_config_ps(rt2x00dev, libconf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Link tuning
 | |
|  */
 | |
| static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
 | |
| 			       struct link_qual *qual)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update FCS error count from register.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, STA_CSR0, ®);
 | |
| 	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update False CCA count from register.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, STA_CSR1, ®);
 | |
| 	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
 | |
| }
 | |
| 
 | |
| static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 | |
| 				   struct link_qual *qual, u8 vgc_level)
 | |
| {
 | |
| 	if (qual->vgc_level != vgc_level) {
 | |
| 		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
 | |
| 		qual->vgc_level = vgc_level;
 | |
| 		qual->vgc_level_reg = vgc_level;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 | |
| 				struct link_qual *qual)
 | |
| {
 | |
| 	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
 | |
| }
 | |
| 
 | |
| static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 | |
| 			       struct link_qual *qual, const u32 count)
 | |
| {
 | |
| 	u8 up_bound;
 | |
| 	u8 low_bound;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine r17 bounds.
 | |
| 	 */
 | |
| 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 | |
| 		low_bound = 0x28;
 | |
| 		up_bound = 0x48;
 | |
| 		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
 | |
| 			low_bound += 0x10;
 | |
| 			up_bound += 0x10;
 | |
| 		}
 | |
| 	} else {
 | |
| 		low_bound = 0x20;
 | |
| 		up_bound = 0x40;
 | |
| 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
 | |
| 			low_bound += 0x10;
 | |
| 			up_bound += 0x10;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are not associated, we should go straight to the
 | |
| 	 * dynamic CCA tuning.
 | |
| 	 */
 | |
| 	if (!rt2x00dev->intf_associated)
 | |
| 		goto dynamic_cca_tune;
 | |
| 
 | |
| 	/*
 | |
| 	 * Special big-R17 for very short distance
 | |
| 	 */
 | |
| 	if (qual->rssi >= -35) {
 | |
| 		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Special big-R17 for short distance
 | |
| 	 */
 | |
| 	if (qual->rssi >= -58) {
 | |
| 		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Special big-R17 for middle-short distance
 | |
| 	 */
 | |
| 	if (qual->rssi >= -66) {
 | |
| 		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Special mid-R17 for middle distance
 | |
| 	 */
 | |
| 	if (qual->rssi >= -74) {
 | |
| 		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case: Change up_bound based on the rssi.
 | |
| 	 * Lower up_bound when rssi is weaker then -74 dBm.
 | |
| 	 */
 | |
| 	up_bound -= 2 * (-74 - qual->rssi);
 | |
| 	if (low_bound > up_bound)
 | |
| 		up_bound = low_bound;
 | |
| 
 | |
| 	if (qual->vgc_level > up_bound) {
 | |
| 		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| dynamic_cca_tune:
 | |
| 
 | |
| 	/*
 | |
| 	 * r17 does not yet exceed upper limit, continue and base
 | |
| 	 * the r17 tuning on the false CCA count.
 | |
| 	 */
 | |
| 	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
 | |
| 		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
 | |
| 	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
 | |
| 		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue handlers.
 | |
|  */
 | |
| static void rt61pci_start_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_RX:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 | |
| 		break;
 | |
| 	case QID_BEACON:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt61pci_kick_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_AC_VO:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®);
 | |
| 		rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
 | |
| 		break;
 | |
| 	case QID_AC_VI:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®);
 | |
| 		rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
 | |
| 		break;
 | |
| 	case QID_AC_BE:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®);
 | |
| 		rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
 | |
| 		break;
 | |
| 	case QID_AC_BK:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®);
 | |
| 		rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt61pci_stop_queue(struct data_queue *queue)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_AC_VO:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®);
 | |
| 		rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
 | |
| 		break;
 | |
| 	case QID_AC_VI:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®);
 | |
| 		rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
 | |
| 		break;
 | |
| 	case QID_AC_BE:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®);
 | |
| 		rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
 | |
| 		break;
 | |
| 	case QID_AC_BK:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®);
 | |
| 		rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
 | |
| 		break;
 | |
| 	case QID_RX:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 | |
| 		break;
 | |
| 	case QID_BEACON:
 | |
| 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
 | |
| 		rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait for possibly running tbtt tasklets.
 | |
| 		 */
 | |
| 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Firmware functions
 | |
|  */
 | |
| static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u16 chip;
 | |
| 	char *fw_name;
 | |
| 
 | |
| 	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
 | |
| 	switch (chip) {
 | |
| 	case RT2561_PCI_ID:
 | |
| 		fw_name = FIRMWARE_RT2561;
 | |
| 		break;
 | |
| 	case RT2561s_PCI_ID:
 | |
| 		fw_name = FIRMWARE_RT2561s;
 | |
| 		break;
 | |
| 	case RT2661_PCI_ID:
 | |
| 		fw_name = FIRMWARE_RT2661;
 | |
| 		break;
 | |
| 	default:
 | |
| 		fw_name = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return fw_name;
 | |
| }
 | |
| 
 | |
| static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
 | |
| 				  const u8 *data, const size_t len)
 | |
| {
 | |
| 	u16 fw_crc;
 | |
| 	u16 crc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only support 8kb firmware files.
 | |
| 	 */
 | |
| 	if (len != 8192)
 | |
| 		return FW_BAD_LENGTH;
 | |
| 
 | |
| 	/*
 | |
| 	 * The last 2 bytes in the firmware array are the crc checksum itself.
 | |
| 	 * This means that we should never pass those 2 bytes to the crc
 | |
| 	 * algorithm.
 | |
| 	 */
 | |
| 	fw_crc = (data[len - 2] << 8 | data[len - 1]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the crc itu-t algorithm.
 | |
| 	 */
 | |
| 	crc = crc_itu_t(0, data, len - 2);
 | |
| 	crc = crc_itu_t_byte(crc, 0);
 | |
| 	crc = crc_itu_t_byte(crc, 0);
 | |
| 
 | |
| 	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
 | |
| }
 | |
| 
 | |
| static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
 | |
| 				 const u8 *data, const size_t len)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for stable hardware.
 | |
| 	 */
 | |
| 	for (i = 0; i < 100; i++) {
 | |
| 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, ®);
 | |
| 		if (reg)
 | |
| 			break;
 | |
| 		msleep(1);
 | |
| 	}
 | |
| 
 | |
| 	if (!reg) {
 | |
| 		rt2x00_err(rt2x00dev, "Unstable hardware\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prepare MCU and mailbox for firmware loading.
 | |
| 	 */
 | |
| 	reg = 0;
 | |
| 	rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write firmware to device.
 | |
| 	 */
 | |
| 	reg = 0;
 | |
| 	rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
 | |
| 	rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
 | |
| 				       data, len);
 | |
| 
 | |
| 	rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
 | |
| 
 | |
| 	rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
 | |
| 
 | |
| 	for (i = 0; i < 100; i++) {
 | |
| 		rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, ®);
 | |
| 		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
 | |
| 			break;
 | |
| 		msleep(1);
 | |
| 	}
 | |
| 
 | |
| 	if (i == 100) {
 | |
| 		rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Hardware needs another millisecond before it is ready.
 | |
| 	 */
 | |
| 	msleep(1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset MAC and BBP registers.
 | |
| 	 */
 | |
| 	reg = 0;
 | |
| 	rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
 | |
| 	rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®);
 | |
| 	rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
 | |
| 	rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®);
 | |
| 	rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialization functions.
 | |
|  */
 | |
| static bool rt61pci_get_entry_state(struct queue_entry *entry)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	u32 word;
 | |
| 
 | |
| 	if (entry->queue->qid == QID_RX) {
 | |
| 		rt2x00_desc_read(entry_priv->desc, 0, &word);
 | |
| 
 | |
| 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 | |
| 	} else {
 | |
| 		rt2x00_desc_read(entry_priv->desc, 0, &word);
 | |
| 
 | |
| 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 | |
| 		        rt2x00_get_field32(word, TXD_W0_VALID));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt61pci_clear_entry(struct queue_entry *entry)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 | |
| 	u32 word;
 | |
| 
 | |
| 	if (entry->queue->qid == QID_RX) {
 | |
| 		rt2x00_desc_read(entry_priv->desc, 5, &word);
 | |
| 		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
 | |
| 				   skbdesc->skb_dma);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 5, word);
 | |
| 
 | |
| 		rt2x00_desc_read(entry_priv->desc, 0, &word);
 | |
| 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 0, word);
 | |
| 	} else {
 | |
| 		rt2x00_desc_read(entry_priv->desc, 0, &word);
 | |
| 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 | |
| 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 | |
| 		rt2x00_desc_write(entry_priv->desc, 0, word);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct queue_entry_priv_mmio *entry_priv;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize registers.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, ®);
 | |
| 	rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE,
 | |
| 			   rt2x00dev->tx[0].limit);
 | |
| 	rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE,
 | |
| 			   rt2x00dev->tx[1].limit);
 | |
| 	rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE,
 | |
| 			   rt2x00dev->tx[2].limit);
 | |
| 	rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE,
 | |
| 			   rt2x00dev->tx[3].limit);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, ®);
 | |
| 	rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE,
 | |
| 			   rt2x00dev->tx[0].desc_size / 4);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 | |
| 	rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, ®);
 | |
| 	rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER,
 | |
| 			   entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 | |
| 	rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, ®);
 | |
| 	rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER,
 | |
| 			   entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
 | |
| 	rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, ®);
 | |
| 	rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER,
 | |
| 			   entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
 | |
| 	rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, ®);
 | |
| 	rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER,
 | |
| 			   entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, ®);
 | |
| 	rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
 | |
| 	rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE,
 | |
| 			   rt2x00dev->rx->desc_size / 4);
 | |
| 	rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
 | |
| 
 | |
| 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
 | |
| 	rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, ®);
 | |
| 	rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER,
 | |
| 			   entry_priv->desc_dma);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, ®);
 | |
| 	rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2);
 | |
| 	rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2);
 | |
| 	rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2);
 | |
| 	rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®);
 | |
| 	rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
 | |
| 	rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
 | |
| 	rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
 | |
| 	rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, ®);
 | |
| 	rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
 | |
| 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
 | |
| 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
 | |
| 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
 | |
| 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * CCK TXD BBP registers
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * OFDM TXD BBP registers
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, ®);
 | |
| 	rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
 | |
| 
 | |
| 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
 | |
| 
 | |
| 	/*
 | |
| 	 * Invalidate all Shared Keys (SEC_CSR0),
 | |
| 	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
 | |
| 	 */
 | |
| 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
 | |
| 
 | |
| 	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear all beacons
 | |
| 	 * For the Beacon base registers we only need to clear
 | |
| 	 * the first byte since that byte contains the VALID and OWNER
 | |
| 	 * bits which (when set to 0) will invalidate the entire beacon.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * We must clear the error counters.
 | |
| 	 * These registers are cleared on read,
 | |
| 	 * so we may pass a useless variable to store the value.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, STA_CSR0, ®);
 | |
| 	rt2x00mmio_register_read(rt2x00dev, STA_CSR1, ®);
 | |
| 	rt2x00mmio_register_read(rt2x00dev, STA_CSR2, ®);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset MAC and BBP registers.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®);
 | |
| 	rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
 | |
| 	rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®);
 | |
| 	rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
 | |
| 	rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®);
 | |
| 	rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u8 value;
 | |
| 
 | |
| 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 | |
| 		rt61pci_bbp_read(rt2x00dev, 0, &value);
 | |
| 		if ((value != 0xff) && (value != 0x00))
 | |
| 			return 0;
 | |
| 		udelay(REGISTER_BUSY_DELAY);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 | |
| 	return -EACCES;
 | |
| }
 | |
| 
 | |
| static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u16 eeprom;
 | |
| 	u8 reg_id;
 | |
| 	u8 value;
 | |
| 
 | |
| 	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
 | |
| 	rt61pci_bbp_write(rt2x00dev, 107, 0x04);
 | |
| 
 | |
| 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 | |
| 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
 | |
| 
 | |
| 		if (eeprom != 0xffff && eeprom != 0x0000) {
 | |
| 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 | |
| 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 | |
| 			rt61pci_bbp_write(rt2x00dev, reg_id, value);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Device state switch handlers.
 | |
|  */
 | |
| static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
 | |
| 			       enum dev_state state)
 | |
| {
 | |
| 	int mask = (state == STATE_RADIO_IRQ_OFF);
 | |
| 	u32 reg;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * When interrupts are being enabled, the interrupt registers
 | |
| 	 * should clear the register to assure a clean state.
 | |
| 	 */
 | |
| 	if (state == STATE_RADIO_IRQ_ON) {
 | |
| 		rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
 | |
| 
 | |
| 		rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®);
 | |
| 		rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only toggle the interrupts bits we are going to use.
 | |
| 	 * Non-checked interrupt bits are disabled by default.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_BEACON_DONE, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask);
 | |
| 	rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®);
 | |
| 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask);
 | |
| 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask);
 | |
| 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask);
 | |
| 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask);
 | |
| 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask);
 | |
| 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask);
 | |
| 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask);
 | |
| 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask);
 | |
| 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_TWAKEUP, mask);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
 | |
| 
 | |
| 	if (state == STATE_RADIO_IRQ_OFF) {
 | |
| 		/*
 | |
| 		 * Ensure that all tasklets are finished.
 | |
| 		 */
 | |
| 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
 | |
| 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
 | |
| 		tasklet_kill(&rt2x00dev->autowake_tasklet);
 | |
| 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize all registers.
 | |
| 	 */
 | |
| 	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
 | |
| 		     rt61pci_init_registers(rt2x00dev) ||
 | |
| 		     rt61pci_init_bbp(rt2x00dev)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable RX.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, ®);
 | |
| 	rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	/*
 | |
| 	 * Disable power
 | |
| 	 */
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
 | |
| }
 | |
| 
 | |
| static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
 | |
| {
 | |
| 	u32 reg, reg2;
 | |
| 	unsigned int i;
 | |
| 	char put_to_sleep;
 | |
| 
 | |
| 	put_to_sleep = (state != STATE_AWAKE);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, ®);
 | |
| 	rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
 | |
| 	rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Device is not guaranteed to be in the requested state yet.
 | |
| 	 * We must wait until the register indicates that the
 | |
| 	 * device has entered the correct state.
 | |
| 	 */
 | |
| 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 | |
| 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, ®2);
 | |
| 		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
 | |
| 		if (state == !put_to_sleep)
 | |
| 			return 0;
 | |
| 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
 | |
| 		msleep(10);
 | |
| 	}
 | |
| 
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
 | |
| 				    enum dev_state state)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case STATE_RADIO_ON:
 | |
| 		retval = rt61pci_enable_radio(rt2x00dev);
 | |
| 		break;
 | |
| 	case STATE_RADIO_OFF:
 | |
| 		rt61pci_disable_radio(rt2x00dev);
 | |
| 		break;
 | |
| 	case STATE_RADIO_IRQ_ON:
 | |
| 	case STATE_RADIO_IRQ_OFF:
 | |
| 		rt61pci_toggle_irq(rt2x00dev, state);
 | |
| 		break;
 | |
| 	case STATE_DEEP_SLEEP:
 | |
| 	case STATE_SLEEP:
 | |
| 	case STATE_STANDBY:
 | |
| 	case STATE_AWAKE:
 | |
| 		retval = rt61pci_set_state(rt2x00dev, state);
 | |
| 		break;
 | |
| 	default:
 | |
| 		retval = -ENOTSUPP;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(retval))
 | |
| 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
 | |
| 			   state, retval);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TX descriptor initialization
 | |
|  */
 | |
| static void rt61pci_write_tx_desc(struct queue_entry *entry,
 | |
| 				  struct txentry_desc *txdesc)
 | |
| {
 | |
| 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	__le32 *txd = entry_priv->desc;
 | |
| 	u32 word;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start writing the descriptor words.
 | |
| 	 */
 | |
| 	rt2x00_desc_read(txd, 1, &word);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
 | |
| 	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
 | |
| 			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
 | |
| 	rt2x00_desc_write(txd, 1, word);
 | |
| 
 | |
| 	rt2x00_desc_read(txd, 2, &word);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
 | |
| 			   txdesc->u.plcp.length_low);
 | |
| 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
 | |
| 			   txdesc->u.plcp.length_high);
 | |
| 	rt2x00_desc_write(txd, 2, word);
 | |
| 
 | |
| 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
 | |
| 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
 | |
| 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_desc_read(txd, 5, &word);
 | |
| 	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
 | |
| 	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
 | |
| 			   skbdesc->entry->entry_idx);
 | |
| 	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
 | |
| 			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
 | |
| 	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
 | |
| 	rt2x00_desc_write(txd, 5, word);
 | |
| 
 | |
| 	if (entry->queue->qid != QID_BEACON) {
 | |
| 		rt2x00_desc_read(txd, 6, &word);
 | |
| 		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
 | |
| 				   skbdesc->skb_dma);
 | |
| 		rt2x00_desc_write(txd, 6, word);
 | |
| 
 | |
| 		rt2x00_desc_read(txd, 11, &word);
 | |
| 		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
 | |
| 				   txdesc->length);
 | |
| 		rt2x00_desc_write(txd, 11, word);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Writing TXD word 0 must the last to prevent a race condition with
 | |
| 	 * the device, whereby the device may take hold of the TXD before we
 | |
| 	 * finished updating it.
 | |
| 	 */
 | |
| 	rt2x00_desc_read(txd, 0, &word);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
 | |
| 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_ACK,
 | |
| 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
 | |
| 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_OFDM,
 | |
| 			   (txdesc->rate_mode == RATE_MODE_OFDM));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
 | |
| 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
 | |
| 			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
 | |
| 			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
 | |
| 	rt2x00_set_field32(&word, TXD_W0_BURST,
 | |
| 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
 | |
| 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
 | |
| 	rt2x00_desc_write(txd, 0, word);
 | |
| 
 | |
| 	/*
 | |
| 	 * Register descriptor details in skb frame descriptor.
 | |
| 	 */
 | |
| 	skbdesc->desc = txd;
 | |
| 	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
 | |
| 			    TXD_DESC_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TX data initialization
 | |
|  */
 | |
| static void rt61pci_write_beacon(struct queue_entry *entry,
 | |
| 				 struct txentry_desc *txdesc)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	unsigned int beacon_base;
 | |
| 	unsigned int padding_len;
 | |
| 	u32 orig_reg, reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable beaconing while we are reloading the beacon data,
 | |
| 	 * otherwise we might be sending out invalid data.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®);
 | |
| 	orig_reg = reg;
 | |
| 	rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write the TX descriptor for the beacon.
 | |
| 	 */
 | |
| 	rt61pci_write_tx_desc(entry, txdesc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Dump beacon to userspace through debugfs.
 | |
| 	 */
 | |
| 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write entire beacon with descriptor and padding to register.
 | |
| 	 */
 | |
| 	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
 | |
| 	if (padding_len && skb_pad(entry->skb, padding_len)) {
 | |
| 		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
 | |
| 		/* skb freed by skb_pad() on failure */
 | |
| 		entry->skb = NULL;
 | |
| 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
 | |
| 	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
 | |
| 				       entry_priv->desc, TXINFO_SIZE);
 | |
| 	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
 | |
| 				       entry->skb->data,
 | |
| 				       entry->skb->len + padding_len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable beaconing again.
 | |
| 	 *
 | |
| 	 * For Wi-Fi faily generated beacons between participating
 | |
| 	 * stations. Set TBTT phase adaptive adjustment step to 8us.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
 | |
| 
 | |
| 	rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clean up beacon skb.
 | |
| 	 */
 | |
| 	dev_kfree_skb_any(entry->skb);
 | |
| 	entry->skb = NULL;
 | |
| }
 | |
| 
 | |
| static void rt61pci_clear_beacon(struct queue_entry *entry)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable beaconing while we are reloading the beacon data,
 | |
| 	 * otherwise we might be sending out invalid data.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®);
 | |
| 	rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear beacon.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_write(rt2x00dev,
 | |
| 				  HW_BEACON_OFFSET(entry->entry_idx), 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable beaconing again.
 | |
| 	 */
 | |
| 	rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RX control handlers
 | |
|  */
 | |
| static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
 | |
| {
 | |
| 	u8 offset = rt2x00dev->lna_gain;
 | |
| 	u8 lna;
 | |
| 
 | |
| 	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
 | |
| 	switch (lna) {
 | |
| 	case 3:
 | |
| 		offset += 90;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		offset += 74;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		offset += 64;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 | |
| 		if (lna == 3 || lna == 2)
 | |
| 			offset += 10;
 | |
| 	}
 | |
| 
 | |
| 	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
 | |
| }
 | |
| 
 | |
| static void rt61pci_fill_rxdone(struct queue_entry *entry,
 | |
| 				struct rxdone_entry_desc *rxdesc)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 | |
| 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 | |
| 	u32 word0;
 | |
| 	u32 word1;
 | |
| 
 | |
| 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
 | |
| 	rt2x00_desc_read(entry_priv->desc, 1, &word1);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
 | |
| 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
 | |
| 
 | |
| 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
 | |
| 	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
 | |
| 
 | |
| 	if (rxdesc->cipher != CIPHER_NONE) {
 | |
| 		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
 | |
| 		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
 | |
| 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
 | |
| 
 | |
| 		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
 | |
| 		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
 | |
| 
 | |
| 		/*
 | |
| 		 * Hardware has stripped IV/EIV data from 802.11 frame during
 | |
| 		 * decryption. It has provided the data separately but rt2x00lib
 | |
| 		 * should decide if it should be reinserted.
 | |
| 		 */
 | |
| 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
 | |
| 
 | |
| 		/*
 | |
| 		 * The hardware has already checked the Michael Mic and has
 | |
| 		 * stripped it from the frame. Signal this to mac80211.
 | |
| 		 */
 | |
| 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
 | |
| 
 | |
| 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
 | |
| 			rxdesc->flags |= RX_FLAG_DECRYPTED;
 | |
| 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
 | |
| 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Obtain the status about this packet.
 | |
| 	 * When frame was received with an OFDM bitrate,
 | |
| 	 * the signal is the PLCP value. If it was received with
 | |
| 	 * a CCK bitrate the signal is the rate in 100kbit/s.
 | |
| 	 */
 | |
| 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
 | |
| 	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
 | |
| 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
 | |
| 
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
 | |
| 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
 | |
| 	else
 | |
| 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
 | |
| 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
 | |
| 		rxdesc->dev_flags |= RXDONE_MY_BSS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt functions.
 | |
|  */
 | |
| static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct data_queue *queue;
 | |
| 	struct queue_entry *entry;
 | |
| 	struct queue_entry *entry_done;
 | |
| 	struct queue_entry_priv_mmio *entry_priv;
 | |
| 	struct txdone_entry_desc txdesc;
 | |
| 	u32 word;
 | |
| 	u32 reg;
 | |
| 	int type;
 | |
| 	int index;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
 | |
| 	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
 | |
| 	 * flag is not set anymore.
 | |
| 	 *
 | |
| 	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
 | |
| 	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
 | |
| 	 * tx ring size for now.
 | |
| 	 */
 | |
| 	for (i = 0; i < rt2x00dev->tx->limit; i++) {
 | |
| 		rt2x00mmio_register_read(rt2x00dev, STA_CSR4, ®);
 | |
| 		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip this entry when it contains an invalid
 | |
| 		 * queue identication number.
 | |
| 		 */
 | |
| 		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
 | |
| 		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
 | |
| 		if (unlikely(!queue))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip this entry when it contains an invalid
 | |
| 		 * index number.
 | |
| 		 */
 | |
| 		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
 | |
| 		if (unlikely(index >= queue->limit))
 | |
| 			continue;
 | |
| 
 | |
| 		entry = &queue->entries[index];
 | |
| 		entry_priv = entry->priv_data;
 | |
| 		rt2x00_desc_read(entry_priv->desc, 0, &word);
 | |
| 
 | |
| 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 | |
| 		    !rt2x00_get_field32(word, TXD_W0_VALID))
 | |
| 			return;
 | |
| 
 | |
| 		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
 | |
| 		while (entry != entry_done) {
 | |
| 			/* Catch up.
 | |
| 			 * Just report any entries we missed as failed.
 | |
| 			 */
 | |
| 			rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
 | |
| 				    entry_done->entry_idx);
 | |
| 
 | |
| 			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
 | |
| 			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Obtain the status about this packet.
 | |
| 		 */
 | |
| 		txdesc.flags = 0;
 | |
| 		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
 | |
| 		case 0: /* Success, maybe with retry */
 | |
| 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
 | |
| 			break;
 | |
| 		case 6: /* Failure, excessive retries */
 | |
| 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
 | |
| 			/* Don't break, this is a failed frame! */
 | |
| 		default: /* Failure */
 | |
| 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
 | |
| 		}
 | |
| 		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
 | |
| 
 | |
| 		/*
 | |
| 		 * the frame was retried at least once
 | |
| 		 * -> hw used fallback rates
 | |
| 		 */
 | |
| 		if (txdesc.retry)
 | |
| 			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
 | |
| 
 | |
| 		rt2x00lib_txdone(entry, &txdesc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
 | |
| 
 | |
| 	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
 | |
| }
 | |
| 
 | |
| static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
 | |
| 					    struct rt2x00_field32 irq_field)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable a single interrupt. The interrupt mask register
 | |
| 	 * access needs locking.
 | |
| 	 */
 | |
| 	spin_lock_irq(&rt2x00dev->irqmask_lock);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®);
 | |
| 	rt2x00_set_field32(®, irq_field, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
 | |
| 
 | |
| 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
 | |
| }
 | |
| 
 | |
| static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
 | |
| 					 struct rt2x00_field32 irq_field)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable a single MCU interrupt. The interrupt mask register
 | |
| 	 * access needs locking.
 | |
| 	 */
 | |
| 	spin_lock_irq(&rt2x00dev->irqmask_lock);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®);
 | |
| 	rt2x00_set_field32(®, irq_field, 0);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
 | |
| 
 | |
| 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
 | |
| }
 | |
| 
 | |
| static void rt61pci_txstatus_tasklet(unsigned long data)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
 | |
| 	rt61pci_txdone(rt2x00dev);
 | |
| 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
 | |
| }
 | |
| 
 | |
| static void rt61pci_tbtt_tasklet(unsigned long data)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
 | |
| 	rt2x00lib_beacondone(rt2x00dev);
 | |
| 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
 | |
| }
 | |
| 
 | |
| static void rt61pci_rxdone_tasklet(unsigned long data)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
 | |
| 	if (rt2x00mmio_rxdone(rt2x00dev))
 | |
| 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
 | |
| 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
 | |
| }
 | |
| 
 | |
| static void rt61pci_autowake_tasklet(unsigned long data)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
 | |
| 	rt61pci_wakeup(rt2x00dev);
 | |
| 	rt2x00mmio_register_write(rt2x00dev,
 | |
| 				  M2H_CMD_DONE_CSR, 0xffffffff);
 | |
| 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
 | |
| }
 | |
| 
 | |
| static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = dev_instance;
 | |
| 	u32 reg_mcu, mask_mcu;
 | |
| 	u32 reg, mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the interrupt sources & saved to local variable.
 | |
| 	 * Write register value back to clear pending interrupts.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
 | |
| 
 | |
| 	if (!reg && !reg_mcu)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule tasklets for interrupt handling.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
 | |
| 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
 | |
| 
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
 | |
| 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
 | |
| 
 | |
| 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
 | |
| 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
 | |
| 
 | |
| 	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
 | |
| 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
 | |
| 	 * for interrupts and interrupt masks we can just use the value of
 | |
| 	 * INT_SOURCE_CSR to create the interrupt mask.
 | |
| 	 */
 | |
| 	mask = reg;
 | |
| 	mask_mcu = reg_mcu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable all interrupts for which a tasklet was scheduled right now,
 | |
| 	 * the tasklet will reenable the appropriate interrupts.
 | |
| 	 */
 | |
| 	spin_lock(&rt2x00dev->irqmask_lock);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®);
 | |
| 	reg |= mask;
 | |
| 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®);
 | |
| 	reg |= mask_mcu;
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
 | |
| 
 | |
| 	spin_unlock(&rt2x00dev->irqmask_lock);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Device probe functions.
 | |
|  */
 | |
| static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct eeprom_93cx6 eeprom;
 | |
| 	u32 reg;
 | |
| 	u16 word;
 | |
| 	u8 *mac;
 | |
| 	s8 value;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, ®);
 | |
| 
 | |
| 	eeprom.data = rt2x00dev;
 | |
| 	eeprom.register_read = rt61pci_eepromregister_read;
 | |
| 	eeprom.register_write = rt61pci_eepromregister_write;
 | |
| 	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
 | |
| 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
 | |
| 	eeprom.reg_data_in = 0;
 | |
| 	eeprom.reg_data_out = 0;
 | |
| 	eeprom.reg_data_clock = 0;
 | |
| 	eeprom.reg_chip_select = 0;
 | |
| 
 | |
| 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
 | |
| 			       EEPROM_SIZE / sizeof(u16));
 | |
| 
 | |
| 	/*
 | |
| 	 * Start validation of the data that has been read.
 | |
| 	 */
 | |
| 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
 | |
| 	if (!is_valid_ether_addr(mac)) {
 | |
| 		eth_random_addr(mac);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
 | |
| 				   ANTENNA_B);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
 | |
| 				   ANTENNA_B);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
 | |
| 				   LED_MODE_DEFAULT);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
 | |
| 	} else {
 | |
| 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
 | |
| 		if (value < -10 || value > 10)
 | |
| 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
 | |
| 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
 | |
| 		if (value < -10 || value > 10)
 | |
| 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
 | |
| 	}
 | |
| 
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
 | |
| 	if (word == 0xffff) {
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
 | |
| 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
 | |
| 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
 | |
| 	} else {
 | |
| 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
 | |
| 		if (value < -10 || value > 10)
 | |
| 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
 | |
| 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
 | |
| 		if (value < -10 || value > 10)
 | |
| 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
 | |
| 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	u16 value;
 | |
| 	u16 eeprom;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read EEPROM word for configuration.
 | |
| 	 */
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
 | |
| 
 | |
| 	/*
 | |
| 	 * Identify RF chipset.
 | |
| 	 */
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, ®);
 | |
| 	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
 | |
| 			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
 | |
| 
 | |
| 	if (!rt2x00_rf(rt2x00dev, RF5225) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF5325) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2527) &&
 | |
| 	    !rt2x00_rf(rt2x00dev, RF2529)) {
 | |
| 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine number of antennas.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
 | |
| 		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Identify default antenna configuration.
 | |
| 	 */
 | |
| 	rt2x00dev->default_ant.tx =
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
 | |
| 	rt2x00dev->default_ant.rx =
 | |
| 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the Frame type.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
 | |
| 		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect if this device has a hardware controlled radio.
 | |
| 	 */
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
 | |
| 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read frequency offset and RF programming sequence.
 | |
| 	 */
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
 | |
| 		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read external LNA informations.
 | |
| 	 */
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
 | |
| 
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
 | |
| 		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
 | |
| 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
 | |
| 		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * When working with a RF2529 chip without double antenna,
 | |
| 	 * the antenna settings should be gathered from the NIC
 | |
| 	 * eeprom word.
 | |
| 	 */
 | |
| 	if (rt2x00_rf(rt2x00dev, RF2529) &&
 | |
| 	    !rt2x00_has_cap_double_antenna(rt2x00dev)) {
 | |
| 		rt2x00dev->default_ant.rx =
 | |
| 		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
 | |
| 		rt2x00dev->default_ant.tx =
 | |
| 		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
 | |
| 
 | |
| 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
 | |
| 			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
 | |
| 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
 | |
| 			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Store led settings, for correct led behaviour.
 | |
| 	 * If the eeprom value is invalid,
 | |
| 	 * switch to default led mode.
 | |
| 	 */
 | |
| #ifdef CONFIG_RT2X00_LIB_LEDS
 | |
| 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
 | |
| 	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
 | |
| 
 | |
| 	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
 | |
| 	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
 | |
| 	if (value == LED_MODE_SIGNAL_STRENGTH)
 | |
| 		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
 | |
| 				 LED_TYPE_QUALITY);
 | |
| 
 | |
| 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
 | |
| 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
 | |
| 			   rt2x00_get_field16(eeprom,
 | |
| 					      EEPROM_LED_POLARITY_GPIO_0));
 | |
| 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
 | |
| 			   rt2x00_get_field16(eeprom,
 | |
| 					      EEPROM_LED_POLARITY_GPIO_1));
 | |
| 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
 | |
| 			   rt2x00_get_field16(eeprom,
 | |
| 					      EEPROM_LED_POLARITY_GPIO_2));
 | |
| 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
 | |
| 			   rt2x00_get_field16(eeprom,
 | |
| 					      EEPROM_LED_POLARITY_GPIO_3));
 | |
| 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
 | |
| 			   rt2x00_get_field16(eeprom,
 | |
| 					      EEPROM_LED_POLARITY_GPIO_4));
 | |
| 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
 | |
| 			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
 | |
| 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
 | |
| 			   rt2x00_get_field16(eeprom,
 | |
| 					      EEPROM_LED_POLARITY_RDY_G));
 | |
| 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
 | |
| 			   rt2x00_get_field16(eeprom,
 | |
| 					      EEPROM_LED_POLARITY_RDY_A));
 | |
| #endif /* CONFIG_RT2X00_LIB_LEDS */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF5225 & RF5325
 | |
|  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
 | |
|  */
 | |
| static const struct rf_channel rf_vals_noseq[] = {
 | |
| 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
 | |
| 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
 | |
| 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
 | |
| 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
 | |
| 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
 | |
| 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
 | |
| 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
 | |
| 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
 | |
| 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
 | |
| 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
 | |
| 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
 | |
| 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
 | |
| 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
 | |
| 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
 | |
| 
 | |
| 	/* 802.11 UNI / HyperLan 2 */
 | |
| 	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
 | |
| 	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
 | |
| 	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
 | |
| 	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
 | |
| 	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
 | |
| 	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
 | |
| 	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
 | |
| 	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
 | |
| 
 | |
| 	/* 802.11 HyperLan 2 */
 | |
| 	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
 | |
| 	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
 | |
| 	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
 | |
| 	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
 | |
| 	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
 | |
| 	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
 | |
| 	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
 | |
| 	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
 | |
| 	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
 | |
| 	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
 | |
| 
 | |
| 	/* 802.11 UNII */
 | |
| 	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
 | |
| 	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
 | |
| 	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
 | |
| 	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
 | |
| 	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
 | |
| 	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
 | |
| 
 | |
| 	/* MMAC(Japan)J52 ch 34,38,42,46 */
 | |
| 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
 | |
| 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
 | |
| 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
 | |
| 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RF value list for RF5225 & RF5325
 | |
|  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
 | |
|  */
 | |
| static const struct rf_channel rf_vals_seq[] = {
 | |
| 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
 | |
| 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
 | |
| 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
 | |
| 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
 | |
| 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
 | |
| 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
 | |
| 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
 | |
| 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
 | |
| 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
 | |
| 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
 | |
| 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
 | |
| 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
 | |
| 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
 | |
| 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
 | |
| 
 | |
| 	/* 802.11 UNI / HyperLan 2 */
 | |
| 	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
 | |
| 	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
 | |
| 	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
 | |
| 	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
 | |
| 	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
 | |
| 	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
 | |
| 	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
 | |
| 	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
 | |
| 
 | |
| 	/* 802.11 HyperLan 2 */
 | |
| 	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
 | |
| 	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
 | |
| 	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
 | |
| 	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
 | |
| 	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
 | |
| 	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
 | |
| 	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
 | |
| 	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
 | |
| 	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
 | |
| 	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
 | |
| 
 | |
| 	/* 802.11 UNII */
 | |
| 	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
 | |
| 	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
 | |
| 	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
 | |
| 	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
 | |
| 	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
 | |
| 	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
 | |
| 
 | |
| 	/* MMAC(Japan)J52 ch 34,38,42,46 */
 | |
| 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
 | |
| 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
 | |
| 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
 | |
| 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
 | |
| };
 | |
| 
 | |
| static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	struct hw_mode_spec *spec = &rt2x00dev->spec;
 | |
| 	struct channel_info *info;
 | |
| 	char *tx_power;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable powersaving as default.
 | |
| 	 */
 | |
| 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize all hw fields.
 | |
| 	 */
 | |
| 	rt2x00dev->hw->flags =
 | |
| 	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
 | |
| 	    IEEE80211_HW_SIGNAL_DBM |
 | |
| 	    IEEE80211_HW_SUPPORTS_PS |
 | |
| 	    IEEE80211_HW_PS_NULLFUNC_STACK;
 | |
| 
 | |
| 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
 | |
| 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
 | |
| 				rt2x00_eeprom_addr(rt2x00dev,
 | |
| 						   EEPROM_MAC_ADDR_0));
 | |
| 
 | |
| 	/*
 | |
| 	 * As rt61 has a global fallback table we cannot specify
 | |
| 	 * more then one tx rate per frame but since the hw will
 | |
| 	 * try several rates (based on the fallback table) we should
 | |
| 	 * initialize max_report_rates to the maximum number of rates
 | |
| 	 * we are going to try. Otherwise mac80211 will truncate our
 | |
| 	 * reported tx rates and the rc algortihm will end up with
 | |
| 	 * incorrect data.
 | |
| 	 */
 | |
| 	rt2x00dev->hw->max_rates = 1;
 | |
| 	rt2x00dev->hw->max_report_rates = 7;
 | |
| 	rt2x00dev->hw->max_rate_tries = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize hw_mode information.
 | |
| 	 */
 | |
| 	spec->supported_bands = SUPPORT_BAND_2GHZ;
 | |
| 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
 | |
| 
 | |
| 	if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
 | |
| 		spec->num_channels = 14;
 | |
| 		spec->channels = rf_vals_noseq;
 | |
| 	} else {
 | |
| 		spec->num_channels = 14;
 | |
| 		spec->channels = rf_vals_seq;
 | |
| 	}
 | |
| 
 | |
| 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
 | |
| 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
 | |
| 		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Create channel information array
 | |
| 	 */
 | |
| 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spec->channels_info = info;
 | |
| 
 | |
| 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
 | |
| 	for (i = 0; i < 14; i++) {
 | |
| 		info[i].max_power = MAX_TXPOWER;
 | |
| 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (spec->num_channels > 14) {
 | |
| 		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
 | |
| 		for (i = 14; i < spec->num_channels; i++) {
 | |
| 			info[i].max_power = MAX_TXPOWER;
 | |
| 			info[i].default_power1 =
 | |
| 					TXPOWER_FROM_DEV(tx_power[i - 14]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
 | |
| {
 | |
| 	int retval;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable power saving.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate eeprom data.
 | |
| 	 */
 | |
| 	retval = rt61pci_validate_eeprom(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	retval = rt61pci_init_eeprom(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable rfkill polling by setting GPIO direction of the
 | |
| 	 * rfkill switch GPIO pin correctly.
 | |
| 	 */
 | |
| 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, ®);
 | |
| 	rt2x00_set_field32(®, MAC_CSR13_DIR5, 1);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize hw specifications.
 | |
| 	 */
 | |
| 	retval = rt61pci_probe_hw_mode(rt2x00dev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * This device has multiple filters for control frames,
 | |
| 	 * but has no a separate filter for PS Poll frames.
 | |
| 	 */
 | |
| 	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * This device requires firmware and DMA mapped skbs.
 | |
| 	 */
 | |
| 	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
 | |
| 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
 | |
| 	if (!modparam_nohwcrypt)
 | |
| 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
 | |
| 	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the rssi offset.
 | |
| 	 */
 | |
| 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IEEE80211 stack callback functions.
 | |
|  */
 | |
| static int rt61pci_conf_tx(struct ieee80211_hw *hw,
 | |
| 			   struct ieee80211_vif *vif, u16 queue_idx,
 | |
| 			   const struct ieee80211_tx_queue_params *params)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = hw->priv;
 | |
| 	struct data_queue *queue;
 | |
| 	struct rt2x00_field32 field;
 | |
| 	int retval;
 | |
| 	u32 reg;
 | |
| 	u32 offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * First pass the configuration through rt2x00lib, that will
 | |
| 	 * update the queue settings and validate the input. After that
 | |
| 	 * we are free to update the registers based on the value
 | |
| 	 * in the queue parameter.
 | |
| 	 */
 | |
| 	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only need to perform additional register initialization
 | |
| 	 * for WMM queues.
 | |
| 	 */
 | |
| 	if (queue_idx >= 4)
 | |
| 		return 0;
 | |
| 
 | |
| 	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
 | |
| 
 | |
| 	/* Update WMM TXOP register */
 | |
| 	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
 | |
| 	field.bit_offset = (queue_idx & 1) * 16;
 | |
| 	field.bit_mask = 0xffff << field.bit_offset;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, offset, ®);
 | |
| 	rt2x00_set_field32(®, field, queue->txop);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, offset, reg);
 | |
| 
 | |
| 	/* Update WMM registers */
 | |
| 	field.bit_offset = queue_idx * 4;
 | |
| 	field.bit_mask = 0xf << field.bit_offset;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, ®);
 | |
| 	rt2x00_set_field32(®, field, queue->aifs);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, ®);
 | |
| 	rt2x00_set_field32(®, field, queue->cw_min);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, ®);
 | |
| 	rt2x00_set_field32(®, field, queue->cw_max);
 | |
| 	rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
 | |
| {
 | |
| 	struct rt2x00_dev *rt2x00dev = hw->priv;
 | |
| 	u64 tsf;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, ®);
 | |
| 	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
 | |
| 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, ®);
 | |
| 	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
 | |
| 
 | |
| 	return tsf;
 | |
| }
 | |
| 
 | |
| static const struct ieee80211_ops rt61pci_mac80211_ops = {
 | |
| 	.tx			= rt2x00mac_tx,
 | |
| 	.start			= rt2x00mac_start,
 | |
| 	.stop			= rt2x00mac_stop,
 | |
| 	.add_interface		= rt2x00mac_add_interface,
 | |
| 	.remove_interface	= rt2x00mac_remove_interface,
 | |
| 	.config			= rt2x00mac_config,
 | |
| 	.configure_filter	= rt2x00mac_configure_filter,
 | |
| 	.set_key		= rt2x00mac_set_key,
 | |
| 	.sw_scan_start		= rt2x00mac_sw_scan_start,
 | |
| 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
 | |
| 	.get_stats		= rt2x00mac_get_stats,
 | |
| 	.bss_info_changed	= rt2x00mac_bss_info_changed,
 | |
| 	.conf_tx		= rt61pci_conf_tx,
 | |
| 	.get_tsf		= rt61pci_get_tsf,
 | |
| 	.rfkill_poll		= rt2x00mac_rfkill_poll,
 | |
| 	.flush			= rt2x00mac_flush,
 | |
| 	.set_antenna		= rt2x00mac_set_antenna,
 | |
| 	.get_antenna		= rt2x00mac_get_antenna,
 | |
| 	.get_ringparam		= rt2x00mac_get_ringparam,
 | |
| 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
 | |
| };
 | |
| 
 | |
| static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
 | |
| 	.irq_handler		= rt61pci_interrupt,
 | |
| 	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
 | |
| 	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
 | |
| 	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
 | |
| 	.autowake_tasklet	= rt61pci_autowake_tasklet,
 | |
| 	.probe_hw		= rt61pci_probe_hw,
 | |
| 	.get_firmware_name	= rt61pci_get_firmware_name,
 | |
| 	.check_firmware		= rt61pci_check_firmware,
 | |
| 	.load_firmware		= rt61pci_load_firmware,
 | |
| 	.initialize		= rt2x00mmio_initialize,
 | |
| 	.uninitialize		= rt2x00mmio_uninitialize,
 | |
| 	.get_entry_state	= rt61pci_get_entry_state,
 | |
| 	.clear_entry		= rt61pci_clear_entry,
 | |
| 	.set_device_state	= rt61pci_set_device_state,
 | |
| 	.rfkill_poll		= rt61pci_rfkill_poll,
 | |
| 	.link_stats		= rt61pci_link_stats,
 | |
| 	.reset_tuner		= rt61pci_reset_tuner,
 | |
| 	.link_tuner		= rt61pci_link_tuner,
 | |
| 	.start_queue		= rt61pci_start_queue,
 | |
| 	.kick_queue		= rt61pci_kick_queue,
 | |
| 	.stop_queue		= rt61pci_stop_queue,
 | |
| 	.flush_queue		= rt2x00mmio_flush_queue,
 | |
| 	.write_tx_desc		= rt61pci_write_tx_desc,
 | |
| 	.write_beacon		= rt61pci_write_beacon,
 | |
| 	.clear_beacon		= rt61pci_clear_beacon,
 | |
| 	.fill_rxdone		= rt61pci_fill_rxdone,
 | |
| 	.config_shared_key	= rt61pci_config_shared_key,
 | |
| 	.config_pairwise_key	= rt61pci_config_pairwise_key,
 | |
| 	.config_filter		= rt61pci_config_filter,
 | |
| 	.config_intf		= rt61pci_config_intf,
 | |
| 	.config_erp		= rt61pci_config_erp,
 | |
| 	.config_ant		= rt61pci_config_ant,
 | |
| 	.config			= rt61pci_config,
 | |
| };
 | |
| 
 | |
| static void rt61pci_queue_init(struct data_queue *queue)
 | |
| {
 | |
| 	switch (queue->qid) {
 | |
| 	case QID_RX:
 | |
| 		queue->limit = 32;
 | |
| 		queue->data_size = DATA_FRAME_SIZE;
 | |
| 		queue->desc_size = RXD_DESC_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_AC_VO:
 | |
| 	case QID_AC_VI:
 | |
| 	case QID_AC_BE:
 | |
| 	case QID_AC_BK:
 | |
| 		queue->limit = 32;
 | |
| 		queue->data_size = DATA_FRAME_SIZE;
 | |
| 		queue->desc_size = TXD_DESC_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_BEACON:
 | |
| 		queue->limit = 4;
 | |
| 		queue->data_size = 0; /* No DMA required for beacons */
 | |
| 		queue->desc_size = TXINFO_SIZE;
 | |
| 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
 | |
| 		break;
 | |
| 
 | |
| 	case QID_ATIM:
 | |
| 		/* fallthrough */
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct rt2x00_ops rt61pci_ops = {
 | |
| 	.name			= KBUILD_MODNAME,
 | |
| 	.max_ap_intf		= 4,
 | |
| 	.eeprom_size		= EEPROM_SIZE,
 | |
| 	.rf_size		= RF_SIZE,
 | |
| 	.tx_queues		= NUM_TX_QUEUES,
 | |
| 	.queue_init		= rt61pci_queue_init,
 | |
| 	.lib			= &rt61pci_rt2x00_ops,
 | |
| 	.hw			= &rt61pci_mac80211_ops,
 | |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS
 | |
| 	.debugfs		= &rt61pci_rt2x00debug,
 | |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * RT61pci module information.
 | |
|  */
 | |
| static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
 | |
| 	/* RT2561s */
 | |
| 	{ PCI_DEVICE(0x1814, 0x0301) },
 | |
| 	/* RT2561 v2 */
 | |
| 	{ PCI_DEVICE(0x1814, 0x0302) },
 | |
| 	/* RT2661 */
 | |
| 	{ PCI_DEVICE(0x1814, 0x0401) },
 | |
| 	{ 0, }
 | |
| };
 | |
| 
 | |
| MODULE_AUTHOR(DRV_PROJECT);
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
 | |
| MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
 | |
| 			"PCI & PCMCIA chipset based cards");
 | |
| MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
 | |
| MODULE_FIRMWARE(FIRMWARE_RT2561);
 | |
| MODULE_FIRMWARE(FIRMWARE_RT2561s);
 | |
| MODULE_FIRMWARE(FIRMWARE_RT2661);
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| static int rt61pci_probe(struct pci_dev *pci_dev,
 | |
| 			 const struct pci_device_id *id)
 | |
| {
 | |
| 	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
 | |
| }
 | |
| 
 | |
| static struct pci_driver rt61pci_driver = {
 | |
| 	.name		= KBUILD_MODNAME,
 | |
| 	.id_table	= rt61pci_device_table,
 | |
| 	.probe		= rt61pci_probe,
 | |
| 	.remove		= rt2x00pci_remove,
 | |
| 	.suspend	= rt2x00pci_suspend,
 | |
| 	.resume		= rt2x00pci_resume,
 | |
| };
 | |
| 
 | |
| module_pci_driver(rt61pci_driver);
 |