Introduce omap_vout_vrfb.c and omap_vout_vrfb.h, for all VRFB related API's, making OMAP_VOUT driver independent from VRFB. This is required for OMAP4 DSS, since OMAP4 doesn't have VRFB block. Added new enum vout_rotation_type and "rotation_type" member to omapvideo_info, this is initialized based on the arch type in omap_vout_probe. The rotation_type var is now used to choose between vrfb and non-vrfb calls. Signed-off-by: Archit Taneja <archit@ti.com> Signed-off-by: Vaibhav Hiremath <hvaibhav@ti.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
		
			
				
	
	
		
			390 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			390 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * omap_vout_vrfb.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 2010 Texas Instruments.
 | 
						|
 *
 | 
						|
 * This file is licensed under the terms of the GNU General Public License
 | 
						|
 * version 2. This program is licensed "as is" without any warranty of any
 | 
						|
 * kind, whether express or implied.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/platform_device.h>
 | 
						|
#include <linux/videodev2.h>
 | 
						|
 | 
						|
#include <media/videobuf-dma-contig.h>
 | 
						|
#include <media/v4l2-device.h>
 | 
						|
 | 
						|
#include <plat/dma.h>
 | 
						|
#include <plat/vrfb.h>
 | 
						|
 | 
						|
#include "omap_voutdef.h"
 | 
						|
#include "omap_voutlib.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Function for allocating video buffers
 | 
						|
 */
 | 
						|
static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
 | 
						|
		unsigned int *count, int startindex)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < *count; i++) {
 | 
						|
		if (!vout->smsshado_virt_addr[i]) {
 | 
						|
			vout->smsshado_virt_addr[i] =
 | 
						|
				omap_vout_alloc_buffer(vout->smsshado_size,
 | 
						|
						&vout->smsshado_phy_addr[i]);
 | 
						|
		}
 | 
						|
		if (!vout->smsshado_virt_addr[i] && startindex != -1) {
 | 
						|
			if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (!vout->smsshado_virt_addr[i]) {
 | 
						|
			for (j = 0; j < i; j++) {
 | 
						|
				omap_vout_free_buffer(
 | 
						|
						vout->smsshado_virt_addr[j],
 | 
						|
						vout->smsshado_size);
 | 
						|
				vout->smsshado_virt_addr[j] = 0;
 | 
						|
				vout->smsshado_phy_addr[j] = 0;
 | 
						|
			}
 | 
						|
			*count = 0;
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
		memset((void *) vout->smsshado_virt_addr[i], 0,
 | 
						|
				vout->smsshado_size);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wakes up the application once the DMA transfer to VRFB space is completed.
 | 
						|
 */
 | 
						|
static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
 | 
						|
{
 | 
						|
	struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
 | 
						|
 | 
						|
	t->tx_status = 1;
 | 
						|
	wake_up_interruptible(&t->wait);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free VRFB buffers
 | 
						|
 */
 | 
						|
void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
 | 
						|
{
 | 
						|
	int j;
 | 
						|
 | 
						|
	for (j = 0; j < VRFB_NUM_BUFS; j++) {
 | 
						|
		omap_vout_free_buffer(vout->smsshado_virt_addr[j],
 | 
						|
				vout->smsshado_size);
 | 
						|
		vout->smsshado_virt_addr[j] = 0;
 | 
						|
		vout->smsshado_phy_addr[j] = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
 | 
						|
			u32 static_vrfb_allocation)
 | 
						|
{
 | 
						|
	int ret = 0, i, j;
 | 
						|
	struct omap_vout_device *vout;
 | 
						|
	struct video_device *vfd;
 | 
						|
	int image_width, image_height;
 | 
						|
	int vrfb_num_bufs = VRFB_NUM_BUFS;
 | 
						|
	struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
 | 
						|
	struct omap2video_device *vid_dev =
 | 
						|
		container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
 | 
						|
 | 
						|
	vout = vid_dev->vouts[vid_num];
 | 
						|
	vfd = vout->vfd;
 | 
						|
 | 
						|
	for (i = 0; i < VRFB_NUM_BUFS; i++) {
 | 
						|
		if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
 | 
						|
			dev_info(&pdev->dev, ": VRFB allocation failed\n");
 | 
						|
			for (j = 0; j < i; j++)
 | 
						|
				omap_vrfb_release_ctx(&vout->vrfb_context[j]);
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto free_buffers;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate VRFB memory size */
 | 
						|
	/* allocate for worst case size */
 | 
						|
	image_width = VID_MAX_WIDTH / TILE_SIZE;
 | 
						|
	if (VID_MAX_WIDTH % TILE_SIZE)
 | 
						|
		image_width++;
 | 
						|
 | 
						|
	image_width = image_width * TILE_SIZE;
 | 
						|
	image_height = VID_MAX_HEIGHT / TILE_SIZE;
 | 
						|
 | 
						|
	if (VID_MAX_HEIGHT % TILE_SIZE)
 | 
						|
		image_height++;
 | 
						|
 | 
						|
	image_height = image_height * TILE_SIZE;
 | 
						|
	vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Request and Initialize DMA, for DMA based VRFB transfer
 | 
						|
	 */
 | 
						|
	vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
 | 
						|
	vout->vrfb_dma_tx.dma_ch = -1;
 | 
						|
	vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
 | 
						|
	ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
 | 
						|
			omap_vout_vrfb_dma_tx_callback,
 | 
						|
			(void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
 | 
						|
	if (ret < 0) {
 | 
						|
		vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
 | 
						|
		dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
 | 
						|
				" video%d\n", vfd->minor);
 | 
						|
	}
 | 
						|
	init_waitqueue_head(&vout->vrfb_dma_tx.wait);
 | 
						|
 | 
						|
	/* statically allocated the VRFB buffer is done through
 | 
						|
	   commands line aruments */
 | 
						|
	if (static_vrfb_allocation) {
 | 
						|
		if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
 | 
						|
			ret =  -ENOMEM;
 | 
						|
			goto release_vrfb_ctx;
 | 
						|
		}
 | 
						|
		vout->vrfb_static_allocation = 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
release_vrfb_ctx:
 | 
						|
	for (j = 0; j < VRFB_NUM_BUFS; j++)
 | 
						|
		omap_vrfb_release_ctx(&vout->vrfb_context[j]);
 | 
						|
free_buffers:
 | 
						|
	omap_vout_free_buffers(vout);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Release the VRFB context once the module exits
 | 
						|
 */
 | 
						|
void omap_vout_release_vrfb(struct omap_vout_device *vout)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < VRFB_NUM_BUFS; i++)
 | 
						|
		omap_vrfb_release_ctx(&vout->vrfb_context[i]);
 | 
						|
 | 
						|
	if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
 | 
						|
		vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
 | 
						|
		omap_free_dma(vout->vrfb_dma_tx.dma_ch);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate the buffers for the VRFB space.  Data is copied from V4L2
 | 
						|
 * buffers to the VRFB buffers using the DMA engine.
 | 
						|
 */
 | 
						|
int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
 | 
						|
			  unsigned int *count, unsigned int startindex)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	bool yuv_mode;
 | 
						|
 | 
						|
	if (!is_rotation_enabled(vout))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* If rotation is enabled, allocate memory for VRFB space also */
 | 
						|
	*count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
 | 
						|
 | 
						|
	/* Allocate the VRFB buffers only if the buffers are not
 | 
						|
	 * allocated during init time.
 | 
						|
	 */
 | 
						|
	if (!vout->vrfb_static_allocation)
 | 
						|
		if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
	if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
 | 
						|
			vout->dss_mode == OMAP_DSS_COLOR_UYVY)
 | 
						|
		yuv_mode = true;
 | 
						|
	else
 | 
						|
		yuv_mode = false;
 | 
						|
 | 
						|
	for (i = 0; i < *count; i++)
 | 
						|
		omap_vrfb_setup(&vout->vrfb_context[i],
 | 
						|
				vout->smsshado_phy_addr[i], vout->pix.width,
 | 
						|
				vout->pix.height, vout->bpp, yuv_mode);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
 | 
						|
				struct videobuf_buffer *vb)
 | 
						|
{
 | 
						|
	dma_addr_t dmabuf;
 | 
						|
	struct vid_vrfb_dma *tx;
 | 
						|
	enum dss_rotation rotation;
 | 
						|
	u32 dest_frame_index = 0, src_element_index = 0;
 | 
						|
	u32 dest_element_index = 0, src_frame_index = 0;
 | 
						|
	u32 elem_count = 0, frame_count = 0, pixsize = 2;
 | 
						|
 | 
						|
	if (!is_rotation_enabled(vout))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	dmabuf = vout->buf_phy_addr[vb->i];
 | 
						|
	/* If rotation is enabled, copy input buffer into VRFB
 | 
						|
	 * memory space using DMA. We are copying input buffer
 | 
						|
	 * into VRFB memory space of desired angle and DSS will
 | 
						|
	 * read image VRFB memory for 0 degree angle
 | 
						|
	 */
 | 
						|
	pixsize = vout->bpp * vout->vrfb_bpp;
 | 
						|
	/*
 | 
						|
	 * DMA transfer in double index mode
 | 
						|
	 */
 | 
						|
 | 
						|
	/* Frame index */
 | 
						|
	dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
 | 
						|
			(vout->pix.width * vout->bpp)) + 1;
 | 
						|
 | 
						|
	/* Source and destination parameters */
 | 
						|
	src_element_index = 0;
 | 
						|
	src_frame_index = 0;
 | 
						|
	dest_element_index = 1;
 | 
						|
	/* Number of elements per frame */
 | 
						|
	elem_count = vout->pix.width * vout->bpp;
 | 
						|
	frame_count = vout->pix.height;
 | 
						|
	tx = &vout->vrfb_dma_tx;
 | 
						|
	tx->tx_status = 0;
 | 
						|
	omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 | 
						|
			(elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
 | 
						|
			tx->dev_id, 0x0);
 | 
						|
	/* src_port required only for OMAP1 */
 | 
						|
	omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 | 
						|
			dmabuf, src_element_index, src_frame_index);
 | 
						|
	/*set dma source burst mode for VRFB */
 | 
						|
	omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
 | 
						|
	rotation = calc_rotation(vout);
 | 
						|
 | 
						|
	/* dest_port required only for OMAP1 */
 | 
						|
	omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
 | 
						|
			vout->vrfb_context[vb->i].paddr[0], dest_element_index,
 | 
						|
			dest_frame_index);
 | 
						|
	/*set dma dest burst mode for VRFB */
 | 
						|
	omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
 | 
						|
	omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
 | 
						|
 | 
						|
	omap_start_dma(tx->dma_ch);
 | 
						|
	interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
 | 
						|
 | 
						|
	if (tx->tx_status == 0) {
 | 
						|
		omap_stop_dma(tx->dma_ch);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	/* Store buffers physical address into an array. Addresses
 | 
						|
	 * from this array will be used to configure DSS */
 | 
						|
	vout->queued_buf_addr[vb->i] = (u8 *)
 | 
						|
		vout->vrfb_context[vb->i].paddr[rotation];
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the buffer offsets from which the streaming should
 | 
						|
 * start. This offset calculation is mainly required because of
 | 
						|
 * the VRFB 32 pixels alignment with rotation.
 | 
						|
 */
 | 
						|
void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
 | 
						|
{
 | 
						|
	enum dss_rotation rotation;
 | 
						|
	bool mirroring = vout->mirror;
 | 
						|
	struct v4l2_rect *crop = &vout->crop;
 | 
						|
	struct v4l2_pix_format *pix = &vout->pix;
 | 
						|
	int *cropped_offset = &vout->cropped_offset;
 | 
						|
	int vr_ps = 1, ps = 2, temp_ps = 2;
 | 
						|
	int offset = 0, ctop = 0, cleft = 0, line_length = 0;
 | 
						|
 | 
						|
	rotation = calc_rotation(vout);
 | 
						|
 | 
						|
	if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
 | 
						|
			V4L2_PIX_FMT_UYVY == pix->pixelformat) {
 | 
						|
		if (is_rotation_enabled(vout)) {
 | 
						|
			/*
 | 
						|
			 * ps    - Actual pixel size for YUYV/UYVY for
 | 
						|
			 *         VRFB/Mirroring is 4 bytes
 | 
						|
			 * vr_ps - Virtually pixel size for YUYV/UYVY is
 | 
						|
			 *         2 bytes
 | 
						|
			 */
 | 
						|
			ps = 4;
 | 
						|
			vr_ps = 2;
 | 
						|
		} else {
 | 
						|
			ps = 2;	/* otherwise the pixel size is 2 byte */
 | 
						|
		}
 | 
						|
	} else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
 | 
						|
		ps = 4;
 | 
						|
	} else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
 | 
						|
		ps = 3;
 | 
						|
	}
 | 
						|
	vout->ps = ps;
 | 
						|
	vout->vr_ps = vr_ps;
 | 
						|
 | 
						|
	if (is_rotation_enabled(vout)) {
 | 
						|
		line_length = MAX_PIXELS_PER_LINE;
 | 
						|
		ctop = (pix->height - crop->height) - crop->top;
 | 
						|
		cleft = (pix->width - crop->width) - crop->left;
 | 
						|
	} else {
 | 
						|
		line_length = pix->width;
 | 
						|
	}
 | 
						|
	vout->line_length = line_length;
 | 
						|
	switch (rotation) {
 | 
						|
	case dss_rotation_90_degree:
 | 
						|
		offset = vout->vrfb_context[0].yoffset *
 | 
						|
			vout->vrfb_context[0].bytespp;
 | 
						|
		temp_ps = ps / vr_ps;
 | 
						|
		if (mirroring == 0) {
 | 
						|
			*cropped_offset = offset + line_length *
 | 
						|
				temp_ps * cleft + crop->top * temp_ps;
 | 
						|
		} else {
 | 
						|
			*cropped_offset = offset + line_length * temp_ps *
 | 
						|
				cleft + crop->top * temp_ps + (line_length *
 | 
						|
				((crop->width / (vr_ps)) - 1) * ps);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case dss_rotation_180_degree:
 | 
						|
		offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
 | 
						|
			vout->vrfb_context[0].bytespp) +
 | 
						|
			(vout->vrfb_context[0].xoffset *
 | 
						|
			vout->vrfb_context[0].bytespp));
 | 
						|
		if (mirroring == 0) {
 | 
						|
			*cropped_offset = offset + (line_length * ps * ctop) +
 | 
						|
				(cleft / vr_ps) * ps;
 | 
						|
 | 
						|
		} else {
 | 
						|
			*cropped_offset = offset + (line_length * ps * ctop) +
 | 
						|
				(cleft / vr_ps) * ps + (line_length *
 | 
						|
				(crop->height - 1) * ps);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case dss_rotation_270_degree:
 | 
						|
		offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
 | 
						|
			vout->vrfb_context[0].bytespp;
 | 
						|
		temp_ps = ps / vr_ps;
 | 
						|
		if (mirroring == 0) {
 | 
						|
			*cropped_offset = offset + line_length *
 | 
						|
			    temp_ps * crop->left + ctop * ps;
 | 
						|
		} else {
 | 
						|
			*cropped_offset = offset + line_length *
 | 
						|
				temp_ps * crop->left + ctop * ps +
 | 
						|
				(line_length * ((crop->width / vr_ps) - 1) *
 | 
						|
				 ps);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case dss_rotation_0_degree:
 | 
						|
		if (mirroring == 0) {
 | 
						|
			*cropped_offset = (line_length * ps) *
 | 
						|
				crop->top + (crop->left / vr_ps) * ps;
 | 
						|
		} else {
 | 
						|
			*cropped_offset = (line_length * ps) *
 | 
						|
				crop->top + (crop->left / vr_ps) * ps +
 | 
						|
				(line_length * (crop->height - 1) * ps);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		*cropped_offset = (line_length * ps * crop->top) /
 | 
						|
			vr_ps + (crop->left * ps) / vr_ps +
 | 
						|
			((crop->width / vr_ps) - 1) * ps;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 |