 81556b0252
			
		
	
	
	81556b0252
	
	
	
		
			
			We pass the number of pages which hold page structs of a memory section to free_map_bootmem(). This is right when !CONFIG_SPARSEMEM_VMEMMAP but wrong when CONFIG_SPARSEMEM_VMEMMAP. When CONFIG_SPARSEMEM_VMEMMAP, we should pass the number of pages of a memory section to free_map_bootmem. So the fix is removing the nr_pages parameter. When CONFIG_SPARSEMEM_VMEMMAP, we directly use the prefined marco PAGES_PER_SECTION in free_map_bootmem. When !CONFIG_SPARSEMEM_VMEMMAP, we calculate page numbers needed to hold the page structs for a memory section and use the value in free_map_bootmem(). This was found by reading the code. And I have no machine that support memory hot-remove to test the bug now. Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			806 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			806 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * sparse memory mappings.
 | |
|  */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include "internal.h"
 | |
| #include <asm/dma.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable.h>
 | |
| 
 | |
| /*
 | |
|  * Permanent SPARSEMEM data:
 | |
|  *
 | |
|  * 1) mem_section	- memory sections, mem_map's for valid memory
 | |
|  */
 | |
| #ifdef CONFIG_SPARSEMEM_EXTREME
 | |
| struct mem_section *mem_section[NR_SECTION_ROOTS]
 | |
| 	____cacheline_internodealigned_in_smp;
 | |
| #else
 | |
| struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 | |
| 	____cacheline_internodealigned_in_smp;
 | |
| #endif
 | |
| EXPORT_SYMBOL(mem_section);
 | |
| 
 | |
| #ifdef NODE_NOT_IN_PAGE_FLAGS
 | |
| /*
 | |
|  * If we did not store the node number in the page then we have to
 | |
|  * do a lookup in the section_to_node_table in order to find which
 | |
|  * node the page belongs to.
 | |
|  */
 | |
| #if MAX_NUMNODES <= 256
 | |
| static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 | |
| #else
 | |
| static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 | |
| #endif
 | |
| 
 | |
| int page_to_nid(const struct page *page)
 | |
| {
 | |
| 	return section_to_node_table[page_to_section(page)];
 | |
| }
 | |
| EXPORT_SYMBOL(page_to_nid);
 | |
| 
 | |
| static void set_section_nid(unsigned long section_nr, int nid)
 | |
| {
 | |
| 	section_to_node_table[section_nr] = nid;
 | |
| }
 | |
| #else /* !NODE_NOT_IN_PAGE_FLAGS */
 | |
| static inline void set_section_nid(unsigned long section_nr, int nid)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_EXTREME
 | |
| static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
 | |
| {
 | |
| 	struct mem_section *section = NULL;
 | |
| 	unsigned long array_size = SECTIONS_PER_ROOT *
 | |
| 				   sizeof(struct mem_section);
 | |
| 
 | |
| 	if (slab_is_available()) {
 | |
| 		if (node_state(nid, N_HIGH_MEMORY))
 | |
| 			section = kzalloc_node(array_size, GFP_KERNEL, nid);
 | |
| 		else
 | |
| 			section = kzalloc(array_size, GFP_KERNEL);
 | |
| 	} else {
 | |
| 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
 | |
| 	}
 | |
| 
 | |
| 	return section;
 | |
| }
 | |
| 
 | |
| static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 | |
| {
 | |
| 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 | |
| 	struct mem_section *section;
 | |
| 
 | |
| 	if (mem_section[root])
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	section = sparse_index_alloc(nid);
 | |
| 	if (!section)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mem_section[root] = section;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else /* !SPARSEMEM_EXTREME */
 | |
| static inline int sparse_index_init(unsigned long section_nr, int nid)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Although written for the SPARSEMEM_EXTREME case, this happens
 | |
|  * to also work for the flat array case because
 | |
|  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
 | |
|  */
 | |
| int __section_nr(struct mem_section* ms)
 | |
| {
 | |
| 	unsigned long root_nr;
 | |
| 	struct mem_section* root;
 | |
| 
 | |
| 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
 | |
| 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
 | |
| 		if (!root)
 | |
| 			continue;
 | |
| 
 | |
| 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
 | |
| 		     break;
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
 | |
| 
 | |
| 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * During early boot, before section_mem_map is used for an actual
 | |
|  * mem_map, we use section_mem_map to store the section's NUMA
 | |
|  * node.  This keeps us from having to use another data structure.  The
 | |
|  * node information is cleared just before we store the real mem_map.
 | |
|  */
 | |
| static inline unsigned long sparse_encode_early_nid(int nid)
 | |
| {
 | |
| 	return (nid << SECTION_NID_SHIFT);
 | |
| }
 | |
| 
 | |
| static inline int sparse_early_nid(struct mem_section *section)
 | |
| {
 | |
| 	return (section->section_mem_map >> SECTION_NID_SHIFT);
 | |
| }
 | |
| 
 | |
| /* Validate the physical addressing limitations of the model */
 | |
| void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
 | |
| 						unsigned long *end_pfn)
 | |
| {
 | |
| 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity checks - do not allow an architecture to pass
 | |
| 	 * in larger pfns than the maximum scope of sparsemem:
 | |
| 	 */
 | |
| 	if (*start_pfn > max_sparsemem_pfn) {
 | |
| 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 | |
| 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 | |
| 			*start_pfn, *end_pfn, max_sparsemem_pfn);
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		*start_pfn = max_sparsemem_pfn;
 | |
| 		*end_pfn = max_sparsemem_pfn;
 | |
| 	} else if (*end_pfn > max_sparsemem_pfn) {
 | |
| 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 | |
| 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 | |
| 			*start_pfn, *end_pfn, max_sparsemem_pfn);
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		*end_pfn = max_sparsemem_pfn;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Record a memory area against a node. */
 | |
| void __init memory_present(int nid, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	start &= PAGE_SECTION_MASK;
 | |
| 	mminit_validate_memmodel_limits(&start, &end);
 | |
| 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
 | |
| 		unsigned long section = pfn_to_section_nr(pfn);
 | |
| 		struct mem_section *ms;
 | |
| 
 | |
| 		sparse_index_init(section, nid);
 | |
| 		set_section_nid(section, nid);
 | |
| 
 | |
| 		ms = __nr_to_section(section);
 | |
| 		if (!ms->section_mem_map)
 | |
| 			ms->section_mem_map = sparse_encode_early_nid(nid) |
 | |
| 							SECTION_MARKED_PRESENT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Only used by the i386 NUMA architecures, but relatively
 | |
|  * generic code.
 | |
|  */
 | |
| unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
 | |
| 						     unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 	unsigned long nr_pages = 0;
 | |
| 
 | |
| 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 | |
| 		if (nid != early_pfn_to_nid(pfn))
 | |
| 			continue;
 | |
| 
 | |
| 		if (pfn_present(pfn))
 | |
| 			nr_pages += PAGES_PER_SECTION;
 | |
| 	}
 | |
| 
 | |
| 	return nr_pages * sizeof(struct page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Subtle, we encode the real pfn into the mem_map such that
 | |
|  * the identity pfn - section_mem_map will return the actual
 | |
|  * physical page frame number.
 | |
|  */
 | |
| static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
 | |
| {
 | |
| 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decode mem_map from the coded memmap
 | |
|  */
 | |
| struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
 | |
| {
 | |
| 	/* mask off the extra low bits of information */
 | |
| 	coded_mem_map &= SECTION_MAP_MASK;
 | |
| 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
 | |
| }
 | |
| 
 | |
| static int __meminit sparse_init_one_section(struct mem_section *ms,
 | |
| 		unsigned long pnum, struct page *mem_map,
 | |
| 		unsigned long *pageblock_bitmap)
 | |
| {
 | |
| 	if (!present_section(ms))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ms->section_mem_map &= ~SECTION_MAP_MASK;
 | |
| 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
 | |
| 							SECTION_HAS_MEM_MAP;
 | |
|  	ms->pageblock_flags = pageblock_bitmap;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| unsigned long usemap_size(void)
 | |
| {
 | |
| 	unsigned long size_bytes;
 | |
| 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
 | |
| 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
 | |
| 	return size_bytes;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| static unsigned long *__kmalloc_section_usemap(void)
 | |
| {
 | |
| 	return kmalloc(usemap_size(), GFP_KERNEL);
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| static unsigned long * __init
 | |
| sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 | |
| 					 unsigned long size)
 | |
| {
 | |
| 	unsigned long goal, limit;
 | |
| 	unsigned long *p;
 | |
| 	int nid;
 | |
| 	/*
 | |
| 	 * A page may contain usemaps for other sections preventing the
 | |
| 	 * page being freed and making a section unremovable while
 | |
| 	 * other sections referencing the usemap retmain active. Similarly,
 | |
| 	 * a pgdat can prevent a section being removed. If section A
 | |
| 	 * contains a pgdat and section B contains the usemap, both
 | |
| 	 * sections become inter-dependent. This allocates usemaps
 | |
| 	 * from the same section as the pgdat where possible to avoid
 | |
| 	 * this problem.
 | |
| 	 */
 | |
| 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
 | |
| 	limit = goal + (1UL << PA_SECTION_SHIFT);
 | |
| 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
 | |
| again:
 | |
| 	p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
 | |
| 					  SMP_CACHE_BYTES, goal, limit);
 | |
| 	if (!p && limit) {
 | |
| 		limit = 0;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 | |
| {
 | |
| 	unsigned long usemap_snr, pgdat_snr;
 | |
| 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
 | |
| 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
 | |
| 	struct pglist_data *pgdat = NODE_DATA(nid);
 | |
| 	int usemap_nid;
 | |
| 
 | |
| 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
 | |
| 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
 | |
| 	if (usemap_snr == pgdat_snr)
 | |
| 		return;
 | |
| 
 | |
| 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
 | |
| 		/* skip redundant message */
 | |
| 		return;
 | |
| 
 | |
| 	old_usemap_snr = usemap_snr;
 | |
| 	old_pgdat_snr = pgdat_snr;
 | |
| 
 | |
| 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
 | |
| 	if (usemap_nid != nid) {
 | |
| 		printk(KERN_INFO
 | |
| 		       "node %d must be removed before remove section %ld\n",
 | |
| 		       nid, usemap_snr);
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * There is a circular dependency.
 | |
| 	 * Some platforms allow un-removable section because they will just
 | |
| 	 * gather other removable sections for dynamic partitioning.
 | |
| 	 * Just notify un-removable section's number here.
 | |
| 	 */
 | |
| 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
 | |
| 	       pgdat_snr, nid);
 | |
| 	printk(KERN_CONT
 | |
| 	       " have a circular dependency on usemap and pgdat allocations\n");
 | |
| }
 | |
| #else
 | |
| static unsigned long * __init
 | |
| sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 | |
| 					 unsigned long size)
 | |
| {
 | |
| 	return alloc_bootmem_node_nopanic(pgdat, size);
 | |
| }
 | |
| 
 | |
| static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTREMOVE */
 | |
| 
 | |
| static void __init sparse_early_usemaps_alloc_node(void *data,
 | |
| 				 unsigned long pnum_begin,
 | |
| 				 unsigned long pnum_end,
 | |
| 				 unsigned long usemap_count, int nodeid)
 | |
| {
 | |
| 	void *usemap;
 | |
| 	unsigned long pnum;
 | |
| 	unsigned long **usemap_map = (unsigned long **)data;
 | |
| 	int size = usemap_size();
 | |
| 
 | |
| 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
 | |
| 							  size * usemap_count);
 | |
| 	if (!usemap) {
 | |
| 		printk(KERN_WARNING "%s: allocation failed\n", __func__);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 | |
| 		if (!present_section_nr(pnum))
 | |
| 			continue;
 | |
| 		usemap_map[pnum] = usemap;
 | |
| 		usemap += size;
 | |
| 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPARSEMEM_VMEMMAP
 | |
| struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
 | |
| {
 | |
| 	struct page *map;
 | |
| 	unsigned long size;
 | |
| 
 | |
| 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
 | |
| 	if (map)
 | |
| 		return map;
 | |
| 
 | |
| 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 | |
| 	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
 | |
| 					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 | |
| 	return map;
 | |
| }
 | |
| void __init sparse_mem_maps_populate_node(struct page **map_map,
 | |
| 					  unsigned long pnum_begin,
 | |
| 					  unsigned long pnum_end,
 | |
| 					  unsigned long map_count, int nodeid)
 | |
| {
 | |
| 	void *map;
 | |
| 	unsigned long pnum;
 | |
| 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
 | |
| 
 | |
| 	map = alloc_remap(nodeid, size * map_count);
 | |
| 	if (map) {
 | |
| 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 | |
| 			if (!present_section_nr(pnum))
 | |
| 				continue;
 | |
| 			map_map[pnum] = map;
 | |
| 			map += size;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
 | |
| 					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 | |
| 	if (map) {
 | |
| 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 | |
| 			if (!present_section_nr(pnum))
 | |
| 				continue;
 | |
| 			map_map[pnum] = map;
 | |
| 			map += size;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* fallback */
 | |
| 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 | |
| 		struct mem_section *ms;
 | |
| 
 | |
| 		if (!present_section_nr(pnum))
 | |
| 			continue;
 | |
| 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
 | |
| 		if (map_map[pnum])
 | |
| 			continue;
 | |
| 		ms = __nr_to_section(pnum);
 | |
| 		printk(KERN_ERR "%s: sparsemem memory map backing failed "
 | |
| 			"some memory will not be available.\n", __func__);
 | |
| 		ms->section_mem_map = 0;
 | |
| 	}
 | |
| }
 | |
| #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 | |
| static void __init sparse_early_mem_maps_alloc_node(void *data,
 | |
| 				 unsigned long pnum_begin,
 | |
| 				 unsigned long pnum_end,
 | |
| 				 unsigned long map_count, int nodeid)
 | |
| {
 | |
| 	struct page **map_map = (struct page **)data;
 | |
| 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
 | |
| 					 map_count, nodeid);
 | |
| }
 | |
| #else
 | |
| static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
 | |
| {
 | |
| 	struct page *map;
 | |
| 	struct mem_section *ms = __nr_to_section(pnum);
 | |
| 	int nid = sparse_early_nid(ms);
 | |
| 
 | |
| 	map = sparse_mem_map_populate(pnum, nid);
 | |
| 	if (map)
 | |
| 		return map;
 | |
| 
 | |
| 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
 | |
| 			"some memory will not be available.\n", __func__);
 | |
| 	ms->section_mem_map = 0;
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
 | |
|  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
 | |
|  */
 | |
| static void __init alloc_usemap_and_memmap(void (*alloc_func)
 | |
| 					(void *, unsigned long, unsigned long,
 | |
| 					unsigned long, int), void *data)
 | |
| {
 | |
| 	unsigned long pnum;
 | |
| 	unsigned long map_count;
 | |
| 	int nodeid_begin = 0;
 | |
| 	unsigned long pnum_begin = 0;
 | |
| 
 | |
| 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
 | |
| 		struct mem_section *ms;
 | |
| 
 | |
| 		if (!present_section_nr(pnum))
 | |
| 			continue;
 | |
| 		ms = __nr_to_section(pnum);
 | |
| 		nodeid_begin = sparse_early_nid(ms);
 | |
| 		pnum_begin = pnum;
 | |
| 		break;
 | |
| 	}
 | |
| 	map_count = 1;
 | |
| 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
 | |
| 		struct mem_section *ms;
 | |
| 		int nodeid;
 | |
| 
 | |
| 		if (!present_section_nr(pnum))
 | |
| 			continue;
 | |
| 		ms = __nr_to_section(pnum);
 | |
| 		nodeid = sparse_early_nid(ms);
 | |
| 		if (nodeid == nodeid_begin) {
 | |
| 			map_count++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
 | |
| 		alloc_func(data, pnum_begin, pnum,
 | |
| 						map_count, nodeid_begin);
 | |
| 		/* new start, update count etc*/
 | |
| 		nodeid_begin = nodeid;
 | |
| 		pnum_begin = pnum;
 | |
| 		map_count = 1;
 | |
| 	}
 | |
| 	/* ok, last chunk */
 | |
| 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
 | |
| 						map_count, nodeid_begin);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate the accumulated non-linear sections, allocate a mem_map
 | |
|  * for each and record the physical to section mapping.
 | |
|  */
 | |
| void __init sparse_init(void)
 | |
| {
 | |
| 	unsigned long pnum;
 | |
| 	struct page *map;
 | |
| 	unsigned long *usemap;
 | |
| 	unsigned long **usemap_map;
 | |
| 	int size;
 | |
| #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 | |
| 	int size2;
 | |
| 	struct page **map_map;
 | |
| #endif
 | |
| 
 | |
| 	/* see include/linux/mmzone.h 'struct mem_section' definition */
 | |
| 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
 | |
| 
 | |
| 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
 | |
| 	set_pageblock_order();
 | |
| 
 | |
| 	/*
 | |
| 	 * map is using big page (aka 2M in x86 64 bit)
 | |
| 	 * usemap is less one page (aka 24 bytes)
 | |
| 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
 | |
| 	 * make next 2M slip to one more 2M later.
 | |
| 	 * then in big system, the memory will have a lot of holes...
 | |
| 	 * here try to allocate 2M pages continuously.
 | |
| 	 *
 | |
| 	 * powerpc need to call sparse_init_one_section right after each
 | |
| 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
 | |
| 	 */
 | |
| 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
 | |
| 	usemap_map = alloc_bootmem(size);
 | |
| 	if (!usemap_map)
 | |
| 		panic("can not allocate usemap_map\n");
 | |
| 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
 | |
| 							(void *)usemap_map);
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 | |
| 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
 | |
| 	map_map = alloc_bootmem(size2);
 | |
| 	if (!map_map)
 | |
| 		panic("can not allocate map_map\n");
 | |
| 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
 | |
| 							(void *)map_map);
 | |
| #endif
 | |
| 
 | |
| 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
 | |
| 		if (!present_section_nr(pnum))
 | |
| 			continue;
 | |
| 
 | |
| 		usemap = usemap_map[pnum];
 | |
| 		if (!usemap)
 | |
| 			continue;
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 | |
| 		map = map_map[pnum];
 | |
| #else
 | |
| 		map = sparse_early_mem_map_alloc(pnum);
 | |
| #endif
 | |
| 		if (!map)
 | |
| 			continue;
 | |
| 
 | |
| 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
 | |
| 								usemap);
 | |
| 	}
 | |
| 
 | |
| 	vmemmap_populate_print_last();
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 | |
| 	free_bootmem(__pa(map_map), size2);
 | |
| #endif
 | |
| 	free_bootmem(__pa(usemap_map), size);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
 | |
| {
 | |
| 	/* This will make the necessary allocations eventually. */
 | |
| 	return sparse_mem_map_populate(pnum, nid);
 | |
| }
 | |
| static void __kfree_section_memmap(struct page *memmap)
 | |
| {
 | |
| 	unsigned long start = (unsigned long)memmap;
 | |
| 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 | |
| 
 | |
| 	vmemmap_free(start, end);
 | |
| }
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| static void free_map_bootmem(struct page *memmap)
 | |
| {
 | |
| 	unsigned long start = (unsigned long)memmap;
 | |
| 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 | |
| 
 | |
| 	vmemmap_free(start, end);
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTREMOVE */
 | |
| #else
 | |
| static struct page *__kmalloc_section_memmap(void)
 | |
| {
 | |
| 	struct page *page, *ret;
 | |
| 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
 | |
| 
 | |
| 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
 | |
| 	if (page)
 | |
| 		goto got_map_page;
 | |
| 
 | |
| 	ret = vmalloc(memmap_size);
 | |
| 	if (ret)
 | |
| 		goto got_map_ptr;
 | |
| 
 | |
| 	return NULL;
 | |
| got_map_page:
 | |
| 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
 | |
| got_map_ptr:
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
 | |
| {
 | |
| 	return __kmalloc_section_memmap();
 | |
| }
 | |
| 
 | |
| static void __kfree_section_memmap(struct page *memmap)
 | |
| {
 | |
| 	if (is_vmalloc_addr(memmap))
 | |
| 		vfree(memmap);
 | |
| 	else
 | |
| 		free_pages((unsigned long)memmap,
 | |
| 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| static void free_map_bootmem(struct page *memmap)
 | |
| {
 | |
| 	unsigned long maps_section_nr, removing_section_nr, i;
 | |
| 	unsigned long magic, nr_pages;
 | |
| 	struct page *page = virt_to_page(memmap);
 | |
| 
 | |
| 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
 | |
| 		>> PAGE_SHIFT;
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++, page++) {
 | |
| 		magic = (unsigned long) page->lru.next;
 | |
| 
 | |
| 		BUG_ON(magic == NODE_INFO);
 | |
| 
 | |
| 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
 | |
| 		removing_section_nr = page->private;
 | |
| 
 | |
| 		/*
 | |
| 		 * When this function is called, the removing section is
 | |
| 		 * logical offlined state. This means all pages are isolated
 | |
| 		 * from page allocator. If removing section's memmap is placed
 | |
| 		 * on the same section, it must not be freed.
 | |
| 		 * If it is freed, page allocator may allocate it which will
 | |
| 		 * be removed physically soon.
 | |
| 		 */
 | |
| 		if (maps_section_nr != removing_section_nr)
 | |
| 			put_page_bootmem(page);
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTREMOVE */
 | |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */
 | |
| 
 | |
| /*
 | |
|  * returns the number of sections whose mem_maps were properly
 | |
|  * set.  If this is <=0, then that means that the passed-in
 | |
|  * map was not consumed and must be freed.
 | |
|  */
 | |
| int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
 | |
| {
 | |
| 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 	struct mem_section *ms;
 | |
| 	struct page *memmap;
 | |
| 	unsigned long *usemap;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * no locking for this, because it does its own
 | |
| 	 * plus, it does a kmalloc
 | |
| 	 */
 | |
| 	ret = sparse_index_init(section_nr, pgdat->node_id);
 | |
| 	if (ret < 0 && ret != -EEXIST)
 | |
| 		return ret;
 | |
| 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
 | |
| 	if (!memmap)
 | |
| 		return -ENOMEM;
 | |
| 	usemap = __kmalloc_section_usemap();
 | |
| 	if (!usemap) {
 | |
| 		__kfree_section_memmap(memmap);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	pgdat_resize_lock(pgdat, &flags);
 | |
| 
 | |
| 	ms = __pfn_to_section(start_pfn);
 | |
| 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
 | |
| 		ret = -EEXIST;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
 | |
| 
 | |
| 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
 | |
| 
 | |
| 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
 | |
| 
 | |
| out:
 | |
| 	pgdat_resize_unlock(pgdat, &flags);
 | |
| 	if (ret <= 0) {
 | |
| 		kfree(usemap);
 | |
| 		__kfree_section_memmap(memmap);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!memmap)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < PAGES_PER_SECTION; i++) {
 | |
| 		if (PageHWPoison(&memmap[i])) {
 | |
| 			atomic_long_sub(1, &num_poisoned_pages);
 | |
| 			ClearPageHWPoison(&memmap[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void free_section_usemap(struct page *memmap, unsigned long *usemap)
 | |
| {
 | |
| 	struct page *usemap_page;
 | |
| 
 | |
| 	if (!usemap)
 | |
| 		return;
 | |
| 
 | |
| 	usemap_page = virt_to_page(usemap);
 | |
| 	/*
 | |
| 	 * Check to see if allocation came from hot-plug-add
 | |
| 	 */
 | |
| 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
 | |
| 		kfree(usemap);
 | |
| 		if (memmap)
 | |
| 			__kfree_section_memmap(memmap);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The usemap came from bootmem. This is packed with other usemaps
 | |
| 	 * on the section which has pgdat at boot time. Just keep it as is now.
 | |
| 	 */
 | |
| 
 | |
| 	if (memmap)
 | |
| 		free_map_bootmem(memmap);
 | |
| }
 | |
| 
 | |
| void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
 | |
| {
 | |
| 	struct page *memmap = NULL;
 | |
| 	unsigned long *usemap = NULL, flags;
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 
 | |
| 	pgdat_resize_lock(pgdat, &flags);
 | |
| 	if (ms->section_mem_map) {
 | |
| 		usemap = ms->pageblock_flags;
 | |
| 		memmap = sparse_decode_mem_map(ms->section_mem_map,
 | |
| 						__section_nr(ms));
 | |
| 		ms->section_mem_map = 0;
 | |
| 		ms->pageblock_flags = NULL;
 | |
| 	}
 | |
| 	pgdat_resize_unlock(pgdat, &flags);
 | |
| 
 | |
| 	clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
 | |
| 	free_section_usemap(memmap, usemap);
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTREMOVE */
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 |