 a1aeb65a4c
			
		
	
	
	a1aeb65a4c
	
	
	
		
			
			Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			6469 lines
		
	
	
	
		
			179 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6469 lines
		
	
	
	
		
			179 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/page_alloc.c
 | |
|  *
 | |
|  *  Manages the free list, the system allocates free pages here.
 | |
|  *  Note that kmalloc() lives in slab.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *  Swap reorganised 29.12.95, Stephen Tweedie
 | |
|  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 | |
|  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 | |
|  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 | |
|  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 | |
|  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 | |
|  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 | |
|  */
 | |
| 
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kmemcheck.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/vmstat.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/fault-inject.h>
 | |
| #include <linux/page-isolation.h>
 | |
| #include <linux/page_cgroup.h>
 | |
| #include <linux/debugobjects.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/compaction.h>
 | |
| #include <trace/events/kmem.h>
 | |
| #include <linux/ftrace_event.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/page-debug-flags.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/sched/rt.h>
 | |
| 
 | |
| #include <asm/sections.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/div64.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
 | |
| static DEFINE_MUTEX(pcp_batch_high_lock);
 | |
| 
 | |
| #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 | |
| DEFINE_PER_CPU(int, numa_node);
 | |
| EXPORT_PER_CPU_SYMBOL(numa_node);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES
 | |
| /*
 | |
|  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 | |
|  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 | |
|  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 | |
|  * defined in <linux/topology.h>.
 | |
|  */
 | |
| DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 | |
| EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Array of node states.
 | |
|  */
 | |
| nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 | |
| 	[N_POSSIBLE] = NODE_MASK_ALL,
 | |
| 	[N_ONLINE] = { { [0] = 1UL } },
 | |
| #ifndef CONFIG_NUMA
 | |
| 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 | |
| #endif
 | |
| #ifdef CONFIG_MOVABLE_NODE
 | |
| 	[N_MEMORY] = { { [0] = 1UL } },
 | |
| #endif
 | |
| 	[N_CPU] = { { [0] = 1UL } },
 | |
| #endif	/* NUMA */
 | |
| };
 | |
| EXPORT_SYMBOL(node_states);
 | |
| 
 | |
| /* Protect totalram_pages and zone->managed_pages */
 | |
| static DEFINE_SPINLOCK(managed_page_count_lock);
 | |
| 
 | |
| unsigned long totalram_pages __read_mostly;
 | |
| unsigned long totalreserve_pages __read_mostly;
 | |
| /*
 | |
|  * When calculating the number of globally allowed dirty pages, there
 | |
|  * is a certain number of per-zone reserves that should not be
 | |
|  * considered dirtyable memory.  This is the sum of those reserves
 | |
|  * over all existing zones that contribute dirtyable memory.
 | |
|  */
 | |
| unsigned long dirty_balance_reserve __read_mostly;
 | |
| 
 | |
| int percpu_pagelist_fraction;
 | |
| gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| /*
 | |
|  * The following functions are used by the suspend/hibernate code to temporarily
 | |
|  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 | |
|  * while devices are suspended.  To avoid races with the suspend/hibernate code,
 | |
|  * they should always be called with pm_mutex held (gfp_allowed_mask also should
 | |
|  * only be modified with pm_mutex held, unless the suspend/hibernate code is
 | |
|  * guaranteed not to run in parallel with that modification).
 | |
|  */
 | |
| 
 | |
| static gfp_t saved_gfp_mask;
 | |
| 
 | |
| void pm_restore_gfp_mask(void)
 | |
| {
 | |
| 	WARN_ON(!mutex_is_locked(&pm_mutex));
 | |
| 	if (saved_gfp_mask) {
 | |
| 		gfp_allowed_mask = saved_gfp_mask;
 | |
| 		saved_gfp_mask = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void pm_restrict_gfp_mask(void)
 | |
| {
 | |
| 	WARN_ON(!mutex_is_locked(&pm_mutex));
 | |
| 	WARN_ON(saved_gfp_mask);
 | |
| 	saved_gfp_mask = gfp_allowed_mask;
 | |
| 	gfp_allowed_mask &= ~GFP_IOFS;
 | |
| }
 | |
| 
 | |
| bool pm_suspended_storage(void)
 | |
| {
 | |
| 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| #endif /* CONFIG_PM_SLEEP */
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 | |
| int pageblock_order __read_mostly;
 | |
| #endif
 | |
| 
 | |
| static void __free_pages_ok(struct page *page, unsigned int order);
 | |
| 
 | |
| /*
 | |
|  * results with 256, 32 in the lowmem_reserve sysctl:
 | |
|  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 | |
|  *	1G machine -> (16M dma, 784M normal, 224M high)
 | |
|  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 | |
|  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 | |
|  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
 | |
|  *
 | |
|  * TBD: should special case ZONE_DMA32 machines here - in those we normally
 | |
|  * don't need any ZONE_NORMAL reservation
 | |
|  */
 | |
| int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	 256,
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	 256,
 | |
| #endif
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	 32,
 | |
| #endif
 | |
| 	 32,
 | |
| };
 | |
| 
 | |
| EXPORT_SYMBOL(totalram_pages);
 | |
| 
 | |
| static char * const zone_names[MAX_NR_ZONES] = {
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	 "DMA",
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	 "DMA32",
 | |
| #endif
 | |
| 	 "Normal",
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	 "HighMem",
 | |
| #endif
 | |
| 	 "Movable",
 | |
| };
 | |
| 
 | |
| int min_free_kbytes = 1024;
 | |
| int user_min_free_kbytes;
 | |
| 
 | |
| static unsigned long __meminitdata nr_kernel_pages;
 | |
| static unsigned long __meminitdata nr_all_pages;
 | |
| static unsigned long __meminitdata dma_reserve;
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 | |
| static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 | |
| static unsigned long __initdata required_kernelcore;
 | |
| static unsigned long __initdata required_movablecore;
 | |
| static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 | |
| 
 | |
| /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 | |
| int movable_zone;
 | |
| EXPORT_SYMBOL(movable_zone);
 | |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| 
 | |
| #if MAX_NUMNODES > 1
 | |
| int nr_node_ids __read_mostly = MAX_NUMNODES;
 | |
| int nr_online_nodes __read_mostly = 1;
 | |
| EXPORT_SYMBOL(nr_node_ids);
 | |
| EXPORT_SYMBOL(nr_online_nodes);
 | |
| #endif
 | |
| 
 | |
| int page_group_by_mobility_disabled __read_mostly;
 | |
| 
 | |
| void set_pageblock_migratetype(struct page *page, int migratetype)
 | |
| {
 | |
| 	if (unlikely(page_group_by_mobility_disabled &&
 | |
| 		     migratetype < MIGRATE_PCPTYPES))
 | |
| 		migratetype = MIGRATE_UNMOVABLE;
 | |
| 
 | |
| 	set_pageblock_flags_group(page, (unsigned long)migratetype,
 | |
| 					PB_migrate, PB_migrate_end);
 | |
| }
 | |
| 
 | |
| bool oom_killer_disabled __read_mostly;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned seq;
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 	unsigned long sp, start_pfn;
 | |
| 
 | |
| 	do {
 | |
| 		seq = zone_span_seqbegin(zone);
 | |
| 		start_pfn = zone->zone_start_pfn;
 | |
| 		sp = zone->spanned_pages;
 | |
| 		if (!zone_spans_pfn(zone, pfn))
 | |
| 			ret = 1;
 | |
| 	} while (zone_span_seqretry(zone, seq));
 | |
| 
 | |
| 	if (ret)
 | |
| 		pr_err("page %lu outside zone [ %lu - %lu ]\n",
 | |
| 			pfn, start_pfn, start_pfn + sp);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int page_is_consistent(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	if (!pfn_valid_within(page_to_pfn(page)))
 | |
| 		return 0;
 | |
| 	if (zone != page_zone(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| /*
 | |
|  * Temporary debugging check for pages not lying within a given zone.
 | |
|  */
 | |
| static int bad_range(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	if (page_outside_zone_boundaries(zone, page))
 | |
| 		return 1;
 | |
| 	if (!page_is_consistent(zone, page))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static inline int bad_range(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void bad_page(struct page *page)
 | |
| {
 | |
| 	static unsigned long resume;
 | |
| 	static unsigned long nr_shown;
 | |
| 	static unsigned long nr_unshown;
 | |
| 
 | |
| 	/* Don't complain about poisoned pages */
 | |
| 	if (PageHWPoison(page)) {
 | |
| 		page_mapcount_reset(page); /* remove PageBuddy */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow a burst of 60 reports, then keep quiet for that minute;
 | |
| 	 * or allow a steady drip of one report per second.
 | |
| 	 */
 | |
| 	if (nr_shown == 60) {
 | |
| 		if (time_before(jiffies, resume)) {
 | |
| 			nr_unshown++;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (nr_unshown) {
 | |
| 			printk(KERN_ALERT
 | |
| 			      "BUG: Bad page state: %lu messages suppressed\n",
 | |
| 				nr_unshown);
 | |
| 			nr_unshown = 0;
 | |
| 		}
 | |
| 		nr_shown = 0;
 | |
| 	}
 | |
| 	if (nr_shown++ == 0)
 | |
| 		resume = jiffies + 60 * HZ;
 | |
| 
 | |
| 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
 | |
| 		current->comm, page_to_pfn(page));
 | |
| 	dump_page(page);
 | |
| 
 | |
| 	print_modules();
 | |
| 	dump_stack();
 | |
| out:
 | |
| 	/* Leave bad fields for debug, except PageBuddy could make trouble */
 | |
| 	page_mapcount_reset(page); /* remove PageBuddy */
 | |
| 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Higher-order pages are called "compound pages".  They are structured thusly:
 | |
|  *
 | |
|  * The first PAGE_SIZE page is called the "head page".
 | |
|  *
 | |
|  * The remaining PAGE_SIZE pages are called "tail pages".
 | |
|  *
 | |
|  * All pages have PG_compound set.  All tail pages have their ->first_page
 | |
|  * pointing at the head page.
 | |
|  *
 | |
|  * The first tail page's ->lru.next holds the address of the compound page's
 | |
|  * put_page() function.  Its ->lru.prev holds the order of allocation.
 | |
|  * This usage means that zero-order pages may not be compound.
 | |
|  */
 | |
| 
 | |
| static void free_compound_page(struct page *page)
 | |
| {
 | |
| 	__free_pages_ok(page, compound_order(page));
 | |
| }
 | |
| 
 | |
| void prep_compound_page(struct page *page, unsigned long order)
 | |
| {
 | |
| 	int i;
 | |
| 	int nr_pages = 1 << order;
 | |
| 
 | |
| 	set_compound_page_dtor(page, free_compound_page);
 | |
| 	set_compound_order(page, order);
 | |
| 	__SetPageHead(page);
 | |
| 	for (i = 1; i < nr_pages; i++) {
 | |
| 		struct page *p = page + i;
 | |
| 		__SetPageTail(p);
 | |
| 		set_page_count(p, 0);
 | |
| 		p->first_page = page;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* update __split_huge_page_refcount if you change this function */
 | |
| static int destroy_compound_page(struct page *page, unsigned long order)
 | |
| {
 | |
| 	int i;
 | |
| 	int nr_pages = 1 << order;
 | |
| 	int bad = 0;
 | |
| 
 | |
| 	if (unlikely(compound_order(page) != order)) {
 | |
| 		bad_page(page);
 | |
| 		bad++;
 | |
| 	}
 | |
| 
 | |
| 	__ClearPageHead(page);
 | |
| 
 | |
| 	for (i = 1; i < nr_pages; i++) {
 | |
| 		struct page *p = page + i;
 | |
| 
 | |
| 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
 | |
| 			bad_page(page);
 | |
| 			bad++;
 | |
| 		}
 | |
| 		__ClearPageTail(p);
 | |
| 	}
 | |
| 
 | |
| 	return bad;
 | |
| }
 | |
| 
 | |
| static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 | |
| 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
 | |
| 	 */
 | |
| 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 | |
| 	for (i = 0; i < (1 << order); i++)
 | |
| 		clear_highpage(page + i);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| unsigned int _debug_guardpage_minorder;
 | |
| 
 | |
| static int __init debug_guardpage_minorder_setup(char *buf)
 | |
| {
 | |
| 	unsigned long res;
 | |
| 
 | |
| 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 | |
| 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	_debug_guardpage_minorder = res;
 | |
| 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
 | |
| 	return 0;
 | |
| }
 | |
| __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
 | |
| 
 | |
| static inline void set_page_guard_flag(struct page *page)
 | |
| {
 | |
| 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
 | |
| }
 | |
| 
 | |
| static inline void clear_page_guard_flag(struct page *page)
 | |
| {
 | |
| 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
 | |
| }
 | |
| #else
 | |
| static inline void set_page_guard_flag(struct page *page) { }
 | |
| static inline void clear_page_guard_flag(struct page *page) { }
 | |
| #endif
 | |
| 
 | |
| static inline void set_page_order(struct page *page, int order)
 | |
| {
 | |
| 	set_page_private(page, order);
 | |
| 	__SetPageBuddy(page);
 | |
| }
 | |
| 
 | |
| static inline void rmv_page_order(struct page *page)
 | |
| {
 | |
| 	__ClearPageBuddy(page);
 | |
| 	set_page_private(page, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locate the struct page for both the matching buddy in our
 | |
|  * pair (buddy1) and the combined O(n+1) page they form (page).
 | |
|  *
 | |
|  * 1) Any buddy B1 will have an order O twin B2 which satisfies
 | |
|  * the following equation:
 | |
|  *     B2 = B1 ^ (1 << O)
 | |
|  * For example, if the starting buddy (buddy2) is #8 its order
 | |
|  * 1 buddy is #10:
 | |
|  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 | |
|  *
 | |
|  * 2) Any buddy B will have an order O+1 parent P which
 | |
|  * satisfies the following equation:
 | |
|  *     P = B & ~(1 << O)
 | |
|  *
 | |
|  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 | |
|  */
 | |
| static inline unsigned long
 | |
| __find_buddy_index(unsigned long page_idx, unsigned int order)
 | |
| {
 | |
| 	return page_idx ^ (1 << order);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function checks whether a page is free && is the buddy
 | |
|  * we can do coalesce a page and its buddy if
 | |
|  * (a) the buddy is not in a hole &&
 | |
|  * (b) the buddy is in the buddy system &&
 | |
|  * (c) a page and its buddy have the same order &&
 | |
|  * (d) a page and its buddy are in the same zone.
 | |
|  *
 | |
|  * For recording whether a page is in the buddy system, we set ->_mapcount
 | |
|  * PAGE_BUDDY_MAPCOUNT_VALUE.
 | |
|  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 | |
|  * serialized by zone->lock.
 | |
|  *
 | |
|  * For recording page's order, we use page_private(page).
 | |
|  */
 | |
| static inline int page_is_buddy(struct page *page, struct page *buddy,
 | |
| 								int order)
 | |
| {
 | |
| 	if (!pfn_valid_within(page_to_pfn(buddy)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (page_zone_id(page) != page_zone_id(buddy))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (page_is_guard(buddy) && page_order(buddy) == order) {
 | |
| 		VM_BUG_ON(page_count(buddy) != 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (PageBuddy(buddy) && page_order(buddy) == order) {
 | |
| 		VM_BUG_ON(page_count(buddy) != 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Freeing function for a buddy system allocator.
 | |
|  *
 | |
|  * The concept of a buddy system is to maintain direct-mapped table
 | |
|  * (containing bit values) for memory blocks of various "orders".
 | |
|  * The bottom level table contains the map for the smallest allocatable
 | |
|  * units of memory (here, pages), and each level above it describes
 | |
|  * pairs of units from the levels below, hence, "buddies".
 | |
|  * At a high level, all that happens here is marking the table entry
 | |
|  * at the bottom level available, and propagating the changes upward
 | |
|  * as necessary, plus some accounting needed to play nicely with other
 | |
|  * parts of the VM system.
 | |
|  * At each level, we keep a list of pages, which are heads of continuous
 | |
|  * free pages of length of (1 << order) and marked with _mapcount
 | |
|  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 | |
|  * field.
 | |
|  * So when we are allocating or freeing one, we can derive the state of the
 | |
|  * other.  That is, if we allocate a small block, and both were
 | |
|  * free, the remainder of the region must be split into blocks.
 | |
|  * If a block is freed, and its buddy is also free, then this
 | |
|  * triggers coalescing into a block of larger size.
 | |
|  *
 | |
|  * -- nyc
 | |
|  */
 | |
| 
 | |
| static inline void __free_one_page(struct page *page,
 | |
| 		struct zone *zone, unsigned int order,
 | |
| 		int migratetype)
 | |
| {
 | |
| 	unsigned long page_idx;
 | |
| 	unsigned long combined_idx;
 | |
| 	unsigned long uninitialized_var(buddy_idx);
 | |
| 	struct page *buddy;
 | |
| 
 | |
| 	VM_BUG_ON(!zone_is_initialized(zone));
 | |
| 
 | |
| 	if (unlikely(PageCompound(page)))
 | |
| 		if (unlikely(destroy_compound_page(page, order)))
 | |
| 			return;
 | |
| 
 | |
| 	VM_BUG_ON(migratetype == -1);
 | |
| 
 | |
| 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
 | |
| 
 | |
| 	VM_BUG_ON(page_idx & ((1 << order) - 1));
 | |
| 	VM_BUG_ON(bad_range(zone, page));
 | |
| 
 | |
| 	while (order < MAX_ORDER-1) {
 | |
| 		buddy_idx = __find_buddy_index(page_idx, order);
 | |
| 		buddy = page + (buddy_idx - page_idx);
 | |
| 		if (!page_is_buddy(page, buddy, order))
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 | |
| 		 * merge with it and move up one order.
 | |
| 		 */
 | |
| 		if (page_is_guard(buddy)) {
 | |
| 			clear_page_guard_flag(buddy);
 | |
| 			set_page_private(page, 0);
 | |
| 			__mod_zone_freepage_state(zone, 1 << order,
 | |
| 						  migratetype);
 | |
| 		} else {
 | |
| 			list_del(&buddy->lru);
 | |
| 			zone->free_area[order].nr_free--;
 | |
| 			rmv_page_order(buddy);
 | |
| 		}
 | |
| 		combined_idx = buddy_idx & page_idx;
 | |
| 		page = page + (combined_idx - page_idx);
 | |
| 		page_idx = combined_idx;
 | |
| 		order++;
 | |
| 	}
 | |
| 	set_page_order(page, order);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is not the largest possible page, check if the buddy
 | |
| 	 * of the next-highest order is free. If it is, it's possible
 | |
| 	 * that pages are being freed that will coalesce soon. In case,
 | |
| 	 * that is happening, add the free page to the tail of the list
 | |
| 	 * so it's less likely to be used soon and more likely to be merged
 | |
| 	 * as a higher order page
 | |
| 	 */
 | |
| 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 | |
| 		struct page *higher_page, *higher_buddy;
 | |
| 		combined_idx = buddy_idx & page_idx;
 | |
| 		higher_page = page + (combined_idx - page_idx);
 | |
| 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 | |
| 		higher_buddy = higher_page + (buddy_idx - combined_idx);
 | |
| 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 | |
| 			list_add_tail(&page->lru,
 | |
| 				&zone->free_area[order].free_list[migratetype]);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 | |
| out:
 | |
| 	zone->free_area[order].nr_free++;
 | |
| }
 | |
| 
 | |
| static inline int free_pages_check(struct page *page)
 | |
| {
 | |
| 	if (unlikely(page_mapcount(page) |
 | |
| 		(page->mapping != NULL)  |
 | |
| 		(atomic_read(&page->_count) != 0) |
 | |
| 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
 | |
| 		(mem_cgroup_bad_page_check(page)))) {
 | |
| 		bad_page(page);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	page_cpupid_reset_last(page);
 | |
| 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 | |
| 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Frees a number of pages from the PCP lists
 | |
|  * Assumes all pages on list are in same zone, and of same order.
 | |
|  * count is the number of pages to free.
 | |
|  *
 | |
|  * If the zone was previously in an "all pages pinned" state then look to
 | |
|  * see if this freeing clears that state.
 | |
|  *
 | |
|  * And clear the zone's pages_scanned counter, to hold off the "all pages are
 | |
|  * pinned" detection logic.
 | |
|  */
 | |
| static void free_pcppages_bulk(struct zone *zone, int count,
 | |
| 					struct per_cpu_pages *pcp)
 | |
| {
 | |
| 	int migratetype = 0;
 | |
| 	int batch_free = 0;
 | |
| 	int to_free = count;
 | |
| 
 | |
| 	spin_lock(&zone->lock);
 | |
| 	zone->pages_scanned = 0;
 | |
| 
 | |
| 	while (to_free) {
 | |
| 		struct page *page;
 | |
| 		struct list_head *list;
 | |
| 
 | |
| 		/*
 | |
| 		 * Remove pages from lists in a round-robin fashion. A
 | |
| 		 * batch_free count is maintained that is incremented when an
 | |
| 		 * empty list is encountered.  This is so more pages are freed
 | |
| 		 * off fuller lists instead of spinning excessively around empty
 | |
| 		 * lists
 | |
| 		 */
 | |
| 		do {
 | |
| 			batch_free++;
 | |
| 			if (++migratetype == MIGRATE_PCPTYPES)
 | |
| 				migratetype = 0;
 | |
| 			list = &pcp->lists[migratetype];
 | |
| 		} while (list_empty(list));
 | |
| 
 | |
| 		/* This is the only non-empty list. Free them all. */
 | |
| 		if (batch_free == MIGRATE_PCPTYPES)
 | |
| 			batch_free = to_free;
 | |
| 
 | |
| 		do {
 | |
| 			int mt;	/* migratetype of the to-be-freed page */
 | |
| 
 | |
| 			page = list_entry(list->prev, struct page, lru);
 | |
| 			/* must delete as __free_one_page list manipulates */
 | |
| 			list_del(&page->lru);
 | |
| 			mt = get_freepage_migratetype(page);
 | |
| 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
 | |
| 			__free_one_page(page, zone, 0, mt);
 | |
| 			trace_mm_page_pcpu_drain(page, 0, mt);
 | |
| 			if (likely(!is_migrate_isolate_page(page))) {
 | |
| 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
 | |
| 				if (is_migrate_cma(mt))
 | |
| 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
 | |
| 			}
 | |
| 		} while (--to_free && --batch_free && !list_empty(list));
 | |
| 	}
 | |
| 	spin_unlock(&zone->lock);
 | |
| }
 | |
| 
 | |
| static void free_one_page(struct zone *zone, struct page *page, int order,
 | |
| 				int migratetype)
 | |
| {
 | |
| 	spin_lock(&zone->lock);
 | |
| 	zone->pages_scanned = 0;
 | |
| 
 | |
| 	__free_one_page(page, zone, order, migratetype);
 | |
| 	if (unlikely(!is_migrate_isolate(migratetype)))
 | |
| 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 | |
| 	spin_unlock(&zone->lock);
 | |
| }
 | |
| 
 | |
| static bool free_pages_prepare(struct page *page, unsigned int order)
 | |
| {
 | |
| 	int i;
 | |
| 	int bad = 0;
 | |
| 
 | |
| 	trace_mm_page_free(page, order);
 | |
| 	kmemcheck_free_shadow(page, order);
 | |
| 
 | |
| 	if (PageAnon(page))
 | |
| 		page->mapping = NULL;
 | |
| 	for (i = 0; i < (1 << order); i++)
 | |
| 		bad += free_pages_check(page + i);
 | |
| 	if (bad)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!PageHighMem(page)) {
 | |
| 		debug_check_no_locks_freed(page_address(page),
 | |
| 					   PAGE_SIZE << order);
 | |
| 		debug_check_no_obj_freed(page_address(page),
 | |
| 					   PAGE_SIZE << order);
 | |
| 	}
 | |
| 	arch_free_page(page, order);
 | |
| 	kernel_map_pages(page, 1 << order, 0);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __free_pages_ok(struct page *page, unsigned int order)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int migratetype;
 | |
| 
 | |
| 	if (!free_pages_prepare(page, order))
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	__count_vm_events(PGFREE, 1 << order);
 | |
| 	migratetype = get_pageblock_migratetype(page);
 | |
| 	set_freepage_migratetype(page, migratetype);
 | |
| 	free_one_page(page_zone(page), page, order, migratetype);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| void __init __free_pages_bootmem(struct page *page, unsigned int order)
 | |
| {
 | |
| 	unsigned int nr_pages = 1 << order;
 | |
| 	struct page *p = page;
 | |
| 	unsigned int loop;
 | |
| 
 | |
| 	prefetchw(p);
 | |
| 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
 | |
| 		prefetchw(p + 1);
 | |
| 		__ClearPageReserved(p);
 | |
| 		set_page_count(p, 0);
 | |
| 	}
 | |
| 	__ClearPageReserved(p);
 | |
| 	set_page_count(p, 0);
 | |
| 
 | |
| 	page_zone(page)->managed_pages += nr_pages;
 | |
| 	set_page_refcounted(page);
 | |
| 	__free_pages(page, order);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CMA
 | |
| /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
 | |
| void __init init_cma_reserved_pageblock(struct page *page)
 | |
| {
 | |
| 	unsigned i = pageblock_nr_pages;
 | |
| 	struct page *p = page;
 | |
| 
 | |
| 	do {
 | |
| 		__ClearPageReserved(p);
 | |
| 		set_page_count(p, 0);
 | |
| 	} while (++p, --i);
 | |
| 
 | |
| 	set_page_refcounted(page);
 | |
| 	set_pageblock_migratetype(page, MIGRATE_CMA);
 | |
| 	__free_pages(page, pageblock_order);
 | |
| 	adjust_managed_page_count(page, pageblock_nr_pages);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The order of subdivision here is critical for the IO subsystem.
 | |
|  * Please do not alter this order without good reasons and regression
 | |
|  * testing. Specifically, as large blocks of memory are subdivided,
 | |
|  * the order in which smaller blocks are delivered depends on the order
 | |
|  * they're subdivided in this function. This is the primary factor
 | |
|  * influencing the order in which pages are delivered to the IO
 | |
|  * subsystem according to empirical testing, and this is also justified
 | |
|  * by considering the behavior of a buddy system containing a single
 | |
|  * large block of memory acted on by a series of small allocations.
 | |
|  * This behavior is a critical factor in sglist merging's success.
 | |
|  *
 | |
|  * -- nyc
 | |
|  */
 | |
| static inline void expand(struct zone *zone, struct page *page,
 | |
| 	int low, int high, struct free_area *area,
 | |
| 	int migratetype)
 | |
| {
 | |
| 	unsigned long size = 1 << high;
 | |
| 
 | |
| 	while (high > low) {
 | |
| 		area--;
 | |
| 		high--;
 | |
| 		size >>= 1;
 | |
| 		VM_BUG_ON(bad_range(zone, &page[size]));
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 		if (high < debug_guardpage_minorder()) {
 | |
| 			/*
 | |
| 			 * Mark as guard pages (or page), that will allow to
 | |
| 			 * merge back to allocator when buddy will be freed.
 | |
| 			 * Corresponding page table entries will not be touched,
 | |
| 			 * pages will stay not present in virtual address space
 | |
| 			 */
 | |
| 			INIT_LIST_HEAD(&page[size].lru);
 | |
| 			set_page_guard_flag(&page[size]);
 | |
| 			set_page_private(&page[size], high);
 | |
| 			/* Guard pages are not available for any usage */
 | |
| 			__mod_zone_freepage_state(zone, -(1 << high),
 | |
| 						  migratetype);
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 		list_add(&page[size].lru, &area->free_list[migratetype]);
 | |
| 		area->nr_free++;
 | |
| 		set_page_order(&page[size], high);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This page is about to be returned from the page allocator
 | |
|  */
 | |
| static inline int check_new_page(struct page *page)
 | |
| {
 | |
| 	if (unlikely(page_mapcount(page) |
 | |
| 		(page->mapping != NULL)  |
 | |
| 		(atomic_read(&page->_count) != 0)  |
 | |
| 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
 | |
| 		(mem_cgroup_bad_page_check(page)))) {
 | |
| 		bad_page(page);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < (1 << order); i++) {
 | |
| 		struct page *p = page + i;
 | |
| 		if (unlikely(check_new_page(p)))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	set_page_private(page, 0);
 | |
| 	set_page_refcounted(page);
 | |
| 
 | |
| 	arch_alloc_page(page, order);
 | |
| 	kernel_map_pages(page, 1 << order, 1);
 | |
| 
 | |
| 	if (gfp_flags & __GFP_ZERO)
 | |
| 		prep_zero_page(page, order, gfp_flags);
 | |
| 
 | |
| 	if (order && (gfp_flags & __GFP_COMP))
 | |
| 		prep_compound_page(page, order);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Go through the free lists for the given migratetype and remove
 | |
|  * the smallest available page from the freelists
 | |
|  */
 | |
| static inline
 | |
| struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 | |
| 						int migratetype)
 | |
| {
 | |
| 	unsigned int current_order;
 | |
| 	struct free_area *area;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/* Find a page of the appropriate size in the preferred list */
 | |
| 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 | |
| 		area = &(zone->free_area[current_order]);
 | |
| 		if (list_empty(&area->free_list[migratetype]))
 | |
| 			continue;
 | |
| 
 | |
| 		page = list_entry(area->free_list[migratetype].next,
 | |
| 							struct page, lru);
 | |
| 		list_del(&page->lru);
 | |
| 		rmv_page_order(page);
 | |
| 		area->nr_free--;
 | |
| 		expand(zone, page, order, current_order, area, migratetype);
 | |
| 		return page;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This array describes the order lists are fallen back to when
 | |
|  * the free lists for the desirable migrate type are depleted
 | |
|  */
 | |
| static int fallbacks[MIGRATE_TYPES][4] = {
 | |
| 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
 | |
| 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
 | |
| #ifdef CONFIG_CMA
 | |
| 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
 | |
| 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
 | |
| #else
 | |
| 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
 | |
| #endif
 | |
| 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
 | |
| #ifdef CONFIG_MEMORY_ISOLATION
 | |
| 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Move the free pages in a range to the free lists of the requested type.
 | |
|  * Note that start_page and end_pages are not aligned on a pageblock
 | |
|  * boundary. If alignment is required, use move_freepages_block()
 | |
|  */
 | |
| int move_freepages(struct zone *zone,
 | |
| 			  struct page *start_page, struct page *end_page,
 | |
| 			  int migratetype)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned long order;
 | |
| 	int pages_moved = 0;
 | |
| 
 | |
| #ifndef CONFIG_HOLES_IN_ZONE
 | |
| 	/*
 | |
| 	 * page_zone is not safe to call in this context when
 | |
| 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 | |
| 	 * anyway as we check zone boundaries in move_freepages_block().
 | |
| 	 * Remove at a later date when no bug reports exist related to
 | |
| 	 * grouping pages by mobility
 | |
| 	 */
 | |
| 	BUG_ON(page_zone(start_page) != page_zone(end_page));
 | |
| #endif
 | |
| 
 | |
| 	for (page = start_page; page <= end_page;) {
 | |
| 		/* Make sure we are not inadvertently changing nodes */
 | |
| 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
 | |
| 
 | |
| 		if (!pfn_valid_within(page_to_pfn(page))) {
 | |
| 			page++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!PageBuddy(page)) {
 | |
| 			page++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		order = page_order(page);
 | |
| 		list_move(&page->lru,
 | |
| 			  &zone->free_area[order].free_list[migratetype]);
 | |
| 		set_freepage_migratetype(page, migratetype);
 | |
| 		page += 1 << order;
 | |
| 		pages_moved += 1 << order;
 | |
| 	}
 | |
| 
 | |
| 	return pages_moved;
 | |
| }
 | |
| 
 | |
| int move_freepages_block(struct zone *zone, struct page *page,
 | |
| 				int migratetype)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	struct page *start_page, *end_page;
 | |
| 
 | |
| 	start_pfn = page_to_pfn(page);
 | |
| 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
 | |
| 	start_page = pfn_to_page(start_pfn);
 | |
| 	end_page = start_page + pageblock_nr_pages - 1;
 | |
| 	end_pfn = start_pfn + pageblock_nr_pages - 1;
 | |
| 
 | |
| 	/* Do not cross zone boundaries */
 | |
| 	if (!zone_spans_pfn(zone, start_pfn))
 | |
| 		start_page = page;
 | |
| 	if (!zone_spans_pfn(zone, end_pfn))
 | |
| 		return 0;
 | |
| 
 | |
| 	return move_freepages(zone, start_page, end_page, migratetype);
 | |
| }
 | |
| 
 | |
| static void change_pageblock_range(struct page *pageblock_page,
 | |
| 					int start_order, int migratetype)
 | |
| {
 | |
| 	int nr_pageblocks = 1 << (start_order - pageblock_order);
 | |
| 
 | |
| 	while (nr_pageblocks--) {
 | |
| 		set_pageblock_migratetype(pageblock_page, migratetype);
 | |
| 		pageblock_page += pageblock_nr_pages;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If breaking a large block of pages, move all free pages to the preferred
 | |
|  * allocation list. If falling back for a reclaimable kernel allocation, be
 | |
|  * more aggressive about taking ownership of free pages.
 | |
|  *
 | |
|  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
 | |
|  * nor move CMA pages to different free lists. We don't want unmovable pages
 | |
|  * to be allocated from MIGRATE_CMA areas.
 | |
|  *
 | |
|  * Returns the new migratetype of the pageblock (or the same old migratetype
 | |
|  * if it was unchanged).
 | |
|  */
 | |
| static int try_to_steal_freepages(struct zone *zone, struct page *page,
 | |
| 				  int start_type, int fallback_type)
 | |
| {
 | |
| 	int current_order = page_order(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * When borrowing from MIGRATE_CMA, we need to release the excess
 | |
| 	 * buddy pages to CMA itself.
 | |
| 	 */
 | |
| 	if (is_migrate_cma(fallback_type))
 | |
| 		return fallback_type;
 | |
| 
 | |
| 	/* Take ownership for orders >= pageblock_order */
 | |
| 	if (current_order >= pageblock_order) {
 | |
| 		change_pageblock_range(page, current_order, start_type);
 | |
| 		return start_type;
 | |
| 	}
 | |
| 
 | |
| 	if (current_order >= pageblock_order / 2 ||
 | |
| 	    start_type == MIGRATE_RECLAIMABLE ||
 | |
| 	    page_group_by_mobility_disabled) {
 | |
| 		int pages;
 | |
| 
 | |
| 		pages = move_freepages_block(zone, page, start_type);
 | |
| 
 | |
| 		/* Claim the whole block if over half of it is free */
 | |
| 		if (pages >= (1 << (pageblock_order-1)) ||
 | |
| 				page_group_by_mobility_disabled) {
 | |
| 
 | |
| 			set_pageblock_migratetype(page, start_type);
 | |
| 			return start_type;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return fallback_type;
 | |
| }
 | |
| 
 | |
| /* Remove an element from the buddy allocator from the fallback list */
 | |
| static inline struct page *
 | |
| __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
 | |
| {
 | |
| 	struct free_area *area;
 | |
| 	int current_order;
 | |
| 	struct page *page;
 | |
| 	int migratetype, new_type, i;
 | |
| 
 | |
| 	/* Find the largest possible block of pages in the other list */
 | |
| 	for (current_order = MAX_ORDER-1; current_order >= order;
 | |
| 						--current_order) {
 | |
| 		for (i = 0;; i++) {
 | |
| 			migratetype = fallbacks[start_migratetype][i];
 | |
| 
 | |
| 			/* MIGRATE_RESERVE handled later if necessary */
 | |
| 			if (migratetype == MIGRATE_RESERVE)
 | |
| 				break;
 | |
| 
 | |
| 			area = &(zone->free_area[current_order]);
 | |
| 			if (list_empty(&area->free_list[migratetype]))
 | |
| 				continue;
 | |
| 
 | |
| 			page = list_entry(area->free_list[migratetype].next,
 | |
| 					struct page, lru);
 | |
| 			area->nr_free--;
 | |
| 
 | |
| 			new_type = try_to_steal_freepages(zone, page,
 | |
| 							  start_migratetype,
 | |
| 							  migratetype);
 | |
| 
 | |
| 			/* Remove the page from the freelists */
 | |
| 			list_del(&page->lru);
 | |
| 			rmv_page_order(page);
 | |
| 
 | |
| 			expand(zone, page, order, current_order, area,
 | |
| 			       new_type);
 | |
| 
 | |
| 			trace_mm_page_alloc_extfrag(page, order, current_order,
 | |
| 				start_migratetype, migratetype, new_type);
 | |
| 
 | |
| 			return page;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the hard work of removing an element from the buddy allocator.
 | |
|  * Call me with the zone->lock already held.
 | |
|  */
 | |
| static struct page *__rmqueue(struct zone *zone, unsigned int order,
 | |
| 						int migratetype)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| retry_reserve:
 | |
| 	page = __rmqueue_smallest(zone, order, migratetype);
 | |
| 
 | |
| 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
 | |
| 		page = __rmqueue_fallback(zone, order, migratetype);
 | |
| 
 | |
| 		/*
 | |
| 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
 | |
| 		 * is used because __rmqueue_smallest is an inline function
 | |
| 		 * and we want just one call site
 | |
| 		 */
 | |
| 		if (!page) {
 | |
| 			migratetype = MIGRATE_RESERVE;
 | |
| 			goto retry_reserve;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Obtain a specified number of elements from the buddy allocator, all under
 | |
|  * a single hold of the lock, for efficiency.  Add them to the supplied list.
 | |
|  * Returns the number of new pages which were placed at *list.
 | |
|  */
 | |
| static int rmqueue_bulk(struct zone *zone, unsigned int order,
 | |
| 			unsigned long count, struct list_head *list,
 | |
| 			int migratetype, int cold)
 | |
| {
 | |
| 	int mt = migratetype, i;
 | |
| 
 | |
| 	spin_lock(&zone->lock);
 | |
| 	for (i = 0; i < count; ++i) {
 | |
| 		struct page *page = __rmqueue(zone, order, migratetype);
 | |
| 		if (unlikely(page == NULL))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Split buddy pages returned by expand() are received here
 | |
| 		 * in physical page order. The page is added to the callers and
 | |
| 		 * list and the list head then moves forward. From the callers
 | |
| 		 * perspective, the linked list is ordered by page number in
 | |
| 		 * some conditions. This is useful for IO devices that can
 | |
| 		 * merge IO requests if the physical pages are ordered
 | |
| 		 * properly.
 | |
| 		 */
 | |
| 		if (likely(cold == 0))
 | |
| 			list_add(&page->lru, list);
 | |
| 		else
 | |
| 			list_add_tail(&page->lru, list);
 | |
| 		if (IS_ENABLED(CONFIG_CMA)) {
 | |
| 			mt = get_pageblock_migratetype(page);
 | |
| 			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
 | |
| 				mt = migratetype;
 | |
| 		}
 | |
| 		set_freepage_migratetype(page, mt);
 | |
| 		list = &page->lru;
 | |
| 		if (is_migrate_cma(mt))
 | |
| 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
 | |
| 					      -(1 << order));
 | |
| 	}
 | |
| 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
 | |
| 	spin_unlock(&zone->lock);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Called from the vmstat counter updater to drain pagesets of this
 | |
|  * currently executing processor on remote nodes after they have
 | |
|  * expired.
 | |
|  *
 | |
|  * Note that this function must be called with the thread pinned to
 | |
|  * a single processor.
 | |
|  */
 | |
| void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int to_drain;
 | |
| 	unsigned long batch;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	batch = ACCESS_ONCE(pcp->batch);
 | |
| 	if (pcp->count >= batch)
 | |
| 		to_drain = batch;
 | |
| 	else
 | |
| 		to_drain = pcp->count;
 | |
| 	if (to_drain > 0) {
 | |
| 		free_pcppages_bulk(zone, to_drain, pcp);
 | |
| 		pcp->count -= to_drain;
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Drain pages of the indicated processor.
 | |
|  *
 | |
|  * The processor must either be the current processor and the
 | |
|  * thread pinned to the current processor or a processor that
 | |
|  * is not online.
 | |
|  */
 | |
| static void drain_pages(unsigned int cpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		struct per_cpu_pageset *pset;
 | |
| 		struct per_cpu_pages *pcp;
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		pset = per_cpu_ptr(zone->pageset, cpu);
 | |
| 
 | |
| 		pcp = &pset->pcp;
 | |
| 		if (pcp->count) {
 | |
| 			free_pcppages_bulk(zone, pcp->count, pcp);
 | |
| 			pcp->count = 0;
 | |
| 		}
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 | |
|  */
 | |
| void drain_local_pages(void *arg)
 | |
| {
 | |
| 	drain_pages(smp_processor_id());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 | |
|  *
 | |
|  * Note that this code is protected against sending an IPI to an offline
 | |
|  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
 | |
|  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
 | |
|  * nothing keeps CPUs from showing up after we populated the cpumask and
 | |
|  * before the call to on_each_cpu_mask().
 | |
|  */
 | |
| void drain_all_pages(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct per_cpu_pageset *pcp;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate in the BSS so we wont require allocation in
 | |
| 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
 | |
| 	 */
 | |
| 	static cpumask_t cpus_with_pcps;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't care about racing with CPU hotplug event
 | |
| 	 * as offline notification will cause the notified
 | |
| 	 * cpu to drain that CPU pcps and on_each_cpu_mask
 | |
| 	 * disables preemption as part of its processing
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		bool has_pcps = false;
 | |
| 		for_each_populated_zone(zone) {
 | |
| 			pcp = per_cpu_ptr(zone->pageset, cpu);
 | |
| 			if (pcp->pcp.count) {
 | |
| 				has_pcps = true;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (has_pcps)
 | |
| 			cpumask_set_cpu(cpu, &cpus_with_pcps);
 | |
| 		else
 | |
| 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
 | |
| 	}
 | |
| 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| 
 | |
| void mark_free_pages(struct zone *zone)
 | |
| {
 | |
| 	unsigned long pfn, max_zone_pfn;
 | |
| 	unsigned long flags;
 | |
| 	int order, t;
 | |
| 	struct list_head *curr;
 | |
| 
 | |
| 	if (zone_is_empty(zone))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lock, flags);
 | |
| 
 | |
| 	max_zone_pfn = zone_end_pfn(zone);
 | |
| 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 | |
| 		if (pfn_valid(pfn)) {
 | |
| 			struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 			if (!swsusp_page_is_forbidden(page))
 | |
| 				swsusp_unset_page_free(page);
 | |
| 		}
 | |
| 
 | |
| 	for_each_migratetype_order(order, t) {
 | |
| 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
 | |
| 			unsigned long i;
 | |
| 
 | |
| 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
 | |
| 			for (i = 0; i < (1UL << order); i++)
 | |
| 				swsusp_set_page_free(pfn_to_page(pfn + i));
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&zone->lock, flags);
 | |
| }
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| /*
 | |
|  * Free a 0-order page
 | |
|  * cold == 1 ? free a cold page : free a hot page
 | |
|  */
 | |
| void free_hot_cold_page(struct page *page, int cold)
 | |
| {
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 	unsigned long flags;
 | |
| 	int migratetype;
 | |
| 
 | |
| 	if (!free_pages_prepare(page, 0))
 | |
| 		return;
 | |
| 
 | |
| 	migratetype = get_pageblock_migratetype(page);
 | |
| 	set_freepage_migratetype(page, migratetype);
 | |
| 	local_irq_save(flags);
 | |
| 	__count_vm_event(PGFREE);
 | |
| 
 | |
| 	/*
 | |
| 	 * We only track unmovable, reclaimable and movable on pcp lists.
 | |
| 	 * Free ISOLATE pages back to the allocator because they are being
 | |
| 	 * offlined but treat RESERVE as movable pages so we can get those
 | |
| 	 * areas back if necessary. Otherwise, we may have to free
 | |
| 	 * excessively into the page allocator
 | |
| 	 */
 | |
| 	if (migratetype >= MIGRATE_PCPTYPES) {
 | |
| 		if (unlikely(is_migrate_isolate(migratetype))) {
 | |
| 			free_one_page(zone, page, 0, migratetype);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		migratetype = MIGRATE_MOVABLE;
 | |
| 	}
 | |
| 
 | |
| 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
 | |
| 	if (cold)
 | |
| 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
 | |
| 	else
 | |
| 		list_add(&page->lru, &pcp->lists[migratetype]);
 | |
| 	pcp->count++;
 | |
| 	if (pcp->count >= pcp->high) {
 | |
| 		unsigned long batch = ACCESS_ONCE(pcp->batch);
 | |
| 		free_pcppages_bulk(zone, batch, pcp);
 | |
| 		pcp->count -= batch;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a list of 0-order pages
 | |
|  */
 | |
| void free_hot_cold_page_list(struct list_head *list, int cold)
 | |
| {
 | |
| 	struct page *page, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(page, next, list, lru) {
 | |
| 		trace_mm_page_free_batched(page, cold);
 | |
| 		free_hot_cold_page(page, cold);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * split_page takes a non-compound higher-order page, and splits it into
 | |
|  * n (1<<order) sub-pages: page[0..n]
 | |
|  * Each sub-page must be freed individually.
 | |
|  *
 | |
|  * Note: this is probably too low level an operation for use in drivers.
 | |
|  * Please consult with lkml before using this in your driver.
 | |
|  */
 | |
| void split_page(struct page *page, unsigned int order)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	VM_BUG_ON(PageCompound(page));
 | |
| 	VM_BUG_ON(!page_count(page));
 | |
| 
 | |
| #ifdef CONFIG_KMEMCHECK
 | |
| 	/*
 | |
| 	 * Split shadow pages too, because free(page[0]) would
 | |
| 	 * otherwise free the whole shadow.
 | |
| 	 */
 | |
| 	if (kmemcheck_page_is_tracked(page))
 | |
| 		split_page(virt_to_page(page[0].shadow), order);
 | |
| #endif
 | |
| 
 | |
| 	for (i = 1; i < (1 << order); i++)
 | |
| 		set_page_refcounted(page + i);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(split_page);
 | |
| 
 | |
| static int __isolate_free_page(struct page *page, unsigned int order)
 | |
| {
 | |
| 	unsigned long watermark;
 | |
| 	struct zone *zone;
 | |
| 	int mt;
 | |
| 
 | |
| 	BUG_ON(!PageBuddy(page));
 | |
| 
 | |
| 	zone = page_zone(page);
 | |
| 	mt = get_pageblock_migratetype(page);
 | |
| 
 | |
| 	if (!is_migrate_isolate(mt)) {
 | |
| 		/* Obey watermarks as if the page was being allocated */
 | |
| 		watermark = low_wmark_pages(zone) + (1 << order);
 | |
| 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 | |
| 			return 0;
 | |
| 
 | |
| 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
 | |
| 	}
 | |
| 
 | |
| 	/* Remove page from free list */
 | |
| 	list_del(&page->lru);
 | |
| 	zone->free_area[order].nr_free--;
 | |
| 	rmv_page_order(page);
 | |
| 
 | |
| 	/* Set the pageblock if the isolated page is at least a pageblock */
 | |
| 	if (order >= pageblock_order - 1) {
 | |
| 		struct page *endpage = page + (1 << order) - 1;
 | |
| 		for (; page < endpage; page += pageblock_nr_pages) {
 | |
| 			int mt = get_pageblock_migratetype(page);
 | |
| 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
 | |
| 				set_pageblock_migratetype(page,
 | |
| 							  MIGRATE_MOVABLE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 1UL << order;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to split_page except the page is already free. As this is only
 | |
|  * being used for migration, the migratetype of the block also changes.
 | |
|  * As this is called with interrupts disabled, the caller is responsible
 | |
|  * for calling arch_alloc_page() and kernel_map_page() after interrupts
 | |
|  * are enabled.
 | |
|  *
 | |
|  * Note: this is probably too low level an operation for use in drivers.
 | |
|  * Please consult with lkml before using this in your driver.
 | |
|  */
 | |
| int split_free_page(struct page *page)
 | |
| {
 | |
| 	unsigned int order;
 | |
| 	int nr_pages;
 | |
| 
 | |
| 	order = page_order(page);
 | |
| 
 | |
| 	nr_pages = __isolate_free_page(page, order);
 | |
| 	if (!nr_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Split into individual pages */
 | |
| 	set_page_refcounted(page);
 | |
| 	split_page(page, order);
 | |
| 	return nr_pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
 | |
|  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
 | |
|  * or two.
 | |
|  */
 | |
| static inline
 | |
| struct page *buffered_rmqueue(struct zone *preferred_zone,
 | |
| 			struct zone *zone, int order, gfp_t gfp_flags,
 | |
| 			int migratetype)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct page *page;
 | |
| 	int cold = !!(gfp_flags & __GFP_COLD);
 | |
| 
 | |
| again:
 | |
| 	if (likely(order == 0)) {
 | |
| 		struct per_cpu_pages *pcp;
 | |
| 		struct list_head *list;
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
 | |
| 		list = &pcp->lists[migratetype];
 | |
| 		if (list_empty(list)) {
 | |
| 			pcp->count += rmqueue_bulk(zone, 0,
 | |
| 					pcp->batch, list,
 | |
| 					migratetype, cold);
 | |
| 			if (unlikely(list_empty(list)))
 | |
| 				goto failed;
 | |
| 		}
 | |
| 
 | |
| 		if (cold)
 | |
| 			page = list_entry(list->prev, struct page, lru);
 | |
| 		else
 | |
| 			page = list_entry(list->next, struct page, lru);
 | |
| 
 | |
| 		list_del(&page->lru);
 | |
| 		pcp->count--;
 | |
| 	} else {
 | |
| 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
 | |
| 			/*
 | |
| 			 * __GFP_NOFAIL is not to be used in new code.
 | |
| 			 *
 | |
| 			 * All __GFP_NOFAIL callers should be fixed so that they
 | |
| 			 * properly detect and handle allocation failures.
 | |
| 			 *
 | |
| 			 * We most definitely don't want callers attempting to
 | |
| 			 * allocate greater than order-1 page units with
 | |
| 			 * __GFP_NOFAIL.
 | |
| 			 */
 | |
| 			WARN_ON_ONCE(order > 1);
 | |
| 		}
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		page = __rmqueue(zone, order, migratetype);
 | |
| 		spin_unlock(&zone->lock);
 | |
| 		if (!page)
 | |
| 			goto failed;
 | |
| 		__mod_zone_freepage_state(zone, -(1 << order),
 | |
| 					  get_pageblock_migratetype(page));
 | |
| 	}
 | |
| 
 | |
| 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
 | |
| 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
 | |
| 	zone_statistics(preferred_zone, zone, gfp_flags);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	VM_BUG_ON(bad_range(zone, page));
 | |
| 	if (prep_new_page(page, order, gfp_flags))
 | |
| 		goto again;
 | |
| 	return page;
 | |
| 
 | |
| failed:
 | |
| 	local_irq_restore(flags);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIL_PAGE_ALLOC
 | |
| 
 | |
| static struct {
 | |
| 	struct fault_attr attr;
 | |
| 
 | |
| 	u32 ignore_gfp_highmem;
 | |
| 	u32 ignore_gfp_wait;
 | |
| 	u32 min_order;
 | |
| } fail_page_alloc = {
 | |
| 	.attr = FAULT_ATTR_INITIALIZER,
 | |
| 	.ignore_gfp_wait = 1,
 | |
| 	.ignore_gfp_highmem = 1,
 | |
| 	.min_order = 1,
 | |
| };
 | |
| 
 | |
| static int __init setup_fail_page_alloc(char *str)
 | |
| {
 | |
| 	return setup_fault_attr(&fail_page_alloc.attr, str);
 | |
| }
 | |
| __setup("fail_page_alloc=", setup_fail_page_alloc);
 | |
| 
 | |
| static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	if (order < fail_page_alloc.min_order)
 | |
| 		return false;
 | |
| 	if (gfp_mask & __GFP_NOFAIL)
 | |
| 		return false;
 | |
| 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
 | |
| 		return false;
 | |
| 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
 | |
| 		return false;
 | |
| 
 | |
| 	return should_fail(&fail_page_alloc.attr, 1 << order);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 | |
| 
 | |
| static int __init fail_page_alloc_debugfs(void)
 | |
| {
 | |
| 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 | |
| 	struct dentry *dir;
 | |
| 
 | |
| 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
 | |
| 					&fail_page_alloc.attr);
 | |
| 	if (IS_ERR(dir))
 | |
| 		return PTR_ERR(dir);
 | |
| 
 | |
| 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
 | |
| 				&fail_page_alloc.ignore_gfp_wait))
 | |
| 		goto fail;
 | |
| 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
 | |
| 				&fail_page_alloc.ignore_gfp_highmem))
 | |
| 		goto fail;
 | |
| 	if (!debugfs_create_u32("min-order", mode, dir,
 | |
| 				&fail_page_alloc.min_order))
 | |
| 		goto fail;
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	debugfs_remove_recursive(dir);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| late_initcall(fail_page_alloc_debugfs);
 | |
| 
 | |
| #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 | |
| 
 | |
| #else /* CONFIG_FAIL_PAGE_ALLOC */
 | |
| 
 | |
| static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_FAIL_PAGE_ALLOC */
 | |
| 
 | |
| /*
 | |
|  * Return true if free pages are above 'mark'. This takes into account the order
 | |
|  * of the allocation.
 | |
|  */
 | |
| static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
 | |
| 		      int classzone_idx, int alloc_flags, long free_pages)
 | |
| {
 | |
| 	/* free_pages my go negative - that's OK */
 | |
| 	long min = mark;
 | |
| 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
 | |
| 	int o;
 | |
| 	long free_cma = 0;
 | |
| 
 | |
| 	free_pages -= (1 << order) - 1;
 | |
| 	if (alloc_flags & ALLOC_HIGH)
 | |
| 		min -= min / 2;
 | |
| 	if (alloc_flags & ALLOC_HARDER)
 | |
| 		min -= min / 4;
 | |
| #ifdef CONFIG_CMA
 | |
| 	/* If allocation can't use CMA areas don't use free CMA pages */
 | |
| 	if (!(alloc_flags & ALLOC_CMA))
 | |
| 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
 | |
| #endif
 | |
| 
 | |
| 	if (free_pages - free_cma <= min + lowmem_reserve)
 | |
| 		return false;
 | |
| 	for (o = 0; o < order; o++) {
 | |
| 		/* At the next order, this order's pages become unavailable */
 | |
| 		free_pages -= z->free_area[o].nr_free << o;
 | |
| 
 | |
| 		/* Require fewer higher order pages to be free */
 | |
| 		min >>= 1;
 | |
| 
 | |
| 		if (free_pages <= min)
 | |
| 			return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
 | |
| 		      int classzone_idx, int alloc_flags)
 | |
| {
 | |
| 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
 | |
| 					zone_page_state(z, NR_FREE_PAGES));
 | |
| }
 | |
| 
 | |
| bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
 | |
| 		      int classzone_idx, int alloc_flags)
 | |
| {
 | |
| 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
 | |
| 
 | |
| 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
 | |
| 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
 | |
| 
 | |
| 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
 | |
| 								free_pages);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
 | |
|  * skip over zones that are not allowed by the cpuset, or that have
 | |
|  * been recently (in last second) found to be nearly full.  See further
 | |
|  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
 | |
|  * that have to skip over a lot of full or unallowed zones.
 | |
|  *
 | |
|  * If the zonelist cache is present in the passed zonelist, then
 | |
|  * returns a pointer to the allowed node mask (either the current
 | |
|  * tasks mems_allowed, or node_states[N_MEMORY].)
 | |
|  *
 | |
|  * If the zonelist cache is not available for this zonelist, does
 | |
|  * nothing and returns NULL.
 | |
|  *
 | |
|  * If the fullzones BITMAP in the zonelist cache is stale (more than
 | |
|  * a second since last zap'd) then we zap it out (clear its bits.)
 | |
|  *
 | |
|  * We hold off even calling zlc_setup, until after we've checked the
 | |
|  * first zone in the zonelist, on the theory that most allocations will
 | |
|  * be satisfied from that first zone, so best to examine that zone as
 | |
|  * quickly as we can.
 | |
|  */
 | |
| static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
 | |
| {
 | |
| 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
 | |
| 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
 | |
| 
 | |
| 	zlc = zonelist->zlcache_ptr;
 | |
| 	if (!zlc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
 | |
| 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
 | |
| 		zlc->last_full_zap = jiffies;
 | |
| 	}
 | |
| 
 | |
| 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
 | |
| 					&cpuset_current_mems_allowed :
 | |
| 					&node_states[N_MEMORY];
 | |
| 	return allowednodes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given 'z' scanning a zonelist, run a couple of quick checks to see
 | |
|  * if it is worth looking at further for free memory:
 | |
|  *  1) Check that the zone isn't thought to be full (doesn't have its
 | |
|  *     bit set in the zonelist_cache fullzones BITMAP).
 | |
|  *  2) Check that the zones node (obtained from the zonelist_cache
 | |
|  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
 | |
|  * Return true (non-zero) if zone is worth looking at further, or
 | |
|  * else return false (zero) if it is not.
 | |
|  *
 | |
|  * This check -ignores- the distinction between various watermarks,
 | |
|  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
 | |
|  * found to be full for any variation of these watermarks, it will
 | |
|  * be considered full for up to one second by all requests, unless
 | |
|  * we are so low on memory on all allowed nodes that we are forced
 | |
|  * into the second scan of the zonelist.
 | |
|  *
 | |
|  * In the second scan we ignore this zonelist cache and exactly
 | |
|  * apply the watermarks to all zones, even it is slower to do so.
 | |
|  * We are low on memory in the second scan, and should leave no stone
 | |
|  * unturned looking for a free page.
 | |
|  */
 | |
| static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
 | |
| 						nodemask_t *allowednodes)
 | |
| {
 | |
| 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
 | |
| 	int i;				/* index of *z in zonelist zones */
 | |
| 	int n;				/* node that zone *z is on */
 | |
| 
 | |
| 	zlc = zonelist->zlcache_ptr;
 | |
| 	if (!zlc)
 | |
| 		return 1;
 | |
| 
 | |
| 	i = z - zonelist->_zonerefs;
 | |
| 	n = zlc->z_to_n[i];
 | |
| 
 | |
| 	/* This zone is worth trying if it is allowed but not full */
 | |
| 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given 'z' scanning a zonelist, set the corresponding bit in
 | |
|  * zlc->fullzones, so that subsequent attempts to allocate a page
 | |
|  * from that zone don't waste time re-examining it.
 | |
|  */
 | |
| static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
 | |
| {
 | |
| 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
 | |
| 	int i;				/* index of *z in zonelist zones */
 | |
| 
 | |
| 	zlc = zonelist->zlcache_ptr;
 | |
| 	if (!zlc)
 | |
| 		return;
 | |
| 
 | |
| 	i = z - zonelist->_zonerefs;
 | |
| 
 | |
| 	set_bit(i, zlc->fullzones);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * clear all zones full, called after direct reclaim makes progress so that
 | |
|  * a zone that was recently full is not skipped over for up to a second
 | |
|  */
 | |
| static void zlc_clear_zones_full(struct zonelist *zonelist)
 | |
| {
 | |
| 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
 | |
| 
 | |
| 	zlc = zonelist->zlcache_ptr;
 | |
| 	if (!zlc)
 | |
| 		return;
 | |
| 
 | |
| 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
 | |
| }
 | |
| 
 | |
| static bool zone_local(struct zone *local_zone, struct zone *zone)
 | |
| {
 | |
| 	return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
 | |
| }
 | |
| 
 | |
| static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 | |
| {
 | |
| 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
 | |
| }
 | |
| 
 | |
| static void __paginginit init_zone_allows_reclaim(int nid)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_node(i)
 | |
| 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
 | |
| 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
 | |
| 		else
 | |
| 			zone_reclaim_mode = 1;
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_NUMA */
 | |
| 
 | |
| static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
 | |
| 				nodemask_t *allowednodes)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void zlc_clear_zones_full(struct zonelist *zonelist)
 | |
| {
 | |
| }
 | |
| 
 | |
| static bool zone_local(struct zone *local_zone, struct zone *zone)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void init_zone_allows_reclaim(int nid)
 | |
| {
 | |
| }
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 
 | |
| /*
 | |
|  * get_page_from_freelist goes through the zonelist trying to allocate
 | |
|  * a page.
 | |
|  */
 | |
| static struct page *
 | |
| get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
 | |
| 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
 | |
| 		struct zone *preferred_zone, int migratetype)
 | |
| {
 | |
| 	struct zoneref *z;
 | |
| 	struct page *page = NULL;
 | |
| 	int classzone_idx;
 | |
| 	struct zone *zone;
 | |
| 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
 | |
| 	int zlc_active = 0;		/* set if using zonelist_cache */
 | |
| 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
 | |
| 
 | |
| 	classzone_idx = zone_idx(preferred_zone);
 | |
| zonelist_scan:
 | |
| 	/*
 | |
| 	 * Scan zonelist, looking for a zone with enough free.
 | |
| 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
 | |
| 	 */
 | |
| 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 | |
| 						high_zoneidx, nodemask) {
 | |
| 		unsigned long mark;
 | |
| 
 | |
| 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
 | |
| 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
 | |
| 				continue;
 | |
| 		if ((alloc_flags & ALLOC_CPUSET) &&
 | |
| 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
 | |
| 				continue;
 | |
| 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
 | |
| 		if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
 | |
| 			goto try_this_zone;
 | |
| 		/*
 | |
| 		 * Distribute pages in proportion to the individual
 | |
| 		 * zone size to ensure fair page aging.  The zone a
 | |
| 		 * page was allocated in should have no effect on the
 | |
| 		 * time the page has in memory before being reclaimed.
 | |
| 		 *
 | |
| 		 * When zone_reclaim_mode is enabled, try to stay in
 | |
| 		 * local zones in the fastpath.  If that fails, the
 | |
| 		 * slowpath is entered, which will do another pass
 | |
| 		 * starting with the local zones, but ultimately fall
 | |
| 		 * back to remote zones that do not partake in the
 | |
| 		 * fairness round-robin cycle of this zonelist.
 | |
| 		 */
 | |
| 		if (alloc_flags & ALLOC_WMARK_LOW) {
 | |
| 			if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
 | |
| 				continue;
 | |
| 			if (zone_reclaim_mode &&
 | |
| 			    !zone_local(preferred_zone, zone))
 | |
| 				continue;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * When allocating a page cache page for writing, we
 | |
| 		 * want to get it from a zone that is within its dirty
 | |
| 		 * limit, such that no single zone holds more than its
 | |
| 		 * proportional share of globally allowed dirty pages.
 | |
| 		 * The dirty limits take into account the zone's
 | |
| 		 * lowmem reserves and high watermark so that kswapd
 | |
| 		 * should be able to balance it without having to
 | |
| 		 * write pages from its LRU list.
 | |
| 		 *
 | |
| 		 * This may look like it could increase pressure on
 | |
| 		 * lower zones by failing allocations in higher zones
 | |
| 		 * before they are full.  But the pages that do spill
 | |
| 		 * over are limited as the lower zones are protected
 | |
| 		 * by this very same mechanism.  It should not become
 | |
| 		 * a practical burden to them.
 | |
| 		 *
 | |
| 		 * XXX: For now, allow allocations to potentially
 | |
| 		 * exceed the per-zone dirty limit in the slowpath
 | |
| 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
 | |
| 		 * which is important when on a NUMA setup the allowed
 | |
| 		 * zones are together not big enough to reach the
 | |
| 		 * global limit.  The proper fix for these situations
 | |
| 		 * will require awareness of zones in the
 | |
| 		 * dirty-throttling and the flusher threads.
 | |
| 		 */
 | |
| 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
 | |
| 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
 | |
| 			goto this_zone_full;
 | |
| 
 | |
| 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
 | |
| 		if (!zone_watermark_ok(zone, order, mark,
 | |
| 				       classzone_idx, alloc_flags)) {
 | |
| 			int ret;
 | |
| 
 | |
| 			if (IS_ENABLED(CONFIG_NUMA) &&
 | |
| 					!did_zlc_setup && nr_online_nodes > 1) {
 | |
| 				/*
 | |
| 				 * we do zlc_setup if there are multiple nodes
 | |
| 				 * and before considering the first zone allowed
 | |
| 				 * by the cpuset.
 | |
| 				 */
 | |
| 				allowednodes = zlc_setup(zonelist, alloc_flags);
 | |
| 				zlc_active = 1;
 | |
| 				did_zlc_setup = 1;
 | |
| 			}
 | |
| 
 | |
| 			if (zone_reclaim_mode == 0 ||
 | |
| 			    !zone_allows_reclaim(preferred_zone, zone))
 | |
| 				goto this_zone_full;
 | |
| 
 | |
| 			/*
 | |
| 			 * As we may have just activated ZLC, check if the first
 | |
| 			 * eligible zone has failed zone_reclaim recently.
 | |
| 			 */
 | |
| 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
 | |
| 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
 | |
| 				continue;
 | |
| 
 | |
| 			ret = zone_reclaim(zone, gfp_mask, order);
 | |
| 			switch (ret) {
 | |
| 			case ZONE_RECLAIM_NOSCAN:
 | |
| 				/* did not scan */
 | |
| 				continue;
 | |
| 			case ZONE_RECLAIM_FULL:
 | |
| 				/* scanned but unreclaimable */
 | |
| 				continue;
 | |
| 			default:
 | |
| 				/* did we reclaim enough */
 | |
| 				if (zone_watermark_ok(zone, order, mark,
 | |
| 						classzone_idx, alloc_flags))
 | |
| 					goto try_this_zone;
 | |
| 
 | |
| 				/*
 | |
| 				 * Failed to reclaim enough to meet watermark.
 | |
| 				 * Only mark the zone full if checking the min
 | |
| 				 * watermark or if we failed to reclaim just
 | |
| 				 * 1<<order pages or else the page allocator
 | |
| 				 * fastpath will prematurely mark zones full
 | |
| 				 * when the watermark is between the low and
 | |
| 				 * min watermarks.
 | |
| 				 */
 | |
| 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
 | |
| 				    ret == ZONE_RECLAIM_SOME)
 | |
| 					goto this_zone_full;
 | |
| 
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| try_this_zone:
 | |
| 		page = buffered_rmqueue(preferred_zone, zone, order,
 | |
| 						gfp_mask, migratetype);
 | |
| 		if (page)
 | |
| 			break;
 | |
| this_zone_full:
 | |
| 		if (IS_ENABLED(CONFIG_NUMA))
 | |
| 			zlc_mark_zone_full(zonelist, z);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
 | |
| 		/* Disable zlc cache for second zonelist scan */
 | |
| 		zlc_active = 0;
 | |
| 		goto zonelist_scan;
 | |
| 	}
 | |
| 
 | |
| 	if (page)
 | |
| 		/*
 | |
| 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
 | |
| 		 * necessary to allocate the page. The expectation is
 | |
| 		 * that the caller is taking steps that will free more
 | |
| 		 * memory. The caller should avoid the page being used
 | |
| 		 * for !PFMEMALLOC purposes.
 | |
| 		 */
 | |
| 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Large machines with many possible nodes should not always dump per-node
 | |
|  * meminfo in irq context.
 | |
|  */
 | |
| static inline bool should_suppress_show_mem(void)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 
 | |
| #if NODES_SHIFT > 8
 | |
| 	ret = in_interrupt();
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static DEFINE_RATELIMIT_STATE(nopage_rs,
 | |
| 		DEFAULT_RATELIMIT_INTERVAL,
 | |
| 		DEFAULT_RATELIMIT_BURST);
 | |
| 
 | |
| void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
 | |
| {
 | |
| 	unsigned int filter = SHOW_MEM_FILTER_NODES;
 | |
| 
 | |
| 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
 | |
| 	    debug_guardpage_minorder() > 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Walking all memory to count page types is very expensive and should
 | |
| 	 * be inhibited in non-blockable contexts.
 | |
| 	 */
 | |
| 	if (!(gfp_mask & __GFP_WAIT))
 | |
| 		filter |= SHOW_MEM_FILTER_PAGE_COUNT;
 | |
| 
 | |
| 	/*
 | |
| 	 * This documents exceptions given to allocations in certain
 | |
| 	 * contexts that are allowed to allocate outside current's set
 | |
| 	 * of allowed nodes.
 | |
| 	 */
 | |
| 	if (!(gfp_mask & __GFP_NOMEMALLOC))
 | |
| 		if (test_thread_flag(TIF_MEMDIE) ||
 | |
| 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
 | |
| 			filter &= ~SHOW_MEM_FILTER_NODES;
 | |
| 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
 | |
| 		filter &= ~SHOW_MEM_FILTER_NODES;
 | |
| 
 | |
| 	if (fmt) {
 | |
| 		struct va_format vaf;
 | |
| 		va_list args;
 | |
| 
 | |
| 		va_start(args, fmt);
 | |
| 
 | |
| 		vaf.fmt = fmt;
 | |
| 		vaf.va = &args;
 | |
| 
 | |
| 		pr_warn("%pV", &vaf);
 | |
| 
 | |
| 		va_end(args);
 | |
| 	}
 | |
| 
 | |
| 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
 | |
| 		current->comm, order, gfp_mask);
 | |
| 
 | |
| 	dump_stack();
 | |
| 	if (!should_suppress_show_mem())
 | |
| 		show_mem(filter);
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| should_alloc_retry(gfp_t gfp_mask, unsigned int order,
 | |
| 				unsigned long did_some_progress,
 | |
| 				unsigned long pages_reclaimed)
 | |
| {
 | |
| 	/* Do not loop if specifically requested */
 | |
| 	if (gfp_mask & __GFP_NORETRY)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Always retry if specifically requested */
 | |
| 	if (gfp_mask & __GFP_NOFAIL)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
 | |
| 	 * making forward progress without invoking OOM. Suspend also disables
 | |
| 	 * storage devices so kswapd will not help. Bail if we are suspending.
 | |
| 	 */
 | |
| 	if (!did_some_progress && pm_suspended_storage())
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
 | |
| 	 * means __GFP_NOFAIL, but that may not be true in other
 | |
| 	 * implementations.
 | |
| 	 */
 | |
| 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
 | |
| 	 * specified, then we retry until we no longer reclaim any pages
 | |
| 	 * (above), or we've reclaimed an order of pages at least as
 | |
| 	 * large as the allocation's order. In both cases, if the
 | |
| 	 * allocation still fails, we stop retrying.
 | |
| 	 */
 | |
| 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline struct page *
 | |
| __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
 | |
| 	struct zonelist *zonelist, enum zone_type high_zoneidx,
 | |
| 	nodemask_t *nodemask, struct zone *preferred_zone,
 | |
| 	int migratetype)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/* Acquire the OOM killer lock for the zones in zonelist */
 | |
| 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Go through the zonelist yet one more time, keep very high watermark
 | |
| 	 * here, this is only to catch a parallel oom killing, we must fail if
 | |
| 	 * we're still under heavy pressure.
 | |
| 	 */
 | |
| 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
 | |
| 		order, zonelist, high_zoneidx,
 | |
| 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
 | |
| 		preferred_zone, migratetype);
 | |
| 	if (page)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!(gfp_mask & __GFP_NOFAIL)) {
 | |
| 		/* The OOM killer will not help higher order allocs */
 | |
| 		if (order > PAGE_ALLOC_COSTLY_ORDER)
 | |
| 			goto out;
 | |
| 		/* The OOM killer does not needlessly kill tasks for lowmem */
 | |
| 		if (high_zoneidx < ZONE_NORMAL)
 | |
| 			goto out;
 | |
| 		/*
 | |
| 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
 | |
| 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
 | |
| 		 * The caller should handle page allocation failure by itself if
 | |
| 		 * it specifies __GFP_THISNODE.
 | |
| 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
 | |
| 		 */
 | |
| 		if (gfp_mask & __GFP_THISNODE)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	/* Exhausted what can be done so it's blamo time */
 | |
| 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
 | |
| 
 | |
| out:
 | |
| 	clear_zonelist_oom(zonelist, gfp_mask);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPACTION
 | |
| /* Try memory compaction for high-order allocations before reclaim */
 | |
| static struct page *
 | |
| __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
 | |
| 	struct zonelist *zonelist, enum zone_type high_zoneidx,
 | |
| 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
 | |
| 	int migratetype, bool sync_migration,
 | |
| 	bool *contended_compaction, bool *deferred_compaction,
 | |
| 	unsigned long *did_some_progress)
 | |
| {
 | |
| 	if (!order)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (compaction_deferred(preferred_zone, order)) {
 | |
| 		*deferred_compaction = true;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	current->flags |= PF_MEMALLOC;
 | |
| 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
 | |
| 						nodemask, sync_migration,
 | |
| 						contended_compaction);
 | |
| 	current->flags &= ~PF_MEMALLOC;
 | |
| 
 | |
| 	if (*did_some_progress != COMPACT_SKIPPED) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		/* Page migration frees to the PCP lists but we want merging */
 | |
| 		drain_pages(get_cpu());
 | |
| 		put_cpu();
 | |
| 
 | |
| 		page = get_page_from_freelist(gfp_mask, nodemask,
 | |
| 				order, zonelist, high_zoneidx,
 | |
| 				alloc_flags & ~ALLOC_NO_WATERMARKS,
 | |
| 				preferred_zone, migratetype);
 | |
| 		if (page) {
 | |
| 			preferred_zone->compact_blockskip_flush = false;
 | |
| 			preferred_zone->compact_considered = 0;
 | |
| 			preferred_zone->compact_defer_shift = 0;
 | |
| 			if (order >= preferred_zone->compact_order_failed)
 | |
| 				preferred_zone->compact_order_failed = order + 1;
 | |
| 			count_vm_event(COMPACTSUCCESS);
 | |
| 			return page;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * It's bad if compaction run occurs and fails.
 | |
| 		 * The most likely reason is that pages exist,
 | |
| 		 * but not enough to satisfy watermarks.
 | |
| 		 */
 | |
| 		count_vm_event(COMPACTFAIL);
 | |
| 
 | |
| 		/*
 | |
| 		 * As async compaction considers a subset of pageblocks, only
 | |
| 		 * defer if the failure was a sync compaction failure.
 | |
| 		 */
 | |
| 		if (sync_migration)
 | |
| 			defer_compaction(preferred_zone, order);
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| #else
 | |
| static inline struct page *
 | |
| __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
 | |
| 	struct zonelist *zonelist, enum zone_type high_zoneidx,
 | |
| 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
 | |
| 	int migratetype, bool sync_migration,
 | |
| 	bool *contended_compaction, bool *deferred_compaction,
 | |
| 	unsigned long *did_some_progress)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif /* CONFIG_COMPACTION */
 | |
| 
 | |
| /* Perform direct synchronous page reclaim */
 | |
| static int
 | |
| __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
 | |
| 		  nodemask_t *nodemask)
 | |
| {
 | |
| 	struct reclaim_state reclaim_state;
 | |
| 	int progress;
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	/* We now go into synchronous reclaim */
 | |
| 	cpuset_memory_pressure_bump();
 | |
| 	current->flags |= PF_MEMALLOC;
 | |
| 	lockdep_set_current_reclaim_state(gfp_mask);
 | |
| 	reclaim_state.reclaimed_slab = 0;
 | |
| 	current->reclaim_state = &reclaim_state;
 | |
| 
 | |
| 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
 | |
| 
 | |
| 	current->reclaim_state = NULL;
 | |
| 	lockdep_clear_current_reclaim_state();
 | |
| 	current->flags &= ~PF_MEMALLOC;
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	return progress;
 | |
| }
 | |
| 
 | |
| /* The really slow allocator path where we enter direct reclaim */
 | |
| static inline struct page *
 | |
| __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
 | |
| 	struct zonelist *zonelist, enum zone_type high_zoneidx,
 | |
| 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
 | |
| 	int migratetype, unsigned long *did_some_progress)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	bool drained = false;
 | |
| 
 | |
| 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
 | |
| 					       nodemask);
 | |
| 	if (unlikely(!(*did_some_progress)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* After successful reclaim, reconsider all zones for allocation */
 | |
| 	if (IS_ENABLED(CONFIG_NUMA))
 | |
| 		zlc_clear_zones_full(zonelist);
 | |
| 
 | |
| retry:
 | |
| 	page = get_page_from_freelist(gfp_mask, nodemask, order,
 | |
| 					zonelist, high_zoneidx,
 | |
| 					alloc_flags & ~ALLOC_NO_WATERMARKS,
 | |
| 					preferred_zone, migratetype);
 | |
| 
 | |
| 	/*
 | |
| 	 * If an allocation failed after direct reclaim, it could be because
 | |
| 	 * pages are pinned on the per-cpu lists. Drain them and try again
 | |
| 	 */
 | |
| 	if (!page && !drained) {
 | |
| 		drain_all_pages();
 | |
| 		drained = true;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called in the allocator slow-path if the allocation request is of
 | |
|  * sufficient urgency to ignore watermarks and take other desperate measures
 | |
|  */
 | |
| static inline struct page *
 | |
| __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
 | |
| 	struct zonelist *zonelist, enum zone_type high_zoneidx,
 | |
| 	nodemask_t *nodemask, struct zone *preferred_zone,
 | |
| 	int migratetype)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	do {
 | |
| 		page = get_page_from_freelist(gfp_mask, nodemask, order,
 | |
| 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
 | |
| 			preferred_zone, migratetype);
 | |
| 
 | |
| 		if (!page && gfp_mask & __GFP_NOFAIL)
 | |
| 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
 | |
| 	} while (!page && (gfp_mask & __GFP_NOFAIL));
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
 | |
| 			     struct zonelist *zonelist,
 | |
| 			     enum zone_type high_zoneidx,
 | |
| 			     struct zone *preferred_zone)
 | |
| {
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
 | |
| 		if (!(gfp_mask & __GFP_NO_KSWAPD))
 | |
| 			wakeup_kswapd(zone, order, zone_idx(preferred_zone));
 | |
| 		/*
 | |
| 		 * Only reset the batches of zones that were actually
 | |
| 		 * considered in the fast path, we don't want to
 | |
| 		 * thrash fairness information for zones that are not
 | |
| 		 * actually part of this zonelist's round-robin cycle.
 | |
| 		 */
 | |
| 		if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
 | |
| 			continue;
 | |
| 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
 | |
| 				    high_wmark_pages(zone) -
 | |
| 				    low_wmark_pages(zone) -
 | |
| 				    zone_page_state(zone, NR_ALLOC_BATCH));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| gfp_to_alloc_flags(gfp_t gfp_mask)
 | |
| {
 | |
| 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
 | |
| 	const gfp_t wait = gfp_mask & __GFP_WAIT;
 | |
| 
 | |
| 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
 | |
| 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 | |
| 
 | |
| 	/*
 | |
| 	 * The caller may dip into page reserves a bit more if the caller
 | |
| 	 * cannot run direct reclaim, or if the caller has realtime scheduling
 | |
| 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
 | |
| 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
 | |
| 	 */
 | |
| 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 | |
| 
 | |
| 	if (!wait) {
 | |
| 		/*
 | |
| 		 * Not worth trying to allocate harder for
 | |
| 		 * __GFP_NOMEMALLOC even if it can't schedule.
 | |
| 		 */
 | |
| 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
 | |
| 			alloc_flags |= ALLOC_HARDER;
 | |
| 		/*
 | |
| 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
 | |
| 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
 | |
| 		 */
 | |
| 		alloc_flags &= ~ALLOC_CPUSET;
 | |
| 	} else if (unlikely(rt_task(current)) && !in_interrupt())
 | |
| 		alloc_flags |= ALLOC_HARDER;
 | |
| 
 | |
| 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
 | |
| 		if (gfp_mask & __GFP_MEMALLOC)
 | |
| 			alloc_flags |= ALLOC_NO_WATERMARKS;
 | |
| 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
 | |
| 			alloc_flags |= ALLOC_NO_WATERMARKS;
 | |
| 		else if (!in_interrupt() &&
 | |
| 				((current->flags & PF_MEMALLOC) ||
 | |
| 				 unlikely(test_thread_flag(TIF_MEMDIE))))
 | |
| 			alloc_flags |= ALLOC_NO_WATERMARKS;
 | |
| 	}
 | |
| #ifdef CONFIG_CMA
 | |
| 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
 | |
| 		alloc_flags |= ALLOC_CMA;
 | |
| #endif
 | |
| 	return alloc_flags;
 | |
| }
 | |
| 
 | |
| bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
 | |
| {
 | |
| 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
 | |
| }
 | |
| 
 | |
| static inline struct page *
 | |
| __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
 | |
| 	struct zonelist *zonelist, enum zone_type high_zoneidx,
 | |
| 	nodemask_t *nodemask, struct zone *preferred_zone,
 | |
| 	int migratetype)
 | |
| {
 | |
| 	const gfp_t wait = gfp_mask & __GFP_WAIT;
 | |
| 	struct page *page = NULL;
 | |
| 	int alloc_flags;
 | |
| 	unsigned long pages_reclaimed = 0;
 | |
| 	unsigned long did_some_progress;
 | |
| 	bool sync_migration = false;
 | |
| 	bool deferred_compaction = false;
 | |
| 	bool contended_compaction = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the slowpath, we sanity check order to avoid ever trying to
 | |
| 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
 | |
| 	 * be using allocators in order of preference for an area that is
 | |
| 	 * too large.
 | |
| 	 */
 | |
| 	if (order >= MAX_ORDER) {
 | |
| 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
 | |
| 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
 | |
| 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
 | |
| 	 * using a larger set of nodes after it has established that the
 | |
| 	 * allowed per node queues are empty and that nodes are
 | |
| 	 * over allocated.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_NUMA) &&
 | |
| 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
 | |
| 		goto nopage;
 | |
| 
 | |
| restart:
 | |
| 	prepare_slowpath(gfp_mask, order, zonelist,
 | |
| 			 high_zoneidx, preferred_zone);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, we're below the kswapd watermark and have kicked background
 | |
| 	 * reclaim. Now things get more complex, so set up alloc_flags according
 | |
| 	 * to how we want to proceed.
 | |
| 	 */
 | |
| 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the true preferred zone if the allocation is unconstrained by
 | |
| 	 * cpusets.
 | |
| 	 */
 | |
| 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
 | |
| 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
 | |
| 					&preferred_zone);
 | |
| 
 | |
| rebalance:
 | |
| 	/* This is the last chance, in general, before the goto nopage. */
 | |
| 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
 | |
| 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
 | |
| 			preferred_zone, migratetype);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	/* Allocate without watermarks if the context allows */
 | |
| 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
 | |
| 		/*
 | |
| 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
 | |
| 		 * the allocation is high priority and these type of
 | |
| 		 * allocations are system rather than user orientated
 | |
| 		 */
 | |
| 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
 | |
| 
 | |
| 		page = __alloc_pages_high_priority(gfp_mask, order,
 | |
| 				zonelist, high_zoneidx, nodemask,
 | |
| 				preferred_zone, migratetype);
 | |
| 		if (page) {
 | |
| 			goto got_pg;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Atomic allocations - we can't balance anything */
 | |
| 	if (!wait)
 | |
| 		goto nopage;
 | |
| 
 | |
| 	/* Avoid recursion of direct reclaim */
 | |
| 	if (current->flags & PF_MEMALLOC)
 | |
| 		goto nopage;
 | |
| 
 | |
| 	/* Avoid allocations with no watermarks from looping endlessly */
 | |
| 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
 | |
| 		goto nopage;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try direct compaction. The first pass is asynchronous. Subsequent
 | |
| 	 * attempts after direct reclaim are synchronous
 | |
| 	 */
 | |
| 	page = __alloc_pages_direct_compact(gfp_mask, order,
 | |
| 					zonelist, high_zoneidx,
 | |
| 					nodemask,
 | |
| 					alloc_flags, preferred_zone,
 | |
| 					migratetype, sync_migration,
 | |
| 					&contended_compaction,
 | |
| 					&deferred_compaction,
 | |
| 					&did_some_progress);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 	sync_migration = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If compaction is deferred for high-order allocations, it is because
 | |
| 	 * sync compaction recently failed. In this is the case and the caller
 | |
| 	 * requested a movable allocation that does not heavily disrupt the
 | |
| 	 * system then fail the allocation instead of entering direct reclaim.
 | |
| 	 */
 | |
| 	if ((deferred_compaction || contended_compaction) &&
 | |
| 						(gfp_mask & __GFP_NO_KSWAPD))
 | |
| 		goto nopage;
 | |
| 
 | |
| 	/* Try direct reclaim and then allocating */
 | |
| 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
 | |
| 					zonelist, high_zoneidx,
 | |
| 					nodemask,
 | |
| 					alloc_flags, preferred_zone,
 | |
| 					migratetype, &did_some_progress);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we failed to make any progress reclaiming, then we are
 | |
| 	 * running out of options and have to consider going OOM
 | |
| 	 */
 | |
| 	if (!did_some_progress) {
 | |
| 		if (oom_gfp_allowed(gfp_mask)) {
 | |
| 			if (oom_killer_disabled)
 | |
| 				goto nopage;
 | |
| 			/* Coredumps can quickly deplete all memory reserves */
 | |
| 			if ((current->flags & PF_DUMPCORE) &&
 | |
| 			    !(gfp_mask & __GFP_NOFAIL))
 | |
| 				goto nopage;
 | |
| 			page = __alloc_pages_may_oom(gfp_mask, order,
 | |
| 					zonelist, high_zoneidx,
 | |
| 					nodemask, preferred_zone,
 | |
| 					migratetype);
 | |
| 			if (page)
 | |
| 				goto got_pg;
 | |
| 
 | |
| 			if (!(gfp_mask & __GFP_NOFAIL)) {
 | |
| 				/*
 | |
| 				 * The oom killer is not called for high-order
 | |
| 				 * allocations that may fail, so if no progress
 | |
| 				 * is being made, there are no other options and
 | |
| 				 * retrying is unlikely to help.
 | |
| 				 */
 | |
| 				if (order > PAGE_ALLOC_COSTLY_ORDER)
 | |
| 					goto nopage;
 | |
| 				/*
 | |
| 				 * The oom killer is not called for lowmem
 | |
| 				 * allocations to prevent needlessly killing
 | |
| 				 * innocent tasks.
 | |
| 				 */
 | |
| 				if (high_zoneidx < ZONE_NORMAL)
 | |
| 					goto nopage;
 | |
| 			}
 | |
| 
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check if we should retry the allocation */
 | |
| 	pages_reclaimed += did_some_progress;
 | |
| 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
 | |
| 						pages_reclaimed)) {
 | |
| 		/* Wait for some write requests to complete then retry */
 | |
| 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
 | |
| 		goto rebalance;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * High-order allocations do not necessarily loop after
 | |
| 		 * direct reclaim and reclaim/compaction depends on compaction
 | |
| 		 * being called after reclaim so call directly if necessary
 | |
| 		 */
 | |
| 		page = __alloc_pages_direct_compact(gfp_mask, order,
 | |
| 					zonelist, high_zoneidx,
 | |
| 					nodemask,
 | |
| 					alloc_flags, preferred_zone,
 | |
| 					migratetype, sync_migration,
 | |
| 					&contended_compaction,
 | |
| 					&deferred_compaction,
 | |
| 					&did_some_progress);
 | |
| 		if (page)
 | |
| 			goto got_pg;
 | |
| 	}
 | |
| 
 | |
| nopage:
 | |
| 	warn_alloc_failed(gfp_mask, order, NULL);
 | |
| 	return page;
 | |
| got_pg:
 | |
| 	if (kmemcheck_enabled)
 | |
| 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the 'heart' of the zoned buddy allocator.
 | |
|  */
 | |
| struct page *
 | |
| __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
 | |
| 			struct zonelist *zonelist, nodemask_t *nodemask)
 | |
| {
 | |
| 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
 | |
| 	struct zone *preferred_zone;
 | |
| 	struct page *page = NULL;
 | |
| 	int migratetype = allocflags_to_migratetype(gfp_mask);
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
 | |
| 	struct mem_cgroup *memcg = NULL;
 | |
| 
 | |
| 	gfp_mask &= gfp_allowed_mask;
 | |
| 
 | |
| 	lockdep_trace_alloc(gfp_mask);
 | |
| 
 | |
| 	might_sleep_if(gfp_mask & __GFP_WAIT);
 | |
| 
 | |
| 	if (should_fail_alloc_page(gfp_mask, order))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check the zones suitable for the gfp_mask contain at least one
 | |
| 	 * valid zone. It's possible to have an empty zonelist as a result
 | |
| 	 * of GFP_THISNODE and a memoryless node
 | |
| 	 */
 | |
| 	if (unlikely(!zonelist->_zonerefs->zone))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
 | |
| 	 * verified in the (always inline) callee
 | |
| 	 */
 | |
| 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
 | |
| 		return NULL;
 | |
| 
 | |
| retry_cpuset:
 | |
| 	cpuset_mems_cookie = get_mems_allowed();
 | |
| 
 | |
| 	/* The preferred zone is used for statistics later */
 | |
| 	first_zones_zonelist(zonelist, high_zoneidx,
 | |
| 				nodemask ? : &cpuset_current_mems_allowed,
 | |
| 				&preferred_zone);
 | |
| 	if (!preferred_zone)
 | |
| 		goto out;
 | |
| 
 | |
| #ifdef CONFIG_CMA
 | |
| 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
 | |
| 		alloc_flags |= ALLOC_CMA;
 | |
| #endif
 | |
| 	/* First allocation attempt */
 | |
| 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
 | |
| 			zonelist, high_zoneidx, alloc_flags,
 | |
| 			preferred_zone, migratetype);
 | |
| 	if (unlikely(!page)) {
 | |
| 		/*
 | |
| 		 * Runtime PM, block IO and its error handling path
 | |
| 		 * can deadlock because I/O on the device might not
 | |
| 		 * complete.
 | |
| 		 */
 | |
| 		gfp_mask = memalloc_noio_flags(gfp_mask);
 | |
| 		page = __alloc_pages_slowpath(gfp_mask, order,
 | |
| 				zonelist, high_zoneidx, nodemask,
 | |
| 				preferred_zone, migratetype);
 | |
| 	}
 | |
| 
 | |
| 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * When updating a task's mems_allowed, it is possible to race with
 | |
| 	 * parallel threads in such a way that an allocation can fail while
 | |
| 	 * the mask is being updated. If a page allocation is about to fail,
 | |
| 	 * check if the cpuset changed during allocation and if so, retry.
 | |
| 	 */
 | |
| 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
 | |
| 		goto retry_cpuset;
 | |
| 
 | |
| 	memcg_kmem_commit_charge(page, memcg, order);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(__alloc_pages_nodemask);
 | |
| 
 | |
| /*
 | |
|  * Common helper functions.
 | |
|  */
 | |
| unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/*
 | |
| 	 * __get_free_pages() returns a 32-bit address, which cannot represent
 | |
| 	 * a highmem page
 | |
| 	 */
 | |
| 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
 | |
| 
 | |
| 	page = alloc_pages(gfp_mask, order);
 | |
| 	if (!page)
 | |
| 		return 0;
 | |
| 	return (unsigned long) page_address(page);
 | |
| }
 | |
| EXPORT_SYMBOL(__get_free_pages);
 | |
| 
 | |
| unsigned long get_zeroed_page(gfp_t gfp_mask)
 | |
| {
 | |
| 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(get_zeroed_page);
 | |
| 
 | |
| void __free_pages(struct page *page, unsigned int order)
 | |
| {
 | |
| 	if (put_page_testzero(page)) {
 | |
| 		if (order == 0)
 | |
| 			free_hot_cold_page(page, 0);
 | |
| 		else
 | |
| 			__free_pages_ok(page, order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__free_pages);
 | |
| 
 | |
| void free_pages(unsigned long addr, unsigned int order)
 | |
| {
 | |
| 	if (addr != 0) {
 | |
| 		VM_BUG_ON(!virt_addr_valid((void *)addr));
 | |
| 		__free_pages(virt_to_page((void *)addr), order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(free_pages);
 | |
| 
 | |
| /*
 | |
|  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
 | |
|  * pages allocated with __GFP_KMEMCG.
 | |
|  *
 | |
|  * Those pages are accounted to a particular memcg, embedded in the
 | |
|  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
 | |
|  * for that information only to find out that it is NULL for users who have no
 | |
|  * interest in that whatsoever, we provide these functions.
 | |
|  *
 | |
|  * The caller knows better which flags it relies on.
 | |
|  */
 | |
| void __free_memcg_kmem_pages(struct page *page, unsigned int order)
 | |
| {
 | |
| 	memcg_kmem_uncharge_pages(page, order);
 | |
| 	__free_pages(page, order);
 | |
| }
 | |
| 
 | |
| void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
 | |
| {
 | |
| 	if (addr != 0) {
 | |
| 		VM_BUG_ON(!virt_addr_valid((void *)addr));
 | |
| 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
 | |
| {
 | |
| 	if (addr) {
 | |
| 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
 | |
| 		unsigned long used = addr + PAGE_ALIGN(size);
 | |
| 
 | |
| 		split_page(virt_to_page((void *)addr), order);
 | |
| 		while (used < alloc_end) {
 | |
| 			free_page(used);
 | |
| 			used += PAGE_SIZE;
 | |
| 		}
 | |
| 	}
 | |
| 	return (void *)addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 | |
|  * @size: the number of bytes to allocate
 | |
|  * @gfp_mask: GFP flags for the allocation
 | |
|  *
 | |
|  * This function is similar to alloc_pages(), except that it allocates the
 | |
|  * minimum number of pages to satisfy the request.  alloc_pages() can only
 | |
|  * allocate memory in power-of-two pages.
 | |
|  *
 | |
|  * This function is also limited by MAX_ORDER.
 | |
|  *
 | |
|  * Memory allocated by this function must be released by free_pages_exact().
 | |
|  */
 | |
| void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned int order = get_order(size);
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	addr = __get_free_pages(gfp_mask, order);
 | |
| 	return make_alloc_exact(addr, order, size);
 | |
| }
 | |
| EXPORT_SYMBOL(alloc_pages_exact);
 | |
| 
 | |
| /**
 | |
|  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 | |
|  *			   pages on a node.
 | |
|  * @nid: the preferred node ID where memory should be allocated
 | |
|  * @size: the number of bytes to allocate
 | |
|  * @gfp_mask: GFP flags for the allocation
 | |
|  *
 | |
|  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 | |
|  * back.
 | |
|  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
 | |
|  * but is not exact.
 | |
|  */
 | |
| void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned order = get_order(size);
 | |
| 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 | |
| 	if (!p)
 | |
| 		return NULL;
 | |
| 	return make_alloc_exact((unsigned long)page_address(p), order, size);
 | |
| }
 | |
| EXPORT_SYMBOL(alloc_pages_exact_nid);
 | |
| 
 | |
| /**
 | |
|  * free_pages_exact - release memory allocated via alloc_pages_exact()
 | |
|  * @virt: the value returned by alloc_pages_exact.
 | |
|  * @size: size of allocation, same value as passed to alloc_pages_exact().
 | |
|  *
 | |
|  * Release the memory allocated by a previous call to alloc_pages_exact.
 | |
|  */
 | |
| void free_pages_exact(void *virt, size_t size)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)virt;
 | |
| 	unsigned long end = addr + PAGE_ALIGN(size);
 | |
| 
 | |
| 	while (addr < end) {
 | |
| 		free_page(addr);
 | |
| 		addr += PAGE_SIZE;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(free_pages_exact);
 | |
| 
 | |
| /**
 | |
|  * nr_free_zone_pages - count number of pages beyond high watermark
 | |
|  * @offset: The zone index of the highest zone
 | |
|  *
 | |
|  * nr_free_zone_pages() counts the number of counts pages which are beyond the
 | |
|  * high watermark within all zones at or below a given zone index.  For each
 | |
|  * zone, the number of pages is calculated as:
 | |
|  *     managed_pages - high_pages
 | |
|  */
 | |
| static unsigned long nr_free_zone_pages(int offset)
 | |
| {
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	/* Just pick one node, since fallback list is circular */
 | |
| 	unsigned long sum = 0;
 | |
| 
 | |
| 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
 | |
| 
 | |
| 	for_each_zone_zonelist(zone, z, zonelist, offset) {
 | |
| 		unsigned long size = zone->managed_pages;
 | |
| 		unsigned long high = high_wmark_pages(zone);
 | |
| 		if (size > high)
 | |
| 			sum += size - high;
 | |
| 	}
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nr_free_buffer_pages - count number of pages beyond high watermark
 | |
|  *
 | |
|  * nr_free_buffer_pages() counts the number of pages which are beyond the high
 | |
|  * watermark within ZONE_DMA and ZONE_NORMAL.
 | |
|  */
 | |
| unsigned long nr_free_buffer_pages(void)
 | |
| {
 | |
| 	return nr_free_zone_pages(gfp_zone(GFP_USER));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
 | |
| 
 | |
| /**
 | |
|  * nr_free_pagecache_pages - count number of pages beyond high watermark
 | |
|  *
 | |
|  * nr_free_pagecache_pages() counts the number of pages which are beyond the
 | |
|  * high watermark within all zones.
 | |
|  */
 | |
| unsigned long nr_free_pagecache_pages(void)
 | |
| {
 | |
| 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
 | |
| }
 | |
| 
 | |
| static inline void show_node(struct zone *zone)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_NUMA))
 | |
| 		printk("Node %d ", zone_to_nid(zone));
 | |
| }
 | |
| 
 | |
| void si_meminfo(struct sysinfo *val)
 | |
| {
 | |
| 	val->totalram = totalram_pages;
 | |
| 	val->sharedram = 0;
 | |
| 	val->freeram = global_page_state(NR_FREE_PAGES);
 | |
| 	val->bufferram = nr_blockdev_pages();
 | |
| 	val->totalhigh = totalhigh_pages;
 | |
| 	val->freehigh = nr_free_highpages();
 | |
| 	val->mem_unit = PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(si_meminfo);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| void si_meminfo_node(struct sysinfo *val, int nid)
 | |
| {
 | |
| 	int zone_type;		/* needs to be signed */
 | |
| 	unsigned long managed_pages = 0;
 | |
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 
 | |
| 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
 | |
| 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
 | |
| 	val->totalram = managed_pages;
 | |
| 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
 | |
| 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
 | |
| 			NR_FREE_PAGES);
 | |
| #else
 | |
| 	val->totalhigh = 0;
 | |
| 	val->freehigh = 0;
 | |
| #endif
 | |
| 	val->mem_unit = PAGE_SIZE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Determine whether the node should be displayed or not, depending on whether
 | |
|  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
 | |
|  */
 | |
| bool skip_free_areas_node(unsigned int flags, int nid)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 
 | |
| 	if (!(flags & SHOW_MEM_FILTER_NODES))
 | |
| 		goto out;
 | |
| 
 | |
| 	do {
 | |
| 		cpuset_mems_cookie = get_mems_allowed();
 | |
| 		ret = !node_isset(nid, cpuset_current_mems_allowed);
 | |
| 	} while (!put_mems_allowed(cpuset_mems_cookie));
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define K(x) ((x) << (PAGE_SHIFT-10))
 | |
| 
 | |
| static void show_migration_types(unsigned char type)
 | |
| {
 | |
| 	static const char types[MIGRATE_TYPES] = {
 | |
| 		[MIGRATE_UNMOVABLE]	= 'U',
 | |
| 		[MIGRATE_RECLAIMABLE]	= 'E',
 | |
| 		[MIGRATE_MOVABLE]	= 'M',
 | |
| 		[MIGRATE_RESERVE]	= 'R',
 | |
| #ifdef CONFIG_CMA
 | |
| 		[MIGRATE_CMA]		= 'C',
 | |
| #endif
 | |
| #ifdef CONFIG_MEMORY_ISOLATION
 | |
| 		[MIGRATE_ISOLATE]	= 'I',
 | |
| #endif
 | |
| 	};
 | |
| 	char tmp[MIGRATE_TYPES + 1];
 | |
| 	char *p = tmp;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MIGRATE_TYPES; i++) {
 | |
| 		if (type & (1 << i))
 | |
| 			*p++ = types[i];
 | |
| 	}
 | |
| 
 | |
| 	*p = '\0';
 | |
| 	printk("(%s) ", tmp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Show free area list (used inside shift_scroll-lock stuff)
 | |
|  * We also calculate the percentage fragmentation. We do this by counting the
 | |
|  * memory on each free list with the exception of the first item on the list.
 | |
|  * Suppresses nodes that are not allowed by current's cpuset if
 | |
|  * SHOW_MEM_FILTER_NODES is passed.
 | |
|  */
 | |
| void show_free_areas(unsigned int filter)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
 | |
| 			continue;
 | |
| 		show_node(zone);
 | |
| 		printk("%s per-cpu:\n", zone->name);
 | |
| 
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			struct per_cpu_pageset *pageset;
 | |
| 
 | |
| 			pageset = per_cpu_ptr(zone->pageset, cpu);
 | |
| 
 | |
| 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
 | |
| 			       cpu, pageset->pcp.high,
 | |
| 			       pageset->pcp.batch, pageset->pcp.count);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
 | |
| 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
 | |
| 		" unevictable:%lu"
 | |
| 		" dirty:%lu writeback:%lu unstable:%lu\n"
 | |
| 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
 | |
| 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
 | |
| 		" free_cma:%lu\n",
 | |
| 		global_page_state(NR_ACTIVE_ANON),
 | |
| 		global_page_state(NR_INACTIVE_ANON),
 | |
| 		global_page_state(NR_ISOLATED_ANON),
 | |
| 		global_page_state(NR_ACTIVE_FILE),
 | |
| 		global_page_state(NR_INACTIVE_FILE),
 | |
| 		global_page_state(NR_ISOLATED_FILE),
 | |
| 		global_page_state(NR_UNEVICTABLE),
 | |
| 		global_page_state(NR_FILE_DIRTY),
 | |
| 		global_page_state(NR_WRITEBACK),
 | |
| 		global_page_state(NR_UNSTABLE_NFS),
 | |
| 		global_page_state(NR_FREE_PAGES),
 | |
| 		global_page_state(NR_SLAB_RECLAIMABLE),
 | |
| 		global_page_state(NR_SLAB_UNRECLAIMABLE),
 | |
| 		global_page_state(NR_FILE_MAPPED),
 | |
| 		global_page_state(NR_SHMEM),
 | |
| 		global_page_state(NR_PAGETABLE),
 | |
| 		global_page_state(NR_BOUNCE),
 | |
| 		global_page_state(NR_FREE_CMA_PAGES));
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
 | |
| 			continue;
 | |
| 		show_node(zone);
 | |
| 		printk("%s"
 | |
| 			" free:%lukB"
 | |
| 			" min:%lukB"
 | |
| 			" low:%lukB"
 | |
| 			" high:%lukB"
 | |
| 			" active_anon:%lukB"
 | |
| 			" inactive_anon:%lukB"
 | |
| 			" active_file:%lukB"
 | |
| 			" inactive_file:%lukB"
 | |
| 			" unevictable:%lukB"
 | |
| 			" isolated(anon):%lukB"
 | |
| 			" isolated(file):%lukB"
 | |
| 			" present:%lukB"
 | |
| 			" managed:%lukB"
 | |
| 			" mlocked:%lukB"
 | |
| 			" dirty:%lukB"
 | |
| 			" writeback:%lukB"
 | |
| 			" mapped:%lukB"
 | |
| 			" shmem:%lukB"
 | |
| 			" slab_reclaimable:%lukB"
 | |
| 			" slab_unreclaimable:%lukB"
 | |
| 			" kernel_stack:%lukB"
 | |
| 			" pagetables:%lukB"
 | |
| 			" unstable:%lukB"
 | |
| 			" bounce:%lukB"
 | |
| 			" free_cma:%lukB"
 | |
| 			" writeback_tmp:%lukB"
 | |
| 			" pages_scanned:%lu"
 | |
| 			" all_unreclaimable? %s"
 | |
| 			"\n",
 | |
| 			zone->name,
 | |
| 			K(zone_page_state(zone, NR_FREE_PAGES)),
 | |
| 			K(min_wmark_pages(zone)),
 | |
| 			K(low_wmark_pages(zone)),
 | |
| 			K(high_wmark_pages(zone)),
 | |
| 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
 | |
| 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
 | |
| 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
 | |
| 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
 | |
| 			K(zone_page_state(zone, NR_UNEVICTABLE)),
 | |
| 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
 | |
| 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
 | |
| 			K(zone->present_pages),
 | |
| 			K(zone->managed_pages),
 | |
| 			K(zone_page_state(zone, NR_MLOCK)),
 | |
| 			K(zone_page_state(zone, NR_FILE_DIRTY)),
 | |
| 			K(zone_page_state(zone, NR_WRITEBACK)),
 | |
| 			K(zone_page_state(zone, NR_FILE_MAPPED)),
 | |
| 			K(zone_page_state(zone, NR_SHMEM)),
 | |
| 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
 | |
| 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
 | |
| 			zone_page_state(zone, NR_KERNEL_STACK) *
 | |
| 				THREAD_SIZE / 1024,
 | |
| 			K(zone_page_state(zone, NR_PAGETABLE)),
 | |
| 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
 | |
| 			K(zone_page_state(zone, NR_BOUNCE)),
 | |
| 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
 | |
| 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
 | |
| 			zone->pages_scanned,
 | |
| 			(!zone_reclaimable(zone) ? "yes" : "no")
 | |
| 			);
 | |
| 		printk("lowmem_reserve[]:");
 | |
| 		for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 			printk(" %lu", zone->lowmem_reserve[i]);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
 | |
| 		unsigned char types[MAX_ORDER];
 | |
| 
 | |
| 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
 | |
| 			continue;
 | |
| 		show_node(zone);
 | |
| 		printk("%s: ", zone->name);
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		for (order = 0; order < MAX_ORDER; order++) {
 | |
| 			struct free_area *area = &zone->free_area[order];
 | |
| 			int type;
 | |
| 
 | |
| 			nr[order] = area->nr_free;
 | |
| 			total += nr[order] << order;
 | |
| 
 | |
| 			types[order] = 0;
 | |
| 			for (type = 0; type < MIGRATE_TYPES; type++) {
 | |
| 				if (!list_empty(&area->free_list[type]))
 | |
| 					types[order] |= 1 << type;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 		for (order = 0; order < MAX_ORDER; order++) {
 | |
| 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
 | |
| 			if (nr[order])
 | |
| 				show_migration_types(types[order]);
 | |
| 		}
 | |
| 		printk("= %lukB\n", K(total));
 | |
| 	}
 | |
| 
 | |
| 	hugetlb_show_meminfo();
 | |
| 
 | |
| 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
 | |
| 
 | |
| 	show_swap_cache_info();
 | |
| }
 | |
| 
 | |
| static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
 | |
| {
 | |
| 	zoneref->zone = zone;
 | |
| 	zoneref->zone_idx = zone_idx(zone);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Builds allocation fallback zone lists.
 | |
|  *
 | |
|  * Add all populated zones of a node to the zonelist.
 | |
|  */
 | |
| static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
 | |
| 				int nr_zones)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	enum zone_type zone_type = MAX_NR_ZONES;
 | |
| 
 | |
| 	do {
 | |
| 		zone_type--;
 | |
| 		zone = pgdat->node_zones + zone_type;
 | |
| 		if (populated_zone(zone)) {
 | |
| 			zoneref_set_zone(zone,
 | |
| 				&zonelist->_zonerefs[nr_zones++]);
 | |
| 			check_highest_zone(zone_type);
 | |
| 		}
 | |
| 	} while (zone_type);
 | |
| 
 | |
| 	return nr_zones;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  zonelist_order:
 | |
|  *  0 = automatic detection of better ordering.
 | |
|  *  1 = order by ([node] distance, -zonetype)
 | |
|  *  2 = order by (-zonetype, [node] distance)
 | |
|  *
 | |
|  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 | |
|  *  the same zonelist. So only NUMA can configure this param.
 | |
|  */
 | |
| #define ZONELIST_ORDER_DEFAULT  0
 | |
| #define ZONELIST_ORDER_NODE     1
 | |
| #define ZONELIST_ORDER_ZONE     2
 | |
| 
 | |
| /* zonelist order in the kernel.
 | |
|  * set_zonelist_order() will set this to NODE or ZONE.
 | |
|  */
 | |
| static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | |
| static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /* The value user specified ....changed by config */
 | |
| static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | |
| /* string for sysctl */
 | |
| #define NUMA_ZONELIST_ORDER_LEN	16
 | |
| char numa_zonelist_order[16] = "default";
 | |
| 
 | |
| /*
 | |
|  * interface for configure zonelist ordering.
 | |
|  * command line option "numa_zonelist_order"
 | |
|  *	= "[dD]efault	- default, automatic configuration.
 | |
|  *	= "[nN]ode 	- order by node locality, then by zone within node
 | |
|  *	= "[zZ]one      - order by zone, then by locality within zone
 | |
|  */
 | |
| 
 | |
| static int __parse_numa_zonelist_order(char *s)
 | |
| {
 | |
| 	if (*s == 'd' || *s == 'D') {
 | |
| 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | |
| 	} else if (*s == 'n' || *s == 'N') {
 | |
| 		user_zonelist_order = ZONELIST_ORDER_NODE;
 | |
| 	} else if (*s == 'z' || *s == 'Z') {
 | |
| 		user_zonelist_order = ZONELIST_ORDER_ZONE;
 | |
| 	} else {
 | |
| 		printk(KERN_WARNING
 | |
| 			"Ignoring invalid numa_zonelist_order value:  "
 | |
| 			"%s\n", s);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __init int setup_numa_zonelist_order(char *s)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!s)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = __parse_numa_zonelist_order(s);
 | |
| 	if (ret == 0)
 | |
| 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| early_param("numa_zonelist_order", setup_numa_zonelist_order);
 | |
| 
 | |
| /*
 | |
|  * sysctl handler for numa_zonelist_order
 | |
|  */
 | |
| int numa_zonelist_order_handler(ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *length,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
 | |
| 	int ret;
 | |
| 	static DEFINE_MUTEX(zl_order_mutex);
 | |
| 
 | |
| 	mutex_lock(&zl_order_mutex);
 | |
| 	if (write) {
 | |
| 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		strcpy(saved_string, (char *)table->data);
 | |
| 	}
 | |
| 	ret = proc_dostring(table, write, buffer, length, ppos);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	if (write) {
 | |
| 		int oldval = user_zonelist_order;
 | |
| 
 | |
| 		ret = __parse_numa_zonelist_order((char *)table->data);
 | |
| 		if (ret) {
 | |
| 			/*
 | |
| 			 * bogus value.  restore saved string
 | |
| 			 */
 | |
| 			strncpy((char *)table->data, saved_string,
 | |
| 				NUMA_ZONELIST_ORDER_LEN);
 | |
| 			user_zonelist_order = oldval;
 | |
| 		} else if (oldval != user_zonelist_order) {
 | |
| 			mutex_lock(&zonelists_mutex);
 | |
| 			build_all_zonelists(NULL, NULL);
 | |
| 			mutex_unlock(&zonelists_mutex);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&zl_order_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define MAX_NODE_LOAD (nr_online_nodes)
 | |
| static int node_load[MAX_NUMNODES];
 | |
| 
 | |
| /**
 | |
|  * find_next_best_node - find the next node that should appear in a given node's fallback list
 | |
|  * @node: node whose fallback list we're appending
 | |
|  * @used_node_mask: nodemask_t of already used nodes
 | |
|  *
 | |
|  * We use a number of factors to determine which is the next node that should
 | |
|  * appear on a given node's fallback list.  The node should not have appeared
 | |
|  * already in @node's fallback list, and it should be the next closest node
 | |
|  * according to the distance array (which contains arbitrary distance values
 | |
|  * from each node to each node in the system), and should also prefer nodes
 | |
|  * with no CPUs, since presumably they'll have very little allocation pressure
 | |
|  * on them otherwise.
 | |
|  * It returns -1 if no node is found.
 | |
|  */
 | |
| static int find_next_best_node(int node, nodemask_t *used_node_mask)
 | |
| {
 | |
| 	int n, val;
 | |
| 	int min_val = INT_MAX;
 | |
| 	int best_node = NUMA_NO_NODE;
 | |
| 	const struct cpumask *tmp = cpumask_of_node(0);
 | |
| 
 | |
| 	/* Use the local node if we haven't already */
 | |
| 	if (!node_isset(node, *used_node_mask)) {
 | |
| 		node_set(node, *used_node_mask);
 | |
| 		return node;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node_state(n, N_MEMORY) {
 | |
| 
 | |
| 		/* Don't want a node to appear more than once */
 | |
| 		if (node_isset(n, *used_node_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Use the distance array to find the distance */
 | |
| 		val = node_distance(node, n);
 | |
| 
 | |
| 		/* Penalize nodes under us ("prefer the next node") */
 | |
| 		val += (n < node);
 | |
| 
 | |
| 		/* Give preference to headless and unused nodes */
 | |
| 		tmp = cpumask_of_node(n);
 | |
| 		if (!cpumask_empty(tmp))
 | |
| 			val += PENALTY_FOR_NODE_WITH_CPUS;
 | |
| 
 | |
| 		/* Slight preference for less loaded node */
 | |
| 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
 | |
| 		val += node_load[n];
 | |
| 
 | |
| 		if (val < min_val) {
 | |
| 			min_val = val;
 | |
| 			best_node = n;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (best_node >= 0)
 | |
| 		node_set(best_node, *used_node_mask);
 | |
| 
 | |
| 	return best_node;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Build zonelists ordered by node and zones within node.
 | |
|  * This results in maximum locality--normal zone overflows into local
 | |
|  * DMA zone, if any--but risks exhausting DMA zone.
 | |
|  */
 | |
| static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
 | |
| {
 | |
| 	int j;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	zonelist = &pgdat->node_zonelists[0];
 | |
| 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
 | |
| 		;
 | |
| 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 | |
| 	zonelist->_zonerefs[j].zone = NULL;
 | |
| 	zonelist->_zonerefs[j].zone_idx = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build gfp_thisnode zonelists
 | |
|  */
 | |
| static void build_thisnode_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	int j;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	zonelist = &pgdat->node_zonelists[1];
 | |
| 	j = build_zonelists_node(pgdat, zonelist, 0);
 | |
| 	zonelist->_zonerefs[j].zone = NULL;
 | |
| 	zonelist->_zonerefs[j].zone_idx = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build zonelists ordered by zone and nodes within zones.
 | |
|  * This results in conserving DMA zone[s] until all Normal memory is
 | |
|  * exhausted, but results in overflowing to remote node while memory
 | |
|  * may still exist in local DMA zone.
 | |
|  */
 | |
| static int node_order[MAX_NUMNODES];
 | |
| 
 | |
| static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
 | |
| {
 | |
| 	int pos, j, node;
 | |
| 	int zone_type;		/* needs to be signed */
 | |
| 	struct zone *z;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	zonelist = &pgdat->node_zonelists[0];
 | |
| 	pos = 0;
 | |
| 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
 | |
| 		for (j = 0; j < nr_nodes; j++) {
 | |
| 			node = node_order[j];
 | |
| 			z = &NODE_DATA(node)->node_zones[zone_type];
 | |
| 			if (populated_zone(z)) {
 | |
| 				zoneref_set_zone(z,
 | |
| 					&zonelist->_zonerefs[pos++]);
 | |
| 				check_highest_zone(zone_type);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	zonelist->_zonerefs[pos].zone = NULL;
 | |
| 	zonelist->_zonerefs[pos].zone_idx = 0;
 | |
| }
 | |
| 
 | |
| static int default_zonelist_order(void)
 | |
| {
 | |
| 	int nid, zone_type;
 | |
| 	unsigned long low_kmem_size, total_size;
 | |
| 	struct zone *z;
 | |
| 	int average_size;
 | |
| 	/*
 | |
| 	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
 | |
| 	 * If they are really small and used heavily, the system can fall
 | |
| 	 * into OOM very easily.
 | |
| 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
 | |
| 	 */
 | |
| 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
 | |
| 	low_kmem_size = 0;
 | |
| 	total_size = 0;
 | |
| 	for_each_online_node(nid) {
 | |
| 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
 | |
| 			z = &NODE_DATA(nid)->node_zones[zone_type];
 | |
| 			if (populated_zone(z)) {
 | |
| 				if (zone_type < ZONE_NORMAL)
 | |
| 					low_kmem_size += z->managed_pages;
 | |
| 				total_size += z->managed_pages;
 | |
| 			} else if (zone_type == ZONE_NORMAL) {
 | |
| 				/*
 | |
| 				 * If any node has only lowmem, then node order
 | |
| 				 * is preferred to allow kernel allocations
 | |
| 				 * locally; otherwise, they can easily infringe
 | |
| 				 * on other nodes when there is an abundance of
 | |
| 				 * lowmem available to allocate from.
 | |
| 				 */
 | |
| 				return ZONELIST_ORDER_NODE;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (!low_kmem_size ||  /* there are no DMA area. */
 | |
| 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
 | |
| 		return ZONELIST_ORDER_NODE;
 | |
| 	/*
 | |
| 	 * look into each node's config.
 | |
| 	 * If there is a node whose DMA/DMA32 memory is very big area on
 | |
| 	 * local memory, NODE_ORDER may be suitable.
 | |
| 	 */
 | |
| 	average_size = total_size /
 | |
| 				(nodes_weight(node_states[N_MEMORY]) + 1);
 | |
| 	for_each_online_node(nid) {
 | |
| 		low_kmem_size = 0;
 | |
| 		total_size = 0;
 | |
| 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
 | |
| 			z = &NODE_DATA(nid)->node_zones[zone_type];
 | |
| 			if (populated_zone(z)) {
 | |
| 				if (zone_type < ZONE_NORMAL)
 | |
| 					low_kmem_size += z->present_pages;
 | |
| 				total_size += z->present_pages;
 | |
| 			}
 | |
| 		}
 | |
| 		if (low_kmem_size &&
 | |
| 		    total_size > average_size && /* ignore small node */
 | |
| 		    low_kmem_size > total_size * 70/100)
 | |
| 			return ZONELIST_ORDER_NODE;
 | |
| 	}
 | |
| 	return ZONELIST_ORDER_ZONE;
 | |
| }
 | |
| 
 | |
| static void set_zonelist_order(void)
 | |
| {
 | |
| 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
 | |
| 		current_zonelist_order = default_zonelist_order();
 | |
| 	else
 | |
| 		current_zonelist_order = user_zonelist_order;
 | |
| }
 | |
| 
 | |
| static void build_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	int j, node, load;
 | |
| 	enum zone_type i;
 | |
| 	nodemask_t used_mask;
 | |
| 	int local_node, prev_node;
 | |
| 	struct zonelist *zonelist;
 | |
| 	int order = current_zonelist_order;
 | |
| 
 | |
| 	/* initialize zonelists */
 | |
| 	for (i = 0; i < MAX_ZONELISTS; i++) {
 | |
| 		zonelist = pgdat->node_zonelists + i;
 | |
| 		zonelist->_zonerefs[0].zone = NULL;
 | |
| 		zonelist->_zonerefs[0].zone_idx = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* NUMA-aware ordering of nodes */
 | |
| 	local_node = pgdat->node_id;
 | |
| 	load = nr_online_nodes;
 | |
| 	prev_node = local_node;
 | |
| 	nodes_clear(used_mask);
 | |
| 
 | |
| 	memset(node_order, 0, sizeof(node_order));
 | |
| 	j = 0;
 | |
| 
 | |
| 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
 | |
| 		/*
 | |
| 		 * We don't want to pressure a particular node.
 | |
| 		 * So adding penalty to the first node in same
 | |
| 		 * distance group to make it round-robin.
 | |
| 		 */
 | |
| 		if (node_distance(local_node, node) !=
 | |
| 		    node_distance(local_node, prev_node))
 | |
| 			node_load[node] = load;
 | |
| 
 | |
| 		prev_node = node;
 | |
| 		load--;
 | |
| 		if (order == ZONELIST_ORDER_NODE)
 | |
| 			build_zonelists_in_node_order(pgdat, node);
 | |
| 		else
 | |
| 			node_order[j++] = node;	/* remember order */
 | |
| 	}
 | |
| 
 | |
| 	if (order == ZONELIST_ORDER_ZONE) {
 | |
| 		/* calculate node order -- i.e., DMA last! */
 | |
| 		build_zonelists_in_zone_order(pgdat, j);
 | |
| 	}
 | |
| 
 | |
| 	build_thisnode_zonelists(pgdat);
 | |
| }
 | |
| 
 | |
| /* Construct the zonelist performance cache - see further mmzone.h */
 | |
| static void build_zonelist_cache(pg_data_t *pgdat)
 | |
| {
 | |
| 	struct zonelist *zonelist;
 | |
| 	struct zonelist_cache *zlc;
 | |
| 	struct zoneref *z;
 | |
| 
 | |
| 	zonelist = &pgdat->node_zonelists[0];
 | |
| 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
 | |
| 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
 | |
| 	for (z = zonelist->_zonerefs; z->zone; z++)
 | |
| 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES
 | |
| /*
 | |
|  * Return node id of node used for "local" allocations.
 | |
|  * I.e., first node id of first zone in arg node's generic zonelist.
 | |
|  * Used for initializing percpu 'numa_mem', which is used primarily
 | |
|  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 | |
|  */
 | |
| int local_memory_node(int node)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
 | |
| 				   gfp_zone(GFP_KERNEL),
 | |
| 				   NULL,
 | |
| 				   &zone);
 | |
| 	return zone->node;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #else	/* CONFIG_NUMA */
 | |
| 
 | |
| static void set_zonelist_order(void)
 | |
| {
 | |
| 	current_zonelist_order = ZONELIST_ORDER_ZONE;
 | |
| }
 | |
| 
 | |
| static void build_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	int node, local_node;
 | |
| 	enum zone_type j;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	local_node = pgdat->node_id;
 | |
| 
 | |
| 	zonelist = &pgdat->node_zonelists[0];
 | |
| 	j = build_zonelists_node(pgdat, zonelist, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we build the zonelist so that it contains the zones
 | |
| 	 * of all the other nodes.
 | |
| 	 * We don't want to pressure a particular node, so when
 | |
| 	 * building the zones for node N, we make sure that the
 | |
| 	 * zones coming right after the local ones are those from
 | |
| 	 * node N+1 (modulo N)
 | |
| 	 */
 | |
| 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
 | |
| 		if (!node_online(node))
 | |
| 			continue;
 | |
| 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 | |
| 	}
 | |
| 	for (node = 0; node < local_node; node++) {
 | |
| 		if (!node_online(node))
 | |
| 			continue;
 | |
| 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 | |
| 	}
 | |
| 
 | |
| 	zonelist->_zonerefs[j].zone = NULL;
 | |
| 	zonelist->_zonerefs[j].zone_idx = 0;
 | |
| }
 | |
| 
 | |
| /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
 | |
| static void build_zonelist_cache(pg_data_t *pgdat)
 | |
| {
 | |
| 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 
 | |
| /*
 | |
|  * Boot pageset table. One per cpu which is going to be used for all
 | |
|  * zones and all nodes. The parameters will be set in such a way
 | |
|  * that an item put on a list will immediately be handed over to
 | |
|  * the buddy list. This is safe since pageset manipulation is done
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * The boot_pagesets must be kept even after bootup is complete for
 | |
|  * unused processors and/or zones. They do play a role for bootstrapping
 | |
|  * hotplugged processors.
 | |
|  *
 | |
|  * zoneinfo_show() and maybe other functions do
 | |
|  * not check if the processor is online before following the pageset pointer.
 | |
|  * Other parts of the kernel may not check if the zone is available.
 | |
|  */
 | |
| static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
 | |
| static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
 | |
| static void setup_zone_pageset(struct zone *zone);
 | |
| 
 | |
| /*
 | |
|  * Global mutex to protect against size modification of zonelists
 | |
|  * as well as to serialize pageset setup for the new populated zone.
 | |
|  */
 | |
| DEFINE_MUTEX(zonelists_mutex);
 | |
| 
 | |
| /* return values int ....just for stop_machine() */
 | |
| static int __build_all_zonelists(void *data)
 | |
| {
 | |
| 	int nid;
 | |
| 	int cpu;
 | |
| 	pg_data_t *self = data;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	memset(node_load, 0, sizeof(node_load));
 | |
| #endif
 | |
| 
 | |
| 	if (self && !node_online(self->node_id)) {
 | |
| 		build_zonelists(self);
 | |
| 		build_zonelist_cache(self);
 | |
| 	}
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 
 | |
| 		build_zonelists(pgdat);
 | |
| 		build_zonelist_cache(pgdat);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the boot_pagesets that are going to be used
 | |
| 	 * for bootstrapping processors. The real pagesets for
 | |
| 	 * each zone will be allocated later when the per cpu
 | |
| 	 * allocator is available.
 | |
| 	 *
 | |
| 	 * boot_pagesets are used also for bootstrapping offline
 | |
| 	 * cpus if the system is already booted because the pagesets
 | |
| 	 * are needed to initialize allocators on a specific cpu too.
 | |
| 	 * F.e. the percpu allocator needs the page allocator which
 | |
| 	 * needs the percpu allocator in order to allocate its pagesets
 | |
| 	 * (a chicken-egg dilemma).
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES
 | |
| 		/*
 | |
| 		 * We now know the "local memory node" for each node--
 | |
| 		 * i.e., the node of the first zone in the generic zonelist.
 | |
| 		 * Set up numa_mem percpu variable for on-line cpus.  During
 | |
| 		 * boot, only the boot cpu should be on-line;  we'll init the
 | |
| 		 * secondary cpus' numa_mem as they come on-line.  During
 | |
| 		 * node/memory hotplug, we'll fixup all on-line cpus.
 | |
| 		 */
 | |
| 		if (cpu_online(cpu))
 | |
| 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with zonelists_mutex held always
 | |
|  * unless system_state == SYSTEM_BOOTING.
 | |
|  */
 | |
| void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
 | |
| {
 | |
| 	set_zonelist_order();
 | |
| 
 | |
| 	if (system_state == SYSTEM_BOOTING) {
 | |
| 		__build_all_zonelists(NULL);
 | |
| 		mminit_verify_zonelist();
 | |
| 		cpuset_init_current_mems_allowed();
 | |
| 	} else {
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| 		if (zone)
 | |
| 			setup_zone_pageset(zone);
 | |
| #endif
 | |
| 		/* we have to stop all cpus to guarantee there is no user
 | |
| 		   of zonelist */
 | |
| 		stop_machine(__build_all_zonelists, pgdat, NULL);
 | |
| 		/* cpuset refresh routine should be here */
 | |
| 	}
 | |
| 	vm_total_pages = nr_free_pagecache_pages();
 | |
| 	/*
 | |
| 	 * Disable grouping by mobility if the number of pages in the
 | |
| 	 * system is too low to allow the mechanism to work. It would be
 | |
| 	 * more accurate, but expensive to check per-zone. This check is
 | |
| 	 * made on memory-hotadd so a system can start with mobility
 | |
| 	 * disabled and enable it later
 | |
| 	 */
 | |
| 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
 | |
| 		page_group_by_mobility_disabled = 1;
 | |
| 	else
 | |
| 		page_group_by_mobility_disabled = 0;
 | |
| 
 | |
| 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
 | |
| 		"Total pages: %ld\n",
 | |
| 			nr_online_nodes,
 | |
| 			zonelist_order_name[current_zonelist_order],
 | |
| 			page_group_by_mobility_disabled ? "off" : "on",
 | |
| 			vm_total_pages);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	printk("Policy zone: %s\n", zone_names[policy_zone]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper functions to size the waitqueue hash table.
 | |
|  * Essentially these want to choose hash table sizes sufficiently
 | |
|  * large so that collisions trying to wait on pages are rare.
 | |
|  * But in fact, the number of active page waitqueues on typical
 | |
|  * systems is ridiculously low, less than 200. So this is even
 | |
|  * conservative, even though it seems large.
 | |
|  *
 | |
|  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
 | |
|  * waitqueues, i.e. the size of the waitq table given the number of pages.
 | |
|  */
 | |
| #define PAGES_PER_WAITQUEUE	256
 | |
| 
 | |
| #ifndef CONFIG_MEMORY_HOTPLUG
 | |
| static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
 | |
| {
 | |
| 	unsigned long size = 1;
 | |
| 
 | |
| 	pages /= PAGES_PER_WAITQUEUE;
 | |
| 
 | |
| 	while (size < pages)
 | |
| 		size <<= 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once we have dozens or even hundreds of threads sleeping
 | |
| 	 * on IO we've got bigger problems than wait queue collision.
 | |
| 	 * Limit the size of the wait table to a reasonable size.
 | |
| 	 */
 | |
| 	size = min(size, 4096UL);
 | |
| 
 | |
| 	return max(size, 4UL);
 | |
| }
 | |
| #else
 | |
| /*
 | |
|  * A zone's size might be changed by hot-add, so it is not possible to determine
 | |
|  * a suitable size for its wait_table.  So we use the maximum size now.
 | |
|  *
 | |
|  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
 | |
|  *
 | |
|  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
 | |
|  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
 | |
|  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
 | |
|  *
 | |
|  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
 | |
|  * or more by the traditional way. (See above).  It equals:
 | |
|  *
 | |
|  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
 | |
|  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
 | |
|  *    powerpc (64K page size)             : =  (32G +16M)byte.
 | |
|  */
 | |
| static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
 | |
| {
 | |
| 	return 4096UL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This is an integer logarithm so that shifts can be used later
 | |
|  * to extract the more random high bits from the multiplicative
 | |
|  * hash function before the remainder is taken.
 | |
|  */
 | |
| static inline unsigned long wait_table_bits(unsigned long size)
 | |
| {
 | |
| 	return ffz(~size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if a pageblock contains reserved pages
 | |
|  */
 | |
| static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 | |
| 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
 | |
|  * of blocks reserved is based on min_wmark_pages(zone). The memory within
 | |
|  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
 | |
|  * higher will lead to a bigger reserve which will get freed as contiguous
 | |
|  * blocks as reclaim kicks in
 | |
|  */
 | |
| static void setup_zone_migrate_reserve(struct zone *zone)
 | |
| {
 | |
| 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
 | |
| 	struct page *page;
 | |
| 	unsigned long block_migratetype;
 | |
| 	int reserve;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the start pfn, end pfn and the number of blocks to reserve
 | |
| 	 * We have to be careful to be aligned to pageblock_nr_pages to
 | |
| 	 * make sure that we always check pfn_valid for the first page in
 | |
| 	 * the block.
 | |
| 	 */
 | |
| 	start_pfn = zone->zone_start_pfn;
 | |
| 	end_pfn = zone_end_pfn(zone);
 | |
| 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
 | |
| 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
 | |
| 							pageblock_order;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve blocks are generally in place to help high-order atomic
 | |
| 	 * allocations that are short-lived. A min_free_kbytes value that
 | |
| 	 * would result in more than 2 reserve blocks for atomic allocations
 | |
| 	 * is assumed to be in place to help anti-fragmentation for the
 | |
| 	 * future allocation of hugepages at runtime.
 | |
| 	 */
 | |
| 	reserve = min(2, reserve);
 | |
| 
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 | |
| 		if (!pfn_valid(pfn))
 | |
| 			continue;
 | |
| 		page = pfn_to_page(pfn);
 | |
| 
 | |
| 		/* Watch out for overlapping nodes */
 | |
| 		if (page_to_nid(page) != zone_to_nid(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		block_migratetype = get_pageblock_migratetype(page);
 | |
| 
 | |
| 		/* Only test what is necessary when the reserves are not met */
 | |
| 		if (reserve > 0) {
 | |
| 			/*
 | |
| 			 * Blocks with reserved pages will never free, skip
 | |
| 			 * them.
 | |
| 			 */
 | |
| 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
 | |
| 			if (pageblock_is_reserved(pfn, block_end_pfn))
 | |
| 				continue;
 | |
| 
 | |
| 			/* If this block is reserved, account for it */
 | |
| 			if (block_migratetype == MIGRATE_RESERVE) {
 | |
| 				reserve--;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* Suitable for reserving if this block is movable */
 | |
| 			if (block_migratetype == MIGRATE_MOVABLE) {
 | |
| 				set_pageblock_migratetype(page,
 | |
| 							MIGRATE_RESERVE);
 | |
| 				move_freepages_block(zone, page,
 | |
| 							MIGRATE_RESERVE);
 | |
| 				reserve--;
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the reserve is met and this is a previous reserved block,
 | |
| 		 * take it back
 | |
| 		 */
 | |
| 		if (block_migratetype == MIGRATE_RESERVE) {
 | |
| 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 | |
| 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initially all pages are reserved - free ones are freed
 | |
|  * up by free_all_bootmem() once the early boot process is
 | |
|  * done. Non-atomic initialization, single-pass.
 | |
|  */
 | |
| void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
 | |
| 		unsigned long start_pfn, enum memmap_context context)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned long end_pfn = start_pfn + size;
 | |
| 	unsigned long pfn;
 | |
| 	struct zone *z;
 | |
| 
 | |
| 	if (highest_memmap_pfn < end_pfn - 1)
 | |
| 		highest_memmap_pfn = end_pfn - 1;
 | |
| 
 | |
| 	z = &NODE_DATA(nid)->node_zones[zone];
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 | |
| 		/*
 | |
| 		 * There can be holes in boot-time mem_map[]s
 | |
| 		 * handed to this function.  They do not
 | |
| 		 * exist on hotplugged memory.
 | |
| 		 */
 | |
| 		if (context == MEMMAP_EARLY) {
 | |
| 			if (!early_pfn_valid(pfn))
 | |
| 				continue;
 | |
| 			if (!early_pfn_in_nid(pfn, nid))
 | |
| 				continue;
 | |
| 		}
 | |
| 		page = pfn_to_page(pfn);
 | |
| 		set_page_links(page, zone, nid, pfn);
 | |
| 		mminit_verify_page_links(page, zone, nid, pfn);
 | |
| 		init_page_count(page);
 | |
| 		page_mapcount_reset(page);
 | |
| 		page_cpupid_reset_last(page);
 | |
| 		SetPageReserved(page);
 | |
| 		/*
 | |
| 		 * Mark the block movable so that blocks are reserved for
 | |
| 		 * movable at startup. This will force kernel allocations
 | |
| 		 * to reserve their blocks rather than leaking throughout
 | |
| 		 * the address space during boot when many long-lived
 | |
| 		 * kernel allocations are made. Later some blocks near
 | |
| 		 * the start are marked MIGRATE_RESERVE by
 | |
| 		 * setup_zone_migrate_reserve()
 | |
| 		 *
 | |
| 		 * bitmap is created for zone's valid pfn range. but memmap
 | |
| 		 * can be created for invalid pages (for alignment)
 | |
| 		 * check here not to call set_pageblock_migratetype() against
 | |
| 		 * pfn out of zone.
 | |
| 		 */
 | |
| 		if ((z->zone_start_pfn <= pfn)
 | |
| 		    && (pfn < zone_end_pfn(z))
 | |
| 		    && !(pfn & (pageblock_nr_pages - 1)))
 | |
| 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 | |
| 
 | |
| 		INIT_LIST_HEAD(&page->lru);
 | |
| #ifdef WANT_PAGE_VIRTUAL
 | |
| 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
 | |
| 		if (!is_highmem_idx(zone))
 | |
| 			set_page_address(page, __va(pfn << PAGE_SHIFT));
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __meminit zone_init_free_lists(struct zone *zone)
 | |
| {
 | |
| 	int order, t;
 | |
| 	for_each_migratetype_order(order, t) {
 | |
| 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
 | |
| 		zone->free_area[order].nr_free = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef __HAVE_ARCH_MEMMAP_INIT
 | |
| #define memmap_init(size, nid, zone, start_pfn) \
 | |
| 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
 | |
| #endif
 | |
| 
 | |
| static int __meminit zone_batchsize(struct zone *zone)
 | |
| {
 | |
| #ifdef CONFIG_MMU
 | |
| 	int batch;
 | |
| 
 | |
| 	/*
 | |
| 	 * The per-cpu-pages pools are set to around 1000th of the
 | |
| 	 * size of the zone.  But no more than 1/2 of a meg.
 | |
| 	 *
 | |
| 	 * OK, so we don't know how big the cache is.  So guess.
 | |
| 	 */
 | |
| 	batch = zone->managed_pages / 1024;
 | |
| 	if (batch * PAGE_SIZE > 512 * 1024)
 | |
| 		batch = (512 * 1024) / PAGE_SIZE;
 | |
| 	batch /= 4;		/* We effectively *= 4 below */
 | |
| 	if (batch < 1)
 | |
| 		batch = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clamp the batch to a 2^n - 1 value. Having a power
 | |
| 	 * of 2 value was found to be more likely to have
 | |
| 	 * suboptimal cache aliasing properties in some cases.
 | |
| 	 *
 | |
| 	 * For example if 2 tasks are alternately allocating
 | |
| 	 * batches of pages, one task can end up with a lot
 | |
| 	 * of pages of one half of the possible page colors
 | |
| 	 * and the other with pages of the other colors.
 | |
| 	 */
 | |
| 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
 | |
| 
 | |
| 	return batch;
 | |
| 
 | |
| #else
 | |
| 	/* The deferral and batching of frees should be suppressed under NOMMU
 | |
| 	 * conditions.
 | |
| 	 *
 | |
| 	 * The problem is that NOMMU needs to be able to allocate large chunks
 | |
| 	 * of contiguous memory as there's no hardware page translation to
 | |
| 	 * assemble apparent contiguous memory from discontiguous pages.
 | |
| 	 *
 | |
| 	 * Queueing large contiguous runs of pages for batching, however,
 | |
| 	 * causes the pages to actually be freed in smaller chunks.  As there
 | |
| 	 * can be a significant delay between the individual batches being
 | |
| 	 * recycled, this leads to the once large chunks of space being
 | |
| 	 * fragmented and becoming unavailable for high-order allocations.
 | |
| 	 */
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pcp->high and pcp->batch values are related and dependent on one another:
 | |
|  * ->batch must never be higher then ->high.
 | |
|  * The following function updates them in a safe manner without read side
 | |
|  * locking.
 | |
|  *
 | |
|  * Any new users of pcp->batch and pcp->high should ensure they can cope with
 | |
|  * those fields changing asynchronously (acording the the above rule).
 | |
|  *
 | |
|  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 | |
|  * outside of boot time (or some other assurance that no concurrent updaters
 | |
|  * exist).
 | |
|  */
 | |
| static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
 | |
| 		unsigned long batch)
 | |
| {
 | |
|        /* start with a fail safe value for batch */
 | |
| 	pcp->batch = 1;
 | |
| 	smp_wmb();
 | |
| 
 | |
|        /* Update high, then batch, in order */
 | |
| 	pcp->high = high;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	pcp->batch = batch;
 | |
| }
 | |
| 
 | |
| /* a companion to pageset_set_high() */
 | |
| static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
 | |
| {
 | |
| 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
 | |
| }
 | |
| 
 | |
| static void pageset_init(struct per_cpu_pageset *p)
 | |
| {
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 	int migratetype;
 | |
| 
 | |
| 	memset(p, 0, sizeof(*p));
 | |
| 
 | |
| 	pcp = &p->pcp;
 | |
| 	pcp->count = 0;
 | |
| 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
 | |
| 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
 | |
| }
 | |
| 
 | |
| static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
 | |
| {
 | |
| 	pageset_init(p);
 | |
| 	pageset_set_batch(p, batch);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
 | |
|  * to the value high for the pageset p.
 | |
|  */
 | |
| static void pageset_set_high(struct per_cpu_pageset *p,
 | |
| 				unsigned long high)
 | |
| {
 | |
| 	unsigned long batch = max(1UL, high / 4);
 | |
| 	if ((high / 4) > (PAGE_SHIFT * 8))
 | |
| 		batch = PAGE_SHIFT * 8;
 | |
| 
 | |
| 	pageset_update(&p->pcp, high, batch);
 | |
| }
 | |
| 
 | |
| static void __meminit pageset_set_high_and_batch(struct zone *zone,
 | |
| 		struct per_cpu_pageset *pcp)
 | |
| {
 | |
| 	if (percpu_pagelist_fraction)
 | |
| 		pageset_set_high(pcp,
 | |
| 			(zone->managed_pages /
 | |
| 				percpu_pagelist_fraction));
 | |
| 	else
 | |
| 		pageset_set_batch(pcp, zone_batchsize(zone));
 | |
| }
 | |
| 
 | |
| static void __meminit zone_pageset_init(struct zone *zone, int cpu)
 | |
| {
 | |
| 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
 | |
| 
 | |
| 	pageset_init(pcp);
 | |
| 	pageset_set_high_and_batch(zone, pcp);
 | |
| }
 | |
| 
 | |
| static void __meminit setup_zone_pageset(struct zone *zone)
 | |
| {
 | |
| 	int cpu;
 | |
| 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		zone_pageset_init(zone, cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate per cpu pagesets and initialize them.
 | |
|  * Before this call only boot pagesets were available.
 | |
|  */
 | |
| void __init setup_per_cpu_pageset(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_populated_zone(zone)
 | |
| 		setup_zone_pageset(zone);
 | |
| }
 | |
| 
 | |
| static noinline __init_refok
 | |
| int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
 | |
| {
 | |
| 	int i;
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 	size_t alloc_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * The per-page waitqueue mechanism uses hashed waitqueues
 | |
| 	 * per zone.
 | |
| 	 */
 | |
| 	zone->wait_table_hash_nr_entries =
 | |
| 		 wait_table_hash_nr_entries(zone_size_pages);
 | |
| 	zone->wait_table_bits =
 | |
| 		wait_table_bits(zone->wait_table_hash_nr_entries);
 | |
| 	alloc_size = zone->wait_table_hash_nr_entries
 | |
| 					* sizeof(wait_queue_head_t);
 | |
| 
 | |
| 	if (!slab_is_available()) {
 | |
| 		zone->wait_table = (wait_queue_head_t *)
 | |
| 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * This case means that a zone whose size was 0 gets new memory
 | |
| 		 * via memory hot-add.
 | |
| 		 * But it may be the case that a new node was hot-added.  In
 | |
| 		 * this case vmalloc() will not be able to use this new node's
 | |
| 		 * memory - this wait_table must be initialized to use this new
 | |
| 		 * node itself as well.
 | |
| 		 * To use this new node's memory, further consideration will be
 | |
| 		 * necessary.
 | |
| 		 */
 | |
| 		zone->wait_table = vmalloc(alloc_size);
 | |
| 	}
 | |
| 	if (!zone->wait_table)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
 | |
| 		init_waitqueue_head(zone->wait_table + i);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __meminit void zone_pcp_init(struct zone *zone)
 | |
| {
 | |
| 	/*
 | |
| 	 * per cpu subsystem is not up at this point. The following code
 | |
| 	 * relies on the ability of the linker to provide the
 | |
| 	 * offset of a (static) per cpu variable into the per cpu area.
 | |
| 	 */
 | |
| 	zone->pageset = &boot_pageset;
 | |
| 
 | |
| 	if (populated_zone(zone))
 | |
| 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
 | |
| 			zone->name, zone->present_pages,
 | |
| 					 zone_batchsize(zone));
 | |
| }
 | |
| 
 | |
| int __meminit init_currently_empty_zone(struct zone *zone,
 | |
| 					unsigned long zone_start_pfn,
 | |
| 					unsigned long size,
 | |
| 					enum memmap_context context)
 | |
| {
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 	int ret;
 | |
| 	ret = zone_wait_table_init(zone, size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	pgdat->nr_zones = zone_idx(zone) + 1;
 | |
| 
 | |
| 	zone->zone_start_pfn = zone_start_pfn;
 | |
| 
 | |
| 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
 | |
| 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
 | |
| 			pgdat->node_id,
 | |
| 			(unsigned long)zone_idx(zone),
 | |
| 			zone_start_pfn, (zone_start_pfn + size));
 | |
| 
 | |
| 	zone_init_free_lists(zone);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
 | |
| /*
 | |
|  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 | |
|  * Architectures may implement their own version but if add_active_range()
 | |
|  * was used and there are no special requirements, this is a convenient
 | |
|  * alternative
 | |
|  */
 | |
| int __meminit __early_pfn_to_nid(unsigned long pfn)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int nid;
 | |
| 	/*
 | |
| 	 * NOTE: The following SMP-unsafe globals are only used early in boot
 | |
| 	 * when the kernel is running single-threaded.
 | |
| 	 */
 | |
| 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
 | |
| 	static int __meminitdata last_nid;
 | |
| 
 | |
| 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
 | |
| 		return last_nid;
 | |
| 
 | |
| 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
 | |
| 	if (nid != -1) {
 | |
| 		last_start_pfn = start_pfn;
 | |
| 		last_end_pfn = end_pfn;
 | |
| 		last_nid = nid;
 | |
| 	}
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
 | |
| 
 | |
| int __meminit early_pfn_to_nid(unsigned long pfn)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	nid = __early_pfn_to_nid(pfn);
 | |
| 	if (nid >= 0)
 | |
| 		return nid;
 | |
| 	/* just returns 0 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NODES_SPAN_OTHER_NODES
 | |
| bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	nid = __early_pfn_to_nid(pfn);
 | |
| 	if (nid >= 0 && nid != node)
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
 | |
|  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
 | |
|  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
 | |
|  *
 | |
|  * If an architecture guarantees that all ranges registered with
 | |
|  * add_active_ranges() contain no holes and may be freed, this
 | |
|  * this function may be used instead of calling free_bootmem() manually.
 | |
|  */
 | |
| void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, this_nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
 | |
| 		start_pfn = min(start_pfn, max_low_pfn);
 | |
| 		end_pfn = min(end_pfn, max_low_pfn);
 | |
| 
 | |
| 		if (start_pfn < end_pfn)
 | |
| 			free_bootmem_node(NODE_DATA(this_nid),
 | |
| 					  PFN_PHYS(start_pfn),
 | |
| 					  (end_pfn - start_pfn) << PAGE_SHIFT);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sparse_memory_present_with_active_regions - Call memory_present for each active range
 | |
|  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
 | |
|  *
 | |
|  * If an architecture guarantees that all ranges registered with
 | |
|  * add_active_ranges() contain no holes and may be freed, this
 | |
|  * function may be used instead of calling memory_present() manually.
 | |
|  */
 | |
| void __init sparse_memory_present_with_active_regions(int nid)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, this_nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
 | |
| 		memory_present(this_nid, start_pfn, end_pfn);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_pfn_range_for_nid - Return the start and end page frames for a node
 | |
|  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 | |
|  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 | |
|  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
 | |
|  *
 | |
|  * It returns the start and end page frame of a node based on information
 | |
|  * provided by an arch calling add_active_range(). If called for a node
 | |
|  * with no available memory, a warning is printed and the start and end
 | |
|  * PFNs will be 0.
 | |
|  */
 | |
| void __meminit get_pfn_range_for_nid(unsigned int nid,
 | |
| 			unsigned long *start_pfn, unsigned long *end_pfn)
 | |
| {
 | |
| 	unsigned long this_start_pfn, this_end_pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	*start_pfn = -1UL;
 | |
| 	*end_pfn = 0;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
 | |
| 		*start_pfn = min(*start_pfn, this_start_pfn);
 | |
| 		*end_pfn = max(*end_pfn, this_end_pfn);
 | |
| 	}
 | |
| 
 | |
| 	if (*start_pfn == -1UL)
 | |
| 		*start_pfn = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This finds a zone that can be used for ZONE_MOVABLE pages. The
 | |
|  * assumption is made that zones within a node are ordered in monotonic
 | |
|  * increasing memory addresses so that the "highest" populated zone is used
 | |
|  */
 | |
| static void __init find_usable_zone_for_movable(void)
 | |
| {
 | |
| 	int zone_index;
 | |
| 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
 | |
| 		if (zone_index == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (arch_zone_highest_possible_pfn[zone_index] >
 | |
| 				arch_zone_lowest_possible_pfn[zone_index])
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON(zone_index == -1);
 | |
| 	movable_zone = zone_index;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
 | |
|  * because it is sized independent of architecture. Unlike the other zones,
 | |
|  * the starting point for ZONE_MOVABLE is not fixed. It may be different
 | |
|  * in each node depending on the size of each node and how evenly kernelcore
 | |
|  * is distributed. This helper function adjusts the zone ranges
 | |
|  * provided by the architecture for a given node by using the end of the
 | |
|  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 | |
|  * zones within a node are in order of monotonic increases memory addresses
 | |
|  */
 | |
| static void __meminit adjust_zone_range_for_zone_movable(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_start_pfn,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *zone_start_pfn,
 | |
| 					unsigned long *zone_end_pfn)
 | |
| {
 | |
| 	/* Only adjust if ZONE_MOVABLE is on this node */
 | |
| 	if (zone_movable_pfn[nid]) {
 | |
| 		/* Size ZONE_MOVABLE */
 | |
| 		if (zone_type == ZONE_MOVABLE) {
 | |
| 			*zone_start_pfn = zone_movable_pfn[nid];
 | |
| 			*zone_end_pfn = min(node_end_pfn,
 | |
| 				arch_zone_highest_possible_pfn[movable_zone]);
 | |
| 
 | |
| 		/* Adjust for ZONE_MOVABLE starting within this range */
 | |
| 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
 | |
| 				*zone_end_pfn > zone_movable_pfn[nid]) {
 | |
| 			*zone_end_pfn = zone_movable_pfn[nid];
 | |
| 
 | |
| 		/* Check if this whole range is within ZONE_MOVABLE */
 | |
| 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
 | |
| 			*zone_start_pfn = *zone_end_pfn;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of pages a zone spans in a node, including holes
 | |
|  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 | |
|  */
 | |
| static unsigned long __meminit zone_spanned_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_start_pfn,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *ignored)
 | |
| {
 | |
| 	unsigned long zone_start_pfn, zone_end_pfn;
 | |
| 
 | |
| 	/* Get the start and end of the zone */
 | |
| 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
 | |
| 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
 | |
| 	adjust_zone_range_for_zone_movable(nid, zone_type,
 | |
| 				node_start_pfn, node_end_pfn,
 | |
| 				&zone_start_pfn, &zone_end_pfn);
 | |
| 
 | |
| 	/* Check that this node has pages within the zone's required range */
 | |
| 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Move the zone boundaries inside the node if necessary */
 | |
| 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
 | |
| 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
 | |
| 
 | |
| 	/* Return the spanned pages */
 | |
| 	return zone_end_pfn - zone_start_pfn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
 | |
|  * then all holes in the requested range will be accounted for.
 | |
|  */
 | |
| unsigned long __meminit __absent_pages_in_range(int nid,
 | |
| 				unsigned long range_start_pfn,
 | |
| 				unsigned long range_end_pfn)
 | |
| {
 | |
| 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
 | |
| 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
 | |
| 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
 | |
| 		nr_absent -= end_pfn - start_pfn;
 | |
| 	}
 | |
| 	return nr_absent;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * absent_pages_in_range - Return number of page frames in holes within a range
 | |
|  * @start_pfn: The start PFN to start searching for holes
 | |
|  * @end_pfn: The end PFN to stop searching for holes
 | |
|  *
 | |
|  * It returns the number of pages frames in memory holes within a range.
 | |
|  */
 | |
| unsigned long __init absent_pages_in_range(unsigned long start_pfn,
 | |
| 							unsigned long end_pfn)
 | |
| {
 | |
| 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
 | |
| }
 | |
| 
 | |
| /* Return the number of page frames in holes in a zone on a node */
 | |
| static unsigned long __meminit zone_absent_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_start_pfn,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *ignored)
 | |
| {
 | |
| 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
 | |
| 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
 | |
| 	unsigned long zone_start_pfn, zone_end_pfn;
 | |
| 
 | |
| 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
 | |
| 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
 | |
| 
 | |
| 	adjust_zone_range_for_zone_movable(nid, zone_type,
 | |
| 			node_start_pfn, node_end_pfn,
 | |
| 			&zone_start_pfn, &zone_end_pfn);
 | |
| 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_start_pfn,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *zones_size)
 | |
| {
 | |
| 	return zones_size[zone_type];
 | |
| }
 | |
| 
 | |
| static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
 | |
| 						unsigned long zone_type,
 | |
| 						unsigned long node_start_pfn,
 | |
| 						unsigned long node_end_pfn,
 | |
| 						unsigned long *zholes_size)
 | |
| {
 | |
| 	if (!zholes_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	return zholes_size[zone_type];
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| 
 | |
| static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
 | |
| 						unsigned long node_start_pfn,
 | |
| 						unsigned long node_end_pfn,
 | |
| 						unsigned long *zones_size,
 | |
| 						unsigned long *zholes_size)
 | |
| {
 | |
| 	unsigned long realtotalpages, totalpages = 0;
 | |
| 	enum zone_type i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
 | |
| 							 node_start_pfn,
 | |
| 							 node_end_pfn,
 | |
| 							 zones_size);
 | |
| 	pgdat->node_spanned_pages = totalpages;
 | |
| 
 | |
| 	realtotalpages = totalpages;
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 		realtotalpages -=
 | |
| 			zone_absent_pages_in_node(pgdat->node_id, i,
 | |
| 						  node_start_pfn, node_end_pfn,
 | |
| 						  zholes_size);
 | |
| 	pgdat->node_present_pages = realtotalpages;
 | |
| 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
 | |
| 							realtotalpages);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPARSEMEM
 | |
| /*
 | |
|  * Calculate the size of the zone->blockflags rounded to an unsigned long
 | |
|  * Start by making sure zonesize is a multiple of pageblock_order by rounding
 | |
|  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
 | |
|  * round what is now in bits to nearest long in bits, then return it in
 | |
|  * bytes.
 | |
|  */
 | |
| static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
 | |
| {
 | |
| 	unsigned long usemapsize;
 | |
| 
 | |
| 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
 | |
| 	usemapsize = roundup(zonesize, pageblock_nr_pages);
 | |
| 	usemapsize = usemapsize >> pageblock_order;
 | |
| 	usemapsize *= NR_PAGEBLOCK_BITS;
 | |
| 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
 | |
| 
 | |
| 	return usemapsize / 8;
 | |
| }
 | |
| 
 | |
| static void __init setup_usemap(struct pglist_data *pgdat,
 | |
| 				struct zone *zone,
 | |
| 				unsigned long zone_start_pfn,
 | |
| 				unsigned long zonesize)
 | |
| {
 | |
| 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
 | |
| 	zone->pageblock_flags = NULL;
 | |
| 	if (usemapsize)
 | |
| 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
 | |
| 								   usemapsize);
 | |
| }
 | |
| #else
 | |
| static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
 | |
| 				unsigned long zone_start_pfn, unsigned long zonesize) {}
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 | |
| 
 | |
| /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
 | |
| void __paginginit set_pageblock_order(void)
 | |
| {
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	/* Check that pageblock_nr_pages has not already been setup */
 | |
| 	if (pageblock_order)
 | |
| 		return;
 | |
| 
 | |
| 	if (HPAGE_SHIFT > PAGE_SHIFT)
 | |
| 		order = HUGETLB_PAGE_ORDER;
 | |
| 	else
 | |
| 		order = MAX_ORDER - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume the largest contiguous order of interest is a huge page.
 | |
| 	 * This value may be variable depending on boot parameters on IA64 and
 | |
| 	 * powerpc.
 | |
| 	 */
 | |
| 	pageblock_order = order;
 | |
| }
 | |
| #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
 | |
| 
 | |
| /*
 | |
|  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
 | |
|  * is unused as pageblock_order is set at compile-time. See
 | |
|  * include/linux/pageblock-flags.h for the values of pageblock_order based on
 | |
|  * the kernel config
 | |
|  */
 | |
| void __paginginit set_pageblock_order(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
 | |
| 
 | |
| static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
 | |
| 						   unsigned long present_pages)
 | |
| {
 | |
| 	unsigned long pages = spanned_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Provide a more accurate estimation if there are holes within
 | |
| 	 * the zone and SPARSEMEM is in use. If there are holes within the
 | |
| 	 * zone, each populated memory region may cost us one or two extra
 | |
| 	 * memmap pages due to alignment because memmap pages for each
 | |
| 	 * populated regions may not naturally algined on page boundary.
 | |
| 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
 | |
| 	 */
 | |
| 	if (spanned_pages > present_pages + (present_pages >> 4) &&
 | |
| 	    IS_ENABLED(CONFIG_SPARSEMEM))
 | |
| 		pages = present_pages;
 | |
| 
 | |
| 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up the zone data structures:
 | |
|  *   - mark all pages reserved
 | |
|  *   - mark all memory queues empty
 | |
|  *   - clear the memory bitmaps
 | |
|  *
 | |
|  * NOTE: pgdat should get zeroed by caller.
 | |
|  */
 | |
| static void __paginginit free_area_init_core(struct pglist_data *pgdat,
 | |
| 		unsigned long node_start_pfn, unsigned long node_end_pfn,
 | |
| 		unsigned long *zones_size, unsigned long *zholes_size)
 | |
| {
 | |
| 	enum zone_type j;
 | |
| 	int nid = pgdat->node_id;
 | |
| 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
 | |
| 	int ret;
 | |
| 
 | |
| 	pgdat_resize_init(pgdat);
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
 | |
| 	pgdat->numabalancing_migrate_nr_pages = 0;
 | |
| 	pgdat->numabalancing_migrate_next_window = jiffies;
 | |
| #endif
 | |
| 	init_waitqueue_head(&pgdat->kswapd_wait);
 | |
| 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
 | |
| 	pgdat_page_cgroup_init(pgdat);
 | |
| 
 | |
| 	for (j = 0; j < MAX_NR_ZONES; j++) {
 | |
| 		struct zone *zone = pgdat->node_zones + j;
 | |
| 		unsigned long size, realsize, freesize, memmap_pages;
 | |
| 
 | |
| 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
 | |
| 						  node_end_pfn, zones_size);
 | |
| 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
 | |
| 								node_start_pfn,
 | |
| 								node_end_pfn,
 | |
| 								zholes_size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust freesize so that it accounts for how much memory
 | |
| 		 * is used by this zone for memmap. This affects the watermark
 | |
| 		 * and per-cpu initialisations
 | |
| 		 */
 | |
| 		memmap_pages = calc_memmap_size(size, realsize);
 | |
| 		if (freesize >= memmap_pages) {
 | |
| 			freesize -= memmap_pages;
 | |
| 			if (memmap_pages)
 | |
| 				printk(KERN_DEBUG
 | |
| 				       "  %s zone: %lu pages used for memmap\n",
 | |
| 				       zone_names[j], memmap_pages);
 | |
| 		} else
 | |
| 			printk(KERN_WARNING
 | |
| 				"  %s zone: %lu pages exceeds freesize %lu\n",
 | |
| 				zone_names[j], memmap_pages, freesize);
 | |
| 
 | |
| 		/* Account for reserved pages */
 | |
| 		if (j == 0 && freesize > dma_reserve) {
 | |
| 			freesize -= dma_reserve;
 | |
| 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
 | |
| 					zone_names[0], dma_reserve);
 | |
| 		}
 | |
| 
 | |
| 		if (!is_highmem_idx(j))
 | |
| 			nr_kernel_pages += freesize;
 | |
| 		/* Charge for highmem memmap if there are enough kernel pages */
 | |
| 		else if (nr_kernel_pages > memmap_pages * 2)
 | |
| 			nr_kernel_pages -= memmap_pages;
 | |
| 		nr_all_pages += freesize;
 | |
| 
 | |
| 		zone->spanned_pages = size;
 | |
| 		zone->present_pages = realsize;
 | |
| 		/*
 | |
| 		 * Set an approximate value for lowmem here, it will be adjusted
 | |
| 		 * when the bootmem allocator frees pages into the buddy system.
 | |
| 		 * And all highmem pages will be managed by the buddy system.
 | |
| 		 */
 | |
| 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
 | |
| #ifdef CONFIG_NUMA
 | |
| 		zone->node = nid;
 | |
| 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
 | |
| 						/ 100;
 | |
| 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
 | |
| #endif
 | |
| 		zone->name = zone_names[j];
 | |
| 		spin_lock_init(&zone->lock);
 | |
| 		spin_lock_init(&zone->lru_lock);
 | |
| 		zone_seqlock_init(zone);
 | |
| 		zone->zone_pgdat = pgdat;
 | |
| 		zone_pcp_init(zone);
 | |
| 
 | |
| 		/* For bootup, initialized properly in watermark setup */
 | |
| 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
 | |
| 
 | |
| 		lruvec_init(&zone->lruvec);
 | |
| 		if (!size)
 | |
| 			continue;
 | |
| 
 | |
| 		set_pageblock_order();
 | |
| 		setup_usemap(pgdat, zone, zone_start_pfn, size);
 | |
| 		ret = init_currently_empty_zone(zone, zone_start_pfn,
 | |
| 						size, MEMMAP_EARLY);
 | |
| 		BUG_ON(ret);
 | |
| 		memmap_init(size, nid, j, zone_start_pfn);
 | |
| 		zone_start_pfn += size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
 | |
| {
 | |
| 	/* Skip empty nodes */
 | |
| 	if (!pgdat->node_spanned_pages)
 | |
| 		return;
 | |
| 
 | |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP
 | |
| 	/* ia64 gets its own node_mem_map, before this, without bootmem */
 | |
| 	if (!pgdat->node_mem_map) {
 | |
| 		unsigned long size, start, end;
 | |
| 		struct page *map;
 | |
| 
 | |
| 		/*
 | |
| 		 * The zone's endpoints aren't required to be MAX_ORDER
 | |
| 		 * aligned but the node_mem_map endpoints must be in order
 | |
| 		 * for the buddy allocator to function correctly.
 | |
| 		 */
 | |
| 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
 | |
| 		end = pgdat_end_pfn(pgdat);
 | |
| 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
 | |
| 		size =  (end - start) * sizeof(struct page);
 | |
| 		map = alloc_remap(pgdat->node_id, size);
 | |
| 		if (!map)
 | |
| 			map = alloc_bootmem_node_nopanic(pgdat, size);
 | |
| 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
 | |
| 	}
 | |
| #ifndef CONFIG_NEED_MULTIPLE_NODES
 | |
| 	/*
 | |
| 	 * With no DISCONTIG, the global mem_map is just set as node 0's
 | |
| 	 */
 | |
| 	if (pgdat == NODE_DATA(0)) {
 | |
| 		mem_map = NODE_DATA(0)->node_mem_map;
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
 | |
| 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
 | |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| 	}
 | |
| #endif
 | |
| #endif /* CONFIG_FLAT_NODE_MEM_MAP */
 | |
| }
 | |
| 
 | |
| void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
 | |
| 		unsigned long node_start_pfn, unsigned long *zholes_size)
 | |
| {
 | |
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 	unsigned long start_pfn = 0;
 | |
| 	unsigned long end_pfn = 0;
 | |
| 
 | |
| 	/* pg_data_t should be reset to zero when it's allocated */
 | |
| 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
 | |
| 
 | |
| 	pgdat->node_id = nid;
 | |
| 	pgdat->node_start_pfn = node_start_pfn;
 | |
| 	init_zone_allows_reclaim(nid);
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | |
| #endif
 | |
| 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
 | |
| 				  zones_size, zholes_size);
 | |
| 
 | |
| 	alloc_node_mem_map(pgdat);
 | |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP
 | |
| 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
 | |
| 		nid, (unsigned long)pgdat,
 | |
| 		(unsigned long)pgdat->node_mem_map);
 | |
| #endif
 | |
| 
 | |
| 	free_area_init_core(pgdat, start_pfn, end_pfn,
 | |
| 			    zones_size, zholes_size);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| 
 | |
| #if MAX_NUMNODES > 1
 | |
| /*
 | |
|  * Figure out the number of possible node ids.
 | |
|  */
 | |
| void __init setup_nr_node_ids(void)
 | |
| {
 | |
| 	unsigned int node;
 | |
| 	unsigned int highest = 0;
 | |
| 
 | |
| 	for_each_node_mask(node, node_possible_map)
 | |
| 		highest = node;
 | |
| 	nr_node_ids = highest + 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * node_map_pfn_alignment - determine the maximum internode alignment
 | |
|  *
 | |
|  * This function should be called after node map is populated and sorted.
 | |
|  * It calculates the maximum power of two alignment which can distinguish
 | |
|  * all the nodes.
 | |
|  *
 | |
|  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 | |
|  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 | |
|  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 | |
|  * shifted, 1GiB is enough and this function will indicate so.
 | |
|  *
 | |
|  * This is used to test whether pfn -> nid mapping of the chosen memory
 | |
|  * model has fine enough granularity to avoid incorrect mapping for the
 | |
|  * populated node map.
 | |
|  *
 | |
|  * Returns the determined alignment in pfn's.  0 if there is no alignment
 | |
|  * requirement (single node).
 | |
|  */
 | |
| unsigned long __init node_map_pfn_alignment(void)
 | |
| {
 | |
| 	unsigned long accl_mask = 0, last_end = 0;
 | |
| 	unsigned long start, end, mask;
 | |
| 	int last_nid = -1;
 | |
| 	int i, nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
 | |
| 		if (!start || last_nid < 0 || last_nid == nid) {
 | |
| 			last_nid = nid;
 | |
| 			last_end = end;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Start with a mask granular enough to pin-point to the
 | |
| 		 * start pfn and tick off bits one-by-one until it becomes
 | |
| 		 * too coarse to separate the current node from the last.
 | |
| 		 */
 | |
| 		mask = ~((1 << __ffs(start)) - 1);
 | |
| 		while (mask && last_end <= (start & (mask << 1)))
 | |
| 			mask <<= 1;
 | |
| 
 | |
| 		/* accumulate all internode masks */
 | |
| 		accl_mask |= mask;
 | |
| 	}
 | |
| 
 | |
| 	/* convert mask to number of pages */
 | |
| 	return ~accl_mask + 1;
 | |
| }
 | |
| 
 | |
| /* Find the lowest pfn for a node */
 | |
| static unsigned long __init find_min_pfn_for_node(int nid)
 | |
| {
 | |
| 	unsigned long min_pfn = ULONG_MAX;
 | |
| 	unsigned long start_pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
 | |
| 		min_pfn = min(min_pfn, start_pfn);
 | |
| 
 | |
| 	if (min_pfn == ULONG_MAX) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"Could not find start_pfn for node %d\n", nid);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return min_pfn;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_min_pfn_with_active_regions - Find the minimum PFN registered
 | |
|  *
 | |
|  * It returns the minimum PFN based on information provided via
 | |
|  * add_active_range().
 | |
|  */
 | |
| unsigned long __init find_min_pfn_with_active_regions(void)
 | |
| {
 | |
| 	return find_min_pfn_for_node(MAX_NUMNODES);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * early_calculate_totalpages()
 | |
|  * Sum pages in active regions for movable zone.
 | |
|  * Populate N_MEMORY for calculating usable_nodes.
 | |
|  */
 | |
| static unsigned long __init early_calculate_totalpages(void)
 | |
| {
 | |
| 	unsigned long totalpages = 0;
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 | |
| 		unsigned long pages = end_pfn - start_pfn;
 | |
| 
 | |
| 		totalpages += pages;
 | |
| 		if (pages)
 | |
| 			node_set_state(nid, N_MEMORY);
 | |
| 	}
 | |
| 	return totalpages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the PFN the Movable zone begins in each node. Kernel memory
 | |
|  * is spread evenly between nodes as long as the nodes have enough
 | |
|  * memory. When they don't, some nodes will have more kernelcore than
 | |
|  * others
 | |
|  */
 | |
| static void __init find_zone_movable_pfns_for_nodes(void)
 | |
| {
 | |
| 	int i, nid;
 | |
| 	unsigned long usable_startpfn;
 | |
| 	unsigned long kernelcore_node, kernelcore_remaining;
 | |
| 	/* save the state before borrow the nodemask */
 | |
| 	nodemask_t saved_node_state = node_states[N_MEMORY];
 | |
| 	unsigned long totalpages = early_calculate_totalpages();
 | |
| 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
 | |
| 
 | |
| 	/*
 | |
| 	 * If movablecore was specified, calculate what size of
 | |
| 	 * kernelcore that corresponds so that memory usable for
 | |
| 	 * any allocation type is evenly spread. If both kernelcore
 | |
| 	 * and movablecore are specified, then the value of kernelcore
 | |
| 	 * will be used for required_kernelcore if it's greater than
 | |
| 	 * what movablecore would have allowed.
 | |
| 	 */
 | |
| 	if (required_movablecore) {
 | |
| 		unsigned long corepages;
 | |
| 
 | |
| 		/*
 | |
| 		 * Round-up so that ZONE_MOVABLE is at least as large as what
 | |
| 		 * was requested by the user
 | |
| 		 */
 | |
| 		required_movablecore =
 | |
| 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
 | |
| 		corepages = totalpages - required_movablecore;
 | |
| 
 | |
| 		required_kernelcore = max(required_kernelcore, corepages);
 | |
| 	}
 | |
| 
 | |
| 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
 | |
| 	if (!required_kernelcore)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
 | |
| 	find_usable_zone_for_movable();
 | |
| 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
 | |
| 
 | |
| restart:
 | |
| 	/* Spread kernelcore memory as evenly as possible throughout nodes */
 | |
| 	kernelcore_node = required_kernelcore / usable_nodes;
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		unsigned long start_pfn, end_pfn;
 | |
| 
 | |
| 		/*
 | |
| 		 * Recalculate kernelcore_node if the division per node
 | |
| 		 * now exceeds what is necessary to satisfy the requested
 | |
| 		 * amount of memory for the kernel
 | |
| 		 */
 | |
| 		if (required_kernelcore < kernelcore_node)
 | |
| 			kernelcore_node = required_kernelcore / usable_nodes;
 | |
| 
 | |
| 		/*
 | |
| 		 * As the map is walked, we track how much memory is usable
 | |
| 		 * by the kernel using kernelcore_remaining. When it is
 | |
| 		 * 0, the rest of the node is usable by ZONE_MOVABLE
 | |
| 		 */
 | |
| 		kernelcore_remaining = kernelcore_node;
 | |
| 
 | |
| 		/* Go through each range of PFNs within this node */
 | |
| 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
 | |
| 			unsigned long size_pages;
 | |
| 
 | |
| 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
 | |
| 			if (start_pfn >= end_pfn)
 | |
| 				continue;
 | |
| 
 | |
| 			/* Account for what is only usable for kernelcore */
 | |
| 			if (start_pfn < usable_startpfn) {
 | |
| 				unsigned long kernel_pages;
 | |
| 				kernel_pages = min(end_pfn, usable_startpfn)
 | |
| 								- start_pfn;
 | |
| 
 | |
| 				kernelcore_remaining -= min(kernel_pages,
 | |
| 							kernelcore_remaining);
 | |
| 				required_kernelcore -= min(kernel_pages,
 | |
| 							required_kernelcore);
 | |
| 
 | |
| 				/* Continue if range is now fully accounted */
 | |
| 				if (end_pfn <= usable_startpfn) {
 | |
| 
 | |
| 					/*
 | |
| 					 * Push zone_movable_pfn to the end so
 | |
| 					 * that if we have to rebalance
 | |
| 					 * kernelcore across nodes, we will
 | |
| 					 * not double account here
 | |
| 					 */
 | |
| 					zone_movable_pfn[nid] = end_pfn;
 | |
| 					continue;
 | |
| 				}
 | |
| 				start_pfn = usable_startpfn;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * The usable PFN range for ZONE_MOVABLE is from
 | |
| 			 * start_pfn->end_pfn. Calculate size_pages as the
 | |
| 			 * number of pages used as kernelcore
 | |
| 			 */
 | |
| 			size_pages = end_pfn - start_pfn;
 | |
| 			if (size_pages > kernelcore_remaining)
 | |
| 				size_pages = kernelcore_remaining;
 | |
| 			zone_movable_pfn[nid] = start_pfn + size_pages;
 | |
| 
 | |
| 			/*
 | |
| 			 * Some kernelcore has been met, update counts and
 | |
| 			 * break if the kernelcore for this node has been
 | |
| 			 * satisfied
 | |
| 			 */
 | |
| 			required_kernelcore -= min(required_kernelcore,
 | |
| 								size_pages);
 | |
| 			kernelcore_remaining -= size_pages;
 | |
| 			if (!kernelcore_remaining)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is still required_kernelcore, we do another pass with one
 | |
| 	 * less node in the count. This will push zone_movable_pfn[nid] further
 | |
| 	 * along on the nodes that still have memory until kernelcore is
 | |
| 	 * satisfied
 | |
| 	 */
 | |
| 	usable_nodes--;
 | |
| 	if (usable_nodes && required_kernelcore > usable_nodes)
 | |
| 		goto restart;
 | |
| 
 | |
| 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
 | |
| 	for (nid = 0; nid < MAX_NUMNODES; nid++)
 | |
| 		zone_movable_pfn[nid] =
 | |
| 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
 | |
| 
 | |
| out:
 | |
| 	/* restore the node_state */
 | |
| 	node_states[N_MEMORY] = saved_node_state;
 | |
| }
 | |
| 
 | |
| /* Any regular or high memory on that node ? */
 | |
| static void check_for_memory(pg_data_t *pgdat, int nid)
 | |
| {
 | |
| 	enum zone_type zone_type;
 | |
| 
 | |
| 	if (N_MEMORY == N_NORMAL_MEMORY)
 | |
| 		return;
 | |
| 
 | |
| 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
 | |
| 		struct zone *zone = &pgdat->node_zones[zone_type];
 | |
| 		if (populated_zone(zone)) {
 | |
| 			node_set_state(nid, N_HIGH_MEMORY);
 | |
| 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
 | |
| 			    zone_type <= ZONE_NORMAL)
 | |
| 				node_set_state(nid, N_NORMAL_MEMORY);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_area_init_nodes - Initialise all pg_data_t and zone data
 | |
|  * @max_zone_pfn: an array of max PFNs for each zone
 | |
|  *
 | |
|  * This will call free_area_init_node() for each active node in the system.
 | |
|  * Using the page ranges provided by add_active_range(), the size of each
 | |
|  * zone in each node and their holes is calculated. If the maximum PFN
 | |
|  * between two adjacent zones match, it is assumed that the zone is empty.
 | |
|  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 | |
|  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 | |
|  * starts where the previous one ended. For example, ZONE_DMA32 starts
 | |
|  * at arch_max_dma_pfn.
 | |
|  */
 | |
| void __init free_area_init_nodes(unsigned long *max_zone_pfn)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, nid;
 | |
| 
 | |
| 	/* Record where the zone boundaries are */
 | |
| 	memset(arch_zone_lowest_possible_pfn, 0,
 | |
| 				sizeof(arch_zone_lowest_possible_pfn));
 | |
| 	memset(arch_zone_highest_possible_pfn, 0,
 | |
| 				sizeof(arch_zone_highest_possible_pfn));
 | |
| 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
 | |
| 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
 | |
| 	for (i = 1; i < MAX_NR_ZONES; i++) {
 | |
| 		if (i == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 		arch_zone_lowest_possible_pfn[i] =
 | |
| 			arch_zone_highest_possible_pfn[i-1];
 | |
| 		arch_zone_highest_possible_pfn[i] =
 | |
| 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
 | |
| 	}
 | |
| 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
 | |
| 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
 | |
| 
 | |
| 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
 | |
| 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
 | |
| 	find_zone_movable_pfns_for_nodes();
 | |
| 
 | |
| 	/* Print out the zone ranges */
 | |
| 	printk("Zone ranges:\n");
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		if (i == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 		printk(KERN_CONT "  %-8s ", zone_names[i]);
 | |
| 		if (arch_zone_lowest_possible_pfn[i] ==
 | |
| 				arch_zone_highest_possible_pfn[i])
 | |
| 			printk(KERN_CONT "empty\n");
 | |
| 		else
 | |
| 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
 | |
| 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
 | |
| 				(arch_zone_highest_possible_pfn[i]
 | |
| 					<< PAGE_SHIFT) - 1);
 | |
| 	}
 | |
| 
 | |
| 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
 | |
| 	printk("Movable zone start for each node\n");
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		if (zone_movable_pfn[i])
 | |
| 			printk("  Node %d: %#010lx\n", i,
 | |
| 			       zone_movable_pfn[i] << PAGE_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	/* Print out the early node map */
 | |
| 	printk("Early memory node ranges\n");
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
 | |
| 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
 | |
| 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
 | |
| 
 | |
| 	/* Initialise every node */
 | |
| 	mminit_verify_pageflags_layout();
 | |
| 	setup_nr_node_ids();
 | |
| 	for_each_online_node(nid) {
 | |
| 		pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 		free_area_init_node(nid, NULL,
 | |
| 				find_min_pfn_for_node(nid), NULL);
 | |
| 
 | |
| 		/* Any memory on that node */
 | |
| 		if (pgdat->node_present_pages)
 | |
| 			node_set_state(nid, N_MEMORY);
 | |
| 		check_for_memory(pgdat, nid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init cmdline_parse_core(char *p, unsigned long *core)
 | |
| {
 | |
| 	unsigned long long coremem;
 | |
| 	if (!p)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	coremem = memparse(p, &p);
 | |
| 	*core = coremem >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* Paranoid check that UL is enough for the coremem value */
 | |
| 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kernelcore=size sets the amount of memory for use for allocations that
 | |
|  * cannot be reclaimed or migrated.
 | |
|  */
 | |
| static int __init cmdline_parse_kernelcore(char *p)
 | |
| {
 | |
| 	return cmdline_parse_core(p, &required_kernelcore);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * movablecore=size sets the amount of memory for use for allocations that
 | |
|  * can be reclaimed or migrated.
 | |
|  */
 | |
| static int __init cmdline_parse_movablecore(char *p)
 | |
| {
 | |
| 	return cmdline_parse_core(p, &required_movablecore);
 | |
| }
 | |
| 
 | |
| early_param("kernelcore", cmdline_parse_kernelcore);
 | |
| early_param("movablecore", cmdline_parse_movablecore);
 | |
| 
 | |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| 
 | |
| void adjust_managed_page_count(struct page *page, long count)
 | |
| {
 | |
| 	spin_lock(&managed_page_count_lock);
 | |
| 	page_zone(page)->managed_pages += count;
 | |
| 	totalram_pages += count;
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	if (PageHighMem(page))
 | |
| 		totalhigh_pages += count;
 | |
| #endif
 | |
| 	spin_unlock(&managed_page_count_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(adjust_managed_page_count);
 | |
| 
 | |
| unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
 | |
| {
 | |
| 	void *pos;
 | |
| 	unsigned long pages = 0;
 | |
| 
 | |
| 	start = (void *)PAGE_ALIGN((unsigned long)start);
 | |
| 	end = (void *)((unsigned long)end & PAGE_MASK);
 | |
| 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
 | |
| 		if ((unsigned int)poison <= 0xFF)
 | |
| 			memset(pos, poison, PAGE_SIZE);
 | |
| 		free_reserved_page(virt_to_page(pos));
 | |
| 	}
 | |
| 
 | |
| 	if (pages && s)
 | |
| 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
 | |
| 			s, pages << (PAGE_SHIFT - 10), start, end);
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| EXPORT_SYMBOL(free_reserved_area);
 | |
| 
 | |
| #ifdef	CONFIG_HIGHMEM
 | |
| void free_highmem_page(struct page *page)
 | |
| {
 | |
| 	__free_reserved_page(page);
 | |
| 	totalram_pages++;
 | |
| 	page_zone(page)->managed_pages++;
 | |
| 	totalhigh_pages++;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| void __init mem_init_print_info(const char *str)
 | |
| {
 | |
| 	unsigned long physpages, codesize, datasize, rosize, bss_size;
 | |
| 	unsigned long init_code_size, init_data_size;
 | |
| 
 | |
| 	physpages = get_num_physpages();
 | |
| 	codesize = _etext - _stext;
 | |
| 	datasize = _edata - _sdata;
 | |
| 	rosize = __end_rodata - __start_rodata;
 | |
| 	bss_size = __bss_stop - __bss_start;
 | |
| 	init_data_size = __init_end - __init_begin;
 | |
| 	init_code_size = _einittext - _sinittext;
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect special cases and adjust section sizes accordingly:
 | |
| 	 * 1) .init.* may be embedded into .data sections
 | |
| 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
 | |
| 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
 | |
| 	 * 3) .rodata.* may be embedded into .text or .data sections.
 | |
| 	 */
 | |
| #define adj_init_size(start, end, size, pos, adj) \
 | |
| 	do { \
 | |
| 		if (start <= pos && pos < end && size > adj) \
 | |
| 			size -= adj; \
 | |
| 	} while (0)
 | |
| 
 | |
| 	adj_init_size(__init_begin, __init_end, init_data_size,
 | |
| 		     _sinittext, init_code_size);
 | |
| 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
 | |
| 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
 | |
| 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
 | |
| 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
 | |
| 
 | |
| #undef	adj_init_size
 | |
| 
 | |
| 	printk("Memory: %luK/%luK available "
 | |
| 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
 | |
| 	       "%luK init, %luK bss, %luK reserved"
 | |
| #ifdef	CONFIG_HIGHMEM
 | |
| 	       ", %luK highmem"
 | |
| #endif
 | |
| 	       "%s%s)\n",
 | |
| 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
 | |
| 	       codesize >> 10, datasize >> 10, rosize >> 10,
 | |
| 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
 | |
| 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
 | |
| #ifdef	CONFIG_HIGHMEM
 | |
| 	       totalhigh_pages << (PAGE_SHIFT-10),
 | |
| #endif
 | |
| 	       str ? ", " : "", str ? str : "");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_dma_reserve - set the specified number of pages reserved in the first zone
 | |
|  * @new_dma_reserve: The number of pages to mark reserved
 | |
|  *
 | |
|  * The per-cpu batchsize and zone watermarks are determined by present_pages.
 | |
|  * In the DMA zone, a significant percentage may be consumed by kernel image
 | |
|  * and other unfreeable allocations which can skew the watermarks badly. This
 | |
|  * function may optionally be used to account for unfreeable pages in the
 | |
|  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 | |
|  * smaller per-cpu batchsize.
 | |
|  */
 | |
| void __init set_dma_reserve(unsigned long new_dma_reserve)
 | |
| {
 | |
| 	dma_reserve = new_dma_reserve;
 | |
| }
 | |
| 
 | |
| void __init free_area_init(unsigned long *zones_size)
 | |
| {
 | |
| 	free_area_init_node(0, zones_size,
 | |
| 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
 | |
| }
 | |
| 
 | |
| static int page_alloc_cpu_notify(struct notifier_block *self,
 | |
| 				 unsigned long action, void *hcpu)
 | |
| {
 | |
| 	int cpu = (unsigned long)hcpu;
 | |
| 
 | |
| 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
 | |
| 		lru_add_drain_cpu(cpu);
 | |
| 		drain_pages(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Spill the event counters of the dead processor
 | |
| 		 * into the current processors event counters.
 | |
| 		 * This artificially elevates the count of the current
 | |
| 		 * processor.
 | |
| 		 */
 | |
| 		vm_events_fold_cpu(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Zero the differential counters of the dead processor
 | |
| 		 * so that the vm statistics are consistent.
 | |
| 		 *
 | |
| 		 * This is only okay since the processor is dead and cannot
 | |
| 		 * race with what we are doing.
 | |
| 		 */
 | |
| 		cpu_vm_stats_fold(cpu);
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| void __init page_alloc_init(void)
 | |
| {
 | |
| 	hotcpu_notifier(page_alloc_cpu_notify, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
 | |
|  *	or min_free_kbytes changes.
 | |
|  */
 | |
| static void calculate_totalreserve_pages(void)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 	unsigned long reserve_pages = 0;
 | |
| 	enum zone_type i, j;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 			struct zone *zone = pgdat->node_zones + i;
 | |
| 			unsigned long max = 0;
 | |
| 
 | |
| 			/* Find valid and maximum lowmem_reserve in the zone */
 | |
| 			for (j = i; j < MAX_NR_ZONES; j++) {
 | |
| 				if (zone->lowmem_reserve[j] > max)
 | |
| 					max = zone->lowmem_reserve[j];
 | |
| 			}
 | |
| 
 | |
| 			/* we treat the high watermark as reserved pages. */
 | |
| 			max += high_wmark_pages(zone);
 | |
| 
 | |
| 			if (max > zone->managed_pages)
 | |
| 				max = zone->managed_pages;
 | |
| 			reserve_pages += max;
 | |
| 			/*
 | |
| 			 * Lowmem reserves are not available to
 | |
| 			 * GFP_HIGHUSER page cache allocations and
 | |
| 			 * kswapd tries to balance zones to their high
 | |
| 			 * watermark.  As a result, neither should be
 | |
| 			 * regarded as dirtyable memory, to prevent a
 | |
| 			 * situation where reclaim has to clean pages
 | |
| 			 * in order to balance the zones.
 | |
| 			 */
 | |
| 			zone->dirty_balance_reserve = max;
 | |
| 		}
 | |
| 	}
 | |
| 	dirty_balance_reserve = reserve_pages;
 | |
| 	totalreserve_pages = reserve_pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_per_zone_lowmem_reserve - called whenever
 | |
|  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
 | |
|  *	has a correct pages reserved value, so an adequate number of
 | |
|  *	pages are left in the zone after a successful __alloc_pages().
 | |
|  */
 | |
| static void setup_per_zone_lowmem_reserve(void)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 	enum zone_type j, idx;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		for (j = 0; j < MAX_NR_ZONES; j++) {
 | |
| 			struct zone *zone = pgdat->node_zones + j;
 | |
| 			unsigned long managed_pages = zone->managed_pages;
 | |
| 
 | |
| 			zone->lowmem_reserve[j] = 0;
 | |
| 
 | |
| 			idx = j;
 | |
| 			while (idx) {
 | |
| 				struct zone *lower_zone;
 | |
| 
 | |
| 				idx--;
 | |
| 
 | |
| 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
 | |
| 					sysctl_lowmem_reserve_ratio[idx] = 1;
 | |
| 
 | |
| 				lower_zone = pgdat->node_zones + idx;
 | |
| 				lower_zone->lowmem_reserve[j] = managed_pages /
 | |
| 					sysctl_lowmem_reserve_ratio[idx];
 | |
| 				managed_pages += lower_zone->managed_pages;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* update totalreserve_pages */
 | |
| 	calculate_totalreserve_pages();
 | |
| }
 | |
| 
 | |
| static void __setup_per_zone_wmarks(void)
 | |
| {
 | |
| 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
 | |
| 	unsigned long lowmem_pages = 0;
 | |
| 	struct zone *zone;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Calculate total number of !ZONE_HIGHMEM pages */
 | |
| 	for_each_zone(zone) {
 | |
| 		if (!is_highmem(zone))
 | |
| 			lowmem_pages += zone->managed_pages;
 | |
| 	}
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		u64 tmp;
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		tmp = (u64)pages_min * zone->managed_pages;
 | |
| 		do_div(tmp, lowmem_pages);
 | |
| 		if (is_highmem(zone)) {
 | |
| 			/*
 | |
| 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
 | |
| 			 * need highmem pages, so cap pages_min to a small
 | |
| 			 * value here.
 | |
| 			 *
 | |
| 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
 | |
| 			 * deltas controls asynch page reclaim, and so should
 | |
| 			 * not be capped for highmem.
 | |
| 			 */
 | |
| 			unsigned long min_pages;
 | |
| 
 | |
| 			min_pages = zone->managed_pages / 1024;
 | |
| 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
 | |
| 			zone->watermark[WMARK_MIN] = min_pages;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * If it's a lowmem zone, reserve a number of pages
 | |
| 			 * proportionate to the zone's size.
 | |
| 			 */
 | |
| 			zone->watermark[WMARK_MIN] = tmp;
 | |
| 		}
 | |
| 
 | |
| 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
 | |
| 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
 | |
| 
 | |
| 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
 | |
| 				      high_wmark_pages(zone) -
 | |
| 				      low_wmark_pages(zone) -
 | |
| 				      zone_page_state(zone, NR_ALLOC_BATCH));
 | |
| 
 | |
| 		setup_zone_migrate_reserve(zone);
 | |
| 		spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* update totalreserve_pages */
 | |
| 	calculate_totalreserve_pages();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * setup_per_zone_wmarks - called when min_free_kbytes changes
 | |
|  * or when memory is hot-{added|removed}
 | |
|  *
 | |
|  * Ensures that the watermark[min,low,high] values for each zone are set
 | |
|  * correctly with respect to min_free_kbytes.
 | |
|  */
 | |
| void setup_per_zone_wmarks(void)
 | |
| {
 | |
| 	mutex_lock(&zonelists_mutex);
 | |
| 	__setup_per_zone_wmarks();
 | |
| 	mutex_unlock(&zonelists_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The inactive anon list should be small enough that the VM never has to
 | |
|  * do too much work, but large enough that each inactive page has a chance
 | |
|  * to be referenced again before it is swapped out.
 | |
|  *
 | |
|  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
 | |
|  * INACTIVE_ANON pages on this zone's LRU, maintained by the
 | |
|  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
 | |
|  * the anonymous pages are kept on the inactive list.
 | |
|  *
 | |
|  * total     target    max
 | |
|  * memory    ratio     inactive anon
 | |
|  * -------------------------------------
 | |
|  *   10MB       1         5MB
 | |
|  *  100MB       1        50MB
 | |
|  *    1GB       3       250MB
 | |
|  *   10GB      10       0.9GB
 | |
|  *  100GB      31         3GB
 | |
|  *    1TB     101        10GB
 | |
|  *   10TB     320        32GB
 | |
|  */
 | |
| static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
 | |
| {
 | |
| 	unsigned int gb, ratio;
 | |
| 
 | |
| 	/* Zone size in gigabytes */
 | |
| 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
 | |
| 	if (gb)
 | |
| 		ratio = int_sqrt(10 * gb);
 | |
| 	else
 | |
| 		ratio = 1;
 | |
| 
 | |
| 	zone->inactive_ratio = ratio;
 | |
| }
 | |
| 
 | |
| static void __meminit setup_per_zone_inactive_ratio(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_zone(zone)
 | |
| 		calculate_zone_inactive_ratio(zone);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialise min_free_kbytes.
 | |
|  *
 | |
|  * For small machines we want it small (128k min).  For large machines
 | |
|  * we want it large (64MB max).  But it is not linear, because network
 | |
|  * bandwidth does not increase linearly with machine size.  We use
 | |
|  *
 | |
|  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
 | |
|  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 | |
|  *
 | |
|  * which yields
 | |
|  *
 | |
|  * 16MB:	512k
 | |
|  * 32MB:	724k
 | |
|  * 64MB:	1024k
 | |
|  * 128MB:	1448k
 | |
|  * 256MB:	2048k
 | |
|  * 512MB:	2896k
 | |
|  * 1024MB:	4096k
 | |
|  * 2048MB:	5792k
 | |
|  * 4096MB:	8192k
 | |
|  * 8192MB:	11584k
 | |
|  * 16384MB:	16384k
 | |
|  */
 | |
| int __meminit init_per_zone_wmark_min(void)
 | |
| {
 | |
| 	unsigned long lowmem_kbytes;
 | |
| 	int new_min_free_kbytes;
 | |
| 
 | |
| 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
 | |
| 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
 | |
| 
 | |
| 	if (new_min_free_kbytes > user_min_free_kbytes) {
 | |
| 		min_free_kbytes = new_min_free_kbytes;
 | |
| 		if (min_free_kbytes < 128)
 | |
| 			min_free_kbytes = 128;
 | |
| 		if (min_free_kbytes > 65536)
 | |
| 			min_free_kbytes = 65536;
 | |
| 	} else {
 | |
| 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
 | |
| 				new_min_free_kbytes, user_min_free_kbytes);
 | |
| 	}
 | |
| 	setup_per_zone_wmarks();
 | |
| 	refresh_zone_stat_thresholds();
 | |
| 	setup_per_zone_lowmem_reserve();
 | |
| 	setup_per_zone_inactive_ratio();
 | |
| 	return 0;
 | |
| }
 | |
| module_init(init_per_zone_wmark_min)
 | |
| 
 | |
| /*
 | |
|  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
 | |
|  *	that we can call two helper functions whenever min_free_kbytes
 | |
|  *	changes.
 | |
|  */
 | |
| int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	proc_dointvec(table, write, buffer, length, ppos);
 | |
| 	if (write) {
 | |
| 		user_min_free_kbytes = min_free_kbytes;
 | |
| 		setup_per_zone_wmarks();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for_each_zone(zone)
 | |
| 		zone->min_unmapped_pages = (zone->managed_pages *
 | |
| 				sysctl_min_unmapped_ratio) / 100;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for_each_zone(zone)
 | |
| 		zone->min_slab_pages = (zone->managed_pages *
 | |
| 				sysctl_min_slab_ratio) / 100;
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 | |
|  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 | |
|  *	whenever sysctl_lowmem_reserve_ratio changes.
 | |
|  *
 | |
|  * The reserve ratio obviously has absolutely no relation with the
 | |
|  * minimum watermarks. The lowmem reserve ratio can only make sense
 | |
|  * if in function of the boot time zone sizes.
 | |
|  */
 | |
| int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	proc_dointvec_minmax(table, write, buffer, length, ppos);
 | |
| 	setup_per_zone_lowmem_reserve();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
 | |
|  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 | |
|  * pagelist can have before it gets flushed back to buddy allocator.
 | |
|  */
 | |
| int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned int cpu;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | |
| 	if (!write || (ret < 0))
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&pcp_batch_high_lock);
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		unsigned long  high;
 | |
| 		high = zone->managed_pages / percpu_pagelist_fraction;
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
 | |
| 					 high);
 | |
| 	}
 | |
| 	mutex_unlock(&pcp_batch_high_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int hashdist = HASHDIST_DEFAULT;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static int __init set_hashdist(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 	hashdist = simple_strtoul(str, &str, 0);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("hashdist=", set_hashdist);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * allocate a large system hash table from bootmem
 | |
|  * - it is assumed that the hash table must contain an exact power-of-2
 | |
|  *   quantity of entries
 | |
|  * - limit is the number of hash buckets, not the total allocation size
 | |
|  */
 | |
| void *__init alloc_large_system_hash(const char *tablename,
 | |
| 				     unsigned long bucketsize,
 | |
| 				     unsigned long numentries,
 | |
| 				     int scale,
 | |
| 				     int flags,
 | |
| 				     unsigned int *_hash_shift,
 | |
| 				     unsigned int *_hash_mask,
 | |
| 				     unsigned long low_limit,
 | |
| 				     unsigned long high_limit)
 | |
| {
 | |
| 	unsigned long long max = high_limit;
 | |
| 	unsigned long log2qty, size;
 | |
| 	void *table = NULL;
 | |
| 
 | |
| 	/* allow the kernel cmdline to have a say */
 | |
| 	if (!numentries) {
 | |
| 		/* round applicable memory size up to nearest megabyte */
 | |
| 		numentries = nr_kernel_pages;
 | |
| 
 | |
| 		/* It isn't necessary when PAGE_SIZE >= 1MB */
 | |
| 		if (PAGE_SHIFT < 20)
 | |
| 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
 | |
| 
 | |
| 		/* limit to 1 bucket per 2^scale bytes of low memory */
 | |
| 		if (scale > PAGE_SHIFT)
 | |
| 			numentries >>= (scale - PAGE_SHIFT);
 | |
| 		else
 | |
| 			numentries <<= (PAGE_SHIFT - scale);
 | |
| 
 | |
| 		/* Make sure we've got at least a 0-order allocation.. */
 | |
| 		if (unlikely(flags & HASH_SMALL)) {
 | |
| 			/* Makes no sense without HASH_EARLY */
 | |
| 			WARN_ON(!(flags & HASH_EARLY));
 | |
| 			if (!(numentries >> *_hash_shift)) {
 | |
| 				numentries = 1UL << *_hash_shift;
 | |
| 				BUG_ON(!numentries);
 | |
| 			}
 | |
| 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
 | |
| 			numentries = PAGE_SIZE / bucketsize;
 | |
| 	}
 | |
| 	numentries = roundup_pow_of_two(numentries);
 | |
| 
 | |
| 	/* limit allocation size to 1/16 total memory by default */
 | |
| 	if (max == 0) {
 | |
| 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
 | |
| 		do_div(max, bucketsize);
 | |
| 	}
 | |
| 	max = min(max, 0x80000000ULL);
 | |
| 
 | |
| 	if (numentries < low_limit)
 | |
| 		numentries = low_limit;
 | |
| 	if (numentries > max)
 | |
| 		numentries = max;
 | |
| 
 | |
| 	log2qty = ilog2(numentries);
 | |
| 
 | |
| 	do {
 | |
| 		size = bucketsize << log2qty;
 | |
| 		if (flags & HASH_EARLY)
 | |
| 			table = alloc_bootmem_nopanic(size);
 | |
| 		else if (hashdist)
 | |
| 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * If bucketsize is not a power-of-two, we may free
 | |
| 			 * some pages at the end of hash table which
 | |
| 			 * alloc_pages_exact() automatically does
 | |
| 			 */
 | |
| 			if (get_order(size) < MAX_ORDER) {
 | |
| 				table = alloc_pages_exact(size, GFP_ATOMIC);
 | |
| 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
 | |
| 			}
 | |
| 		}
 | |
| 	} while (!table && size > PAGE_SIZE && --log2qty);
 | |
| 
 | |
| 	if (!table)
 | |
| 		panic("Failed to allocate %s hash table\n", tablename);
 | |
| 
 | |
| 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
 | |
| 	       tablename,
 | |
| 	       (1UL << log2qty),
 | |
| 	       ilog2(size) - PAGE_SHIFT,
 | |
| 	       size);
 | |
| 
 | |
| 	if (_hash_shift)
 | |
| 		*_hash_shift = log2qty;
 | |
| 	if (_hash_mask)
 | |
| 		*_hash_mask = (1 << log2qty) - 1;
 | |
| 
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| /* Return a pointer to the bitmap storing bits affecting a block of pages */
 | |
| static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
 | |
| 							unsigned long pfn)
 | |
| {
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| 	return __pfn_to_section(pfn)->pageblock_flags;
 | |
| #else
 | |
| 	return zone->pageblock_flags;
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| }
 | |
| 
 | |
| static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
 | |
| {
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| 	pfn &= (PAGES_PER_SECTION-1);
 | |
| 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 | |
| #else
 | |
| 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
 | |
| 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
 | |
|  * @page: The page within the block of interest
 | |
|  * @start_bitidx: The first bit of interest to retrieve
 | |
|  * @end_bitidx: The last bit of interest
 | |
|  * returns pageblock_bits flags
 | |
|  */
 | |
| unsigned long get_pageblock_flags_group(struct page *page,
 | |
| 					int start_bitidx, int end_bitidx)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long *bitmap;
 | |
| 	unsigned long pfn, bitidx;
 | |
| 	unsigned long flags = 0;
 | |
| 	unsigned long value = 1;
 | |
| 
 | |
| 	zone = page_zone(page);
 | |
| 	pfn = page_to_pfn(page);
 | |
| 	bitmap = get_pageblock_bitmap(zone, pfn);
 | |
| 	bitidx = pfn_to_bitidx(zone, pfn);
 | |
| 
 | |
| 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
 | |
| 		if (test_bit(bitidx + start_bitidx, bitmap))
 | |
| 			flags |= value;
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
 | |
|  * @page: The page within the block of interest
 | |
|  * @start_bitidx: The first bit of interest
 | |
|  * @end_bitidx: The last bit of interest
 | |
|  * @flags: The flags to set
 | |
|  */
 | |
| void set_pageblock_flags_group(struct page *page, unsigned long flags,
 | |
| 					int start_bitidx, int end_bitidx)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long *bitmap;
 | |
| 	unsigned long pfn, bitidx;
 | |
| 	unsigned long value = 1;
 | |
| 
 | |
| 	zone = page_zone(page);
 | |
| 	pfn = page_to_pfn(page);
 | |
| 	bitmap = get_pageblock_bitmap(zone, pfn);
 | |
| 	bitidx = pfn_to_bitidx(zone, pfn);
 | |
| 	VM_BUG_ON(!zone_spans_pfn(zone, pfn));
 | |
| 
 | |
| 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
 | |
| 		if (flags & value)
 | |
| 			__set_bit(bitidx + start_bitidx, bitmap);
 | |
| 		else
 | |
| 			__clear_bit(bitidx + start_bitidx, bitmap);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function checks whether pageblock includes unmovable pages or not.
 | |
|  * If @count is not zero, it is okay to include less @count unmovable pages
 | |
|  *
 | |
|  * PageLRU check without isolation or lru_lock could race so that
 | |
|  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
 | |
|  * expect this function should be exact.
 | |
|  */
 | |
| bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
 | |
| 			 bool skip_hwpoisoned_pages)
 | |
| {
 | |
| 	unsigned long pfn, iter, found;
 | |
| 	int mt;
 | |
| 
 | |
| 	/*
 | |
| 	 * For avoiding noise data, lru_add_drain_all() should be called
 | |
| 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
 | |
| 	 */
 | |
| 	if (zone_idx(zone) == ZONE_MOVABLE)
 | |
| 		return false;
 | |
| 	mt = get_pageblock_migratetype(page);
 | |
| 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
 | |
| 		return false;
 | |
| 
 | |
| 	pfn = page_to_pfn(page);
 | |
| 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
 | |
| 		unsigned long check = pfn + iter;
 | |
| 
 | |
| 		if (!pfn_valid_within(check))
 | |
| 			continue;
 | |
| 
 | |
| 		page = pfn_to_page(check);
 | |
| 
 | |
| 		/*
 | |
| 		 * Hugepages are not in LRU lists, but they're movable.
 | |
| 		 * We need not scan over tail pages bacause we don't
 | |
| 		 * handle each tail page individually in migration.
 | |
| 		 */
 | |
| 		if (PageHuge(page)) {
 | |
| 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We can't use page_count without pin a page
 | |
| 		 * because another CPU can free compound page.
 | |
| 		 * This check already skips compound tails of THP
 | |
| 		 * because their page->_count is zero at all time.
 | |
| 		 */
 | |
| 		if (!atomic_read(&page->_count)) {
 | |
| 			if (PageBuddy(page))
 | |
| 				iter += (1 << page_order(page)) - 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The HWPoisoned page may be not in buddy system, and
 | |
| 		 * page_count() is not 0.
 | |
| 		 */
 | |
| 		if (skip_hwpoisoned_pages && PageHWPoison(page))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!PageLRU(page))
 | |
| 			found++;
 | |
| 		/*
 | |
| 		 * If there are RECLAIMABLE pages, we need to check it.
 | |
| 		 * But now, memory offline itself doesn't call shrink_slab()
 | |
| 		 * and it still to be fixed.
 | |
| 		 */
 | |
| 		/*
 | |
| 		 * If the page is not RAM, page_count()should be 0.
 | |
| 		 * we don't need more check. This is an _used_ not-movable page.
 | |
| 		 *
 | |
| 		 * The problematic thing here is PG_reserved pages. PG_reserved
 | |
| 		 * is set to both of a memory hole page and a _used_ kernel
 | |
| 		 * page at boot.
 | |
| 		 */
 | |
| 		if (found > count)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool is_pageblock_removable_nolock(struct page *page)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to be careful here because we are iterating over memory
 | |
| 	 * sections which are not zone aware so we might end up outside of
 | |
| 	 * the zone but still within the section.
 | |
| 	 * We have to take care about the node as well. If the node is offline
 | |
| 	 * its NODE_DATA will be NULL - see page_zone.
 | |
| 	 */
 | |
| 	if (!node_online(page_to_nid(page)))
 | |
| 		return false;
 | |
| 
 | |
| 	zone = page_zone(page);
 | |
| 	pfn = page_to_pfn(page);
 | |
| 	if (!zone_spans_pfn(zone, pfn))
 | |
| 		return false;
 | |
| 
 | |
| 	return !has_unmovable_pages(zone, page, 0, true);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CMA
 | |
| 
 | |
| static unsigned long pfn_max_align_down(unsigned long pfn)
 | |
| {
 | |
| 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
 | |
| 			     pageblock_nr_pages) - 1);
 | |
| }
 | |
| 
 | |
| static unsigned long pfn_max_align_up(unsigned long pfn)
 | |
| {
 | |
| 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
 | |
| 				pageblock_nr_pages));
 | |
| }
 | |
| 
 | |
| /* [start, end) must belong to a single zone. */
 | |
| static int __alloc_contig_migrate_range(struct compact_control *cc,
 | |
| 					unsigned long start, unsigned long end)
 | |
| {
 | |
| 	/* This function is based on compact_zone() from compaction.c. */
 | |
| 	unsigned long nr_reclaimed;
 | |
| 	unsigned long pfn = start;
 | |
| 	unsigned int tries = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	migrate_prep();
 | |
| 
 | |
| 	while (pfn < end || !list_empty(&cc->migratepages)) {
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (list_empty(&cc->migratepages)) {
 | |
| 			cc->nr_migratepages = 0;
 | |
| 			pfn = isolate_migratepages_range(cc->zone, cc,
 | |
| 							 pfn, end, true);
 | |
| 			if (!pfn) {
 | |
| 				ret = -EINTR;
 | |
| 				break;
 | |
| 			}
 | |
| 			tries = 0;
 | |
| 		} else if (++tries == 5) {
 | |
| 			ret = ret < 0 ? ret : -EBUSY;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
 | |
| 							&cc->migratepages);
 | |
| 		cc->nr_migratepages -= nr_reclaimed;
 | |
| 
 | |
| 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
 | |
| 				    0, MIGRATE_SYNC, MR_CMA);
 | |
| 	}
 | |
| 	if (ret < 0) {
 | |
| 		putback_movable_pages(&cc->migratepages);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_contig_range() -- tries to allocate given range of pages
 | |
|  * @start:	start PFN to allocate
 | |
|  * @end:	one-past-the-last PFN to allocate
 | |
|  * @migratetype:	migratetype of the underlaying pageblocks (either
 | |
|  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 | |
|  *			in range must have the same migratetype and it must
 | |
|  *			be either of the two.
 | |
|  *
 | |
|  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 | |
|  * aligned, however it's the caller's responsibility to guarantee that
 | |
|  * we are the only thread that changes migrate type of pageblocks the
 | |
|  * pages fall in.
 | |
|  *
 | |
|  * The PFN range must belong to a single zone.
 | |
|  *
 | |
|  * Returns zero on success or negative error code.  On success all
 | |
|  * pages which PFN is in [start, end) are allocated for the caller and
 | |
|  * need to be freed with free_contig_range().
 | |
|  */
 | |
| int alloc_contig_range(unsigned long start, unsigned long end,
 | |
| 		       unsigned migratetype)
 | |
| {
 | |
| 	unsigned long outer_start, outer_end;
 | |
| 	int ret = 0, order;
 | |
| 
 | |
| 	struct compact_control cc = {
 | |
| 		.nr_migratepages = 0,
 | |
| 		.order = -1,
 | |
| 		.zone = page_zone(pfn_to_page(start)),
 | |
| 		.sync = true,
 | |
| 		.ignore_skip_hint = true,
 | |
| 	};
 | |
| 	INIT_LIST_HEAD(&cc.migratepages);
 | |
| 
 | |
| 	/*
 | |
| 	 * What we do here is we mark all pageblocks in range as
 | |
| 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
 | |
| 	 * have different sizes, and due to the way page allocator
 | |
| 	 * work, we align the range to biggest of the two pages so
 | |
| 	 * that page allocator won't try to merge buddies from
 | |
| 	 * different pageblocks and change MIGRATE_ISOLATE to some
 | |
| 	 * other migration type.
 | |
| 	 *
 | |
| 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
 | |
| 	 * migrate the pages from an unaligned range (ie. pages that
 | |
| 	 * we are interested in).  This will put all the pages in
 | |
| 	 * range back to page allocator as MIGRATE_ISOLATE.
 | |
| 	 *
 | |
| 	 * When this is done, we take the pages in range from page
 | |
| 	 * allocator removing them from the buddy system.  This way
 | |
| 	 * page allocator will never consider using them.
 | |
| 	 *
 | |
| 	 * This lets us mark the pageblocks back as
 | |
| 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
 | |
| 	 * aligned range but not in the unaligned, original range are
 | |
| 	 * put back to page allocator so that buddy can use them.
 | |
| 	 */
 | |
| 
 | |
| 	ret = start_isolate_page_range(pfn_max_align_down(start),
 | |
| 				       pfn_max_align_up(end), migratetype,
 | |
| 				       false);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = __alloc_contig_migrate_range(&cc, start, end);
 | |
| 	if (ret)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
 | |
| 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
 | |
| 	 * more, all pages in [start, end) are free in page allocator.
 | |
| 	 * What we are going to do is to allocate all pages from
 | |
| 	 * [start, end) (that is remove them from page allocator).
 | |
| 	 *
 | |
| 	 * The only problem is that pages at the beginning and at the
 | |
| 	 * end of interesting range may be not aligned with pages that
 | |
| 	 * page allocator holds, ie. they can be part of higher order
 | |
| 	 * pages.  Because of this, we reserve the bigger range and
 | |
| 	 * once this is done free the pages we are not interested in.
 | |
| 	 *
 | |
| 	 * We don't have to hold zone->lock here because the pages are
 | |
| 	 * isolated thus they won't get removed from buddy.
 | |
| 	 */
 | |
| 
 | |
| 	lru_add_drain_all();
 | |
| 	drain_all_pages();
 | |
| 
 | |
| 	order = 0;
 | |
| 	outer_start = start;
 | |
| 	while (!PageBuddy(pfn_to_page(outer_start))) {
 | |
| 		if (++order >= MAX_ORDER) {
 | |
| 			ret = -EBUSY;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		outer_start &= ~0UL << order;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure the range is really isolated. */
 | |
| 	if (test_pages_isolated(outer_start, end, false)) {
 | |
| 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
 | |
| 		       outer_start, end);
 | |
| 		ret = -EBUSY;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Grab isolated pages from freelists. */
 | |
| 	outer_end = isolate_freepages_range(&cc, outer_start, end);
 | |
| 	if (!outer_end) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Free head and tail (if any) */
 | |
| 	if (start != outer_start)
 | |
| 		free_contig_range(outer_start, start - outer_start);
 | |
| 	if (end != outer_end)
 | |
| 		free_contig_range(end, outer_end - end);
 | |
| 
 | |
| done:
 | |
| 	undo_isolate_page_range(pfn_max_align_down(start),
 | |
| 				pfn_max_align_up(end), migratetype);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void free_contig_range(unsigned long pfn, unsigned nr_pages)
 | |
| {
 | |
| 	unsigned int count = 0;
 | |
| 
 | |
| 	for (; nr_pages--; pfn++) {
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		count += page_count(page) != 1;
 | |
| 		__free_page(page);
 | |
| 	}
 | |
| 	WARN(count != 0, "%d pages are still in use!\n", count);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| /*
 | |
|  * The zone indicated has a new number of managed_pages; batch sizes and percpu
 | |
|  * page high values need to be recalulated.
 | |
|  */
 | |
| void __meminit zone_pcp_update(struct zone *zone)
 | |
| {
 | |
| 	unsigned cpu;
 | |
| 	mutex_lock(&pcp_batch_high_lock);
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		pageset_set_high_and_batch(zone,
 | |
| 				per_cpu_ptr(zone->pageset, cpu));
 | |
| 	mutex_unlock(&pcp_batch_high_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void zone_pcp_reset(struct zone *zone)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int cpu;
 | |
| 	struct per_cpu_pageset *pset;
 | |
| 
 | |
| 	/* avoid races with drain_pages()  */
 | |
| 	local_irq_save(flags);
 | |
| 	if (zone->pageset != &boot_pageset) {
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			pset = per_cpu_ptr(zone->pageset, cpu);
 | |
| 			drain_zonestat(zone, pset);
 | |
| 		}
 | |
| 		free_percpu(zone->pageset);
 | |
| 		zone->pageset = &boot_pageset;
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| /*
 | |
|  * All pages in the range must be isolated before calling this.
 | |
|  */
 | |
| void
 | |
| __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct zone *zone;
 | |
| 	int order, i;
 | |
| 	unsigned long pfn;
 | |
| 	unsigned long flags;
 | |
| 	/* find the first valid pfn */
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
 | |
| 		if (pfn_valid(pfn))
 | |
| 			break;
 | |
| 	if (pfn == end_pfn)
 | |
| 		return;
 | |
| 	zone = page_zone(pfn_to_page(pfn));
 | |
| 	spin_lock_irqsave(&zone->lock, flags);
 | |
| 	pfn = start_pfn;
 | |
| 	while (pfn < end_pfn) {
 | |
| 		if (!pfn_valid(pfn)) {
 | |
| 			pfn++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		page = pfn_to_page(pfn);
 | |
| 		/*
 | |
| 		 * The HWPoisoned page may be not in buddy system, and
 | |
| 		 * page_count() is not 0.
 | |
| 		 */
 | |
| 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
 | |
| 			pfn++;
 | |
| 			SetPageReserved(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(page_count(page));
 | |
| 		BUG_ON(!PageBuddy(page));
 | |
| 		order = page_order(page);
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
 | |
| 		       pfn, 1 << order, end_pfn);
 | |
| #endif
 | |
| 		list_del(&page->lru);
 | |
| 		rmv_page_order(page);
 | |
| 		zone->free_area[order].nr_free--;
 | |
| 		for (i = 0; i < (1 << order); i++)
 | |
| 			SetPageReserved((page+i));
 | |
| 		pfn += (1 << order);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&zone->lock, flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| bool is_free_buddy_page(struct page *page)
 | |
| {
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 	unsigned long flags;
 | |
| 	int order;
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lock, flags);
 | |
| 	for (order = 0; order < MAX_ORDER; order++) {
 | |
| 		struct page *page_head = page - (pfn & ((1 << order) - 1));
 | |
| 
 | |
| 		if (PageBuddy(page_head) && page_order(page_head) >= order)
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 
 | |
| 	return order < MAX_ORDER;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct trace_print_flags pageflag_names[] = {
 | |
| 	{1UL << PG_locked,		"locked"	},
 | |
| 	{1UL << PG_error,		"error"		},
 | |
| 	{1UL << PG_referenced,		"referenced"	},
 | |
| 	{1UL << PG_uptodate,		"uptodate"	},
 | |
| 	{1UL << PG_dirty,		"dirty"		},
 | |
| 	{1UL << PG_lru,			"lru"		},
 | |
| 	{1UL << PG_active,		"active"	},
 | |
| 	{1UL << PG_slab,		"slab"		},
 | |
| 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
 | |
| 	{1UL << PG_arch_1,		"arch_1"	},
 | |
| 	{1UL << PG_reserved,		"reserved"	},
 | |
| 	{1UL << PG_private,		"private"	},
 | |
| 	{1UL << PG_private_2,		"private_2"	},
 | |
| 	{1UL << PG_writeback,		"writeback"	},
 | |
| #ifdef CONFIG_PAGEFLAGS_EXTENDED
 | |
| 	{1UL << PG_head,		"head"		},
 | |
| 	{1UL << PG_tail,		"tail"		},
 | |
| #else
 | |
| 	{1UL << PG_compound,		"compound"	},
 | |
| #endif
 | |
| 	{1UL << PG_swapcache,		"swapcache"	},
 | |
| 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
 | |
| 	{1UL << PG_reclaim,		"reclaim"	},
 | |
| 	{1UL << PG_swapbacked,		"swapbacked"	},
 | |
| 	{1UL << PG_unevictable,		"unevictable"	},
 | |
| #ifdef CONFIG_MMU
 | |
| 	{1UL << PG_mlocked,		"mlocked"	},
 | |
| #endif
 | |
| #ifdef CONFIG_ARCH_USES_PG_UNCACHED
 | |
| 	{1UL << PG_uncached,		"uncached"	},
 | |
| #endif
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| 	{1UL << PG_hwpoison,		"hwpoison"	},
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	{1UL << PG_compound_lock,	"compound_lock"	},
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static void dump_page_flags(unsigned long flags)
 | |
| {
 | |
| 	const char *delim = "";
 | |
| 	unsigned long mask;
 | |
| 	int i;
 | |
| 
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
 | |
| 
 | |
| 	printk(KERN_ALERT "page flags: %#lx(", flags);
 | |
| 
 | |
| 	/* remove zone id */
 | |
| 	flags &= (1UL << NR_PAGEFLAGS) - 1;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
 | |
| 
 | |
| 		mask = pageflag_names[i].mask;
 | |
| 		if ((flags & mask) != mask)
 | |
| 			continue;
 | |
| 
 | |
| 		flags &= ~mask;
 | |
| 		printk("%s%s", delim, pageflag_names[i].name);
 | |
| 		delim = "|";
 | |
| 	}
 | |
| 
 | |
| 	/* check for left over flags */
 | |
| 	if (flags)
 | |
| 		printk("%s%#lx", delim, flags);
 | |
| 
 | |
| 	printk(")\n");
 | |
| }
 | |
| 
 | |
| void dump_page(struct page *page)
 | |
| {
 | |
| 	printk(KERN_ALERT
 | |
| 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
 | |
| 		page, atomic_read(&page->_count), page_mapcount(page),
 | |
| 		page->mapping, page->index);
 | |
| 	dump_page_flags(page->flags);
 | |
| 	mem_cgroup_print_bad_page(page);
 | |
| }
 |