 86564c3f0f
			
		
	
	
	86564c3f0f
	
	
	
		
			
			Remove most of the sparse warnings in the bnx2x compilation (i.e., thus resulting when compiling with `C=2 CF=-D__CHECK_ENDIAN__'). Signed-off-by: Yuval Mintz <yuvalmin@broadcom.com> Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			934 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			934 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* bnx2x_init_ops.h: Broadcom Everest network driver.
 | |
|  *               Static functions needed during the initialization.
 | |
|  *               This file is "included" in bnx2x_main.c.
 | |
|  *
 | |
|  * Copyright (c) 2007-2013 Broadcom Corporation
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation.
 | |
|  *
 | |
|  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
 | |
|  * Written by: Vladislav Zolotarov <vladz@broadcom.com>
 | |
|  */
 | |
| 
 | |
| #ifndef BNX2X_INIT_OPS_H
 | |
| #define BNX2X_INIT_OPS_H
 | |
| 
 | |
| 
 | |
| #ifndef BP_ILT
 | |
| #define BP_ILT(bp)	NULL
 | |
| #endif
 | |
| 
 | |
| #ifndef BP_FUNC
 | |
| #define BP_FUNC(bp)	0
 | |
| #endif
 | |
| 
 | |
| #ifndef BP_PORT
 | |
| #define BP_PORT(bp)	0
 | |
| #endif
 | |
| 
 | |
| #ifndef BNX2X_ILT_FREE
 | |
| #define BNX2X_ILT_FREE(x, y, sz)
 | |
| #endif
 | |
| 
 | |
| #ifndef BNX2X_ILT_ZALLOC
 | |
| #define BNX2X_ILT_ZALLOC(x, y, sz)
 | |
| #endif
 | |
| 
 | |
| #ifndef ILOG2
 | |
| #define ILOG2(x)	x
 | |
| #endif
 | |
| 
 | |
| static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
 | |
| static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
 | |
| static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
 | |
| 				      dma_addr_t phys_addr, u32 addr,
 | |
| 				      u32 len);
 | |
| 
 | |
| static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
 | |
| 			      const u32 *data, u32 len)
 | |
| {
 | |
| 	u32 i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		REG_WR(bp, addr + i*4, data[i]);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
 | |
| 			      const u32 *data, u32 len)
 | |
| {
 | |
| 	u32 i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
 | |
| }
 | |
| 
 | |
| static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
 | |
| 				u8 wb)
 | |
| {
 | |
| 	if (bp->dmae_ready)
 | |
| 		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
 | |
| 
 | |
| 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
 | |
| 	else if (wb && CHIP_IS_E1(bp))
 | |
| 		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
 | |
| 
 | |
| 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
 | |
| 	else
 | |
| 		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
 | |
| 			    u32 len, u8 wb)
 | |
| {
 | |
| 	u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
 | |
| 	u32 buf_len32 = buf_len/4;
 | |
| 	u32 i;
 | |
| 
 | |
| 	memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
 | |
| 
 | |
| 	for (i = 0; i < len; i += buf_len32) {
 | |
| 		u32 cur_len = min(buf_len32, len - i);
 | |
| 
 | |
| 		bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
 | |
| {
 | |
| 	if (bp->dmae_ready)
 | |
| 		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
 | |
| 
 | |
| 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
 | |
| 	else if (CHIP_IS_E1(bp))
 | |
| 		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
 | |
| 
 | |
| 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
 | |
| 	else
 | |
| 		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
 | |
| 			     const u32 *data, u32 len64)
 | |
| {
 | |
| 	u32 buf_len32 = FW_BUF_SIZE/4;
 | |
| 	u32 len = len64*2;
 | |
| 	u64 data64 = 0;
 | |
| 	u32 i;
 | |
| 
 | |
| 	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
 | |
| 	data64 = HILO_U64((*(data + 1)), (*data));
 | |
| 
 | |
| 	len64 = min((u32)(FW_BUF_SIZE/8), len64);
 | |
| 	for (i = 0; i < len64; i++) {
 | |
| 		u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
 | |
| 
 | |
| 		*pdata = data64;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < len; i += buf_len32) {
 | |
| 		u32 cur_len = min(buf_len32, len - i);
 | |
| 
 | |
| 		bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*********************************************************
 | |
|    There are different blobs for each PRAM section.
 | |
|    In addition, each blob write operation is divided into a few operations
 | |
|    in order to decrease the amount of phys. contiguous buffer needed.
 | |
|    Thus, when we select a blob the address may be with some offset
 | |
|    from the beginning of PRAM section.
 | |
|    The same holds for the INT_TABLE sections.
 | |
| **********************************************************/
 | |
| #define IF_IS_INT_TABLE_ADDR(base, addr) \
 | |
| 			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
 | |
| 
 | |
| #define IF_IS_PRAM_ADDR(base, addr) \
 | |
| 			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
 | |
| 
 | |
| static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
 | |
| 				const u8 *data)
 | |
| {
 | |
| 	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
 | |
| 		data = INIT_TSEM_INT_TABLE_DATA(bp);
 | |
| 	else
 | |
| 		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
 | |
| 			data = INIT_CSEM_INT_TABLE_DATA(bp);
 | |
| 	else
 | |
| 		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
 | |
| 			data = INIT_USEM_INT_TABLE_DATA(bp);
 | |
| 	else
 | |
| 		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
 | |
| 			data = INIT_XSEM_INT_TABLE_DATA(bp);
 | |
| 	else
 | |
| 		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
 | |
| 			data = INIT_TSEM_PRAM_DATA(bp);
 | |
| 	else
 | |
| 		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
 | |
| 			data = INIT_CSEM_PRAM_DATA(bp);
 | |
| 	else
 | |
| 		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
 | |
| 			data = INIT_USEM_PRAM_DATA(bp);
 | |
| 	else
 | |
| 		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
 | |
| 			data = INIT_XSEM_PRAM_DATA(bp);
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
 | |
| 			     const u32 *data, u32 len)
 | |
| {
 | |
| 	if (bp->dmae_ready)
 | |
| 		VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
 | |
| 
 | |
| 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
 | |
| 	else if (CHIP_IS_E1(bp))
 | |
| 		bnx2x_init_ind_wr(bp, addr, data, len);
 | |
| 
 | |
| 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
 | |
| 	else
 | |
| 		bnx2x_init_str_wr(bp, addr, data, len);
 | |
| }
 | |
| 
 | |
| static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
 | |
| 			u32 val_hi)
 | |
| {
 | |
| 	u32 wb_write[2];
 | |
| 
 | |
| 	wb_write[0] = val_lo;
 | |
| 	wb_write[1] = val_hi;
 | |
| 	REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
 | |
| }
 | |
| static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
 | |
| 			     u32 blob_off)
 | |
| {
 | |
| 	const u8 *data = NULL;
 | |
| 	int rc;
 | |
| 	u32 i;
 | |
| 
 | |
| 	data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
 | |
| 
 | |
| 	rc = bnx2x_gunzip(bp, data, len);
 | |
| 	if (rc)
 | |
| 		return;
 | |
| 
 | |
| 	/* gunzip_outlen is in dwords */
 | |
| 	len = GUNZIP_OUTLEN(bp);
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		((u32 *)GUNZIP_BUF(bp))[i] = (__force u32)
 | |
| 				cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
 | |
| 
 | |
| 	bnx2x_write_big_buf_wb(bp, addr, len);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
 | |
| {
 | |
| 	u16 op_start =
 | |
| 		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
 | |
| 						     STAGE_START)];
 | |
| 	u16 op_end =
 | |
| 		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
 | |
| 						     STAGE_END)];
 | |
| 	const union init_op *op;
 | |
| 	u32 op_idx, op_type, addr, len;
 | |
| 	const u32 *data, *data_base;
 | |
| 
 | |
| 	/* If empty block */
 | |
| 	if (op_start == op_end)
 | |
| 		return;
 | |
| 
 | |
| 	data_base = INIT_DATA(bp);
 | |
| 
 | |
| 	for (op_idx = op_start; op_idx < op_end; op_idx++) {
 | |
| 
 | |
| 		op = (const union init_op *)&(INIT_OPS(bp)[op_idx]);
 | |
| 		/* Get generic data */
 | |
| 		op_type = op->raw.op;
 | |
| 		addr = op->raw.offset;
 | |
| 		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
 | |
| 		 * OP_WR64 (we assume that op_arr_write and op_write have the
 | |
| 		 * same structure).
 | |
| 		 */
 | |
| 		len = op->arr_wr.data_len;
 | |
| 		data = data_base + op->arr_wr.data_off;
 | |
| 
 | |
| 		switch (op_type) {
 | |
| 		case OP_RD:
 | |
| 			REG_RD(bp, addr);
 | |
| 			break;
 | |
| 		case OP_WR:
 | |
| 			REG_WR(bp, addr, op->write.val);
 | |
| 			break;
 | |
| 		case OP_SW:
 | |
| 			bnx2x_init_str_wr(bp, addr, data, len);
 | |
| 			break;
 | |
| 		case OP_WB:
 | |
| 			bnx2x_init_wr_wb(bp, addr, data, len);
 | |
| 			break;
 | |
| 		case OP_ZR:
 | |
| 			bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
 | |
| 			break;
 | |
| 		case OP_WB_ZR:
 | |
| 			bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
 | |
| 			break;
 | |
| 		case OP_ZP:
 | |
| 			bnx2x_init_wr_zp(bp, addr, len,
 | |
| 					 op->arr_wr.data_off);
 | |
| 			break;
 | |
| 		case OP_WR_64:
 | |
| 			bnx2x_init_wr_64(bp, addr, data, len);
 | |
| 			break;
 | |
| 		case OP_IF_MODE_AND:
 | |
| 			/* if any of the flags doesn't match, skip the
 | |
| 			 * conditional block.
 | |
| 			 */
 | |
| 			if ((INIT_MODE_FLAGS(bp) &
 | |
| 				op->if_mode.mode_bit_map) !=
 | |
| 				op->if_mode.mode_bit_map)
 | |
| 				op_idx += op->if_mode.cmd_offset;
 | |
| 			break;
 | |
| 		case OP_IF_MODE_OR:
 | |
| 			/* if all the flags don't match, skip the conditional
 | |
| 			 * block.
 | |
| 			 */
 | |
| 			if ((INIT_MODE_FLAGS(bp) &
 | |
| 				op->if_mode.mode_bit_map) == 0)
 | |
| 				op_idx += op->if_mode.cmd_offset;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* Should never get here! */
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
| * PXP Arbiter
 | |
| ****************************************************************************/
 | |
| /*
 | |
|  * This code configures the PCI read/write arbiter
 | |
|  * which implements a weighted round robin
 | |
|  * between the virtual queues in the chip.
 | |
|  *
 | |
|  * The values were derived for each PCI max payload and max request size.
 | |
|  * since max payload and max request size are only known at run time,
 | |
|  * this is done as a separate init stage.
 | |
|  */
 | |
| 
 | |
| #define NUM_WR_Q			13
 | |
| #define NUM_RD_Q			29
 | |
| #define MAX_RD_ORD			3
 | |
| #define MAX_WR_ORD			2
 | |
| 
 | |
| /* configuration for one arbiter queue */
 | |
| struct arb_line {
 | |
| 	int l;
 | |
| 	int add;
 | |
| 	int ubound;
 | |
| };
 | |
| 
 | |
| /* derived configuration for each read queue for each max request size */
 | |
| static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
 | |
| /* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
 | |
| 	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
 | |
| 	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
 | |
| 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 | |
| /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 | |
| 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
 | |
| };
 | |
| 
 | |
| /* derived configuration for each write queue for each max request size */
 | |
| static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
 | |
| /* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
 | |
| 	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
 | |
| 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
 | |
| 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
 | |
| 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
 | |
| 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
 | |
| 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
 | |
| 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
 | |
| 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
 | |
| /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
 | |
| 	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
 | |
| 	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
 | |
| 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
 | |
| };
 | |
| 
 | |
| /* register addresses for read queues */
 | |
| static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
 | |
| /* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND0},
 | |
| 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
 | |
| 		PXP2_REG_PSWRQ_BW_UB1},
 | |
| 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
 | |
| 		PXP2_REG_PSWRQ_BW_UB2},
 | |
| 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
 | |
| 		PXP2_REG_PSWRQ_BW_UB3},
 | |
| 	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND4},
 | |
| 	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND5},
 | |
| 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
 | |
| 		PXP2_REG_PSWRQ_BW_UB6},
 | |
| 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
 | |
| 		PXP2_REG_PSWRQ_BW_UB7},
 | |
| 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
 | |
| 		PXP2_REG_PSWRQ_BW_UB8},
 | |
| /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
 | |
| 		PXP2_REG_PSWRQ_BW_UB9},
 | |
| 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
 | |
| 		PXP2_REG_PSWRQ_BW_UB10},
 | |
| 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
 | |
| 		PXP2_REG_PSWRQ_BW_UB11},
 | |
| 	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND12},
 | |
| 	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND13},
 | |
| 	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND14},
 | |
| 	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND15},
 | |
| 	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND16},
 | |
| 	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND17},
 | |
| 	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND18},
 | |
| /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND19},
 | |
| 	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND20},
 | |
| 	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND22},
 | |
| 	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND23},
 | |
| 	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND24},
 | |
| 	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND25},
 | |
| 	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND26},
 | |
| 	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND27},
 | |
| 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
 | |
| 		PXP2_REG_PSWRQ_BW_UB28}
 | |
| };
 | |
| 
 | |
| /* register addresses for write queues */
 | |
| static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
 | |
| /* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
 | |
| 		PXP2_REG_PSWRQ_BW_UB1},
 | |
| 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
 | |
| 		PXP2_REG_PSWRQ_BW_UB2},
 | |
| 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
 | |
| 		PXP2_REG_PSWRQ_BW_UB3},
 | |
| 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
 | |
| 		PXP2_REG_PSWRQ_BW_UB6},
 | |
| 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
 | |
| 		PXP2_REG_PSWRQ_BW_UB7},
 | |
| 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
 | |
| 		PXP2_REG_PSWRQ_BW_UB8},
 | |
| 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
 | |
| 		PXP2_REG_PSWRQ_BW_UB9},
 | |
| 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
 | |
| 		PXP2_REG_PSWRQ_BW_UB10},
 | |
| 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
 | |
| 		PXP2_REG_PSWRQ_BW_UB11},
 | |
| /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
 | |
| 		PXP2_REG_PSWRQ_BW_UB28},
 | |
| 	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
 | |
| 		PXP2_REG_RQ_BW_WR_UBOUND29},
 | |
| 	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
 | |
| 		PXP2_REG_RQ_BW_WR_UBOUND30}
 | |
| };
 | |
| 
 | |
| static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
 | |
| 			       int w_order)
 | |
| {
 | |
| 	u32 val, i;
 | |
| 
 | |
| 	if (r_order > MAX_RD_ORD) {
 | |
| 		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
 | |
| 		   r_order, MAX_RD_ORD);
 | |
| 		r_order = MAX_RD_ORD;
 | |
| 	}
 | |
| 	if (w_order > MAX_WR_ORD) {
 | |
| 		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
 | |
| 		   w_order, MAX_WR_ORD);
 | |
| 		w_order = MAX_WR_ORD;
 | |
| 	}
 | |
| 	if (CHIP_REV_IS_FPGA(bp)) {
 | |
| 		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
 | |
| 		w_order = 0;
 | |
| 	}
 | |
| 	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
 | |
| 
 | |
| 	for (i = 0; i < NUM_RD_Q-1; i++) {
 | |
| 		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
 | |
| 		REG_WR(bp, read_arb_addr[i].add,
 | |
| 		       read_arb_data[i][r_order].add);
 | |
| 		REG_WR(bp, read_arb_addr[i].ubound,
 | |
| 		       read_arb_data[i][r_order].ubound);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < NUM_WR_Q-1; i++) {
 | |
| 		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
 | |
| 		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
 | |
| 
 | |
| 			REG_WR(bp, write_arb_addr[i].l,
 | |
| 			       write_arb_data[i][w_order].l);
 | |
| 
 | |
| 			REG_WR(bp, write_arb_addr[i].add,
 | |
| 			       write_arb_data[i][w_order].add);
 | |
| 
 | |
| 			REG_WR(bp, write_arb_addr[i].ubound,
 | |
| 			       write_arb_data[i][w_order].ubound);
 | |
| 		} else {
 | |
| 
 | |
| 			val = REG_RD(bp, write_arb_addr[i].l);
 | |
| 			REG_WR(bp, write_arb_addr[i].l,
 | |
| 			       val | (write_arb_data[i][w_order].l << 10));
 | |
| 
 | |
| 			val = REG_RD(bp, write_arb_addr[i].add);
 | |
| 			REG_WR(bp, write_arb_addr[i].add,
 | |
| 			       val | (write_arb_data[i][w_order].add << 10));
 | |
| 
 | |
| 			val = REG_RD(bp, write_arb_addr[i].ubound);
 | |
| 			REG_WR(bp, write_arb_addr[i].ubound,
 | |
| 			       val | (write_arb_data[i][w_order].ubound << 7));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
 | |
| 	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
 | |
| 	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
 | |
| 	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
 | |
| 
 | |
| 	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
 | |
| 	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
 | |
| 	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
 | |
| 	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
 | |
| 
 | |
| 	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
 | |
| 	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
 | |
| 	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
 | |
| 	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
 | |
| 
 | |
| 	if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
 | |
| 		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
 | |
| 
 | |
| 	if (CHIP_IS_E3(bp))
 | |
| 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
 | |
| 	else if (CHIP_IS_E2(bp))
 | |
| 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
 | |
| 	else
 | |
| 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
 | |
| 
 | |
| 	if (!CHIP_IS_E1(bp)) {
 | |
| 		/*    MPS      w_order     optimal TH      presently TH
 | |
| 		 *    128         0             0               2
 | |
| 		 *    256         1             1               3
 | |
| 		 *    >=512       2             2               3
 | |
| 		 */
 | |
| 		/* DMAE is special */
 | |
| 		if (!CHIP_IS_E1H(bp)) {
 | |
| 			/* E2 can use optimal TH */
 | |
| 			val = w_order;
 | |
| 			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
 | |
| 		} else {
 | |
| 			val = ((w_order == 0) ? 2 : 3);
 | |
| 			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
 | |
| 		}
 | |
| 
 | |
| 		REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
 | |
| 		REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
 | |
| 		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
 | |
| 		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
 | |
| 		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
 | |
| 		REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
 | |
| 		REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
 | |
| 		REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
 | |
| 		REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
 | |
| 		REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
 | |
| 	}
 | |
| 
 | |
| 	/* Validate number of tags suppoted by device */
 | |
| #define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
 | |
| 	val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
 | |
| 	val &= 0xFF;
 | |
| 	if (val <= 0x20)
 | |
| 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
| * ILT management
 | |
| ****************************************************************************/
 | |
| /*
 | |
|  * This codes hides the low level HW interaction for ILT management and
 | |
|  * configuration. The API consists of a shadow ILT table which is set by the
 | |
|  * driver and a set of routines to use it to configure the HW.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* ILT HW init operations */
 | |
| 
 | |
| /* ILT memory management operations */
 | |
| #define ILT_MEMOP_ALLOC		0
 | |
| #define ILT_MEMOP_FREE		1
 | |
| 
 | |
| /* the phys address is shifted right 12 bits and has an added
 | |
|  * 1=valid bit added to the 53rd bit
 | |
|  * then since this is a wide register(TM)
 | |
|  * we split it into two 32 bit writes
 | |
|  */
 | |
| #define ILT_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
 | |
| #define ILT_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
 | |
| #define ILT_RANGE(f, l)		(((l) << 10) | f)
 | |
| 
 | |
| static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
 | |
| 				 struct ilt_line *line, u32 size, u8 memop)
 | |
| {
 | |
| 	if (memop == ILT_MEMOP_FREE) {
 | |
| 		BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
 | |
| 	if (!line->page)
 | |
| 		return -1;
 | |
| 	line->size = size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
 | |
| 				   u8 memop)
 | |
| {
 | |
| 	int i, rc;
 | |
| 	struct bnx2x_ilt *ilt = BP_ILT(bp);
 | |
| 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
 | |
| 
 | |
| 	if (!ilt || !ilt->lines)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
 | |
| 		rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
 | |
| 					   ilt_cli->page_size, memop);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (CONFIGURE_NIC_MODE(bp))
 | |
| 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
 | |
| 	if (!rc)
 | |
| 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
 | |
| {
 | |
| 	int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
 | |
| 	if (!rc)
 | |
| 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
 | |
| 	if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
 | |
| 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
 | |
| 			      dma_addr_t page_mapping)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (CHIP_IS_E1(bp))
 | |
| 		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
 | |
| 	else
 | |
| 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
 | |
| 
 | |
| 	bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
 | |
| }
 | |
| 
 | |
| static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
 | |
| 				   struct bnx2x_ilt *ilt, int idx, u8 initop)
 | |
| {
 | |
| 	dma_addr_t	null_mapping;
 | |
| 	int abs_idx = ilt->start_line + idx;
 | |
| 
 | |
| 
 | |
| 	switch (initop) {
 | |
| 	case INITOP_INIT:
 | |
| 		/* set in the init-value array */
 | |
| 	case INITOP_SET:
 | |
| 		bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
 | |
| 		break;
 | |
| 	case INITOP_CLEAR:
 | |
| 		null_mapping = 0;
 | |
| 		bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
 | |
| 				      struct ilt_client_info *ilt_cli,
 | |
| 				      u32 ilt_start, u8 initop)
 | |
| {
 | |
| 	u32 start_reg = 0;
 | |
| 	u32 end_reg = 0;
 | |
| 
 | |
| 	/* The boundary is either SET or INIT,
 | |
| 	   CLEAR => SET and for now SET ~~ INIT */
 | |
| 
 | |
| 	/* find the appropriate regs */
 | |
| 	if (CHIP_IS_E1(bp)) {
 | |
| 		switch (ilt_cli->client_num) {
 | |
| 		case ILT_CLIENT_CDU:
 | |
| 			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
 | |
| 			break;
 | |
| 		case ILT_CLIENT_QM:
 | |
| 			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
 | |
| 			break;
 | |
| 		case ILT_CLIENT_SRC:
 | |
| 			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
 | |
| 			break;
 | |
| 		case ILT_CLIENT_TM:
 | |
| 			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
 | |
| 			break;
 | |
| 		}
 | |
| 		REG_WR(bp, start_reg + BP_FUNC(bp)*4,
 | |
| 		       ILT_RANGE((ilt_start + ilt_cli->start),
 | |
| 				 (ilt_start + ilt_cli->end)));
 | |
| 	} else {
 | |
| 		switch (ilt_cli->client_num) {
 | |
| 		case ILT_CLIENT_CDU:
 | |
| 			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
 | |
| 			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
 | |
| 			break;
 | |
| 		case ILT_CLIENT_QM:
 | |
| 			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
 | |
| 			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
 | |
| 			break;
 | |
| 		case ILT_CLIENT_SRC:
 | |
| 			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
 | |
| 			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
 | |
| 			break;
 | |
| 		case ILT_CLIENT_TM:
 | |
| 			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
 | |
| 			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
 | |
| 			break;
 | |
| 		}
 | |
| 		REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
 | |
| 		REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
 | |
| 					 struct bnx2x_ilt *ilt,
 | |
| 					 struct ilt_client_info *ilt_cli,
 | |
| 					 u8 initop)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
 | |
| 		bnx2x_ilt_line_init_op(bp, ilt, i, initop);
 | |
| 
 | |
| 	/* init/clear the ILT boundries */
 | |
| 	bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
 | |
| }
 | |
| 
 | |
| static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
 | |
| 				     struct ilt_client_info *ilt_cli, u8 initop)
 | |
| {
 | |
| 	struct bnx2x_ilt *ilt = BP_ILT(bp);
 | |
| 
 | |
| 	bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
 | |
| }
 | |
| 
 | |
| static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
 | |
| 					int cli_num, u8 initop)
 | |
| {
 | |
| 	struct bnx2x_ilt *ilt = BP_ILT(bp);
 | |
| 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
 | |
| 
 | |
| 	bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
 | |
| }
 | |
| 
 | |
| static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop)
 | |
| {
 | |
| 	if (CONFIGURE_NIC_MODE(bp))
 | |
| 		bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
 | |
| 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
 | |
| }
 | |
| 
 | |
| static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
 | |
| {
 | |
| 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
 | |
| 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
 | |
| 	if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
 | |
| 		bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
 | |
| }
 | |
| 
 | |
| static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
 | |
| 				      u32 psz_reg, u8 initop)
 | |
| {
 | |
| 	struct bnx2x_ilt *ilt = BP_ILT(bp);
 | |
| 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
 | |
| 
 | |
| 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
 | |
| 		return;
 | |
| 
 | |
| 	switch (initop) {
 | |
| 	case INITOP_INIT:
 | |
| 		/* set in the init-value array */
 | |
| 	case INITOP_SET:
 | |
| 		REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
 | |
| 		break;
 | |
| 	case INITOP_CLEAR:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called during init common stage, ilt clients should be initialized
 | |
|  * prioir to calling this function
 | |
|  */
 | |
| static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
 | |
| {
 | |
| 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
 | |
| 				  PXP2_REG_RQ_CDU_P_SIZE, initop);
 | |
| 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
 | |
| 				  PXP2_REG_RQ_QM_P_SIZE, initop);
 | |
| 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
 | |
| 				  PXP2_REG_RQ_SRC_P_SIZE, initop);
 | |
| 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
 | |
| 				  PXP2_REG_RQ_TM_P_SIZE, initop);
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
| * QM initializations
 | |
| ****************************************************************************/
 | |
| #define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
 | |
| #define QM_INIT_MIN_CID_COUNT	31
 | |
| #define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
 | |
| 
 | |
| /* called during init port stage */
 | |
| static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
 | |
| 				    u8 initop)
 | |
| {
 | |
| 	int port = BP_PORT(bp);
 | |
| 
 | |
| 	if (QM_INIT(qm_cid_count)) {
 | |
| 		switch (initop) {
 | |
| 		case INITOP_INIT:
 | |
| 			/* set in the init-value array */
 | |
| 		case INITOP_SET:
 | |
| 			REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
 | |
| 			       qm_cid_count/16 - 1);
 | |
| 			break;
 | |
| 		case INITOP_CLEAR:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count,
 | |
| 				   u32 base_reg, u32 reg)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 wb_data[2] = {0, 0};
 | |
| 	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
 | |
| 		REG_WR(bp, base_reg + i*4,
 | |
| 		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
 | |
| 		bnx2x_init_wr_wb(bp, reg + i*8,	 wb_data, 2);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* called during init common stage */
 | |
| static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
 | |
| 				    u8 initop)
 | |
| {
 | |
| 	if (!QM_INIT(qm_cid_count))
 | |
| 		return;
 | |
| 
 | |
| 	switch (initop) {
 | |
| 	case INITOP_INIT:
 | |
| 		/* set in the init-value array */
 | |
| 	case INITOP_SET:
 | |
| 		bnx2x_qm_set_ptr_table(bp, qm_cid_count,
 | |
| 				       QM_REG_BASEADDR, QM_REG_PTRTBL);
 | |
| 		if (CHIP_IS_E1H(bp))
 | |
| 			bnx2x_qm_set_ptr_table(bp, qm_cid_count,
 | |
| 					       QM_REG_BASEADDR_EXT_A,
 | |
| 					       QM_REG_PTRTBL_EXT_A);
 | |
| 		break;
 | |
| 	case INITOP_CLEAR:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
| * SRC initializations
 | |
| ****************************************************************************/
 | |
| /* called during init func stage */
 | |
| static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
 | |
| 			      dma_addr_t t2_mapping, int src_cid_count)
 | |
| {
 | |
| 	int i;
 | |
| 	int port = BP_PORT(bp);
 | |
| 
 | |
| 	/* Initialize T2 */
 | |
| 	for (i = 0; i < src_cid_count-1; i++)
 | |
| 		t2[i].next = (u64)(t2_mapping +
 | |
| 			     (i+1)*sizeof(struct src_ent));
 | |
| 
 | |
| 	/* tell the searcher where the T2 table is */
 | |
| 	REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
 | |
| 
 | |
| 	bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
 | |
| 		    U64_LO(t2_mapping), U64_HI(t2_mapping));
 | |
| 
 | |
| 	bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
 | |
| 		    U64_LO((u64)t2_mapping +
 | |
| 			   (src_cid_count-1) * sizeof(struct src_ent)),
 | |
| 		    U64_HI((u64)t2_mapping +
 | |
| 			   (src_cid_count-1) * sizeof(struct src_ent)));
 | |
| }
 | |
| #endif /* BNX2X_INIT_OPS_H */
 |