 66d1bee1f3
			
		
	
	
	66d1bee1f3
	
	
	
		
			
			Replace kfree_skb with dev_consume_skb_any in tile_net_tx and tile_net_tx_tso which can be called in hard irq and other contexts. At the point where the skbs are freed a packet has been successfully transmitted so dev_consume_skb_any is the appropriate variant to use. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
		
			
				
	
	
		
			2425 lines
		
	
	
	
		
			64 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2425 lines
		
	
	
	
		
			64 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2011 Tilera Corporation. All Rights Reserved.
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful, but
 | |
|  *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *   NON INFRINGEMENT.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>      /* printk() */
 | |
| #include <linux/slab.h>        /* kmalloc() */
 | |
| #include <linux/errno.h>       /* error codes */
 | |
| #include <linux/types.h>       /* size_t */
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/netdevice.h>   /* struct device, and other headers */
 | |
| #include <linux/etherdevice.h> /* eth_type_trans */
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/ioctl.h>
 | |
| #include <linux/cdev.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/in6.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/u64_stats_sync.h>
 | |
| #include <asm/checksum.h>
 | |
| #include <asm/homecache.h>
 | |
| 
 | |
| #include <hv/drv_xgbe_intf.h>
 | |
| #include <hv/drv_xgbe_impl.h>
 | |
| #include <hv/hypervisor.h>
 | |
| #include <hv/netio_intf.h>
 | |
| 
 | |
| /* For TSO */
 | |
| #include <linux/ip.h>
 | |
| #include <linux/tcp.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * First, "tile_net_init_module()" initializes all four "devices" which
 | |
|  * can be used by linux.
 | |
|  *
 | |
|  * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
 | |
|  * the network cpus, then uses "tile_net_open_aux()" to initialize
 | |
|  * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
 | |
|  * the tiles, provide buffers to LIPP, allow ingress to start, and
 | |
|  * turn on hypervisor interrupt handling (and NAPI) on all tiles.
 | |
|  *
 | |
|  * If registration fails due to the link being down, then "retry_work"
 | |
|  * is used to keep calling "tile_net_open_inner()" until it succeeds.
 | |
|  *
 | |
|  * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
 | |
|  * stop egress, drain the LIPP buffers, unregister all the tiles, stop
 | |
|  * LIPP/LEPP, and wipe the LEPP queue.
 | |
|  *
 | |
|  * We start out with the ingress interrupt enabled on each CPU.  When
 | |
|  * this interrupt fires, we disable it, and call "napi_schedule()".
 | |
|  * This will cause "tile_net_poll()" to be called, which will pull
 | |
|  * packets from the netio queue, filtering them out, or passing them
 | |
|  * to "netif_receive_skb()".  If our budget is exhausted, we will
 | |
|  * return, knowing we will be called again later.  Otherwise, we
 | |
|  * reenable the ingress interrupt, and call "napi_complete()".
 | |
|  *
 | |
|  * HACK: Since disabling the ingress interrupt is not reliable, we
 | |
|  * ignore the interrupt if the global "active" flag is false.
 | |
|  *
 | |
|  *
 | |
|  * NOTE: The use of "native_driver" ensures that EPP exists, and that
 | |
|  * we are using "LIPP" and "LEPP".
 | |
|  *
 | |
|  * NOTE: Failing to free completions for an arbitrarily long time
 | |
|  * (which is defined to be illegal) does in fact cause bizarre
 | |
|  * problems.  The "egress_timer" helps prevent this from happening.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* HACK: Allow use of "jumbo" packets. */
 | |
| /* This should be 1500 if "jumbo" is not set in LIPP. */
 | |
| /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
 | |
| /* ISSUE: This has not been thoroughly tested (except at 1500). */
 | |
| #define TILE_NET_MTU 1500
 | |
| 
 | |
| /* HACK: Define this to verify incoming packets. */
 | |
| /* #define TILE_NET_VERIFY_INGRESS */
 | |
| 
 | |
| /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
 | |
| #define TILE_NET_TX_QUEUE_LEN 0
 | |
| 
 | |
| /* Define to dump packets (prints out the whole packet on tx and rx). */
 | |
| /* #define TILE_NET_DUMP_PACKETS */
 | |
| 
 | |
| /* Define to enable debug spew (all PDEBUG's are enabled). */
 | |
| /* #define TILE_NET_DEBUG */
 | |
| 
 | |
| 
 | |
| /* Define to activate paranoia checks. */
 | |
| /* #define TILE_NET_PARANOIA */
 | |
| 
 | |
| /* Default transmit lockup timeout period, in jiffies. */
 | |
| #define TILE_NET_TIMEOUT (5 * HZ)
 | |
| 
 | |
| /* Default retry interval for bringing up the NetIO interface, in jiffies. */
 | |
| #define TILE_NET_RETRY_INTERVAL (5 * HZ)
 | |
| 
 | |
| /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
 | |
| #define TILE_NET_DEVS 4
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Paranoia. */
 | |
| #if NET_IP_ALIGN != LIPP_PACKET_PADDING
 | |
| #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Debug print. */
 | |
| #ifdef TILE_NET_DEBUG
 | |
| #define PDEBUG(fmt, args...) net_printk(fmt, ## args)
 | |
| #else
 | |
| #define PDEBUG(fmt, args...)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| MODULE_AUTHOR("Tilera");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Queue of incoming packets for a specific cpu and device.
 | |
|  *
 | |
|  * Includes a pointer to the "system" data, and the actual "user" data.
 | |
|  */
 | |
| struct tile_netio_queue {
 | |
| 	netio_queue_impl_t *__system_part;
 | |
| 	netio_queue_user_impl_t __user_part;
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Statistics counters for a specific cpu and device.
 | |
|  */
 | |
| struct tile_net_stats_t {
 | |
| 	struct u64_stats_sync syncp;
 | |
| 	u64 rx_packets;		/* total packets received	*/
 | |
| 	u64 tx_packets;		/* total packets transmitted	*/
 | |
| 	u64 rx_bytes;		/* total bytes received 	*/
 | |
| 	u64 tx_bytes;		/* total bytes transmitted	*/
 | |
| 	u64 rx_errors;		/* packets truncated or marked bad by hw */
 | |
| 	u64 rx_dropped;		/* packets not for us or intf not up */
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Info for a specific cpu and device.
 | |
|  *
 | |
|  * ISSUE: There is a "dev" pointer in "napi" as well.
 | |
|  */
 | |
| struct tile_net_cpu {
 | |
| 	/* The NAPI struct. */
 | |
| 	struct napi_struct napi;
 | |
| 	/* Packet queue. */
 | |
| 	struct tile_netio_queue queue;
 | |
| 	/* Statistics. */
 | |
| 	struct tile_net_stats_t stats;
 | |
| 	/* True iff NAPI is enabled. */
 | |
| 	bool napi_enabled;
 | |
| 	/* True if this tile has successfully registered with the IPP. */
 | |
| 	bool registered;
 | |
| 	/* True if the link was down last time we tried to register. */
 | |
| 	bool link_down;
 | |
| 	/* True if "egress_timer" is scheduled. */
 | |
| 	bool egress_timer_scheduled;
 | |
| 	/* Number of small sk_buffs which must still be provided. */
 | |
| 	unsigned int num_needed_small_buffers;
 | |
| 	/* Number of large sk_buffs which must still be provided. */
 | |
| 	unsigned int num_needed_large_buffers;
 | |
| 	/* A timer for handling egress completions. */
 | |
| 	struct timer_list egress_timer;
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Info for a specific device.
 | |
|  */
 | |
| struct tile_net_priv {
 | |
| 	/* Our network device. */
 | |
| 	struct net_device *dev;
 | |
| 	/* Pages making up the egress queue. */
 | |
| 	struct page *eq_pages;
 | |
| 	/* Address of the actual egress queue. */
 | |
| 	lepp_queue_t *eq;
 | |
| 	/* Protects "eq". */
 | |
| 	spinlock_t eq_lock;
 | |
| 	/* The hypervisor handle for this interface. */
 | |
| 	int hv_devhdl;
 | |
| 	/* The intr bit mask that IDs this device. */
 | |
| 	u32 intr_id;
 | |
| 	/* True iff "tile_net_open_aux()" has succeeded. */
 | |
| 	bool partly_opened;
 | |
| 	/* True iff the device is "active". */
 | |
| 	bool active;
 | |
| 	/* Effective network cpus. */
 | |
| 	struct cpumask network_cpus_map;
 | |
| 	/* Number of network cpus. */
 | |
| 	int network_cpus_count;
 | |
| 	/* Credits per network cpu. */
 | |
| 	int network_cpus_credits;
 | |
| 	/* For NetIO bringup retries. */
 | |
| 	struct delayed_work retry_work;
 | |
| 	/* Quick access to per cpu data. */
 | |
| 	struct tile_net_cpu *cpu[NR_CPUS];
 | |
| };
 | |
| 
 | |
| /* Log2 of the number of small pages needed for the egress queue. */
 | |
| #define EQ_ORDER  get_order(sizeof(lepp_queue_t))
 | |
| /* Size of the egress queue's pages. */
 | |
| #define EQ_SIZE   (1 << (PAGE_SHIFT + EQ_ORDER))
 | |
| 
 | |
| /*
 | |
|  * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
 | |
|  */
 | |
| static struct net_device *tile_net_devs[TILE_NET_DEVS];
 | |
| 
 | |
| /*
 | |
|  * The "tile_net_cpu" structures for each device.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0);
 | |
| static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1);
 | |
| static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0);
 | |
| static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * True if "network_cpus" was specified.
 | |
|  */
 | |
| static bool network_cpus_used;
 | |
| 
 | |
| /*
 | |
|  * The actual cpus in "network_cpus".
 | |
|  */
 | |
| static struct cpumask network_cpus_map;
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifdef TILE_NET_DEBUG
 | |
| /*
 | |
|  * printk with extra stuff.
 | |
|  *
 | |
|  * We print the CPU we're running in brackets.
 | |
|  */
 | |
| static void net_printk(char *fmt, ...)
 | |
| {
 | |
| 	int i;
 | |
| 	int len;
 | |
| 	va_list args;
 | |
| 	static char buf[256];
 | |
| 
 | |
| 	len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id());
 | |
| 	va_start(args, fmt);
 | |
| 	i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args);
 | |
| 	va_end(args);
 | |
| 	buf[255] = '\0';
 | |
| 	pr_notice(buf);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef TILE_NET_DUMP_PACKETS
 | |
| /*
 | |
|  * Dump a packet.
 | |
|  */
 | |
| static void dump_packet(unsigned char *data, unsigned long length, char *s)
 | |
| {
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 
 | |
| 	unsigned long i;
 | |
| 	char buf[128];
 | |
| 
 | |
| 	static unsigned int count;
 | |
| 
 | |
| 	pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
 | |
| 	       data, length, s, count++);
 | |
| 
 | |
| 	pr_info("\n");
 | |
| 
 | |
| 	for (i = 0; i < length; i++) {
 | |
| 		if ((i & 0xf) == 0)
 | |
| 			sprintf(buf, "[%02d] %8.8lx:", my_cpu, i);
 | |
| 		sprintf(buf + strlen(buf), " %2.2x", data[i]);
 | |
| 		if ((i & 0xf) == 0xf || i == length - 1) {
 | |
| 			strcat(buf, "\n");
 | |
| 			pr_info("%s", buf);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Provide support for the __netio_fastio1() swint
 | |
|  * (see <hv/drv_xgbe_intf.h> for how it is used).
 | |
|  *
 | |
|  * The fastio swint2 call may clobber all the caller-saved registers.
 | |
|  * It rarely clobbers memory, but we allow for the possibility in
 | |
|  * the signature just to be on the safe side.
 | |
|  *
 | |
|  * Also, gcc doesn't seem to allow an input operand to be
 | |
|  * clobbered, so we fake it with dummy outputs.
 | |
|  *
 | |
|  * This function can't be static because of the way it is declared
 | |
|  * in the netio header.
 | |
|  */
 | |
| inline int __netio_fastio1(u32 fastio_index, u32 arg0)
 | |
| {
 | |
| 	long result, clobber_r1, clobber_r10;
 | |
| 	asm volatile("swint2"
 | |
| 		     : "=R00" (result),
 | |
| 		       "=R01" (clobber_r1), "=R10" (clobber_r10)
 | |
| 		     : "R10" (fastio_index), "R01" (arg0)
 | |
| 		     : "memory", "r2", "r3", "r4",
 | |
| 		       "r5", "r6", "r7", "r8", "r9",
 | |
| 		       "r11", "r12", "r13", "r14",
 | |
| 		       "r15", "r16", "r17", "r18", "r19",
 | |
| 		       "r20", "r21", "r22", "r23", "r24",
 | |
| 		       "r25", "r26", "r27", "r28", "r29");
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void tile_net_return_credit(struct tile_net_cpu *info)
 | |
| {
 | |
| 	struct tile_netio_queue *queue = &info->queue;
 | |
| 	netio_queue_user_impl_t *qup = &queue->__user_part;
 | |
| 
 | |
| 	/* Return four credits after every fourth packet. */
 | |
| 	if (--qup->__receive_credit_remaining == 0) {
 | |
| 		u32 interval = qup->__receive_credit_interval;
 | |
| 		qup->__receive_credit_remaining = interval;
 | |
| 		__netio_fastio_return_credits(qup->__fastio_index, interval);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Provide a linux buffer to LIPP.
 | |
|  */
 | |
| static void tile_net_provide_linux_buffer(struct tile_net_cpu *info,
 | |
| 					  void *va, bool small)
 | |
| {
 | |
| 	struct tile_netio_queue *queue = &info->queue;
 | |
| 
 | |
| 	/* Convert "va" and "small" to "linux_buffer_t". */
 | |
| 	unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small;
 | |
| 
 | |
| 	__netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Provide a linux buffer for LIPP.
 | |
|  *
 | |
|  * Note that the ACTUAL allocation for each buffer is a "struct sk_buff",
 | |
|  * plus a chunk of memory that includes not only the requested bytes, but
 | |
|  * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info".
 | |
|  *
 | |
|  * Note that "struct skb_shared_info" is 88 bytes with 64K pages and
 | |
|  * 268 bytes with 4K pages (since the frags[] array needs 18 entries).
 | |
|  *
 | |
|  * Without jumbo packets, the maximum packet size will be 1536 bytes,
 | |
|  * and we use 2 bytes (NET_IP_ALIGN) of padding.  ISSUE: If we told
 | |
|  * the hardware to clip at 1518 bytes instead of 1536 bytes, then we
 | |
|  * could save an entire cache line, but in practice, we don't need it.
 | |
|  *
 | |
|  * Since CPAs are 38 bits, and we can only encode the high 31 bits in
 | |
|  * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must
 | |
|  * align the actual "va" mod 128.
 | |
|  *
 | |
|  * We assume that the underlying "head" will be aligned mod 64.  Note
 | |
|  * that in practice, we have seen "head" NOT aligned mod 128 even when
 | |
|  * using 2048 byte allocations, which is surprising.
 | |
|  *
 | |
|  * If "head" WAS always aligned mod 128, we could change LIPP to
 | |
|  * assume that the low SIX bits are zero, and the 7th bit is one, that
 | |
|  * is, align the actual "va" mod 128 plus 64, which would be "free".
 | |
|  *
 | |
|  * For now, the actual "head" pointer points at NET_SKB_PAD bytes of
 | |
|  * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff
 | |
|  * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for
 | |
|  * the actual packet, plus 62 bytes of empty padding, plus some
 | |
|  * padding and the "struct skb_shared_info".
 | |
|  *
 | |
|  * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88
 | |
|  * bytes, or 1816 bytes, which fits comfortably into 2048 bytes.
 | |
|  *
 | |
|  * With 64K pages, a small buffer thus needs 32+92+4+2+126+88
 | |
|  * bytes, or 344 bytes, which means we are wasting 64+ bytes, and
 | |
|  * could presumably increase the size of small buffers.
 | |
|  *
 | |
|  * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268
 | |
|  * bytes, or 1996 bytes, which fits comfortably into 2048 bytes.
 | |
|  *
 | |
|  * With 4K pages, a small buffer thus needs 32+92+4+2+126+268
 | |
|  * bytes, or 524 bytes, which is annoyingly wasteful.
 | |
|  *
 | |
|  * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192?
 | |
|  *
 | |
|  * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64?
 | |
|  */
 | |
| static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info,
 | |
| 					   bool small)
 | |
| {
 | |
| #if TILE_NET_MTU <= 1536
 | |
| 	/* Without "jumbo", 2 + 1536 should be sufficient. */
 | |
| 	unsigned int large_size = NET_IP_ALIGN + 1536;
 | |
| #else
 | |
| 	/* ISSUE: This has not been tested. */
 | |
| 	unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100;
 | |
| #endif
 | |
| 
 | |
| 	/* Avoid "false sharing" with last cache line. */
 | |
| 	/* ISSUE: This is already done by "netdev_alloc_skb()". */
 | |
| 	unsigned int len =
 | |
| 		 (((small ? LIPP_SMALL_PACKET_SIZE : large_size) +
 | |
| 		   CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
 | |
| 
 | |
| 	unsigned int padding = 128 - NET_SKB_PAD;
 | |
| 	unsigned int align;
 | |
| 
 | |
| 	struct sk_buff *skb;
 | |
| 	void *va;
 | |
| 
 | |
| 	struct sk_buff **skb_ptr;
 | |
| 
 | |
| 	/* Request 96 extra bytes for alignment purposes. */
 | |
| 	skb = netdev_alloc_skb(info->napi.dev, len + padding);
 | |
| 	if (skb == NULL)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Skip 32 or 96 bytes to align "data" mod 128. */
 | |
| 	align = -(long)skb->data & (128 - 1);
 | |
| 	BUG_ON(align > padding);
 | |
| 	skb_reserve(skb, align);
 | |
| 
 | |
| 	/* This address is given to IPP. */
 | |
| 	va = skb->data;
 | |
| 
 | |
| 	/* Buffers must not span a huge page. */
 | |
| 	BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0);
 | |
| 
 | |
| #ifdef TILE_NET_PARANOIA
 | |
| #if CHIP_HAS_CBOX_HOME_MAP()
 | |
| 	if (hash_default) {
 | |
| 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va);
 | |
| 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
 | |
| 			panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx",
 | |
| 			      va, hv_pte_get_mode(pte), hv_pte_val(pte));
 | |
| 	}
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 	/* Invalidate the packet buffer. */
 | |
| 	if (!hash_default)
 | |
| 		__inv_buffer(va, len);
 | |
| 
 | |
| 	/* Skip two bytes to satisfy LIPP assumptions. */
 | |
| 	/* Note that this aligns IP on a 16 byte boundary. */
 | |
| 	/* ISSUE: Do this when the packet arrives? */
 | |
| 	skb_reserve(skb, NET_IP_ALIGN);
 | |
| 
 | |
| 	/* Save a back-pointer to 'skb'. */
 | |
| 	skb_ptr = va - sizeof(*skb_ptr);
 | |
| 	*skb_ptr = skb;
 | |
| 
 | |
| 	/* Make sure "skb_ptr" has been flushed. */
 | |
| 	__insn_mf();
 | |
| 
 | |
| 	/* Provide the new buffer. */
 | |
| 	tile_net_provide_linux_buffer(info, va, small);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Provide linux buffers for LIPP.
 | |
|  */
 | |
| static void tile_net_provide_needed_buffers(struct tile_net_cpu *info)
 | |
| {
 | |
| 	while (info->num_needed_small_buffers != 0) {
 | |
| 		if (!tile_net_provide_needed_buffer(info, true))
 | |
| 			goto oops;
 | |
| 		info->num_needed_small_buffers--;
 | |
| 	}
 | |
| 
 | |
| 	while (info->num_needed_large_buffers != 0) {
 | |
| 		if (!tile_net_provide_needed_buffer(info, false))
 | |
| 			goto oops;
 | |
| 		info->num_needed_large_buffers--;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| oops:
 | |
| 
 | |
| 	/* Add a description to the page allocation failure dump. */
 | |
| 	pr_notice("Could not provide a linux buffer to LIPP.\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Grab some LEPP completions, and store them in "comps", of size
 | |
|  * "comps_size", and return the number of completions which were
 | |
|  * stored, so the caller can free them.
 | |
|  */
 | |
| static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq,
 | |
| 					     struct sk_buff *comps[],
 | |
| 					     unsigned int comps_size,
 | |
| 					     unsigned int min_size)
 | |
| {
 | |
| 	unsigned int n = 0;
 | |
| 
 | |
| 	unsigned int comp_head = eq->comp_head;
 | |
| 	unsigned int comp_busy = eq->comp_busy;
 | |
| 
 | |
| 	while (comp_head != comp_busy && n < comps_size) {
 | |
| 		comps[n++] = eq->comps[comp_head];
 | |
| 		LEPP_QINC(comp_head);
 | |
| 	}
 | |
| 
 | |
| 	if (n < min_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	eq->comp_head = comp_head;
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Free some comps, and return true iff there are still some pending.
 | |
|  */
 | |
| static bool tile_net_lepp_free_comps(struct net_device *dev, bool all)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	lepp_queue_t *eq = priv->eq;
 | |
| 
 | |
| 	struct sk_buff *olds[64];
 | |
| 	unsigned int wanted = 64;
 | |
| 	unsigned int i, n;
 | |
| 	bool pending;
 | |
| 
 | |
| 	spin_lock(&priv->eq_lock);
 | |
| 
 | |
| 	if (all)
 | |
| 		eq->comp_busy = eq->comp_tail;
 | |
| 
 | |
| 	n = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
 | |
| 
 | |
| 	pending = (eq->comp_head != eq->comp_tail);
 | |
| 
 | |
| 	spin_unlock(&priv->eq_lock);
 | |
| 
 | |
| 	for (i = 0; i < n; i++)
 | |
| 		kfree_skb(olds[i]);
 | |
| 
 | |
| 	return pending;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Make sure the egress timer is scheduled.
 | |
|  *
 | |
|  * Note that we use "schedule if not scheduled" logic instead of the more
 | |
|  * obvious "reschedule" logic, because "reschedule" is fairly expensive.
 | |
|  */
 | |
| static void tile_net_schedule_egress_timer(struct tile_net_cpu *info)
 | |
| {
 | |
| 	if (!info->egress_timer_scheduled) {
 | |
| 		mod_timer_pinned(&info->egress_timer, jiffies + 1);
 | |
| 		info->egress_timer_scheduled = true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The "function" for "info->egress_timer".
 | |
|  *
 | |
|  * This timer will reschedule itself as long as there are any pending
 | |
|  * completions expected (on behalf of any tile).
 | |
|  *
 | |
|  * ISSUE: Realistically, will the timer ever stop scheduling itself?
 | |
|  *
 | |
|  * ISSUE: This timer is almost never actually needed, so just use a global
 | |
|  * timer that can run on any tile.
 | |
|  *
 | |
|  * ISSUE: Maybe instead track number of expected completions, and free
 | |
|  * only that many, resetting to zero if "pending" is ever false.
 | |
|  */
 | |
| static void tile_net_handle_egress_timer(unsigned long arg)
 | |
| {
 | |
| 	struct tile_net_cpu *info = (struct tile_net_cpu *)arg;
 | |
| 	struct net_device *dev = info->napi.dev;
 | |
| 
 | |
| 	/* The timer is no longer scheduled. */
 | |
| 	info->egress_timer_scheduled = false;
 | |
| 
 | |
| 	/* Free comps, and reschedule timer if more are pending. */
 | |
| 	if (tile_net_lepp_free_comps(dev, false))
 | |
| 		tile_net_schedule_egress_timer(info);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void tile_net_discard_aux(struct tile_net_cpu *info, int index)
 | |
| {
 | |
| 	struct tile_netio_queue *queue = &info->queue;
 | |
| 	netio_queue_impl_t *qsp = queue->__system_part;
 | |
| 	netio_queue_user_impl_t *qup = &queue->__user_part;
 | |
| 
 | |
| 	int index2_aux = index + sizeof(netio_pkt_t);
 | |
| 	int index2 =
 | |
| 		((index2_aux ==
 | |
| 		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
 | |
| 		 0 : index2_aux);
 | |
| 
 | |
| 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
 | |
| 
 | |
| 	/* Extract the "linux_buffer_t". */
 | |
| 	unsigned int buffer = pkt->__packet.word;
 | |
| 
 | |
| 	/* Convert "linux_buffer_t" to "va". */
 | |
| 	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
 | |
| 
 | |
| 	/* Acquire the associated "skb". */
 | |
| 	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 | |
| 	struct sk_buff *skb = *skb_ptr;
 | |
| 
 | |
| 	kfree_skb(skb);
 | |
| 
 | |
| 	/* Consume this packet. */
 | |
| 	qup->__packet_receive_read = index2;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Like "tile_net_poll()", but just discard packets.
 | |
|  */
 | |
| static void tile_net_discard_packets(struct net_device *dev)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info = priv->cpu[my_cpu];
 | |
| 	struct tile_netio_queue *queue = &info->queue;
 | |
| 	netio_queue_impl_t *qsp = queue->__system_part;
 | |
| 	netio_queue_user_impl_t *qup = &queue->__user_part;
 | |
| 
 | |
| 	while (qup->__packet_receive_read !=
 | |
| 	       qsp->__packet_receive_queue.__packet_write) {
 | |
| 		int index = qup->__packet_receive_read;
 | |
| 		tile_net_discard_aux(info, index);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Handle the next packet.  Return true if "processed", false if "filtered".
 | |
|  */
 | |
| static bool tile_net_poll_aux(struct tile_net_cpu *info, int index)
 | |
| {
 | |
| 	struct net_device *dev = info->napi.dev;
 | |
| 
 | |
| 	struct tile_netio_queue *queue = &info->queue;
 | |
| 	netio_queue_impl_t *qsp = queue->__system_part;
 | |
| 	netio_queue_user_impl_t *qup = &queue->__user_part;
 | |
| 	struct tile_net_stats_t *stats = &info->stats;
 | |
| 
 | |
| 	int filter;
 | |
| 
 | |
| 	int index2_aux = index + sizeof(netio_pkt_t);
 | |
| 	int index2 =
 | |
| 		((index2_aux ==
 | |
| 		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
 | |
| 		 0 : index2_aux);
 | |
| 
 | |
| 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
 | |
| 
 | |
| 	netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt);
 | |
| 	netio_pkt_status_t pkt_status = NETIO_PKT_STATUS_M(metadata, pkt);
 | |
| 
 | |
| 	/* Extract the packet size.  FIXME: Shouldn't the second line */
 | |
| 	/* get subtracted?  Mostly moot, since it should be "zero". */
 | |
| 	unsigned long len =
 | |
| 		(NETIO_PKT_CUSTOM_LENGTH(pkt) +
 | |
| 		 NET_IP_ALIGN - NETIO_PACKET_PADDING);
 | |
| 
 | |
| 	/* Extract the "linux_buffer_t". */
 | |
| 	unsigned int buffer = pkt->__packet.word;
 | |
| 
 | |
| 	/* Extract "small" (vs "large"). */
 | |
| 	bool small = ((buffer & 1) != 0);
 | |
| 
 | |
| 	/* Convert "linux_buffer_t" to "va". */
 | |
| 	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
 | |
| 
 | |
| 	/* Extract the packet data pointer. */
 | |
| 	/* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
 | |
| 	unsigned char *buf = va + NET_IP_ALIGN;
 | |
| 
 | |
| 	/* Invalidate the packet buffer. */
 | |
| 	if (!hash_default)
 | |
| 		__inv_buffer(buf, len);
 | |
| 
 | |
| 	/* ISSUE: Is this needed? */
 | |
| 	dev->last_rx = jiffies;
 | |
| 
 | |
| #ifdef TILE_NET_DUMP_PACKETS
 | |
| 	dump_packet(buf, len, "rx");
 | |
| #endif /* TILE_NET_DUMP_PACKETS */
 | |
| 
 | |
| #ifdef TILE_NET_VERIFY_INGRESS
 | |
| 	if (pkt_status == NETIO_PKT_STATUS_OVERSIZE && len >= 64) {
 | |
| 		dump_packet(buf, len, "rx");
 | |
| 		panic("Unexpected OVERSIZE.");
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	filter = 0;
 | |
| 
 | |
| 	if (pkt_status == NETIO_PKT_STATUS_BAD) {
 | |
| 		/* Handle CRC error and hardware truncation. */
 | |
| 		filter = 2;
 | |
| 	} else if (!(dev->flags & IFF_UP)) {
 | |
| 		/* Filter packets received before we're up. */
 | |
| 		filter = 1;
 | |
| 	} else if (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(metadata, pkt) &&
 | |
| 		   pkt_status == NETIO_PKT_STATUS_UNDERSIZE) {
 | |
| 		/* Filter "truncated" packets. */
 | |
| 		filter = 2;
 | |
| 	} else if (!(dev->flags & IFF_PROMISC)) {
 | |
| 		if (!is_multicast_ether_addr(buf)) {
 | |
| 			/* Filter packets not for our address. */
 | |
| 			const u8 *mine = dev->dev_addr;
 | |
| 			filter = !ether_addr_equal(mine, buf);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	u64_stats_update_begin(&stats->syncp);
 | |
| 
 | |
| 	if (filter != 0) {
 | |
| 
 | |
| 		if (filter == 1)
 | |
| 			stats->rx_dropped++;
 | |
| 		else
 | |
| 			stats->rx_errors++;
 | |
| 
 | |
| 		tile_net_provide_linux_buffer(info, va, small);
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 		/* Acquire the associated "skb". */
 | |
| 		struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 | |
| 		struct sk_buff *skb = *skb_ptr;
 | |
| 
 | |
| 		/* Paranoia. */
 | |
| 		if (skb->data != buf)
 | |
| 			panic("Corrupt linux buffer from LIPP! "
 | |
| 			      "VA=%p, skb=%p, skb->data=%p\n",
 | |
| 			      va, skb, skb->data);
 | |
| 
 | |
| 		/* Encode the actual packet length. */
 | |
| 		skb_put(skb, len);
 | |
| 
 | |
| 		/* NOTE: This call also sets "skb->dev = dev". */
 | |
| 		skb->protocol = eth_type_trans(skb, dev);
 | |
| 
 | |
| 		/* Avoid recomputing "good" TCP/UDP checksums. */
 | |
| 		if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt))
 | |
| 			skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 
 | |
| 		netif_receive_skb(skb);
 | |
| 
 | |
| 		stats->rx_packets++;
 | |
| 		stats->rx_bytes += len;
 | |
| 	}
 | |
| 
 | |
| 	u64_stats_update_end(&stats->syncp);
 | |
| 
 | |
| 	/* ISSUE: It would be nice to defer this until the packet has */
 | |
| 	/* actually been processed. */
 | |
| 	tile_net_return_credit(info);
 | |
| 
 | |
| 	/* Consume this packet. */
 | |
| 	qup->__packet_receive_read = index2;
 | |
| 
 | |
| 	return !filter;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Handle some packets for the given device on the current CPU.
 | |
|  *
 | |
|  * If "tile_net_stop()" is called on some other tile while this
 | |
|  * function is running, we will return, hopefully before that
 | |
|  * other tile asks us to call "napi_disable()".
 | |
|  *
 | |
|  * The "rotting packet" race condition occurs if a packet arrives
 | |
|  * during the extremely narrow window between the queue appearing to
 | |
|  * be empty, and the ingress interrupt being re-enabled.  This happens
 | |
|  * a LOT under heavy network load.
 | |
|  */
 | |
| static int tile_net_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct net_device *dev = napi->dev;
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info = priv->cpu[my_cpu];
 | |
| 	struct tile_netio_queue *queue = &info->queue;
 | |
| 	netio_queue_impl_t *qsp = queue->__system_part;
 | |
| 	netio_queue_user_impl_t *qup = &queue->__user_part;
 | |
| 
 | |
| 	unsigned int work = 0;
 | |
| 
 | |
| 	if (budget <= 0)
 | |
| 		goto done;
 | |
| 
 | |
| 	while (priv->active) {
 | |
| 		int index = qup->__packet_receive_read;
 | |
| 		if (index == qsp->__packet_receive_queue.__packet_write)
 | |
| 			break;
 | |
| 
 | |
| 		if (tile_net_poll_aux(info, index)) {
 | |
| 			if (++work >= budget)
 | |
| 				goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	napi_complete(&info->napi);
 | |
| 
 | |
| 	if (!priv->active)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* Re-enable the ingress interrupt. */
 | |
| 	enable_percpu_irq(priv->intr_id, 0);
 | |
| 
 | |
| 	/* HACK: Avoid the "rotting packet" problem (see above). */
 | |
| 	if (qup->__packet_receive_read !=
 | |
| 	    qsp->__packet_receive_queue.__packet_write) {
 | |
| 		/* ISSUE: Sometimes this returns zero, presumably */
 | |
| 		/* because an interrupt was handled for this tile. */
 | |
| 		(void)napi_reschedule(&info->napi);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 
 | |
| 	if (priv->active)
 | |
| 		tile_net_provide_needed_buffers(info);
 | |
| 
 | |
| 	return work;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Handle an ingress interrupt for the given device on the current cpu.
 | |
|  *
 | |
|  * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has
 | |
|  * been called!  This is probably due to "pending hypervisor downcalls".
 | |
|  *
 | |
|  * ISSUE: Is there any race condition between the "napi_schedule()" here
 | |
|  * and the "napi_complete()" call above?
 | |
|  */
 | |
| static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)dev_ptr;
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info = priv->cpu[my_cpu];
 | |
| 
 | |
| 	/* Disable the ingress interrupt. */
 | |
| 	disable_percpu_irq(priv->intr_id);
 | |
| 
 | |
| 	/* Ignore unwanted interrupts. */
 | |
| 	if (!priv->active)
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	/* ISSUE: Sometimes "info->napi_enabled" is false here. */
 | |
| 
 | |
| 	napi_schedule(&info->napi);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * One time initialization per interface.
 | |
|  */
 | |
| static int tile_net_open_aux(struct net_device *dev)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	int ret;
 | |
| 	int dummy;
 | |
| 	unsigned int epp_lotar;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find out where EPP memory should be homed.
 | |
| 	 */
 | |
| 	ret = hv_dev_pread(priv->hv_devhdl, 0,
 | |
| 			   (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar),
 | |
| 			   NETIO_EPP_SHM_OFF);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("could not read epp_shm_queue lotar.\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Home the page on the EPP.
 | |
| 	 */
 | |
| 	{
 | |
| 		int epp_home = hv_lotar_to_cpu(epp_lotar);
 | |
| 		homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Register the EPP shared memory queue.
 | |
| 	 */
 | |
| 	{
 | |
| 		netio_ipp_address_t ea = {
 | |
| 			.va = 0,
 | |
| 			.pa = __pa(priv->eq),
 | |
| 			.pte = hv_pte(0),
 | |
| 			.size = EQ_SIZE,
 | |
| 		};
 | |
| 		ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar);
 | |
| 		ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3);
 | |
| 		ret = hv_dev_pwrite(priv->hv_devhdl, 0,
 | |
| 				    (HV_VirtAddr)&ea,
 | |
| 				    sizeof(ea),
 | |
| 				    NETIO_EPP_SHM_OFF);
 | |
| 		if (ret < 0)
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Start LIPP/LEPP.
 | |
| 	 */
 | |
| 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
 | |
| 			  sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) {
 | |
| 		pr_warning("Failed to start LIPP/LEPP.\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Register with hypervisor on the current CPU.
 | |
|  *
 | |
|  * Strangely, this function does important things even if it "fails",
 | |
|  * which is especially common if the link is not up yet.  Hopefully
 | |
|  * these things are all "harmless" if done twice!
 | |
|  */
 | |
| static void tile_net_register(void *dev_ptr)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)dev_ptr;
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info;
 | |
| 
 | |
| 	struct tile_netio_queue *queue;
 | |
| 
 | |
| 	/* Only network cpus can receive packets. */
 | |
| 	int queue_id =
 | |
| 		cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255;
 | |
| 
 | |
| 	netio_input_config_t config = {
 | |
| 		.flags = 0,
 | |
| 		.num_receive_packets = priv->network_cpus_credits,
 | |
| 		.queue_id = queue_id
 | |
| 	};
 | |
| 
 | |
| 	int ret = 0;
 | |
| 	netio_queue_impl_t *queuep;
 | |
| 
 | |
| 	PDEBUG("tile_net_register(queue_id %d)\n", queue_id);
 | |
| 
 | |
| 	if (!strcmp(dev->name, "xgbe0"))
 | |
| 		info = &__get_cpu_var(hv_xgbe0);
 | |
| 	else if (!strcmp(dev->name, "xgbe1"))
 | |
| 		info = &__get_cpu_var(hv_xgbe1);
 | |
| 	else if (!strcmp(dev->name, "gbe0"))
 | |
| 		info = &__get_cpu_var(hv_gbe0);
 | |
| 	else if (!strcmp(dev->name, "gbe1"))
 | |
| 		info = &__get_cpu_var(hv_gbe1);
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	/* Initialize the egress timer. */
 | |
| 	init_timer(&info->egress_timer);
 | |
| 	info->egress_timer.data = (long)info;
 | |
| 	info->egress_timer.function = tile_net_handle_egress_timer;
 | |
| 
 | |
| 	u64_stats_init(&info->stats.syncp);
 | |
| 
 | |
| 	priv->cpu[my_cpu] = info;
 | |
| 
 | |
| 	/*
 | |
| 	 * Register ourselves with LIPP.  This does a lot of stuff,
 | |
| 	 * including invoking the LIPP registration code.
 | |
| 	 */
 | |
| 	ret = hv_dev_pwrite(priv->hv_devhdl, 0,
 | |
| 			    (HV_VirtAddr)&config,
 | |
| 			    sizeof(netio_input_config_t),
 | |
| 			    NETIO_IPP_INPUT_REGISTER_OFF);
 | |
| 	PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
 | |
| 	       ret);
 | |
| 	if (ret < 0) {
 | |
| 		if (ret != NETIO_LINK_DOWN) {
 | |
| 			printk(KERN_DEBUG "hv_dev_pwrite "
 | |
| 			       "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n",
 | |
| 			       ret);
 | |
| 		}
 | |
| 		info->link_down = (ret == NETIO_LINK_DOWN);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the pointer to our queue's system part.
 | |
| 	 */
 | |
| 
 | |
| 	ret = hv_dev_pread(priv->hv_devhdl, 0,
 | |
| 			   (HV_VirtAddr)&queuep,
 | |
| 			   sizeof(netio_queue_impl_t *),
 | |
| 			   NETIO_IPP_INPUT_REGISTER_OFF);
 | |
| 	PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
 | |
| 	       ret);
 | |
| 	PDEBUG("queuep %p\n", queuep);
 | |
| 	if (ret <= 0) {
 | |
| 		/* ISSUE: Shouldn't this be a fatal error? */
 | |
| 		pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	queue = &info->queue;
 | |
| 
 | |
| 	queue->__system_part = queuep;
 | |
| 
 | |
| 	memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t));
 | |
| 
 | |
| 	/* This is traditionally "config.num_receive_packets / 2". */
 | |
| 	queue->__user_part.__receive_credit_interval = 4;
 | |
| 	queue->__user_part.__receive_credit_remaining =
 | |
| 		queue->__user_part.__receive_credit_interval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get a fastio index from the hypervisor.
 | |
| 	 * ISSUE: Shouldn't this check the result?
 | |
| 	 */
 | |
| 	ret = hv_dev_pread(priv->hv_devhdl, 0,
 | |
| 			   (HV_VirtAddr)&queue->__user_part.__fastio_index,
 | |
| 			   sizeof(queue->__user_part.__fastio_index),
 | |
| 			   NETIO_IPP_GET_FASTIO_OFF);
 | |
| 	PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret);
 | |
| 
 | |
| 	/* Now we are registered. */
 | |
| 	info->registered = true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Deregister with hypervisor on the current CPU.
 | |
|  *
 | |
|  * This simply discards all our credits, so no more packets will be
 | |
|  * delivered to this tile.  There may still be packets in our queue.
 | |
|  *
 | |
|  * Also, disable the ingress interrupt.
 | |
|  */
 | |
| static void tile_net_deregister(void *dev_ptr)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)dev_ptr;
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info = priv->cpu[my_cpu];
 | |
| 
 | |
| 	/* Disable the ingress interrupt. */
 | |
| 	disable_percpu_irq(priv->intr_id);
 | |
| 
 | |
| 	/* Do nothing else if not registered. */
 | |
| 	if (info == NULL || !info->registered)
 | |
| 		return;
 | |
| 
 | |
| 	{
 | |
| 		struct tile_netio_queue *queue = &info->queue;
 | |
| 		netio_queue_user_impl_t *qup = &queue->__user_part;
 | |
| 
 | |
| 		/* Discard all our credits. */
 | |
| 		__netio_fastio_return_credits(qup->__fastio_index, -1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Unregister with hypervisor on the current CPU.
 | |
|  *
 | |
|  * Also, disable the ingress interrupt.
 | |
|  */
 | |
| static void tile_net_unregister(void *dev_ptr)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)dev_ptr;
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info = priv->cpu[my_cpu];
 | |
| 
 | |
| 	int ret;
 | |
| 	int dummy = 0;
 | |
| 
 | |
| 	/* Disable the ingress interrupt. */
 | |
| 	disable_percpu_irq(priv->intr_id);
 | |
| 
 | |
| 	/* Do nothing else if not registered. */
 | |
| 	if (info == NULL || !info->registered)
 | |
| 		return;
 | |
| 
 | |
| 	/* Unregister ourselves with LIPP/LEPP. */
 | |
| 	ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
 | |
| 			    sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF);
 | |
| 	if (ret < 0)
 | |
| 		panic("Failed to unregister with LIPP/LEPP!\n");
 | |
| 
 | |
| 	/* Discard all packets still in our NetIO queue. */
 | |
| 	tile_net_discard_packets(dev);
 | |
| 
 | |
| 	/* Reset state. */
 | |
| 	info->num_needed_small_buffers = 0;
 | |
| 	info->num_needed_large_buffers = 0;
 | |
| 
 | |
| 	/* Cancel egress timer. */
 | |
| 	del_timer(&info->egress_timer);
 | |
| 	info->egress_timer_scheduled = false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Helper function for "tile_net_stop()".
 | |
|  *
 | |
|  * Also used to handle registration failure in "tile_net_open_inner()",
 | |
|  * when the various extra steps in "tile_net_stop()" are not necessary.
 | |
|  */
 | |
| static void tile_net_stop_aux(struct net_device *dev)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	int dummy = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unregister all tiles, so LIPP will stop delivering packets.
 | |
| 	 * Also, delete all the "napi" objects (sequentially, to protect
 | |
| 	 * "dev->napi_list").
 | |
| 	 */
 | |
| 	on_each_cpu(tile_net_unregister, (void *)dev, 1);
 | |
| 	for_each_online_cpu(i) {
 | |
| 		struct tile_net_cpu *info = priv->cpu[i];
 | |
| 		if (info != NULL && info->registered) {
 | |
| 			netif_napi_del(&info->napi);
 | |
| 			info->registered = false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Stop LIPP/LEPP. */
 | |
| 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
 | |
| 			  sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0)
 | |
| 		panic("Failed to stop LIPP/LEPP!\n");
 | |
| 
 | |
| 	priv->partly_opened = false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Disable NAPI for the given device on the current cpu.
 | |
|  */
 | |
| static void tile_net_stop_disable(void *dev_ptr)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)dev_ptr;
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info = priv->cpu[my_cpu];
 | |
| 
 | |
| 	/* Disable NAPI if needed. */
 | |
| 	if (info != NULL && info->napi_enabled) {
 | |
| 		napi_disable(&info->napi);
 | |
| 		info->napi_enabled = false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Enable NAPI and the ingress interrupt for the given device
 | |
|  * on the current cpu.
 | |
|  *
 | |
|  * ISSUE: Only do this for "network cpus"?
 | |
|  */
 | |
| static void tile_net_open_enable(void *dev_ptr)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)dev_ptr;
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info = priv->cpu[my_cpu];
 | |
| 
 | |
| 	/* Enable NAPI. */
 | |
| 	napi_enable(&info->napi);
 | |
| 	info->napi_enabled = true;
 | |
| 
 | |
| 	/* Enable the ingress interrupt. */
 | |
| 	enable_percpu_irq(priv->intr_id, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * tile_net_open_inner does most of the work of bringing up the interface.
 | |
|  * It's called from tile_net_open(), and also from tile_net_retry_open().
 | |
|  * The return value is 0 if the interface was brought up, < 0 if
 | |
|  * tile_net_open() should return the return value as an error, and > 0 if
 | |
|  * tile_net_open() should return success and schedule a work item to
 | |
|  * periodically retry the bringup.
 | |
|  */
 | |
| static int tile_net_open_inner(struct net_device *dev)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info;
 | |
| 	struct tile_netio_queue *queue;
 | |
| 	int result = 0;
 | |
| 	int i;
 | |
| 	int dummy = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * First try to register just on the local CPU, and handle any
 | |
| 	 * semi-expected "link down" failure specially.  Note that we
 | |
| 	 * do NOT call "tile_net_stop_aux()", unlike below.
 | |
| 	 */
 | |
| 	tile_net_register(dev);
 | |
| 	info = priv->cpu[my_cpu];
 | |
| 	if (!info->registered) {
 | |
| 		if (info->link_down)
 | |
| 			return 1;
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now register everywhere else.  If any registration fails,
 | |
| 	 * even for "link down" (which might not be possible), we
 | |
| 	 * clean up using "tile_net_stop_aux()".  Also, add all the
 | |
| 	 * "napi" objects (sequentially, to protect "dev->napi_list").
 | |
| 	 * ISSUE: Only use "netif_napi_add()" for "network cpus"?
 | |
| 	 */
 | |
| 	smp_call_function(tile_net_register, (void *)dev, 1);
 | |
| 	for_each_online_cpu(i) {
 | |
| 		struct tile_net_cpu *info = priv->cpu[i];
 | |
| 		if (info->registered)
 | |
| 			netif_napi_add(dev, &info->napi, tile_net_poll, 64);
 | |
| 		else
 | |
| 			result = -EAGAIN;
 | |
| 	}
 | |
| 	if (result != 0) {
 | |
| 		tile_net_stop_aux(dev);
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| 	queue = &info->queue;
 | |
| 
 | |
| 	if (priv->intr_id == 0) {
 | |
| 		unsigned int irq;
 | |
| 
 | |
| 		/*
 | |
| 		 * Acquire the irq allocated by the hypervisor.  Every
 | |
| 		 * queue gets the same irq.  The "__intr_id" field is
 | |
| 		 * "1 << irq", so we use "__ffs()" to extract "irq".
 | |
| 		 */
 | |
| 		priv->intr_id = queue->__system_part->__intr_id;
 | |
| 		BUG_ON(priv->intr_id == 0);
 | |
| 		irq = __ffs(priv->intr_id);
 | |
| 
 | |
| 		/*
 | |
| 		 * Register the ingress interrupt handler for this
 | |
| 		 * device, permanently.
 | |
| 		 *
 | |
| 		 * We used to call "free_irq()" in "tile_net_stop()",
 | |
| 		 * and then re-register the handler here every time,
 | |
| 		 * but that caused DNP errors in "handle_IRQ_event()"
 | |
| 		 * because "desc->action" was NULL.  See bug 9143.
 | |
| 		 */
 | |
| 		tile_irq_activate(irq, TILE_IRQ_PERCPU);
 | |
| 		BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt,
 | |
| 				   0, dev->name, (void *)dev) != 0);
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		/* Allocate initial buffers. */
 | |
| 
 | |
| 		int max_buffers =
 | |
| 			priv->network_cpus_count * priv->network_cpus_credits;
 | |
| 
 | |
| 		info->num_needed_small_buffers =
 | |
| 			min(LIPP_SMALL_BUFFERS, max_buffers);
 | |
| 
 | |
| 		info->num_needed_large_buffers =
 | |
| 			min(LIPP_LARGE_BUFFERS, max_buffers);
 | |
| 
 | |
| 		tile_net_provide_needed_buffers(info);
 | |
| 
 | |
| 		if (info->num_needed_small_buffers != 0 ||
 | |
| 		    info->num_needed_large_buffers != 0)
 | |
| 			panic("Insufficient memory for buffer stack!");
 | |
| 	}
 | |
| 
 | |
| 	/* We are about to be active. */
 | |
| 	priv->active = true;
 | |
| 
 | |
| 	/* Make sure "active" is visible to all tiles. */
 | |
| 	mb();
 | |
| 
 | |
| 	/* On each tile, enable NAPI and the ingress interrupt. */
 | |
| 	on_each_cpu(tile_net_open_enable, (void *)dev, 1);
 | |
| 
 | |
| 	/* Start LIPP/LEPP and activate "ingress" at the shim. */
 | |
| 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
 | |
| 			  sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0)
 | |
| 		panic("Failed to activate the LIPP Shim!\n");
 | |
| 
 | |
| 	/* Start our transmit queue. */
 | |
| 	netif_start_queue(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Called periodically to retry bringing up the NetIO interface,
 | |
|  * if it doesn't come up cleanly during tile_net_open().
 | |
|  */
 | |
| static void tile_net_open_retry(struct work_struct *w)
 | |
| {
 | |
| 	struct delayed_work *dw =
 | |
| 		container_of(w, struct delayed_work, work);
 | |
| 
 | |
| 	struct tile_net_priv *priv =
 | |
| 		container_of(dw, struct tile_net_priv, retry_work);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to bring the NetIO interface up.  If it fails, reschedule
 | |
| 	 * ourselves to try again later; otherwise, tell Linux we now have
 | |
| 	 * a working link.  ISSUE: What if the return value is negative?
 | |
| 	 */
 | |
| 	if (tile_net_open_inner(priv->dev) != 0)
 | |
| 		schedule_delayed_work(&priv->retry_work,
 | |
| 				      TILE_NET_RETRY_INTERVAL);
 | |
| 	else
 | |
| 		netif_carrier_on(priv->dev);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Called when a network interface is made active.
 | |
|  *
 | |
|  * Returns 0 on success, negative value on failure.
 | |
|  *
 | |
|  * The open entry point is called when a network interface is made
 | |
|  * active by the system (IFF_UP).  At this point all resources needed
 | |
|  * for transmit and receive operations are allocated, the interrupt
 | |
|  * handler is registered with the OS (if needed), the watchdog timer
 | |
|  * is started, and the stack is notified that the interface is ready.
 | |
|  *
 | |
|  * If the actual link is not available yet, then we tell Linux that
 | |
|  * we have no carrier, and we keep checking until the link comes up.
 | |
|  */
 | |
| static int tile_net_open(struct net_device *dev)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * We rely on priv->partly_opened to tell us if this is the
 | |
| 	 * first time this interface is being brought up. If it is
 | |
| 	 * set, the IPP was already initialized and should not be
 | |
| 	 * initialized again.
 | |
| 	 */
 | |
| 	if (!priv->partly_opened) {
 | |
| 
 | |
| 		int count;
 | |
| 		int credits;
 | |
| 
 | |
| 		/* Initialize LIPP/LEPP, and start the Shim. */
 | |
| 		ret = tile_net_open_aux(dev);
 | |
| 		if (ret < 0) {
 | |
| 			pr_err("tile_net_open_aux failed: %d\n", ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		/* Analyze the network cpus. */
 | |
| 
 | |
| 		if (network_cpus_used)
 | |
| 			cpumask_copy(&priv->network_cpus_map,
 | |
| 				     &network_cpus_map);
 | |
| 		else
 | |
| 			cpumask_copy(&priv->network_cpus_map, cpu_online_mask);
 | |
| 
 | |
| 
 | |
| 		count = cpumask_weight(&priv->network_cpus_map);
 | |
| 
 | |
| 		/* Limit credits to available buffers, and apply min. */
 | |
| 		credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1);
 | |
| 
 | |
| 		/* Apply "GBE" max limit. */
 | |
| 		/* ISSUE: Use higher limit for XGBE? */
 | |
| 		credits = min(NETIO_MAX_RECEIVE_PKTS, credits);
 | |
| 
 | |
| 		priv->network_cpus_count = count;
 | |
| 		priv->network_cpus_credits = credits;
 | |
| 
 | |
| #ifdef TILE_NET_DEBUG
 | |
| 		pr_info("Using %d network cpus, with %d credits each\n",
 | |
| 		       priv->network_cpus_count, priv->network_cpus_credits);
 | |
| #endif
 | |
| 
 | |
| 		priv->partly_opened = true;
 | |
| 
 | |
| 	} else {
 | |
| 		/* FIXME: Is this possible? */
 | |
| 		/* printk("Already partly opened.\n"); */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt to bring up the link.
 | |
| 	 */
 | |
| 	ret = tile_net_open_inner(dev);
 | |
| 	if (ret <= 0) {
 | |
| 		if (ret == 0)
 | |
| 			netif_carrier_on(dev);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We were unable to bring up the NetIO interface, but we want to
 | |
| 	 * try again in a little bit.  Tell Linux that we have no carrier
 | |
| 	 * so it doesn't try to use the interface before the link comes up
 | |
| 	 * and then remember to try again later.
 | |
| 	 */
 | |
| 	netif_carrier_off(dev);
 | |
| 	schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv)
 | |
| {
 | |
| 	int n = 0;
 | |
| 
 | |
| 	/* Drain all the LIPP buffers. */
 | |
| 	while (true) {
 | |
| 		unsigned int buffer;
 | |
| 
 | |
| 		/* NOTE: This should never fail. */
 | |
| 		if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer,
 | |
| 				 sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Stop when done. */
 | |
| 		if (buffer == 0)
 | |
| 			break;
 | |
| 
 | |
| 		{
 | |
| 			/* Convert "linux_buffer_t" to "va". */
 | |
| 			void *va = __va((phys_addr_t)(buffer >> 1) << 7);
 | |
| 
 | |
| 			/* Acquire the associated "skb". */
 | |
| 			struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 | |
| 			struct sk_buff *skb = *skb_ptr;
 | |
| 
 | |
| 			kfree_skb(skb);
 | |
| 		}
 | |
| 
 | |
| 		n++;
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Disables a network interface.
 | |
|  *
 | |
|  * Returns 0, this is not allowed to fail.
 | |
|  *
 | |
|  * The close entry point is called when an interface is de-activated
 | |
|  * by the OS.  The hardware is still under the drivers control, but
 | |
|  * needs to be disabled.  A global MAC reset is issued to stop the
 | |
|  * hardware, and all transmit and receive resources are freed.
 | |
|  *
 | |
|  * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"?
 | |
|  *
 | |
|  * Before we are called by "__dev_close()", "netif_running()" will
 | |
|  * have been cleared, so no NEW calls to "tile_net_poll()" will be
 | |
|  * made by "netpoll_poll_dev()".
 | |
|  *
 | |
|  * Often, this can cause some tiles to still have packets in their
 | |
|  * queues, so we must call "tile_net_discard_packets()" later.
 | |
|  *
 | |
|  * Note that some other tile may still be INSIDE "tile_net_poll()",
 | |
|  * and in fact, many will be, if there is heavy network load.
 | |
|  *
 | |
|  * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when
 | |
|  * any tile is still "napi_schedule()"'d will induce a horrible crash
 | |
|  * when "msleep()" is called.  This includes tiles which are inside
 | |
|  * "tile_net_poll()" which have not yet called "napi_complete()".
 | |
|  *
 | |
|  * So, we must first try to wait long enough for other tiles to finish
 | |
|  * with any current "tile_net_poll()" call, and, hopefully, to clear
 | |
|  * the "scheduled" flag.  ISSUE: It is unclear what happens to tiles
 | |
|  * which have called "napi_schedule()" but which had not yet tried to
 | |
|  * call "tile_net_poll()", or which exhausted their budget inside
 | |
|  * "tile_net_poll()" just before this function was called.
 | |
|  */
 | |
| static int tile_net_stop(struct net_device *dev)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	PDEBUG("tile_net_stop()\n");
 | |
| 
 | |
| 	/* Start discarding packets. */
 | |
| 	priv->active = false;
 | |
| 
 | |
| 	/* Make sure "active" is visible to all tiles. */
 | |
| 	mb();
 | |
| 
 | |
| 	/*
 | |
| 	 * On each tile, make sure no NEW packets get delivered, and
 | |
| 	 * disable the ingress interrupt.
 | |
| 	 *
 | |
| 	 * Note that the ingress interrupt can fire AFTER this,
 | |
| 	 * presumably due to packets which were recently delivered,
 | |
| 	 * but it will have no effect.
 | |
| 	 */
 | |
| 	on_each_cpu(tile_net_deregister, (void *)dev, 1);
 | |
| 
 | |
| 	/* Optimistically drain LIPP buffers. */
 | |
| 	(void)tile_net_drain_lipp_buffers(priv);
 | |
| 
 | |
| 	/* ISSUE: Only needed if not yet fully open. */
 | |
| 	cancel_delayed_work_sync(&priv->retry_work);
 | |
| 
 | |
| 	/* Can't transmit any more. */
 | |
| 	netif_stop_queue(dev);
 | |
| 
 | |
| 	/* Disable NAPI on each tile. */
 | |
| 	on_each_cpu(tile_net_stop_disable, (void *)dev, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Drain any remaining LIPP buffers.  NOTE: This "printk()"
 | |
| 	 * has never been observed, but in theory it could happen.
 | |
| 	 */
 | |
| 	if (tile_net_drain_lipp_buffers(priv) != 0)
 | |
| 		printk("Had to drain some extra LIPP buffers!\n");
 | |
| 
 | |
| 	/* Stop LIPP/LEPP. */
 | |
| 	tile_net_stop_aux(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * ISSUE: It appears that, in practice anyway, by the time we
 | |
| 	 * get here, there are no pending completions, but just in case,
 | |
| 	 * we free (all of) them anyway.
 | |
| 	 */
 | |
| 	while (tile_net_lepp_free_comps(dev, true))
 | |
| 		/* loop */;
 | |
| 
 | |
| 	/* Wipe the EPP queue, and wait till the stores hit the EPP. */
 | |
| 	memset(priv->eq, 0, sizeof(lepp_queue_t));
 | |
| 	mb();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Prepare the "frags" info for the resulting LEPP command.
 | |
|  *
 | |
|  * If needed, flush the memory used by the frags.
 | |
|  */
 | |
| static unsigned int tile_net_tx_frags(lepp_frag_t *frags,
 | |
| 				      struct sk_buff *skb,
 | |
| 				      void *b_data, unsigned int b_len)
 | |
| {
 | |
| 	unsigned int i, n = 0;
 | |
| 
 | |
| 	struct skb_shared_info *sh = skb_shinfo(skb);
 | |
| 
 | |
| 	phys_addr_t cpa;
 | |
| 
 | |
| 	if (b_len != 0) {
 | |
| 
 | |
| 		if (!hash_default)
 | |
| 			finv_buffer_remote(b_data, b_len, 0);
 | |
| 
 | |
| 		cpa = __pa(b_data);
 | |
| 		frags[n].cpa_lo = cpa;
 | |
| 		frags[n].cpa_hi = cpa >> 32;
 | |
| 		frags[n].length = b_len;
 | |
| 		frags[n].hash_for_home = hash_default;
 | |
| 		n++;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < sh->nr_frags; i++) {
 | |
| 
 | |
| 		skb_frag_t *f = &sh->frags[i];
 | |
| 		unsigned long pfn = page_to_pfn(skb_frag_page(f));
 | |
| 
 | |
| 		/* FIXME: Compute "hash_for_home" properly. */
 | |
| 		/* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
 | |
| 		int hash_for_home = hash_default;
 | |
| 
 | |
| 		/* FIXME: Hmmm. */
 | |
| 		if (!hash_default) {
 | |
| 			void *va = pfn_to_kaddr(pfn) + f->page_offset;
 | |
| 			BUG_ON(PageHighMem(skb_frag_page(f)));
 | |
| 			finv_buffer_remote(va, skb_frag_size(f), 0);
 | |
| 		}
 | |
| 
 | |
| 		cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset;
 | |
| 		frags[n].cpa_lo = cpa;
 | |
| 		frags[n].cpa_hi = cpa >> 32;
 | |
| 		frags[n].length = skb_frag_size(f);
 | |
| 		frags[n].hash_for_home = hash_for_home;
 | |
| 		n++;
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This function takes "skb", consisting of a header template and a
 | |
|  * payload, and hands it to LEPP, to emit as one or more segments,
 | |
|  * each consisting of a possibly modified header, plus a piece of the
 | |
|  * payload, via a process known as "tcp segmentation offload".
 | |
|  *
 | |
|  * Usually, "data" will contain the header template, of size "sh_len",
 | |
|  * and "sh->frags" will contain "skb->data_len" bytes of payload, and
 | |
|  * there will be "sh->gso_segs" segments.
 | |
|  *
 | |
|  * Sometimes, if "sendfile()" requires copying, we will be called with
 | |
|  * "data" containing the header and payload, with "frags" being empty.
 | |
|  *
 | |
|  * Sometimes, for example when using NFS over TCP, a single segment can
 | |
|  * span 3 fragments, which must be handled carefully in LEPP.
 | |
|  *
 | |
|  * See "emulate_large_send_offload()" for some reference code, which
 | |
|  * does not handle checksumming.
 | |
|  *
 | |
|  * ISSUE: How do we make sure that high memory DMA does not migrate?
 | |
|  */
 | |
| static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info = priv->cpu[my_cpu];
 | |
| 	struct tile_net_stats_t *stats = &info->stats;
 | |
| 
 | |
| 	struct skb_shared_info *sh = skb_shinfo(skb);
 | |
| 
 | |
| 	unsigned char *data = skb->data;
 | |
| 
 | |
| 	/* The ip header follows the ethernet header. */
 | |
| 	struct iphdr *ih = ip_hdr(skb);
 | |
| 	unsigned int ih_len = ih->ihl * 4;
 | |
| 
 | |
| 	/* Note that "nh == ih", by definition. */
 | |
| 	unsigned char *nh = skb_network_header(skb);
 | |
| 	unsigned int eh_len = nh - data;
 | |
| 
 | |
| 	/* The tcp header follows the ip header. */
 | |
| 	struct tcphdr *th = (struct tcphdr *)(nh + ih_len);
 | |
| 	unsigned int th_len = th->doff * 4;
 | |
| 
 | |
| 	/* The total number of header bytes. */
 | |
| 	/* NOTE: This may be less than skb_headlen(skb). */
 | |
| 	unsigned int sh_len = eh_len + ih_len + th_len;
 | |
| 
 | |
| 	/* The number of payload bytes at "skb->data + sh_len". */
 | |
| 	/* This is non-zero for sendfile() without HIGHDMA. */
 | |
| 	unsigned int b_len = skb_headlen(skb) - sh_len;
 | |
| 
 | |
| 	/* The total number of payload bytes. */
 | |
| 	unsigned int d_len = b_len + skb->data_len;
 | |
| 
 | |
| 	/* The maximum payload size. */
 | |
| 	unsigned int p_len = sh->gso_size;
 | |
| 
 | |
| 	/* The total number of segments. */
 | |
| 	unsigned int num_segs = sh->gso_segs;
 | |
| 
 | |
| 	/* The temporary copy of the command. */
 | |
| 	u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4];
 | |
| 	lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body;
 | |
| 
 | |
| 	/* Analyze the "frags". */
 | |
| 	unsigned int num_frags =
 | |
| 		tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len);
 | |
| 
 | |
| 	/* The size of the command, including frags and header. */
 | |
| 	size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len);
 | |
| 
 | |
| 	/* The command header. */
 | |
| 	lepp_tso_cmd_t cmd_init = {
 | |
| 		.tso = true,
 | |
| 		.header_size = sh_len,
 | |
| 		.ip_offset = eh_len,
 | |
| 		.tcp_offset = eh_len + ih_len,
 | |
| 		.payload_size = p_len,
 | |
| 		.num_frags = num_frags,
 | |
| 	};
 | |
| 
 | |
| 	unsigned long irqflags;
 | |
| 
 | |
| 	lepp_queue_t *eq = priv->eq;
 | |
| 
 | |
| 	struct sk_buff *olds[8];
 | |
| 	unsigned int wanted = 8;
 | |
| 	unsigned int i, nolds = 0;
 | |
| 
 | |
| 	unsigned int cmd_head, cmd_tail, cmd_next;
 | |
| 	unsigned int comp_tail;
 | |
| 
 | |
| 
 | |
| 	/* Paranoia. */
 | |
| 	BUG_ON(skb->protocol != htons(ETH_P_IP));
 | |
| 	BUG_ON(ih->protocol != IPPROTO_TCP);
 | |
| 	BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL);
 | |
| 	BUG_ON(num_frags > LEPP_MAX_FRAGS);
 | |
| 	/*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
 | |
| 	BUG_ON(num_segs <= 1);
 | |
| 
 | |
| 
 | |
| 	/* Finish preparing the command. */
 | |
| 
 | |
| 	/* Copy the command header. */
 | |
| 	*cmd = cmd_init;
 | |
| 
 | |
| 	/* Copy the "header". */
 | |
| 	memcpy(&cmd->frags[num_frags], data, sh_len);
 | |
| 
 | |
| 
 | |
| 	/* Prefetch and wait, to minimize time spent holding the spinlock. */
 | |
| 	prefetch_L1(&eq->comp_tail);
 | |
| 	prefetch_L1(&eq->cmd_tail);
 | |
| 	mb();
 | |
| 
 | |
| 
 | |
| 	/* Enqueue the command. */
 | |
| 
 | |
| 	spin_lock_irqsave(&priv->eq_lock, irqflags);
 | |
| 
 | |
| 	/* Handle completions if needed to make room. */
 | |
| 	/* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
 | |
| 	if (lepp_num_free_comp_slots(eq) == 0) {
 | |
| 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
 | |
| 		if (nolds == 0) {
 | |
| busy:
 | |
| 			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
 | |
| 			return NETDEV_TX_BUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cmd_head = eq->cmd_head;
 | |
| 	cmd_tail = eq->cmd_tail;
 | |
| 
 | |
| 	/* Prepare to advance, detecting full queue. */
 | |
| 	/* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
 | |
| 	cmd_next = cmd_tail + cmd_size;
 | |
| 	if (cmd_tail < cmd_head && cmd_next >= cmd_head)
 | |
| 		goto busy;
 | |
| 	if (cmd_next > LEPP_CMD_LIMIT) {
 | |
| 		cmd_next = 0;
 | |
| 		if (cmd_next == cmd_head)
 | |
| 			goto busy;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy the command. */
 | |
| 	memcpy(&eq->cmds[cmd_tail], cmd, cmd_size);
 | |
| 
 | |
| 	/* Advance. */
 | |
| 	cmd_tail = cmd_next;
 | |
| 
 | |
| 	/* Record "skb" for eventual freeing. */
 | |
| 	comp_tail = eq->comp_tail;
 | |
| 	eq->comps[comp_tail] = skb;
 | |
| 	LEPP_QINC(comp_tail);
 | |
| 	eq->comp_tail = comp_tail;
 | |
| 
 | |
| 	/* Flush before allowing LEPP to handle the command. */
 | |
| 	/* ISSUE: Is this the optimal location for the flush? */
 | |
| 	__insn_mf();
 | |
| 
 | |
| 	eq->cmd_tail = cmd_tail;
 | |
| 
 | |
| 	/* NOTE: Using "4" here is more efficient than "0" or "2", */
 | |
| 	/* and, strangely, more efficient than pre-checking the number */
 | |
| 	/* of available completions, and comparing it to 4. */
 | |
| 	if (nolds == 0)
 | |
| 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
 | |
| 
 | |
| 	/* Handle completions. */
 | |
| 	for (i = 0; i < nolds; i++)
 | |
| 		dev_consume_skb_any(olds[i]);
 | |
| 
 | |
| 	/* Update stats. */
 | |
| 	u64_stats_update_begin(&stats->syncp);
 | |
| 	stats->tx_packets += num_segs;
 | |
| 	stats->tx_bytes += (num_segs * sh_len) + d_len;
 | |
| 	u64_stats_update_end(&stats->syncp);
 | |
| 
 | |
| 	/* Make sure the egress timer is scheduled. */
 | |
| 	tile_net_schedule_egress_timer(info);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
 | |
|  */
 | |
| static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	int my_cpu = smp_processor_id();
 | |
| 	struct tile_net_cpu *info = priv->cpu[my_cpu];
 | |
| 	struct tile_net_stats_t *stats = &info->stats;
 | |
| 
 | |
| 	unsigned long irqflags;
 | |
| 
 | |
| 	struct skb_shared_info *sh = skb_shinfo(skb);
 | |
| 
 | |
| 	unsigned int len = skb->len;
 | |
| 	unsigned char *data = skb->data;
 | |
| 
 | |
| 	unsigned int csum_start = skb_checksum_start_offset(skb);
 | |
| 
 | |
| 	lepp_frag_t frags[1 + MAX_SKB_FRAGS];
 | |
| 
 | |
| 	unsigned int num_frags;
 | |
| 
 | |
| 	lepp_queue_t *eq = priv->eq;
 | |
| 
 | |
| 	struct sk_buff *olds[8];
 | |
| 	unsigned int wanted = 8;
 | |
| 	unsigned int i, nolds = 0;
 | |
| 
 | |
| 	unsigned int cmd_size = sizeof(lepp_cmd_t);
 | |
| 
 | |
| 	unsigned int cmd_head, cmd_tail, cmd_next;
 | |
| 	unsigned int comp_tail;
 | |
| 
 | |
| 	lepp_cmd_t cmds[1 + MAX_SKB_FRAGS];
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * This is paranoia, since we think that if the link doesn't come
 | |
| 	 * up, telling Linux we have no carrier will keep it from trying
 | |
| 	 * to transmit.  If it does, though, we can't execute this routine,
 | |
| 	 * since data structures we depend on aren't set up yet.
 | |
| 	 */
 | |
| 	if (!info->registered)
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 
 | |
| 
 | |
| 	/* Save the timestamp. */
 | |
| 	dev->trans_start = jiffies;
 | |
| 
 | |
| 
 | |
| #ifdef TILE_NET_PARANOIA
 | |
| #if CHIP_HAS_CBOX_HOME_MAP()
 | |
| 	if (hash_default) {
 | |
| 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data);
 | |
| 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
 | |
| 			panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx",
 | |
| 			      data, hv_pte_get_mode(pte), hv_pte_val(pte));
 | |
| 	}
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef TILE_NET_DUMP_PACKETS
 | |
| 	/* ISSUE: Does not dump the "frags". */
 | |
| 	dump_packet(data, skb_headlen(skb), "tx");
 | |
| #endif /* TILE_NET_DUMP_PACKETS */
 | |
| 
 | |
| 
 | |
| 	if (sh->gso_size != 0)
 | |
| 		return tile_net_tx_tso(skb, dev);
 | |
| 
 | |
| 
 | |
| 	/* Prepare the commands. */
 | |
| 
 | |
| 	num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
 | |
| 
 | |
| 	for (i = 0; i < num_frags; i++) {
 | |
| 
 | |
| 		bool final = (i == num_frags - 1);
 | |
| 
 | |
| 		lepp_cmd_t cmd = {
 | |
| 			.cpa_lo = frags[i].cpa_lo,
 | |
| 			.cpa_hi = frags[i].cpa_hi,
 | |
| 			.length = frags[i].length,
 | |
| 			.hash_for_home = frags[i].hash_for_home,
 | |
| 			.send_completion = final,
 | |
| 			.end_of_packet = final
 | |
| 		};
 | |
| 
 | |
| 		if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 			cmd.compute_checksum = 1;
 | |
| 			cmd.checksum_data.bits.start_byte = csum_start;
 | |
| 			cmd.checksum_data.bits.count = len - csum_start;
 | |
| 			cmd.checksum_data.bits.destination_byte =
 | |
| 				csum_start + skb->csum_offset;
 | |
| 		}
 | |
| 
 | |
| 		cmds[i] = cmd;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Prefetch and wait, to minimize time spent holding the spinlock. */
 | |
| 	prefetch_L1(&eq->comp_tail);
 | |
| 	prefetch_L1(&eq->cmd_tail);
 | |
| 	mb();
 | |
| 
 | |
| 
 | |
| 	/* Enqueue the commands. */
 | |
| 
 | |
| 	spin_lock_irqsave(&priv->eq_lock, irqflags);
 | |
| 
 | |
| 	/* Handle completions if needed to make room. */
 | |
| 	/* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
 | |
| 	if (lepp_num_free_comp_slots(eq) == 0) {
 | |
| 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
 | |
| 		if (nolds == 0) {
 | |
| busy:
 | |
| 			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
 | |
| 			return NETDEV_TX_BUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cmd_head = eq->cmd_head;
 | |
| 	cmd_tail = eq->cmd_tail;
 | |
| 
 | |
| 	/* Copy the commands, or fail. */
 | |
| 	/* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
 | |
| 	for (i = 0; i < num_frags; i++) {
 | |
| 
 | |
| 		/* Prepare to advance, detecting full queue. */
 | |
| 		cmd_next = cmd_tail + cmd_size;
 | |
| 		if (cmd_tail < cmd_head && cmd_next >= cmd_head)
 | |
| 			goto busy;
 | |
| 		if (cmd_next > LEPP_CMD_LIMIT) {
 | |
| 			cmd_next = 0;
 | |
| 			if (cmd_next == cmd_head)
 | |
| 				goto busy;
 | |
| 		}
 | |
| 
 | |
| 		/* Copy the command. */
 | |
| 		*(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i];
 | |
| 
 | |
| 		/* Advance. */
 | |
| 		cmd_tail = cmd_next;
 | |
| 	}
 | |
| 
 | |
| 	/* Record "skb" for eventual freeing. */
 | |
| 	comp_tail = eq->comp_tail;
 | |
| 	eq->comps[comp_tail] = skb;
 | |
| 	LEPP_QINC(comp_tail);
 | |
| 	eq->comp_tail = comp_tail;
 | |
| 
 | |
| 	/* Flush before allowing LEPP to handle the command. */
 | |
| 	/* ISSUE: Is this the optimal location for the flush? */
 | |
| 	__insn_mf();
 | |
| 
 | |
| 	eq->cmd_tail = cmd_tail;
 | |
| 
 | |
| 	/* NOTE: Using "4" here is more efficient than "0" or "2", */
 | |
| 	/* and, strangely, more efficient than pre-checking the number */
 | |
| 	/* of available completions, and comparing it to 4. */
 | |
| 	if (nolds == 0)
 | |
| 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
 | |
| 
 | |
| 	/* Handle completions. */
 | |
| 	for (i = 0; i < nolds; i++)
 | |
| 		dev_consume_skb_any(olds[i]);
 | |
| 
 | |
| 	/* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
 | |
| 	u64_stats_update_begin(&stats->syncp);
 | |
| 	stats->tx_packets++;
 | |
| 	stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN);
 | |
| 	u64_stats_update_end(&stats->syncp);
 | |
| 
 | |
| 	/* Make sure the egress timer is scheduled. */
 | |
| 	tile_net_schedule_egress_timer(info);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Deal with a transmit timeout.
 | |
|  */
 | |
| static void tile_net_tx_timeout(struct net_device *dev)
 | |
| {
 | |
| 	PDEBUG("tile_net_tx_timeout()\n");
 | |
| 	PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
 | |
| 	       jiffies - dev->trans_start);
 | |
| 
 | |
| 	/* XXX: ISSUE: This doesn't seem useful for us. */
 | |
| 	netif_wake_queue(dev);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Ioctl commands.
 | |
|  */
 | |
| static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 | |
| {
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Get System Network Statistics.
 | |
|  *
 | |
|  * Returns the address of the device statistics structure.
 | |
|  */
 | |
| static struct rtnl_link_stats64 *tile_net_get_stats64(struct net_device *dev,
 | |
| 		struct rtnl_link_stats64 *stats)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	u64 rx_packets = 0, tx_packets = 0;
 | |
| 	u64 rx_bytes = 0, tx_bytes = 0;
 | |
| 	u64 rx_errors = 0, rx_dropped = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		struct tile_net_stats_t *cpu_stats;
 | |
| 		u64 trx_packets, ttx_packets, trx_bytes, ttx_bytes;
 | |
| 		u64 trx_errors, trx_dropped;
 | |
| 		unsigned int start;
 | |
| 
 | |
| 		if (priv->cpu[i] == NULL)
 | |
| 			continue;
 | |
| 		cpu_stats = &priv->cpu[i]->stats;
 | |
| 
 | |
| 		do {
 | |
| 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
 | |
| 			trx_packets = cpu_stats->rx_packets;
 | |
| 			ttx_packets = cpu_stats->tx_packets;
 | |
| 			trx_bytes   = cpu_stats->rx_bytes;
 | |
| 			ttx_bytes   = cpu_stats->tx_bytes;
 | |
| 			trx_errors  = cpu_stats->rx_errors;
 | |
| 			trx_dropped = cpu_stats->rx_dropped;
 | |
| 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
 | |
| 
 | |
| 		rx_packets += trx_packets;
 | |
| 		tx_packets += ttx_packets;
 | |
| 		rx_bytes   += trx_bytes;
 | |
| 		tx_bytes   += ttx_bytes;
 | |
| 		rx_errors  += trx_errors;
 | |
| 		rx_dropped += trx_dropped;
 | |
| 	}
 | |
| 
 | |
| 	stats->rx_packets = rx_packets;
 | |
| 	stats->tx_packets = tx_packets;
 | |
| 	stats->rx_bytes   = rx_bytes;
 | |
| 	stats->tx_bytes   = tx_bytes;
 | |
| 	stats->rx_errors  = rx_errors;
 | |
| 	stats->rx_dropped = rx_dropped;
 | |
| 
 | |
| 	return stats;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Change the "mtu".
 | |
|  *
 | |
|  * The "change_mtu" method is usually not needed.
 | |
|  * If you need it, it must be like this.
 | |
|  */
 | |
| static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
 | |
| {
 | |
| 	PDEBUG("tile_net_change_mtu()\n");
 | |
| 
 | |
| 	/* Check ranges. */
 | |
| 	if ((new_mtu < 68) || (new_mtu > 1500))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Accept the value. */
 | |
| 	dev->mtu = new_mtu;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Change the Ethernet Address of the NIC.
 | |
|  *
 | |
|  * The hypervisor driver does not support changing MAC address.  However,
 | |
|  * the IPP does not do anything with the MAC address, so the address which
 | |
|  * gets used on outgoing packets, and which is accepted on incoming packets,
 | |
|  * is completely up to the NetIO program or kernel driver which is actually
 | |
|  * handling them.
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure.
 | |
|  */
 | |
| static int tile_net_set_mac_address(struct net_device *dev, void *p)
 | |
| {
 | |
| 	struct sockaddr *addr = p;
 | |
| 
 | |
| 	if (!is_valid_ether_addr(addr->sa_data))
 | |
| 		return -EADDRNOTAVAIL;
 | |
| 
 | |
| 	/* ISSUE: Note that "dev_addr" is now a pointer. */
 | |
| 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Obtain the MAC address from the hypervisor.
 | |
|  * This must be done before opening the device.
 | |
|  */
 | |
| static int tile_net_get_mac(struct net_device *dev)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	char hv_dev_name[32];
 | |
| 	int len;
 | |
| 
 | |
| 	__netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF };
 | |
| 
 | |
| 	int ret;
 | |
| 
 | |
| 	/* For example, "xgbe0". */
 | |
| 	strcpy(hv_dev_name, dev->name);
 | |
| 	len = strlen(hv_dev_name);
 | |
| 
 | |
| 	/* For example, "xgbe/0". */
 | |
| 	hv_dev_name[len] = hv_dev_name[len - 1];
 | |
| 	hv_dev_name[len - 1] = '/';
 | |
| 	len++;
 | |
| 
 | |
| 	/* For example, "xgbe/0/native_hash". */
 | |
| 	strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native");
 | |
| 
 | |
| 	/* Get the hypervisor handle for this device. */
 | |
| 	priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0);
 | |
| 	PDEBUG("hv_dev_open(%s) returned %d %p\n",
 | |
| 	       hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl);
 | |
| 	if (priv->hv_devhdl < 0) {
 | |
| 		if (priv->hv_devhdl == HV_ENODEV)
 | |
| 			printk(KERN_DEBUG "Ignoring unconfigured device %s\n",
 | |
| 				 hv_dev_name);
 | |
| 		else
 | |
| 			printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n",
 | |
| 				 hv_dev_name, priv->hv_devhdl);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the hardware address from the hypervisor.
 | |
| 	 * ISSUE: Note that "dev_addr" is now a pointer.
 | |
| 	 */
 | |
| 	offset.bits.class = NETIO_PARAM;
 | |
| 	offset.bits.addr = NETIO_PARAM_MAC;
 | |
| 	ret = hv_dev_pread(priv->hv_devhdl, 0,
 | |
| 			   (HV_VirtAddr)dev->dev_addr, dev->addr_len,
 | |
| 			   offset.word);
 | |
| 	PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret);
 | |
| 	if (ret <= 0) {
 | |
| 		printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
 | |
| 		       dev->name);
 | |
| 		/*
 | |
| 		 * Since the device is configured by the hypervisor but we
 | |
| 		 * can't get its MAC address, we are most likely running
 | |
| 		 * the simulator, so let's generate a random MAC address.
 | |
| 		 */
 | |
| 		eth_hw_addr_random(dev);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| /*
 | |
|  * Polling 'interrupt' - used by things like netconsole to send skbs
 | |
|  * without having to re-enable interrupts. It's not called while
 | |
|  * the interrupt routine is executing.
 | |
|  */
 | |
| static void tile_net_netpoll(struct net_device *dev)
 | |
| {
 | |
| 	struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 	disable_percpu_irq(priv->intr_id);
 | |
| 	tile_net_handle_ingress_interrupt(priv->intr_id, dev);
 | |
| 	enable_percpu_irq(priv->intr_id, 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static const struct net_device_ops tile_net_ops = {
 | |
| 	.ndo_open = tile_net_open,
 | |
| 	.ndo_stop = tile_net_stop,
 | |
| 	.ndo_start_xmit = tile_net_tx,
 | |
| 	.ndo_do_ioctl = tile_net_ioctl,
 | |
| 	.ndo_get_stats64 = tile_net_get_stats64,
 | |
| 	.ndo_change_mtu = tile_net_change_mtu,
 | |
| 	.ndo_tx_timeout = tile_net_tx_timeout,
 | |
| 	.ndo_set_mac_address = tile_net_set_mac_address,
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller = tile_net_netpoll,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The setup function.
 | |
|  *
 | |
|  * This uses ether_setup() to assign various fields in dev, including
 | |
|  * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
 | |
|  */
 | |
| static void tile_net_setup(struct net_device *dev)
 | |
| {
 | |
| 	netdev_features_t features = 0;
 | |
| 
 | |
| 	ether_setup(dev);
 | |
| 	dev->netdev_ops = &tile_net_ops;
 | |
| 	dev->watchdog_timeo = TILE_NET_TIMEOUT;
 | |
| 	dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN;
 | |
| 	dev->mtu = TILE_NET_MTU;
 | |
| 
 | |
| 	features |= NETIF_F_HW_CSUM;
 | |
| 	features |= NETIF_F_SG;
 | |
| 
 | |
| 	/* We support TSO iff the HV supports sufficient frags. */
 | |
| 	if (LEPP_MAX_FRAGS >= 1 + MAX_SKB_FRAGS)
 | |
| 		features |= NETIF_F_TSO;
 | |
| 
 | |
| 	/* We can't support HIGHDMA without hash_default, since we need
 | |
| 	 * to be able to finv() with a VA if we don't have hash_default.
 | |
| 	 */
 | |
| 	if (hash_default)
 | |
| 		features |= NETIF_F_HIGHDMA;
 | |
| 
 | |
| 	dev->hw_features   |= features;
 | |
| 	dev->vlan_features |= features;
 | |
| 	dev->features      |= features;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Allocate the device structure, register the device, and obtain the
 | |
|  * MAC address from the hypervisor.
 | |
|  */
 | |
| static struct net_device *tile_net_dev_init(const char *name)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct net_device *dev;
 | |
| 	struct tile_net_priv *priv;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the device structure.  This allocates "priv", calls
 | |
| 	 * tile_net_setup(), and saves "name".  Normally, "name" is a
 | |
| 	 * template, instantiated by register_netdev(), but not for us.
 | |
| 	 */
 | |
| 	dev = alloc_netdev(sizeof(*priv), name, tile_net_setup);
 | |
| 	if (!dev) {
 | |
| 		pr_err("alloc_netdev(%s) failed\n", name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	priv = netdev_priv(dev);
 | |
| 
 | |
| 	/* Initialize "priv". */
 | |
| 
 | |
| 	memset(priv, 0, sizeof(*priv));
 | |
| 
 | |
| 	/* Save "dev" for "tile_net_open_retry()". */
 | |
| 	priv->dev = dev;
 | |
| 
 | |
| 	INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry);
 | |
| 
 | |
| 	spin_lock_init(&priv->eq_lock);
 | |
| 
 | |
| 	/* Allocate "eq". */
 | |
| 	priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER);
 | |
| 	if (!priv->eq_pages) {
 | |
| 		free_netdev(dev);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	priv->eq = page_address(priv->eq_pages);
 | |
| 
 | |
| 	/* Register the network device. */
 | |
| 	ret = register_netdev(dev);
 | |
| 	if (ret) {
 | |
| 		pr_err("register_netdev %s failed %d\n", dev->name, ret);
 | |
| 		__free_pages(priv->eq_pages, EQ_ORDER);
 | |
| 		free_netdev(dev);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Get the MAC address. */
 | |
| 	ret = tile_net_get_mac(dev);
 | |
| 	if (ret < 0) {
 | |
| 		unregister_netdev(dev);
 | |
| 		__free_pages(priv->eq_pages, EQ_ORDER);
 | |
| 		free_netdev(dev);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return dev;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Module cleanup.
 | |
|  *
 | |
|  * FIXME: If compiled as a module, this module cannot be "unloaded",
 | |
|  * because the "ingress interrupt handler" is registered permanently.
 | |
|  */
 | |
| static void tile_net_cleanup(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < TILE_NET_DEVS; i++) {
 | |
| 		if (tile_net_devs[i]) {
 | |
| 			struct net_device *dev = tile_net_devs[i];
 | |
| 			struct tile_net_priv *priv = netdev_priv(dev);
 | |
| 			unregister_netdev(dev);
 | |
| 			finv_buffer_remote(priv->eq, EQ_SIZE, 0);
 | |
| 			__free_pages(priv->eq_pages, EQ_ORDER);
 | |
| 			free_netdev(dev);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Module initialization.
 | |
|  */
 | |
| static int tile_net_init_module(void)
 | |
| {
 | |
| 	pr_info("Tilera Network Driver\n");
 | |
| 
 | |
| 	tile_net_devs[0] = tile_net_dev_init("xgbe0");
 | |
| 	tile_net_devs[1] = tile_net_dev_init("xgbe1");
 | |
| 	tile_net_devs[2] = tile_net_dev_init("gbe0");
 | |
| 	tile_net_devs[3] = tile_net_dev_init("gbe1");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| module_init(tile_net_init_module);
 | |
| module_exit(tile_net_cleanup);
 | |
| 
 | |
| 
 | |
| #ifndef MODULE
 | |
| 
 | |
| /*
 | |
|  * The "network_cpus" boot argument specifies the cpus that are dedicated
 | |
|  * to handle ingress packets.
 | |
|  *
 | |
|  * The parameter should be in the form "network_cpus=m-n[,x-y]", where
 | |
|  * m, n, x, y are integer numbers that represent the cpus that can be
 | |
|  * neither a dedicated cpu nor a dataplane cpu.
 | |
|  */
 | |
| static int __init network_cpus_setup(char *str)
 | |
| {
 | |
| 	int rc = cpulist_parse_crop(str, &network_cpus_map);
 | |
| 	if (rc != 0) {
 | |
| 		pr_warning("network_cpus=%s: malformed cpu list\n",
 | |
| 		       str);
 | |
| 	} else {
 | |
| 
 | |
| 		/* Remove dedicated cpus. */
 | |
| 		cpumask_and(&network_cpus_map, &network_cpus_map,
 | |
| 			    cpu_possible_mask);
 | |
| 
 | |
| 
 | |
| 		if (cpumask_empty(&network_cpus_map)) {
 | |
| 			pr_warning("Ignoring network_cpus='%s'.\n",
 | |
| 			       str);
 | |
| 		} else {
 | |
| 			char buf[1024];
 | |
| 			cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
 | |
| 			pr_info("Linux network CPUs: %s\n", buf);
 | |
| 			network_cpus_used = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __setup("network_cpus=", network_cpus_setup);
 | |
| 
 | |
| #endif
 |