 347abad981
			
		
	
	
	347abad981
	
	
	
		
			
			On 32 bit systems cmpxchg cannot handle 64 bit values, so some additional magic is required to allow a 32 bit system with CONFIG_VIRT_CPU_ACCOUNTING_GEN=y enabled to build. Make sure the correct cmpxchg function is used when doing an atomic swap of a cputime_t. Reported-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: umgwanakikbuti@gmail.com Cc: fweisbec@gmail.com Cc: srao@redhat.com Cc: lwoodman@redhat.com Cc: atheurer@redhat.com Cc: oleg@redhat.com Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: linux390@de.ibm.com Cc: linux-arch@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-s390@vger.kernel.org Link: http://lkml.kernel.org/r/20140930155947.070cdb1f@annuminas.surriel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			852 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			852 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/export.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/static_key.h>
 | |
| #include <linux/context_tracking.h>
 | |
| #include "sched.h"
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| 
 | |
| /*
 | |
|  * There are no locks covering percpu hardirq/softirq time.
 | |
|  * They are only modified in vtime_account, on corresponding CPU
 | |
|  * with interrupts disabled. So, writes are safe.
 | |
|  * They are read and saved off onto struct rq in update_rq_clock().
 | |
|  * This may result in other CPU reading this CPU's irq time and can
 | |
|  * race with irq/vtime_account on this CPU. We would either get old
 | |
|  * or new value with a side effect of accounting a slice of irq time to wrong
 | |
|  * task when irq is in progress while we read rq->clock. That is a worthy
 | |
|  * compromise in place of having locks on each irq in account_system_time.
 | |
|  */
 | |
| DEFINE_PER_CPU(u64, cpu_hardirq_time);
 | |
| DEFINE_PER_CPU(u64, cpu_softirq_time);
 | |
| 
 | |
| static DEFINE_PER_CPU(u64, irq_start_time);
 | |
| static int sched_clock_irqtime;
 | |
| 
 | |
| void enable_sched_clock_irqtime(void)
 | |
| {
 | |
| 	sched_clock_irqtime = 1;
 | |
| }
 | |
| 
 | |
| void disable_sched_clock_irqtime(void)
 | |
| {
 | |
| 	sched_clock_irqtime = 0;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_64BIT
 | |
| DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 | |
| #endif /* CONFIG_64BIT */
 | |
| 
 | |
| /*
 | |
|  * Called before incrementing preempt_count on {soft,}irq_enter
 | |
|  * and before decrementing preempt_count on {soft,}irq_exit.
 | |
|  */
 | |
| void irqtime_account_irq(struct task_struct *curr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	s64 delta;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!sched_clock_irqtime)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 | |
| 	__this_cpu_add(irq_start_time, delta);
 | |
| 
 | |
| 	irq_time_write_begin();
 | |
| 	/*
 | |
| 	 * We do not account for softirq time from ksoftirqd here.
 | |
| 	 * We want to continue accounting softirq time to ksoftirqd thread
 | |
| 	 * in that case, so as not to confuse scheduler with a special task
 | |
| 	 * that do not consume any time, but still wants to run.
 | |
| 	 */
 | |
| 	if (hardirq_count())
 | |
| 		__this_cpu_add(cpu_hardirq_time, delta);
 | |
| 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 | |
| 		__this_cpu_add(cpu_softirq_time, delta);
 | |
| 
 | |
| 	irq_time_write_end();
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(irqtime_account_irq);
 | |
| 
 | |
| static int irqtime_account_hi_update(void)
 | |
| {
 | |
| 	u64 *cpustat = kcpustat_this_cpu->cpustat;
 | |
| 	unsigned long flags;
 | |
| 	u64 latest_ns;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	latest_ns = this_cpu_read(cpu_hardirq_time);
 | |
| 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
 | |
| 		ret = 1;
 | |
| 	local_irq_restore(flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int irqtime_account_si_update(void)
 | |
| {
 | |
| 	u64 *cpustat = kcpustat_this_cpu->cpustat;
 | |
| 	unsigned long flags;
 | |
| 	u64 latest_ns;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	latest_ns = this_cpu_read(cpu_softirq_time);
 | |
| 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
 | |
| 		ret = 1;
 | |
| 	local_irq_restore(flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_IRQ_TIME_ACCOUNTING */
 | |
| 
 | |
| #define sched_clock_irqtime	(0)
 | |
| 
 | |
| #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 | |
| 
 | |
| static inline void task_group_account_field(struct task_struct *p, int index,
 | |
| 					    u64 tmp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Since all updates are sure to touch the root cgroup, we
 | |
| 	 * get ourselves ahead and touch it first. If the root cgroup
 | |
| 	 * is the only cgroup, then nothing else should be necessary.
 | |
| 	 *
 | |
| 	 */
 | |
| 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 | |
| 
 | |
| 	cpuacct_account_field(p, index, tmp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account user cpu time to a process.
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @cputime: the cpu time spent in user space since the last update
 | |
|  * @cputime_scaled: cputime scaled by cpu frequency
 | |
|  */
 | |
| void account_user_time(struct task_struct *p, cputime_t cputime,
 | |
| 		       cputime_t cputime_scaled)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	/* Add user time to process. */
 | |
| 	p->utime += cputime;
 | |
| 	p->utimescaled += cputime_scaled;
 | |
| 	account_group_user_time(p, cputime);
 | |
| 
 | |
| 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 | |
| 
 | |
| 	/* Add user time to cpustat. */
 | |
| 	task_group_account_field(p, index, (__force u64) cputime);
 | |
| 
 | |
| 	/* Account for user time used */
 | |
| 	acct_account_cputime(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account guest cpu time to a process.
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @cputime: the cpu time spent in virtual machine since the last update
 | |
|  * @cputime_scaled: cputime scaled by cpu frequency
 | |
|  */
 | |
| static void account_guest_time(struct task_struct *p, cputime_t cputime,
 | |
| 			       cputime_t cputime_scaled)
 | |
| {
 | |
| 	u64 *cpustat = kcpustat_this_cpu->cpustat;
 | |
| 
 | |
| 	/* Add guest time to process. */
 | |
| 	p->utime += cputime;
 | |
| 	p->utimescaled += cputime_scaled;
 | |
| 	account_group_user_time(p, cputime);
 | |
| 	p->gtime += cputime;
 | |
| 
 | |
| 	/* Add guest time to cpustat. */
 | |
| 	if (task_nice(p) > 0) {
 | |
| 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
 | |
| 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
 | |
| 	} else {
 | |
| 		cpustat[CPUTIME_USER] += (__force u64) cputime;
 | |
| 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account system cpu time to a process and desired cpustat field
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @cputime: the cpu time spent in kernel space since the last update
 | |
|  * @cputime_scaled: cputime scaled by cpu frequency
 | |
|  * @target_cputime64: pointer to cpustat field that has to be updated
 | |
|  */
 | |
| static inline
 | |
| void __account_system_time(struct task_struct *p, cputime_t cputime,
 | |
| 			cputime_t cputime_scaled, int index)
 | |
| {
 | |
| 	/* Add system time to process. */
 | |
| 	p->stime += cputime;
 | |
| 	p->stimescaled += cputime_scaled;
 | |
| 	account_group_system_time(p, cputime);
 | |
| 
 | |
| 	/* Add system time to cpustat. */
 | |
| 	task_group_account_field(p, index, (__force u64) cputime);
 | |
| 
 | |
| 	/* Account for system time used */
 | |
| 	acct_account_cputime(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account system cpu time to a process.
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @hardirq_offset: the offset to subtract from hardirq_count()
 | |
|  * @cputime: the cpu time spent in kernel space since the last update
 | |
|  * @cputime_scaled: cputime scaled by cpu frequency
 | |
|  */
 | |
| void account_system_time(struct task_struct *p, int hardirq_offset,
 | |
| 			 cputime_t cputime, cputime_t cputime_scaled)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 | |
| 		account_guest_time(p, cputime, cputime_scaled);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (hardirq_count() - hardirq_offset)
 | |
| 		index = CPUTIME_IRQ;
 | |
| 	else if (in_serving_softirq())
 | |
| 		index = CPUTIME_SOFTIRQ;
 | |
| 	else
 | |
| 		index = CPUTIME_SYSTEM;
 | |
| 
 | |
| 	__account_system_time(p, cputime, cputime_scaled, index);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for involuntary wait time.
 | |
|  * @cputime: the cpu time spent in involuntary wait
 | |
|  */
 | |
| void account_steal_time(cputime_t cputime)
 | |
| {
 | |
| 	u64 *cpustat = kcpustat_this_cpu->cpustat;
 | |
| 
 | |
| 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for idle time.
 | |
|  * @cputime: the cpu time spent in idle wait
 | |
|  */
 | |
| void account_idle_time(cputime_t cputime)
 | |
| {
 | |
| 	u64 *cpustat = kcpustat_this_cpu->cpustat;
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| 	if (atomic_read(&rq->nr_iowait) > 0)
 | |
| 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
 | |
| 	else
 | |
| 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
 | |
| }
 | |
| 
 | |
| static __always_inline bool steal_account_process_tick(void)
 | |
| {
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| 	if (static_key_false(¶virt_steal_enabled)) {
 | |
| 		u64 steal;
 | |
| 		cputime_t steal_ct;
 | |
| 
 | |
| 		steal = paravirt_steal_clock(smp_processor_id());
 | |
| 		steal -= this_rq()->prev_steal_time;
 | |
| 
 | |
| 		/*
 | |
| 		 * cputime_t may be less precise than nsecs (eg: if it's
 | |
| 		 * based on jiffies). Lets cast the result to cputime
 | |
| 		 * granularity and account the rest on the next rounds.
 | |
| 		 */
 | |
| 		steal_ct = nsecs_to_cputime(steal);
 | |
| 		this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
 | |
| 
 | |
| 		account_steal_time(steal_ct);
 | |
| 		return steal_ct;
 | |
| 	}
 | |
| #endif
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 | |
|  * tasks (sum on group iteration) belonging to @tsk's group.
 | |
|  */
 | |
| void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 | |
| {
 | |
| 	struct signal_struct *sig = tsk->signal;
 | |
| 	cputime_t utime, stime;
 | |
| 	struct task_struct *t;
 | |
| 	unsigned int seq, nextseq;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/* Attempt a lockless read on the first round. */
 | |
| 	nextseq = 0;
 | |
| 	do {
 | |
| 		seq = nextseq;
 | |
| 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 | |
| 		times->utime = sig->utime;
 | |
| 		times->stime = sig->stime;
 | |
| 		times->sum_exec_runtime = sig->sum_sched_runtime;
 | |
| 
 | |
| 		for_each_thread(tsk, t) {
 | |
| 			task_cputime(t, &utime, &stime);
 | |
| 			times->utime += utime;
 | |
| 			times->stime += stime;
 | |
| 			times->sum_exec_runtime += task_sched_runtime(t);
 | |
| 		}
 | |
| 		/* If lockless access failed, take the lock. */
 | |
| 		nextseq = 1;
 | |
| 	} while (need_seqretry(&sig->stats_lock, seq));
 | |
| 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| /*
 | |
|  * Account a tick to a process and cpustat
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @user_tick: is the tick from userspace
 | |
|  * @rq: the pointer to rq
 | |
|  *
 | |
|  * Tick demultiplexing follows the order
 | |
|  * - pending hardirq update
 | |
|  * - pending softirq update
 | |
|  * - user_time
 | |
|  * - idle_time
 | |
|  * - system time
 | |
|  *   - check for guest_time
 | |
|  *   - else account as system_time
 | |
|  *
 | |
|  * Check for hardirq is done both for system and user time as there is
 | |
|  * no timer going off while we are on hardirq and hence we may never get an
 | |
|  * opportunity to update it solely in system time.
 | |
|  * p->stime and friends are only updated on system time and not on irq
 | |
|  * softirq as those do not count in task exec_runtime any more.
 | |
|  */
 | |
| static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 | |
| 					 struct rq *rq, int ticks)
 | |
| {
 | |
| 	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
 | |
| 	u64 cputime = (__force u64) cputime_one_jiffy;
 | |
| 	u64 *cpustat = kcpustat_this_cpu->cpustat;
 | |
| 
 | |
| 	if (steal_account_process_tick())
 | |
| 		return;
 | |
| 
 | |
| 	cputime *= ticks;
 | |
| 	scaled *= ticks;
 | |
| 
 | |
| 	if (irqtime_account_hi_update()) {
 | |
| 		cpustat[CPUTIME_IRQ] += cputime;
 | |
| 	} else if (irqtime_account_si_update()) {
 | |
| 		cpustat[CPUTIME_SOFTIRQ] += cputime;
 | |
| 	} else if (this_cpu_ksoftirqd() == p) {
 | |
| 		/*
 | |
| 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 | |
| 		 * So, we have to handle it separately here.
 | |
| 		 * Also, p->stime needs to be updated for ksoftirqd.
 | |
| 		 */
 | |
| 		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
 | |
| 	} else if (user_tick) {
 | |
| 		account_user_time(p, cputime, scaled);
 | |
| 	} else if (p == rq->idle) {
 | |
| 		account_idle_time(cputime);
 | |
| 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 | |
| 		account_guest_time(p, cputime, scaled);
 | |
| 	} else {
 | |
| 		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void irqtime_account_idle_ticks(int ticks)
 | |
| {
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| 	irqtime_account_process_tick(current, 0, rq, ticks);
 | |
| }
 | |
| #else /* CONFIG_IRQ_TIME_ACCOUNTING */
 | |
| static inline void irqtime_account_idle_ticks(int ticks) {}
 | |
| static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 | |
| 						struct rq *rq, int nr_ticks) {}
 | |
| #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 | |
| 
 | |
| /*
 | |
|  * Use precise platform statistics if available:
 | |
|  */
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING
 | |
| 
 | |
| #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 | |
| void vtime_common_task_switch(struct task_struct *prev)
 | |
| {
 | |
| 	if (is_idle_task(prev))
 | |
| 		vtime_account_idle(prev);
 | |
| 	else
 | |
| 		vtime_account_system(prev);
 | |
| 
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 | |
| 	vtime_account_user(prev);
 | |
| #endif
 | |
| 	arch_vtime_task_switch(prev);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Archs that account the whole time spent in the idle task
 | |
|  * (outside irq) as idle time can rely on this and just implement
 | |
|  * vtime_account_system() and vtime_account_idle(). Archs that
 | |
|  * have other meaning of the idle time (s390 only includes the
 | |
|  * time spent by the CPU when it's in low power mode) must override
 | |
|  * vtime_account().
 | |
|  */
 | |
| #ifndef __ARCH_HAS_VTIME_ACCOUNT
 | |
| void vtime_common_account_irq_enter(struct task_struct *tsk)
 | |
| {
 | |
| 	if (!in_interrupt()) {
 | |
| 		/*
 | |
| 		 * If we interrupted user, context_tracking_in_user()
 | |
| 		 * is 1 because the context tracking don't hook
 | |
| 		 * on irq entry/exit. This way we know if
 | |
| 		 * we need to flush user time on kernel entry.
 | |
| 		 */
 | |
| 		if (context_tracking_in_user()) {
 | |
| 			vtime_account_user(tsk);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (is_idle_task(tsk)) {
 | |
| 			vtime_account_idle(tsk);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	vtime_account_system(tsk);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
 | |
| #endif /* __ARCH_HAS_VTIME_ACCOUNT */
 | |
| #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 | |
| void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 | |
| {
 | |
| 	*ut = p->utime;
 | |
| 	*st = p->stime;
 | |
| }
 | |
| 
 | |
| void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 | |
| {
 | |
| 	struct task_cputime cputime;
 | |
| 
 | |
| 	thread_group_cputime(p, &cputime);
 | |
| 
 | |
| 	*ut = cputime.utime;
 | |
| 	*st = cputime.stime;
 | |
| }
 | |
| #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 | |
| /*
 | |
|  * Account a single tick of cpu time.
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @user_tick: indicates if the tick is a user or a system tick
 | |
|  */
 | |
| void account_process_tick(struct task_struct *p, int user_tick)
 | |
| {
 | |
| 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| 	if (vtime_accounting_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (sched_clock_irqtime) {
 | |
| 		irqtime_account_process_tick(p, user_tick, rq, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (steal_account_process_tick())
 | |
| 		return;
 | |
| 
 | |
| 	if (user_tick)
 | |
| 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
 | |
| 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
 | |
| 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
 | |
| 				    one_jiffy_scaled);
 | |
| 	else
 | |
| 		account_idle_time(cputime_one_jiffy);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account multiple ticks of steal time.
 | |
|  * @p: the process from which the cpu time has been stolen
 | |
|  * @ticks: number of stolen ticks
 | |
|  */
 | |
| void account_steal_ticks(unsigned long ticks)
 | |
| {
 | |
| 	account_steal_time(jiffies_to_cputime(ticks));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account multiple ticks of idle time.
 | |
|  * @ticks: number of stolen ticks
 | |
|  */
 | |
| void account_idle_ticks(unsigned long ticks)
 | |
| {
 | |
| 
 | |
| 	if (sched_clock_irqtime) {
 | |
| 		irqtime_account_idle_ticks(ticks);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	account_idle_time(jiffies_to_cputime(ticks));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform (stime * rtime) / total, but avoid multiplication overflow by
 | |
|  * loosing precision when the numbers are big.
 | |
|  */
 | |
| static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
 | |
| {
 | |
| 	u64 scaled;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/* Make sure "rtime" is the bigger of stime/rtime */
 | |
| 		if (stime > rtime)
 | |
| 			swap(rtime, stime);
 | |
| 
 | |
| 		/* Make sure 'total' fits in 32 bits */
 | |
| 		if (total >> 32)
 | |
| 			goto drop_precision;
 | |
| 
 | |
| 		/* Does rtime (and thus stime) fit in 32 bits? */
 | |
| 		if (!(rtime >> 32))
 | |
| 			break;
 | |
| 
 | |
| 		/* Can we just balance rtime/stime rather than dropping bits? */
 | |
| 		if (stime >> 31)
 | |
| 			goto drop_precision;
 | |
| 
 | |
| 		/* We can grow stime and shrink rtime and try to make them both fit */
 | |
| 		stime <<= 1;
 | |
| 		rtime >>= 1;
 | |
| 		continue;
 | |
| 
 | |
| drop_precision:
 | |
| 		/* We drop from rtime, it has more bits than stime */
 | |
| 		rtime >>= 1;
 | |
| 		total >>= 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure gcc understands that this is a 32x32->64 multiply,
 | |
| 	 * followed by a 64/32->64 divide.
 | |
| 	 */
 | |
| 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
 | |
| 	return (__force cputime_t) scaled;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Atomically advance counter to the new value. Interrupts, vcpu
 | |
|  * scheduling, and scaling inaccuracies can cause cputime_advance
 | |
|  * to be occasionally called with a new value smaller than counter.
 | |
|  * Let's enforce atomicity.
 | |
|  *
 | |
|  * Normally a caller will only go through this loop once, or not
 | |
|  * at all in case a previous caller updated counter the same jiffy.
 | |
|  */
 | |
| static void cputime_advance(cputime_t *counter, cputime_t new)
 | |
| {
 | |
| 	cputime_t old;
 | |
| 
 | |
| 	while (new > (old = ACCESS_ONCE(*counter)))
 | |
| 		cmpxchg_cputime(counter, old, new);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust tick based cputime random precision against scheduler
 | |
|  * runtime accounting.
 | |
|  */
 | |
| static void cputime_adjust(struct task_cputime *curr,
 | |
| 			   struct cputime *prev,
 | |
| 			   cputime_t *ut, cputime_t *st)
 | |
| {
 | |
| 	cputime_t rtime, stime, utime;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tick based cputime accounting depend on random scheduling
 | |
| 	 * timeslices of a task to be interrupted or not by the timer.
 | |
| 	 * Depending on these circumstances, the number of these interrupts
 | |
| 	 * may be over or under-optimistic, matching the real user and system
 | |
| 	 * cputime with a variable precision.
 | |
| 	 *
 | |
| 	 * Fix this by scaling these tick based values against the total
 | |
| 	 * runtime accounted by the CFS scheduler.
 | |
| 	 */
 | |
| 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update userspace visible utime/stime values only if actual execution
 | |
| 	 * time is bigger than already exported. Note that can happen, that we
 | |
| 	 * provided bigger values due to scaling inaccuracy on big numbers.
 | |
| 	 */
 | |
| 	if (prev->stime + prev->utime >= rtime)
 | |
| 		goto out;
 | |
| 
 | |
| 	stime = curr->stime;
 | |
| 	utime = curr->utime;
 | |
| 
 | |
| 	if (utime == 0) {
 | |
| 		stime = rtime;
 | |
| 	} else if (stime == 0) {
 | |
| 		utime = rtime;
 | |
| 	} else {
 | |
| 		cputime_t total = stime + utime;
 | |
| 
 | |
| 		stime = scale_stime((__force u64)stime,
 | |
| 				    (__force u64)rtime, (__force u64)total);
 | |
| 		utime = rtime - stime;
 | |
| 	}
 | |
| 
 | |
| 	cputime_advance(&prev->stime, stime);
 | |
| 	cputime_advance(&prev->utime, utime);
 | |
| 
 | |
| out:
 | |
| 	*ut = prev->utime;
 | |
| 	*st = prev->stime;
 | |
| }
 | |
| 
 | |
| void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 | |
| {
 | |
| 	struct task_cputime cputime = {
 | |
| 		.sum_exec_runtime = p->se.sum_exec_runtime,
 | |
| 	};
 | |
| 
 | |
| 	task_cputime(p, &cputime.utime, &cputime.stime);
 | |
| 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 | |
| }
 | |
| 
 | |
| void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 | |
| {
 | |
| 	struct task_cputime cputime;
 | |
| 
 | |
| 	thread_group_cputime(p, &cputime);
 | |
| 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 | |
| }
 | |
| #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 | |
| 
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 | |
| static unsigned long long vtime_delta(struct task_struct *tsk)
 | |
| {
 | |
| 	unsigned long long clock;
 | |
| 
 | |
| 	clock = local_clock();
 | |
| 	if (clock < tsk->vtime_snap)
 | |
| 		return 0;
 | |
| 
 | |
| 	return clock - tsk->vtime_snap;
 | |
| }
 | |
| 
 | |
| static cputime_t get_vtime_delta(struct task_struct *tsk)
 | |
| {
 | |
| 	unsigned long long delta = vtime_delta(tsk);
 | |
| 
 | |
| 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
 | |
| 	tsk->vtime_snap += delta;
 | |
| 
 | |
| 	/* CHECKME: always safe to convert nsecs to cputime? */
 | |
| 	return nsecs_to_cputime(delta);
 | |
| }
 | |
| 
 | |
| static void __vtime_account_system(struct task_struct *tsk)
 | |
| {
 | |
| 	cputime_t delta_cpu = get_vtime_delta(tsk);
 | |
| 
 | |
| 	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
 | |
| }
 | |
| 
 | |
| void vtime_account_system(struct task_struct *tsk)
 | |
| {
 | |
| 	write_seqlock(&tsk->vtime_seqlock);
 | |
| 	__vtime_account_system(tsk);
 | |
| 	write_sequnlock(&tsk->vtime_seqlock);
 | |
| }
 | |
| 
 | |
| void vtime_gen_account_irq_exit(struct task_struct *tsk)
 | |
| {
 | |
| 	write_seqlock(&tsk->vtime_seqlock);
 | |
| 	__vtime_account_system(tsk);
 | |
| 	if (context_tracking_in_user())
 | |
| 		tsk->vtime_snap_whence = VTIME_USER;
 | |
| 	write_sequnlock(&tsk->vtime_seqlock);
 | |
| }
 | |
| 
 | |
| void vtime_account_user(struct task_struct *tsk)
 | |
| {
 | |
| 	cputime_t delta_cpu;
 | |
| 
 | |
| 	write_seqlock(&tsk->vtime_seqlock);
 | |
| 	delta_cpu = get_vtime_delta(tsk);
 | |
| 	tsk->vtime_snap_whence = VTIME_SYS;
 | |
| 	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
 | |
| 	write_sequnlock(&tsk->vtime_seqlock);
 | |
| }
 | |
| 
 | |
| void vtime_user_enter(struct task_struct *tsk)
 | |
| {
 | |
| 	write_seqlock(&tsk->vtime_seqlock);
 | |
| 	__vtime_account_system(tsk);
 | |
| 	tsk->vtime_snap_whence = VTIME_USER;
 | |
| 	write_sequnlock(&tsk->vtime_seqlock);
 | |
| }
 | |
| 
 | |
| void vtime_guest_enter(struct task_struct *tsk)
 | |
| {
 | |
| 	/*
 | |
| 	 * The flags must be updated under the lock with
 | |
| 	 * the vtime_snap flush and update.
 | |
| 	 * That enforces a right ordering and update sequence
 | |
| 	 * synchronization against the reader (task_gtime())
 | |
| 	 * that can thus safely catch up with a tickless delta.
 | |
| 	 */
 | |
| 	write_seqlock(&tsk->vtime_seqlock);
 | |
| 	__vtime_account_system(tsk);
 | |
| 	current->flags |= PF_VCPU;
 | |
| 	write_sequnlock(&tsk->vtime_seqlock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vtime_guest_enter);
 | |
| 
 | |
| void vtime_guest_exit(struct task_struct *tsk)
 | |
| {
 | |
| 	write_seqlock(&tsk->vtime_seqlock);
 | |
| 	__vtime_account_system(tsk);
 | |
| 	current->flags &= ~PF_VCPU;
 | |
| 	write_sequnlock(&tsk->vtime_seqlock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vtime_guest_exit);
 | |
| 
 | |
| void vtime_account_idle(struct task_struct *tsk)
 | |
| {
 | |
| 	cputime_t delta_cpu = get_vtime_delta(tsk);
 | |
| 
 | |
| 	account_idle_time(delta_cpu);
 | |
| }
 | |
| 
 | |
| void arch_vtime_task_switch(struct task_struct *prev)
 | |
| {
 | |
| 	write_seqlock(&prev->vtime_seqlock);
 | |
| 	prev->vtime_snap_whence = VTIME_SLEEPING;
 | |
| 	write_sequnlock(&prev->vtime_seqlock);
 | |
| 
 | |
| 	write_seqlock(¤t->vtime_seqlock);
 | |
| 	current->vtime_snap_whence = VTIME_SYS;
 | |
| 	current->vtime_snap = sched_clock_cpu(smp_processor_id());
 | |
| 	write_sequnlock(¤t->vtime_seqlock);
 | |
| }
 | |
| 
 | |
| void vtime_init_idle(struct task_struct *t, int cpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	write_seqlock_irqsave(&t->vtime_seqlock, flags);
 | |
| 	t->vtime_snap_whence = VTIME_SYS;
 | |
| 	t->vtime_snap = sched_clock_cpu(cpu);
 | |
| 	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
 | |
| }
 | |
| 
 | |
| cputime_t task_gtime(struct task_struct *t)
 | |
| {
 | |
| 	unsigned int seq;
 | |
| 	cputime_t gtime;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&t->vtime_seqlock);
 | |
| 
 | |
| 		gtime = t->gtime;
 | |
| 		if (t->flags & PF_VCPU)
 | |
| 			gtime += vtime_delta(t);
 | |
| 
 | |
| 	} while (read_seqretry(&t->vtime_seqlock, seq));
 | |
| 
 | |
| 	return gtime;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fetch cputime raw values from fields of task_struct and
 | |
|  * add up the pending nohz execution time since the last
 | |
|  * cputime snapshot.
 | |
|  */
 | |
| static void
 | |
| fetch_task_cputime(struct task_struct *t,
 | |
| 		   cputime_t *u_dst, cputime_t *s_dst,
 | |
| 		   cputime_t *u_src, cputime_t *s_src,
 | |
| 		   cputime_t *udelta, cputime_t *sdelta)
 | |
| {
 | |
| 	unsigned int seq;
 | |
| 	unsigned long long delta;
 | |
| 
 | |
| 	do {
 | |
| 		*udelta = 0;
 | |
| 		*sdelta = 0;
 | |
| 
 | |
| 		seq = read_seqbegin(&t->vtime_seqlock);
 | |
| 
 | |
| 		if (u_dst)
 | |
| 			*u_dst = *u_src;
 | |
| 		if (s_dst)
 | |
| 			*s_dst = *s_src;
 | |
| 
 | |
| 		/* Task is sleeping, nothing to add */
 | |
| 		if (t->vtime_snap_whence == VTIME_SLEEPING ||
 | |
| 		    is_idle_task(t))
 | |
| 			continue;
 | |
| 
 | |
| 		delta = vtime_delta(t);
 | |
| 
 | |
| 		/*
 | |
| 		 * Task runs either in user or kernel space, add pending nohz time to
 | |
| 		 * the right place.
 | |
| 		 */
 | |
| 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
 | |
| 			*udelta = delta;
 | |
| 		} else {
 | |
| 			if (t->vtime_snap_whence == VTIME_SYS)
 | |
| 				*sdelta = delta;
 | |
| 		}
 | |
| 	} while (read_seqretry(&t->vtime_seqlock, seq));
 | |
| }
 | |
| 
 | |
| 
 | |
| void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
 | |
| {
 | |
| 	cputime_t udelta, sdelta;
 | |
| 
 | |
| 	fetch_task_cputime(t, utime, stime, &t->utime,
 | |
| 			   &t->stime, &udelta, &sdelta);
 | |
| 	if (utime)
 | |
| 		*utime += udelta;
 | |
| 	if (stime)
 | |
| 		*stime += sdelta;
 | |
| }
 | |
| 
 | |
| void task_cputime_scaled(struct task_struct *t,
 | |
| 			 cputime_t *utimescaled, cputime_t *stimescaled)
 | |
| {
 | |
| 	cputime_t udelta, sdelta;
 | |
| 
 | |
| 	fetch_task_cputime(t, utimescaled, stimescaled,
 | |
| 			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
 | |
| 	if (utimescaled)
 | |
| 		*utimescaled += cputime_to_scaled(udelta);
 | |
| 	if (stimescaled)
 | |
| 		*stimescaled += cputime_to_scaled(sdelta);
 | |
| }
 | |
| #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
 |