 990428b8ea
			
		
	
	
	990428b8ea
	
	
	
		
			
			Include rcupdate.h header to provide call_rcu() definition. This was implicitly being provided by slab.h file which include srcu.h somewhere in its include hierarchy which in-turn included rcupdate.h. Lately, tinification effort added support to remove srcu entirely because of which we are encountering build errors like lib/assoc_array.c: In function 'assoc_array_apply_edit': lib/assoc_array.c:1426:2: error: implicit declaration of function 'call_rcu' [-Werror=implicit-function-declaration] cc1: some warnings being treated as errors Fix these by including rcupdate.h explicitly. Signed-off-by: Pranith Kumar <bobby.prani@gmail.com> Reported-by: Scott Wood <scottwood@freescale.com>
		
			
				
	
	
		
			1749 lines
		
	
	
	
		
			53 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1749 lines
		
	
	
	
		
			53 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Generic associative array implementation.
 | |
|  *
 | |
|  * See Documentation/assoc_array.txt for information.
 | |
|  *
 | |
|  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
 | |
|  * Written by David Howells (dhowells@redhat.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public Licence
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the Licence, or (at your option) any later version.
 | |
|  */
 | |
| //#define DEBUG
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/assoc_array_priv.h>
 | |
| 
 | |
| /*
 | |
|  * Iterate over an associative array.  The caller must hold the RCU read lock
 | |
|  * or better.
 | |
|  */
 | |
| static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
 | |
| 				       const struct assoc_array_ptr *stop,
 | |
| 				       int (*iterator)(const void *leaf,
 | |
| 						       void *iterator_data),
 | |
| 				       void *iterator_data)
 | |
| {
 | |
| 	const struct assoc_array_shortcut *shortcut;
 | |
| 	const struct assoc_array_node *node;
 | |
| 	const struct assoc_array_ptr *cursor, *ptr, *parent;
 | |
| 	unsigned long has_meta;
 | |
| 	int slot, ret;
 | |
| 
 | |
| 	cursor = root;
 | |
| 
 | |
| begin_node:
 | |
| 	if (assoc_array_ptr_is_shortcut(cursor)) {
 | |
| 		/* Descend through a shortcut */
 | |
| 		shortcut = assoc_array_ptr_to_shortcut(cursor);
 | |
| 		smp_read_barrier_depends();
 | |
| 		cursor = ACCESS_ONCE(shortcut->next_node);
 | |
| 	}
 | |
| 
 | |
| 	node = assoc_array_ptr_to_node(cursor);
 | |
| 	smp_read_barrier_depends();
 | |
| 	slot = 0;
 | |
| 
 | |
| 	/* We perform two passes of each node.
 | |
| 	 *
 | |
| 	 * The first pass does all the leaves in this node.  This means we
 | |
| 	 * don't miss any leaves if the node is split up by insertion whilst
 | |
| 	 * we're iterating over the branches rooted here (we may, however, see
 | |
| 	 * some leaves twice).
 | |
| 	 */
 | |
| 	has_meta = 0;
 | |
| 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 | |
| 		ptr = ACCESS_ONCE(node->slots[slot]);
 | |
| 		has_meta |= (unsigned long)ptr;
 | |
| 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
 | |
| 			/* We need a barrier between the read of the pointer
 | |
| 			 * and dereferencing the pointer - but only if we are
 | |
| 			 * actually going to dereference it.
 | |
| 			 */
 | |
| 			smp_read_barrier_depends();
 | |
| 
 | |
| 			/* Invoke the callback */
 | |
| 			ret = iterator(assoc_array_ptr_to_leaf(ptr),
 | |
| 				       iterator_data);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* The second pass attends to all the metadata pointers.  If we follow
 | |
| 	 * one of these we may find that we don't come back here, but rather go
 | |
| 	 * back to a replacement node with the leaves in a different layout.
 | |
| 	 *
 | |
| 	 * We are guaranteed to make progress, however, as the slot number for
 | |
| 	 * a particular portion of the key space cannot change - and we
 | |
| 	 * continue at the back pointer + 1.
 | |
| 	 */
 | |
| 	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
 | |
| 		goto finished_node;
 | |
| 	slot = 0;
 | |
| 
 | |
| continue_node:
 | |
| 	node = assoc_array_ptr_to_node(cursor);
 | |
| 	smp_read_barrier_depends();
 | |
| 
 | |
| 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 | |
| 		ptr = ACCESS_ONCE(node->slots[slot]);
 | |
| 		if (assoc_array_ptr_is_meta(ptr)) {
 | |
| 			cursor = ptr;
 | |
| 			goto begin_node;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| finished_node:
 | |
| 	/* Move up to the parent (may need to skip back over a shortcut) */
 | |
| 	parent = ACCESS_ONCE(node->back_pointer);
 | |
| 	slot = node->parent_slot;
 | |
| 	if (parent == stop)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (assoc_array_ptr_is_shortcut(parent)) {
 | |
| 		shortcut = assoc_array_ptr_to_shortcut(parent);
 | |
| 		smp_read_barrier_depends();
 | |
| 		cursor = parent;
 | |
| 		parent = ACCESS_ONCE(shortcut->back_pointer);
 | |
| 		slot = shortcut->parent_slot;
 | |
| 		if (parent == stop)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Ascend to next slot in parent node */
 | |
| 	cursor = parent;
 | |
| 	slot++;
 | |
| 	goto continue_node;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * assoc_array_iterate - Pass all objects in the array to a callback
 | |
|  * @array: The array to iterate over.
 | |
|  * @iterator: The callback function.
 | |
|  * @iterator_data: Private data for the callback function.
 | |
|  *
 | |
|  * Iterate over all the objects in an associative array.  Each one will be
 | |
|  * presented to the iterator function.
 | |
|  *
 | |
|  * If the array is being modified concurrently with the iteration then it is
 | |
|  * possible that some objects in the array will be passed to the iterator
 | |
|  * callback more than once - though every object should be passed at least
 | |
|  * once.  If this is undesirable then the caller must lock against modification
 | |
|  * for the duration of this function.
 | |
|  *
 | |
|  * The function will return 0 if no objects were in the array or else it will
 | |
|  * return the result of the last iterator function called.  Iteration stops
 | |
|  * immediately if any call to the iteration function results in a non-zero
 | |
|  * return.
 | |
|  *
 | |
|  * The caller should hold the RCU read lock or better if concurrent
 | |
|  * modification is possible.
 | |
|  */
 | |
| int assoc_array_iterate(const struct assoc_array *array,
 | |
| 			int (*iterator)(const void *object,
 | |
| 					void *iterator_data),
 | |
| 			void *iterator_data)
 | |
| {
 | |
| 	struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
 | |
| 
 | |
| 	if (!root)
 | |
| 		return 0;
 | |
| 	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
 | |
| }
 | |
| 
 | |
| enum assoc_array_walk_status {
 | |
| 	assoc_array_walk_tree_empty,
 | |
| 	assoc_array_walk_found_terminal_node,
 | |
| 	assoc_array_walk_found_wrong_shortcut,
 | |
| };
 | |
| 
 | |
| struct assoc_array_walk_result {
 | |
| 	struct {
 | |
| 		struct assoc_array_node	*node;	/* Node in which leaf might be found */
 | |
| 		int		level;
 | |
| 		int		slot;
 | |
| 	} terminal_node;
 | |
| 	struct {
 | |
| 		struct assoc_array_shortcut *shortcut;
 | |
| 		int		level;
 | |
| 		int		sc_level;
 | |
| 		unsigned long	sc_segments;
 | |
| 		unsigned long	dissimilarity;
 | |
| 	} wrong_shortcut;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Navigate through the internal tree looking for the closest node to the key.
 | |
|  */
 | |
| static enum assoc_array_walk_status
 | |
| assoc_array_walk(const struct assoc_array *array,
 | |
| 		 const struct assoc_array_ops *ops,
 | |
| 		 const void *index_key,
 | |
| 		 struct assoc_array_walk_result *result)
 | |
| {
 | |
| 	struct assoc_array_shortcut *shortcut;
 | |
| 	struct assoc_array_node *node;
 | |
| 	struct assoc_array_ptr *cursor, *ptr;
 | |
| 	unsigned long sc_segments, dissimilarity;
 | |
| 	unsigned long segments;
 | |
| 	int level, sc_level, next_sc_level;
 | |
| 	int slot;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	cursor = ACCESS_ONCE(array->root);
 | |
| 	if (!cursor)
 | |
| 		return assoc_array_walk_tree_empty;
 | |
| 
 | |
| 	level = 0;
 | |
| 
 | |
| 	/* Use segments from the key for the new leaf to navigate through the
 | |
| 	 * internal tree, skipping through nodes and shortcuts that are on
 | |
| 	 * route to the destination.  Eventually we'll come to a slot that is
 | |
| 	 * either empty or contains a leaf at which point we've found a node in
 | |
| 	 * which the leaf we're looking for might be found or into which it
 | |
| 	 * should be inserted.
 | |
| 	 */
 | |
| jumped:
 | |
| 	segments = ops->get_key_chunk(index_key, level);
 | |
| 	pr_devel("segments[%d]: %lx\n", level, segments);
 | |
| 
 | |
| 	if (assoc_array_ptr_is_shortcut(cursor))
 | |
| 		goto follow_shortcut;
 | |
| 
 | |
| consider_node:
 | |
| 	node = assoc_array_ptr_to_node(cursor);
 | |
| 	smp_read_barrier_depends();
 | |
| 
 | |
| 	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
 | |
| 	slot &= ASSOC_ARRAY_FAN_MASK;
 | |
| 	ptr = ACCESS_ONCE(node->slots[slot]);
 | |
| 
 | |
| 	pr_devel("consider slot %x [ix=%d type=%lu]\n",
 | |
| 		 slot, level, (unsigned long)ptr & 3);
 | |
| 
 | |
| 	if (!assoc_array_ptr_is_meta(ptr)) {
 | |
| 		/* The node doesn't have a node/shortcut pointer in the slot
 | |
| 		 * corresponding to the index key that we have to follow.
 | |
| 		 */
 | |
| 		result->terminal_node.node = node;
 | |
| 		result->terminal_node.level = level;
 | |
| 		result->terminal_node.slot = slot;
 | |
| 		pr_devel("<--%s() = terminal_node\n", __func__);
 | |
| 		return assoc_array_walk_found_terminal_node;
 | |
| 	}
 | |
| 
 | |
| 	if (assoc_array_ptr_is_node(ptr)) {
 | |
| 		/* There is a pointer to a node in the slot corresponding to
 | |
| 		 * this index key segment, so we need to follow it.
 | |
| 		 */
 | |
| 		cursor = ptr;
 | |
| 		level += ASSOC_ARRAY_LEVEL_STEP;
 | |
| 		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
 | |
| 			goto consider_node;
 | |
| 		goto jumped;
 | |
| 	}
 | |
| 
 | |
| 	/* There is a shortcut in the slot corresponding to the index key
 | |
| 	 * segment.  We follow the shortcut if its partial index key matches
 | |
| 	 * this leaf's.  Otherwise we need to split the shortcut.
 | |
| 	 */
 | |
| 	cursor = ptr;
 | |
| follow_shortcut:
 | |
| 	shortcut = assoc_array_ptr_to_shortcut(cursor);
 | |
| 	smp_read_barrier_depends();
 | |
| 	pr_devel("shortcut to %d\n", shortcut->skip_to_level);
 | |
| 	sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
 | |
| 	BUG_ON(sc_level > shortcut->skip_to_level);
 | |
| 
 | |
| 	do {
 | |
| 		/* Check the leaf against the shortcut's index key a word at a
 | |
| 		 * time, trimming the final word (the shortcut stores the index
 | |
| 		 * key completely from the root to the shortcut's target).
 | |
| 		 */
 | |
| 		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
 | |
| 			segments = ops->get_key_chunk(index_key, sc_level);
 | |
| 
 | |
| 		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
 | |
| 		dissimilarity = segments ^ sc_segments;
 | |
| 
 | |
| 		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
 | |
| 			/* Trim segments that are beyond the shortcut */
 | |
| 			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 | |
| 			dissimilarity &= ~(ULONG_MAX << shift);
 | |
| 			next_sc_level = shortcut->skip_to_level;
 | |
| 		} else {
 | |
| 			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
 | |
| 			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 | |
| 		}
 | |
| 
 | |
| 		if (dissimilarity != 0) {
 | |
| 			/* This shortcut points elsewhere */
 | |
| 			result->wrong_shortcut.shortcut = shortcut;
 | |
| 			result->wrong_shortcut.level = level;
 | |
| 			result->wrong_shortcut.sc_level = sc_level;
 | |
| 			result->wrong_shortcut.sc_segments = sc_segments;
 | |
| 			result->wrong_shortcut.dissimilarity = dissimilarity;
 | |
| 			return assoc_array_walk_found_wrong_shortcut;
 | |
| 		}
 | |
| 
 | |
| 		sc_level = next_sc_level;
 | |
| 	} while (sc_level < shortcut->skip_to_level);
 | |
| 
 | |
| 	/* The shortcut matches the leaf's index to this point. */
 | |
| 	cursor = ACCESS_ONCE(shortcut->next_node);
 | |
| 	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
 | |
| 		level = sc_level;
 | |
| 		goto jumped;
 | |
| 	} else {
 | |
| 		level = sc_level;
 | |
| 		goto consider_node;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * assoc_array_find - Find an object by index key
 | |
|  * @array: The associative array to search.
 | |
|  * @ops: The operations to use.
 | |
|  * @index_key: The key to the object.
 | |
|  *
 | |
|  * Find an object in an associative array by walking through the internal tree
 | |
|  * to the node that should contain the object and then searching the leaves
 | |
|  * there.  NULL is returned if the requested object was not found in the array.
 | |
|  *
 | |
|  * The caller must hold the RCU read lock or better.
 | |
|  */
 | |
| void *assoc_array_find(const struct assoc_array *array,
 | |
| 		       const struct assoc_array_ops *ops,
 | |
| 		       const void *index_key)
 | |
| {
 | |
| 	struct assoc_array_walk_result result;
 | |
| 	const struct assoc_array_node *node;
 | |
| 	const struct assoc_array_ptr *ptr;
 | |
| 	const void *leaf;
 | |
| 	int slot;
 | |
| 
 | |
| 	if (assoc_array_walk(array, ops, index_key, &result) !=
 | |
| 	    assoc_array_walk_found_terminal_node)
 | |
| 		return NULL;
 | |
| 
 | |
| 	node = result.terminal_node.node;
 | |
| 	smp_read_barrier_depends();
 | |
| 
 | |
| 	/* If the target key is available to us, it's has to be pointed to by
 | |
| 	 * the terminal node.
 | |
| 	 */
 | |
| 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 | |
| 		ptr = ACCESS_ONCE(node->slots[slot]);
 | |
| 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
 | |
| 			/* We need a barrier between the read of the pointer
 | |
| 			 * and dereferencing the pointer - but only if we are
 | |
| 			 * actually going to dereference it.
 | |
| 			 */
 | |
| 			leaf = assoc_array_ptr_to_leaf(ptr);
 | |
| 			smp_read_barrier_depends();
 | |
| 			if (ops->compare_object(leaf, index_key))
 | |
| 				return (void *)leaf;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Destructively iterate over an associative array.  The caller must prevent
 | |
|  * other simultaneous accesses.
 | |
|  */
 | |
| static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
 | |
| 					const struct assoc_array_ops *ops)
 | |
| {
 | |
| 	struct assoc_array_shortcut *shortcut;
 | |
| 	struct assoc_array_node *node;
 | |
| 	struct assoc_array_ptr *cursor, *parent = NULL;
 | |
| 	int slot = -1;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	cursor = root;
 | |
| 	if (!cursor) {
 | |
| 		pr_devel("empty\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| move_to_meta:
 | |
| 	if (assoc_array_ptr_is_shortcut(cursor)) {
 | |
| 		/* Descend through a shortcut */
 | |
| 		pr_devel("[%d] shortcut\n", slot);
 | |
| 		BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
 | |
| 		shortcut = assoc_array_ptr_to_shortcut(cursor);
 | |
| 		BUG_ON(shortcut->back_pointer != parent);
 | |
| 		BUG_ON(slot != -1 && shortcut->parent_slot != slot);
 | |
| 		parent = cursor;
 | |
| 		cursor = shortcut->next_node;
 | |
| 		slot = -1;
 | |
| 		BUG_ON(!assoc_array_ptr_is_node(cursor));
 | |
| 	}
 | |
| 
 | |
| 	pr_devel("[%d] node\n", slot);
 | |
| 	node = assoc_array_ptr_to_node(cursor);
 | |
| 	BUG_ON(node->back_pointer != parent);
 | |
| 	BUG_ON(slot != -1 && node->parent_slot != slot);
 | |
| 	slot = 0;
 | |
| 
 | |
| continue_node:
 | |
| 	pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
 | |
| 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 | |
| 		struct assoc_array_ptr *ptr = node->slots[slot];
 | |
| 		if (!ptr)
 | |
| 			continue;
 | |
| 		if (assoc_array_ptr_is_meta(ptr)) {
 | |
| 			parent = cursor;
 | |
| 			cursor = ptr;
 | |
| 			goto move_to_meta;
 | |
| 		}
 | |
| 
 | |
| 		if (ops) {
 | |
| 			pr_devel("[%d] free leaf\n", slot);
 | |
| 			ops->free_object(assoc_array_ptr_to_leaf(ptr));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	parent = node->back_pointer;
 | |
| 	slot = node->parent_slot;
 | |
| 	pr_devel("free node\n");
 | |
| 	kfree(node);
 | |
| 	if (!parent)
 | |
| 		return; /* Done */
 | |
| 
 | |
| 	/* Move back up to the parent (may need to free a shortcut on
 | |
| 	 * the way up) */
 | |
| 	if (assoc_array_ptr_is_shortcut(parent)) {
 | |
| 		shortcut = assoc_array_ptr_to_shortcut(parent);
 | |
| 		BUG_ON(shortcut->next_node != cursor);
 | |
| 		cursor = parent;
 | |
| 		parent = shortcut->back_pointer;
 | |
| 		slot = shortcut->parent_slot;
 | |
| 		pr_devel("free shortcut\n");
 | |
| 		kfree(shortcut);
 | |
| 		if (!parent)
 | |
| 			return;
 | |
| 
 | |
| 		BUG_ON(!assoc_array_ptr_is_node(parent));
 | |
| 	}
 | |
| 
 | |
| 	/* Ascend to next slot in parent node */
 | |
| 	pr_devel("ascend to %p[%d]\n", parent, slot);
 | |
| 	cursor = parent;
 | |
| 	node = assoc_array_ptr_to_node(cursor);
 | |
| 	slot++;
 | |
| 	goto continue_node;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * assoc_array_destroy - Destroy an associative array
 | |
|  * @array: The array to destroy.
 | |
|  * @ops: The operations to use.
 | |
|  *
 | |
|  * Discard all metadata and free all objects in an associative array.  The
 | |
|  * array will be empty and ready to use again upon completion.  This function
 | |
|  * cannot fail.
 | |
|  *
 | |
|  * The caller must prevent all other accesses whilst this takes place as no
 | |
|  * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
 | |
|  * accesses to continue.  On the other hand, no memory allocation is required.
 | |
|  */
 | |
| void assoc_array_destroy(struct assoc_array *array,
 | |
| 			 const struct assoc_array_ops *ops)
 | |
| {
 | |
| 	assoc_array_destroy_subtree(array->root, ops);
 | |
| 	array->root = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle insertion into an empty tree.
 | |
|  */
 | |
| static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
 | |
| {
 | |
| 	struct assoc_array_node *new_n0;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 | |
| 	if (!new_n0)
 | |
| 		return false;
 | |
| 
 | |
| 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 | |
| 	edit->leaf_p = &new_n0->slots[0];
 | |
| 	edit->adjust_count_on = new_n0;
 | |
| 	edit->set[0].ptr = &edit->array->root;
 | |
| 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 | |
| 
 | |
| 	pr_devel("<--%s() = ok [no root]\n", __func__);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle insertion into a terminal node.
 | |
|  */
 | |
| static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
 | |
| 						  const struct assoc_array_ops *ops,
 | |
| 						  const void *index_key,
 | |
| 						  struct assoc_array_walk_result *result)
 | |
| {
 | |
| 	struct assoc_array_shortcut *shortcut, *new_s0;
 | |
| 	struct assoc_array_node *node, *new_n0, *new_n1, *side;
 | |
| 	struct assoc_array_ptr *ptr;
 | |
| 	unsigned long dissimilarity, base_seg, blank;
 | |
| 	size_t keylen;
 | |
| 	bool have_meta;
 | |
| 	int level, diff;
 | |
| 	int slot, next_slot, free_slot, i, j;
 | |
| 
 | |
| 	node	= result->terminal_node.node;
 | |
| 	level	= result->terminal_node.level;
 | |
| 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	/* We arrived at a node which doesn't have an onward node or shortcut
 | |
| 	 * pointer that we have to follow.  This means that (a) the leaf we
 | |
| 	 * want must go here (either by insertion or replacement) or (b) we
 | |
| 	 * need to split this node and insert in one of the fragments.
 | |
| 	 */
 | |
| 	free_slot = -1;
 | |
| 
 | |
| 	/* Firstly, we have to check the leaves in this node to see if there's
 | |
| 	 * a matching one we should replace in place.
 | |
| 	 */
 | |
| 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 | |
| 		ptr = node->slots[i];
 | |
| 		if (!ptr) {
 | |
| 			free_slot = i;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (ops->compare_object(assoc_array_ptr_to_leaf(ptr), index_key)) {
 | |
| 			pr_devel("replace in slot %d\n", i);
 | |
| 			edit->leaf_p = &node->slots[i];
 | |
| 			edit->dead_leaf = node->slots[i];
 | |
| 			pr_devel("<--%s() = ok [replace]\n", __func__);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If there is a free slot in this node then we can just insert the
 | |
| 	 * leaf here.
 | |
| 	 */
 | |
| 	if (free_slot >= 0) {
 | |
| 		pr_devel("insert in free slot %d\n", free_slot);
 | |
| 		edit->leaf_p = &node->slots[free_slot];
 | |
| 		edit->adjust_count_on = node;
 | |
| 		pr_devel("<--%s() = ok [insert]\n", __func__);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* The node has no spare slots - so we're either going to have to split
 | |
| 	 * it or insert another node before it.
 | |
| 	 *
 | |
| 	 * Whatever, we're going to need at least two new nodes - so allocate
 | |
| 	 * those now.  We may also need a new shortcut, but we deal with that
 | |
| 	 * when we need it.
 | |
| 	 */
 | |
| 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 | |
| 	if (!new_n0)
 | |
| 		return false;
 | |
| 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 | |
| 	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 | |
| 	if (!new_n1)
 | |
| 		return false;
 | |
| 	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
 | |
| 
 | |
| 	/* We need to find out how similar the leaves are. */
 | |
| 	pr_devel("no spare slots\n");
 | |
| 	have_meta = false;
 | |
| 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 | |
| 		ptr = node->slots[i];
 | |
| 		if (assoc_array_ptr_is_meta(ptr)) {
 | |
| 			edit->segment_cache[i] = 0xff;
 | |
| 			have_meta = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 		base_seg = ops->get_object_key_chunk(
 | |
| 			assoc_array_ptr_to_leaf(ptr), level);
 | |
| 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 | |
| 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
 | |
| 	}
 | |
| 
 | |
| 	if (have_meta) {
 | |
| 		pr_devel("have meta\n");
 | |
| 		goto split_node;
 | |
| 	}
 | |
| 
 | |
| 	/* The node contains only leaves */
 | |
| 	dissimilarity = 0;
 | |
| 	base_seg = edit->segment_cache[0];
 | |
| 	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
 | |
| 		dissimilarity |= edit->segment_cache[i] ^ base_seg;
 | |
| 
 | |
| 	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
 | |
| 
 | |
| 	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
 | |
| 		/* The old leaves all cluster in the same slot.  We will need
 | |
| 		 * to insert a shortcut if the new node wants to cluster with them.
 | |
| 		 */
 | |
| 		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
 | |
| 			goto all_leaves_cluster_together;
 | |
| 
 | |
| 		/* Otherwise we can just insert a new node ahead of the old
 | |
| 		 * one.
 | |
| 		 */
 | |
| 		goto present_leaves_cluster_but_not_new_leaf;
 | |
| 	}
 | |
| 
 | |
| split_node:
 | |
| 	pr_devel("split node\n");
 | |
| 
 | |
| 	/* We need to split the current node; we know that the node doesn't
 | |
| 	 * simply contain a full set of leaves that cluster together (it
 | |
| 	 * contains meta pointers and/or non-clustering leaves).
 | |
| 	 *
 | |
| 	 * We need to expel at least two leaves out of a set consisting of the
 | |
| 	 * leaves in the node and the new leaf.
 | |
| 	 *
 | |
| 	 * We need a new node (n0) to replace the current one and a new node to
 | |
| 	 * take the expelled nodes (n1).
 | |
| 	 */
 | |
| 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 | |
| 	new_n0->back_pointer = node->back_pointer;
 | |
| 	new_n0->parent_slot = node->parent_slot;
 | |
| 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 | |
| 	new_n1->parent_slot = -1; /* Need to calculate this */
 | |
| 
 | |
| do_split_node:
 | |
| 	pr_devel("do_split_node\n");
 | |
| 
 | |
| 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
 | |
| 	new_n1->nr_leaves_on_branch = 0;
 | |
| 
 | |
| 	/* Begin by finding two matching leaves.  There have to be at least two
 | |
| 	 * that match - even if there are meta pointers - because any leaf that
 | |
| 	 * would match a slot with a meta pointer in it must be somewhere
 | |
| 	 * behind that meta pointer and cannot be here.  Further, given N
 | |
| 	 * remaining leaf slots, we now have N+1 leaves to go in them.
 | |
| 	 */
 | |
| 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 | |
| 		slot = edit->segment_cache[i];
 | |
| 		if (slot != 0xff)
 | |
| 			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
 | |
| 				if (edit->segment_cache[j] == slot)
 | |
| 					goto found_slot_for_multiple_occupancy;
 | |
| 	}
 | |
| found_slot_for_multiple_occupancy:
 | |
| 	pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
 | |
| 	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
 | |
| 	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
 | |
| 	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
 | |
| 
 | |
| 	new_n1->parent_slot = slot;
 | |
| 
 | |
| 	/* Metadata pointers cannot change slot */
 | |
| 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
 | |
| 		if (assoc_array_ptr_is_meta(node->slots[i]))
 | |
| 			new_n0->slots[i] = node->slots[i];
 | |
| 		else
 | |
| 			new_n0->slots[i] = NULL;
 | |
| 	BUG_ON(new_n0->slots[slot] != NULL);
 | |
| 	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
 | |
| 
 | |
| 	/* Filter the leaf pointers between the new nodes */
 | |
| 	free_slot = -1;
 | |
| 	next_slot = 0;
 | |
| 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 | |
| 		if (assoc_array_ptr_is_meta(node->slots[i]))
 | |
| 			continue;
 | |
| 		if (edit->segment_cache[i] == slot) {
 | |
| 			new_n1->slots[next_slot++] = node->slots[i];
 | |
| 			new_n1->nr_leaves_on_branch++;
 | |
| 		} else {
 | |
| 			do {
 | |
| 				free_slot++;
 | |
| 			} while (new_n0->slots[free_slot] != NULL);
 | |
| 			new_n0->slots[free_slot] = node->slots[i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
 | |
| 
 | |
| 	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
 | |
| 		do {
 | |
| 			free_slot++;
 | |
| 		} while (new_n0->slots[free_slot] != NULL);
 | |
| 		edit->leaf_p = &new_n0->slots[free_slot];
 | |
| 		edit->adjust_count_on = new_n0;
 | |
| 	} else {
 | |
| 		edit->leaf_p = &new_n1->slots[next_slot++];
 | |
| 		edit->adjust_count_on = new_n1;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(next_slot <= 1);
 | |
| 
 | |
| 	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
 | |
| 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 | |
| 		if (edit->segment_cache[i] == 0xff) {
 | |
| 			ptr = node->slots[i];
 | |
| 			BUG_ON(assoc_array_ptr_is_leaf(ptr));
 | |
| 			if (assoc_array_ptr_is_node(ptr)) {
 | |
| 				side = assoc_array_ptr_to_node(ptr);
 | |
| 				edit->set_backpointers[i] = &side->back_pointer;
 | |
| 			} else {
 | |
| 				shortcut = assoc_array_ptr_to_shortcut(ptr);
 | |
| 				edit->set_backpointers[i] = &shortcut->back_pointer;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ptr = node->back_pointer;
 | |
| 	if (!ptr)
 | |
| 		edit->set[0].ptr = &edit->array->root;
 | |
| 	else if (assoc_array_ptr_is_node(ptr))
 | |
| 		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
 | |
| 	else
 | |
| 		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
 | |
| 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
 | |
| 	pr_devel("<--%s() = ok [split node]\n", __func__);
 | |
| 	return true;
 | |
| 
 | |
| present_leaves_cluster_but_not_new_leaf:
 | |
| 	/* All the old leaves cluster in the same slot, but the new leaf wants
 | |
| 	 * to go into a different slot, so we create a new node to hold the new
 | |
| 	 * leaf and a pointer to a new node holding all the old leaves.
 | |
| 	 */
 | |
| 	pr_devel("present leaves cluster but not new leaf\n");
 | |
| 
 | |
| 	new_n0->back_pointer = node->back_pointer;
 | |
| 	new_n0->parent_slot = node->parent_slot;
 | |
| 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
 | |
| 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 | |
| 	new_n1->parent_slot = edit->segment_cache[0];
 | |
| 	new_n1->nr_leaves_on_branch = node->nr_leaves_on_branch;
 | |
| 	edit->adjust_count_on = new_n0;
 | |
| 
 | |
| 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
 | |
| 		new_n1->slots[i] = node->slots[i];
 | |
| 
 | |
| 	new_n0->slots[edit->segment_cache[0]] = assoc_array_node_to_ptr(new_n0);
 | |
| 	edit->leaf_p = &new_n0->slots[edit->segment_cache[ASSOC_ARRAY_FAN_OUT]];
 | |
| 
 | |
| 	edit->set[0].ptr = &assoc_array_ptr_to_node(node->back_pointer)->slots[node->parent_slot];
 | |
| 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 | |
| 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
 | |
| 	pr_devel("<--%s() = ok [insert node before]\n", __func__);
 | |
| 	return true;
 | |
| 
 | |
| all_leaves_cluster_together:
 | |
| 	/* All the leaves, new and old, want to cluster together in this node
 | |
| 	 * in the same slot, so we have to replace this node with a shortcut to
 | |
| 	 * skip over the identical parts of the key and then place a pair of
 | |
| 	 * nodes, one inside the other, at the end of the shortcut and
 | |
| 	 * distribute the keys between them.
 | |
| 	 *
 | |
| 	 * Firstly we need to work out where the leaves start diverging as a
 | |
| 	 * bit position into their keys so that we know how big the shortcut
 | |
| 	 * needs to be.
 | |
| 	 *
 | |
| 	 * We only need to make a single pass of N of the N+1 leaves because if
 | |
| 	 * any keys differ between themselves at bit X then at least one of
 | |
| 	 * them must also differ with the base key at bit X or before.
 | |
| 	 */
 | |
| 	pr_devel("all leaves cluster together\n");
 | |
| 	diff = INT_MAX;
 | |
| 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 | |
| 		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
 | |
| 					  index_key);
 | |
| 		if (x < diff) {
 | |
| 			BUG_ON(x < 0);
 | |
| 			diff = x;
 | |
| 		}
 | |
| 	}
 | |
| 	BUG_ON(diff == INT_MAX);
 | |
| 	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
 | |
| 
 | |
| 	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 | |
| 	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 | |
| 
 | |
| 	new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
 | |
| 			 keylen * sizeof(unsigned long), GFP_KERNEL);
 | |
| 	if (!new_s0)
 | |
| 		return false;
 | |
| 	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
 | |
| 
 | |
| 	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
 | |
| 	new_s0->back_pointer = node->back_pointer;
 | |
| 	new_s0->parent_slot = node->parent_slot;
 | |
| 	new_s0->next_node = assoc_array_node_to_ptr(new_n0);
 | |
| 	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
 | |
| 	new_n0->parent_slot = 0;
 | |
| 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 | |
| 	new_n1->parent_slot = -1; /* Need to calculate this */
 | |
| 
 | |
| 	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
 | |
| 	pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
 | |
| 	BUG_ON(level <= 0);
 | |
| 
 | |
| 	for (i = 0; i < keylen; i++)
 | |
| 		new_s0->index_key[i] =
 | |
| 			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
 | |
| 
 | |
| 	blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
 | |
| 	pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
 | |
| 	new_s0->index_key[keylen - 1] &= ~blank;
 | |
| 
 | |
| 	/* This now reduces to a node splitting exercise for which we'll need
 | |
| 	 * to regenerate the disparity table.
 | |
| 	 */
 | |
| 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 | |
| 		ptr = node->slots[i];
 | |
| 		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
 | |
| 						     level);
 | |
| 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 | |
| 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
 | |
| 	}
 | |
| 
 | |
| 	base_seg = ops->get_key_chunk(index_key, level);
 | |
| 	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 | |
| 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
 | |
| 	goto do_split_node;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle insertion into the middle of a shortcut.
 | |
|  */
 | |
| static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
 | |
| 					    const struct assoc_array_ops *ops,
 | |
| 					    struct assoc_array_walk_result *result)
 | |
| {
 | |
| 	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
 | |
| 	struct assoc_array_node *node, *new_n0, *side;
 | |
| 	unsigned long sc_segments, dissimilarity, blank;
 | |
| 	size_t keylen;
 | |
| 	int level, sc_level, diff;
 | |
| 	int sc_slot;
 | |
| 
 | |
| 	shortcut	= result->wrong_shortcut.shortcut;
 | |
| 	level		= result->wrong_shortcut.level;
 | |
| 	sc_level	= result->wrong_shortcut.sc_level;
 | |
| 	sc_segments	= result->wrong_shortcut.sc_segments;
 | |
| 	dissimilarity	= result->wrong_shortcut.dissimilarity;
 | |
| 
 | |
| 	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
 | |
| 		 __func__, level, dissimilarity, sc_level);
 | |
| 
 | |
| 	/* We need to split a shortcut and insert a node between the two
 | |
| 	 * pieces.  Zero-length pieces will be dispensed with entirely.
 | |
| 	 *
 | |
| 	 * First of all, we need to find out in which level the first
 | |
| 	 * difference was.
 | |
| 	 */
 | |
| 	diff = __ffs(dissimilarity);
 | |
| 	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
 | |
| 	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
 | |
| 	pr_devel("diff=%d\n", diff);
 | |
| 
 | |
| 	if (!shortcut->back_pointer) {
 | |
| 		edit->set[0].ptr = &edit->array->root;
 | |
| 	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
 | |
| 		node = assoc_array_ptr_to_node(shortcut->back_pointer);
 | |
| 		edit->set[0].ptr = &node->slots[shortcut->parent_slot];
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
 | |
| 
 | |
| 	/* Create a new node now since we're going to need it anyway */
 | |
| 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 | |
| 	if (!new_n0)
 | |
| 		return false;
 | |
| 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 | |
| 	edit->adjust_count_on = new_n0;
 | |
| 
 | |
| 	/* Insert a new shortcut before the new node if this segment isn't of
 | |
| 	 * zero length - otherwise we just connect the new node directly to the
 | |
| 	 * parent.
 | |
| 	 */
 | |
| 	level += ASSOC_ARRAY_LEVEL_STEP;
 | |
| 	if (diff > level) {
 | |
| 		pr_devel("pre-shortcut %d...%d\n", level, diff);
 | |
| 		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 | |
| 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 | |
| 
 | |
| 		new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
 | |
| 				 keylen * sizeof(unsigned long), GFP_KERNEL);
 | |
| 		if (!new_s0)
 | |
| 			return false;
 | |
| 		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
 | |
| 		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
 | |
| 		new_s0->back_pointer = shortcut->back_pointer;
 | |
| 		new_s0->parent_slot = shortcut->parent_slot;
 | |
| 		new_s0->next_node = assoc_array_node_to_ptr(new_n0);
 | |
| 		new_s0->skip_to_level = diff;
 | |
| 
 | |
| 		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
 | |
| 		new_n0->parent_slot = 0;
 | |
| 
 | |
| 		memcpy(new_s0->index_key, shortcut->index_key,
 | |
| 		       keylen * sizeof(unsigned long));
 | |
| 
 | |
| 		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
 | |
| 		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
 | |
| 		new_s0->index_key[keylen - 1] &= ~blank;
 | |
| 	} else {
 | |
| 		pr_devel("no pre-shortcut\n");
 | |
| 		edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 | |
| 		new_n0->back_pointer = shortcut->back_pointer;
 | |
| 		new_n0->parent_slot = shortcut->parent_slot;
 | |
| 	}
 | |
| 
 | |
| 	side = assoc_array_ptr_to_node(shortcut->next_node);
 | |
| 	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
 | |
| 
 | |
| 	/* We need to know which slot in the new node is going to take a
 | |
| 	 * metadata pointer.
 | |
| 	 */
 | |
| 	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
 | |
| 	sc_slot &= ASSOC_ARRAY_FAN_MASK;
 | |
| 
 | |
| 	pr_devel("new slot %lx >> %d -> %d\n",
 | |
| 		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
 | |
| 
 | |
| 	/* Determine whether we need to follow the new node with a replacement
 | |
| 	 * for the current shortcut.  We could in theory reuse the current
 | |
| 	 * shortcut if its parent slot number doesn't change - but that's a
 | |
| 	 * 1-in-16 chance so not worth expending the code upon.
 | |
| 	 */
 | |
| 	level = diff + ASSOC_ARRAY_LEVEL_STEP;
 | |
| 	if (level < shortcut->skip_to_level) {
 | |
| 		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
 | |
| 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 | |
| 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 | |
| 
 | |
| 		new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
 | |
| 				 keylen * sizeof(unsigned long), GFP_KERNEL);
 | |
| 		if (!new_s1)
 | |
| 			return false;
 | |
| 		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
 | |
| 
 | |
| 		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
 | |
| 		new_s1->parent_slot = sc_slot;
 | |
| 		new_s1->next_node = shortcut->next_node;
 | |
| 		new_s1->skip_to_level = shortcut->skip_to_level;
 | |
| 
 | |
| 		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
 | |
| 
 | |
| 		memcpy(new_s1->index_key, shortcut->index_key,
 | |
| 		       keylen * sizeof(unsigned long));
 | |
| 
 | |
| 		edit->set[1].ptr = &side->back_pointer;
 | |
| 		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
 | |
| 	} else {
 | |
| 		pr_devel("no post-shortcut\n");
 | |
| 
 | |
| 		/* We don't have to replace the pointed-to node as long as we
 | |
| 		 * use memory barriers to make sure the parent slot number is
 | |
| 		 * changed before the back pointer (the parent slot number is
 | |
| 		 * irrelevant to the old parent shortcut).
 | |
| 		 */
 | |
| 		new_n0->slots[sc_slot] = shortcut->next_node;
 | |
| 		edit->set_parent_slot[0].p = &side->parent_slot;
 | |
| 		edit->set_parent_slot[0].to = sc_slot;
 | |
| 		edit->set[1].ptr = &side->back_pointer;
 | |
| 		edit->set[1].to = assoc_array_node_to_ptr(new_n0);
 | |
| 	}
 | |
| 
 | |
| 	/* Install the new leaf in a spare slot in the new node. */
 | |
| 	if (sc_slot == 0)
 | |
| 		edit->leaf_p = &new_n0->slots[1];
 | |
| 	else
 | |
| 		edit->leaf_p = &new_n0->slots[0];
 | |
| 
 | |
| 	pr_devel("<--%s() = ok [split shortcut]\n", __func__);
 | |
| 	return edit;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * assoc_array_insert - Script insertion of an object into an associative array
 | |
|  * @array: The array to insert into.
 | |
|  * @ops: The operations to use.
 | |
|  * @index_key: The key to insert at.
 | |
|  * @object: The object to insert.
 | |
|  *
 | |
|  * Precalculate and preallocate a script for the insertion or replacement of an
 | |
|  * object in an associative array.  This results in an edit script that can
 | |
|  * either be applied or cancelled.
 | |
|  *
 | |
|  * The function returns a pointer to an edit script or -ENOMEM.
 | |
|  *
 | |
|  * The caller should lock against other modifications and must continue to hold
 | |
|  * the lock until assoc_array_apply_edit() has been called.
 | |
|  *
 | |
|  * Accesses to the tree may take place concurrently with this function,
 | |
|  * provided they hold the RCU read lock.
 | |
|  */
 | |
| struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
 | |
| 					    const struct assoc_array_ops *ops,
 | |
| 					    const void *index_key,
 | |
| 					    void *object)
 | |
| {
 | |
| 	struct assoc_array_walk_result result;
 | |
| 	struct assoc_array_edit *edit;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	/* The leaf pointer we're given must not have the bottom bit set as we
 | |
| 	 * use those for type-marking the pointer.  NULL pointers are also not
 | |
| 	 * allowed as they indicate an empty slot but we have to allow them
 | |
| 	 * here as they can be updated later.
 | |
| 	 */
 | |
| 	BUG_ON(assoc_array_ptr_is_meta(object));
 | |
| 
 | |
| 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
 | |
| 	if (!edit)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	edit->array = array;
 | |
| 	edit->ops = ops;
 | |
| 	edit->leaf = assoc_array_leaf_to_ptr(object);
 | |
| 	edit->adjust_count_by = 1;
 | |
| 
 | |
| 	switch (assoc_array_walk(array, ops, index_key, &result)) {
 | |
| 	case assoc_array_walk_tree_empty:
 | |
| 		/* Allocate a root node if there isn't one yet */
 | |
| 		if (!assoc_array_insert_in_empty_tree(edit))
 | |
| 			goto enomem;
 | |
| 		return edit;
 | |
| 
 | |
| 	case assoc_array_walk_found_terminal_node:
 | |
| 		/* We found a node that doesn't have a node/shortcut pointer in
 | |
| 		 * the slot corresponding to the index key that we have to
 | |
| 		 * follow.
 | |
| 		 */
 | |
| 		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
 | |
| 							   &result))
 | |
| 			goto enomem;
 | |
| 		return edit;
 | |
| 
 | |
| 	case assoc_array_walk_found_wrong_shortcut:
 | |
| 		/* We found a shortcut that didn't match our key in a slot we
 | |
| 		 * needed to follow.
 | |
| 		 */
 | |
| 		if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
 | |
| 			goto enomem;
 | |
| 		return edit;
 | |
| 	}
 | |
| 
 | |
| enomem:
 | |
| 	/* Clean up after an out of memory error */
 | |
| 	pr_devel("enomem\n");
 | |
| 	assoc_array_cancel_edit(edit);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * assoc_array_insert_set_object - Set the new object pointer in an edit script
 | |
|  * @edit: The edit script to modify.
 | |
|  * @object: The object pointer to set.
 | |
|  *
 | |
|  * Change the object to be inserted in an edit script.  The object pointed to
 | |
|  * by the old object is not freed.  This must be done prior to applying the
 | |
|  * script.
 | |
|  */
 | |
| void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
 | |
| {
 | |
| 	BUG_ON(!object);
 | |
| 	edit->leaf = assoc_array_leaf_to_ptr(object);
 | |
| }
 | |
| 
 | |
| struct assoc_array_delete_collapse_context {
 | |
| 	struct assoc_array_node	*node;
 | |
| 	const void		*skip_leaf;
 | |
| 	int			slot;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Subtree collapse to node iterator.
 | |
|  */
 | |
| static int assoc_array_delete_collapse_iterator(const void *leaf,
 | |
| 						void *iterator_data)
 | |
| {
 | |
| 	struct assoc_array_delete_collapse_context *collapse = iterator_data;
 | |
| 
 | |
| 	if (leaf == collapse->skip_leaf)
 | |
| 		return 0;
 | |
| 
 | |
| 	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
 | |
| 
 | |
| 	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * assoc_array_delete - Script deletion of an object from an associative array
 | |
|  * @array: The array to search.
 | |
|  * @ops: The operations to use.
 | |
|  * @index_key: The key to the object.
 | |
|  *
 | |
|  * Precalculate and preallocate a script for the deletion of an object from an
 | |
|  * associative array.  This results in an edit script that can either be
 | |
|  * applied or cancelled.
 | |
|  *
 | |
|  * The function returns a pointer to an edit script if the object was found,
 | |
|  * NULL if the object was not found or -ENOMEM.
 | |
|  *
 | |
|  * The caller should lock against other modifications and must continue to hold
 | |
|  * the lock until assoc_array_apply_edit() has been called.
 | |
|  *
 | |
|  * Accesses to the tree may take place concurrently with this function,
 | |
|  * provided they hold the RCU read lock.
 | |
|  */
 | |
| struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
 | |
| 					    const struct assoc_array_ops *ops,
 | |
| 					    const void *index_key)
 | |
| {
 | |
| 	struct assoc_array_delete_collapse_context collapse;
 | |
| 	struct assoc_array_walk_result result;
 | |
| 	struct assoc_array_node *node, *new_n0;
 | |
| 	struct assoc_array_edit *edit;
 | |
| 	struct assoc_array_ptr *ptr;
 | |
| 	bool has_meta;
 | |
| 	int slot, i;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
 | |
| 	if (!edit)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	edit->array = array;
 | |
| 	edit->ops = ops;
 | |
| 	edit->adjust_count_by = -1;
 | |
| 
 | |
| 	switch (assoc_array_walk(array, ops, index_key, &result)) {
 | |
| 	case assoc_array_walk_found_terminal_node:
 | |
| 		/* We found a node that should contain the leaf we've been
 | |
| 		 * asked to remove - *if* it's in the tree.
 | |
| 		 */
 | |
| 		pr_devel("terminal_node\n");
 | |
| 		node = result.terminal_node.node;
 | |
| 
 | |
| 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 | |
| 			ptr = node->slots[slot];
 | |
| 			if (ptr &&
 | |
| 			    assoc_array_ptr_is_leaf(ptr) &&
 | |
| 			    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
 | |
| 						index_key))
 | |
| 				goto found_leaf;
 | |
| 		}
 | |
| 	case assoc_array_walk_tree_empty:
 | |
| 	case assoc_array_walk_found_wrong_shortcut:
 | |
| 	default:
 | |
| 		assoc_array_cancel_edit(edit);
 | |
| 		pr_devel("not found\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| found_leaf:
 | |
| 	BUG_ON(array->nr_leaves_on_tree <= 0);
 | |
| 
 | |
| 	/* In the simplest form of deletion we just clear the slot and release
 | |
| 	 * the leaf after a suitable interval.
 | |
| 	 */
 | |
| 	edit->dead_leaf = node->slots[slot];
 | |
| 	edit->set[0].ptr = &node->slots[slot];
 | |
| 	edit->set[0].to = NULL;
 | |
| 	edit->adjust_count_on = node;
 | |
| 
 | |
| 	/* If that concludes erasure of the last leaf, then delete the entire
 | |
| 	 * internal array.
 | |
| 	 */
 | |
| 	if (array->nr_leaves_on_tree == 1) {
 | |
| 		edit->set[1].ptr = &array->root;
 | |
| 		edit->set[1].to = NULL;
 | |
| 		edit->adjust_count_on = NULL;
 | |
| 		edit->excised_subtree = array->root;
 | |
| 		pr_devel("all gone\n");
 | |
| 		return edit;
 | |
| 	}
 | |
| 
 | |
| 	/* However, we'd also like to clear up some metadata blocks if we
 | |
| 	 * possibly can.
 | |
| 	 *
 | |
| 	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
 | |
| 	 * leaves in it, then attempt to collapse it - and attempt to
 | |
| 	 * recursively collapse up the tree.
 | |
| 	 *
 | |
| 	 * We could also try and collapse in partially filled subtrees to take
 | |
| 	 * up space in this node.
 | |
| 	 */
 | |
| 	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
 | |
| 		struct assoc_array_node *parent, *grandparent;
 | |
| 		struct assoc_array_ptr *ptr;
 | |
| 
 | |
| 		/* First of all, we need to know if this node has metadata so
 | |
| 		 * that we don't try collapsing if all the leaves are already
 | |
| 		 * here.
 | |
| 		 */
 | |
| 		has_meta = false;
 | |
| 		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 | |
| 			ptr = node->slots[i];
 | |
| 			if (assoc_array_ptr_is_meta(ptr)) {
 | |
| 				has_meta = true;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		pr_devel("leaves: %ld [m=%d]\n",
 | |
| 			 node->nr_leaves_on_branch - 1, has_meta);
 | |
| 
 | |
| 		/* Look further up the tree to see if we can collapse this node
 | |
| 		 * into a more proximal node too.
 | |
| 		 */
 | |
| 		parent = node;
 | |
| 	collapse_up:
 | |
| 		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
 | |
| 
 | |
| 		ptr = parent->back_pointer;
 | |
| 		if (!ptr)
 | |
| 			goto do_collapse;
 | |
| 		if (assoc_array_ptr_is_shortcut(ptr)) {
 | |
| 			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
 | |
| 			ptr = s->back_pointer;
 | |
| 			if (!ptr)
 | |
| 				goto do_collapse;
 | |
| 		}
 | |
| 
 | |
| 		grandparent = assoc_array_ptr_to_node(ptr);
 | |
| 		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
 | |
| 			parent = grandparent;
 | |
| 			goto collapse_up;
 | |
| 		}
 | |
| 
 | |
| 	do_collapse:
 | |
| 		/* There's no point collapsing if the original node has no meta
 | |
| 		 * pointers to discard and if we didn't merge into one of that
 | |
| 		 * node's ancestry.
 | |
| 		 */
 | |
| 		if (has_meta || parent != node) {
 | |
| 			node = parent;
 | |
| 
 | |
| 			/* Create a new node to collapse into */
 | |
| 			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 | |
| 			if (!new_n0)
 | |
| 				goto enomem;
 | |
| 			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 | |
| 
 | |
| 			new_n0->back_pointer = node->back_pointer;
 | |
| 			new_n0->parent_slot = node->parent_slot;
 | |
| 			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
 | |
| 			edit->adjust_count_on = new_n0;
 | |
| 
 | |
| 			collapse.node = new_n0;
 | |
| 			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
 | |
| 			collapse.slot = 0;
 | |
| 			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
 | |
| 						    node->back_pointer,
 | |
| 						    assoc_array_delete_collapse_iterator,
 | |
| 						    &collapse);
 | |
| 			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
 | |
| 			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
 | |
| 
 | |
| 			if (!node->back_pointer) {
 | |
| 				edit->set[1].ptr = &array->root;
 | |
| 			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
 | |
| 				BUG();
 | |
| 			} else if (assoc_array_ptr_is_node(node->back_pointer)) {
 | |
| 				struct assoc_array_node *p =
 | |
| 					assoc_array_ptr_to_node(node->back_pointer);
 | |
| 				edit->set[1].ptr = &p->slots[node->parent_slot];
 | |
| 			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
 | |
| 				struct assoc_array_shortcut *s =
 | |
| 					assoc_array_ptr_to_shortcut(node->back_pointer);
 | |
| 				edit->set[1].ptr = &s->next_node;
 | |
| 			}
 | |
| 			edit->set[1].to = assoc_array_node_to_ptr(new_n0);
 | |
| 			edit->excised_subtree = assoc_array_node_to_ptr(node);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return edit;
 | |
| 
 | |
| enomem:
 | |
| 	/* Clean up after an out of memory error */
 | |
| 	pr_devel("enomem\n");
 | |
| 	assoc_array_cancel_edit(edit);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * assoc_array_clear - Script deletion of all objects from an associative array
 | |
|  * @array: The array to clear.
 | |
|  * @ops: The operations to use.
 | |
|  *
 | |
|  * Precalculate and preallocate a script for the deletion of all the objects
 | |
|  * from an associative array.  This results in an edit script that can either
 | |
|  * be applied or cancelled.
 | |
|  *
 | |
|  * The function returns a pointer to an edit script if there are objects to be
 | |
|  * deleted, NULL if there are no objects in the array or -ENOMEM.
 | |
|  *
 | |
|  * The caller should lock against other modifications and must continue to hold
 | |
|  * the lock until assoc_array_apply_edit() has been called.
 | |
|  *
 | |
|  * Accesses to the tree may take place concurrently with this function,
 | |
|  * provided they hold the RCU read lock.
 | |
|  */
 | |
| struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
 | |
| 					   const struct assoc_array_ops *ops)
 | |
| {
 | |
| 	struct assoc_array_edit *edit;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	if (!array->root)
 | |
| 		return NULL;
 | |
| 
 | |
| 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
 | |
| 	if (!edit)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	edit->array = array;
 | |
| 	edit->ops = ops;
 | |
| 	edit->set[1].ptr = &array->root;
 | |
| 	edit->set[1].to = NULL;
 | |
| 	edit->excised_subtree = array->root;
 | |
| 	edit->ops_for_excised_subtree = ops;
 | |
| 	pr_devel("all gone\n");
 | |
| 	return edit;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle the deferred destruction after an applied edit.
 | |
|  */
 | |
| static void assoc_array_rcu_cleanup(struct rcu_head *head)
 | |
| {
 | |
| 	struct assoc_array_edit *edit =
 | |
| 		container_of(head, struct assoc_array_edit, rcu);
 | |
| 	int i;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	if (edit->dead_leaf)
 | |
| 		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
 | |
| 	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
 | |
| 		if (edit->excised_meta[i])
 | |
| 			kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
 | |
| 
 | |
| 	if (edit->excised_subtree) {
 | |
| 		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
 | |
| 		if (assoc_array_ptr_is_node(edit->excised_subtree)) {
 | |
| 			struct assoc_array_node *n =
 | |
| 				assoc_array_ptr_to_node(edit->excised_subtree);
 | |
| 			n->back_pointer = NULL;
 | |
| 		} else {
 | |
| 			struct assoc_array_shortcut *s =
 | |
| 				assoc_array_ptr_to_shortcut(edit->excised_subtree);
 | |
| 			s->back_pointer = NULL;
 | |
| 		}
 | |
| 		assoc_array_destroy_subtree(edit->excised_subtree,
 | |
| 					    edit->ops_for_excised_subtree);
 | |
| 	}
 | |
| 
 | |
| 	kfree(edit);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * assoc_array_apply_edit - Apply an edit script to an associative array
 | |
|  * @edit: The script to apply.
 | |
|  *
 | |
|  * Apply an edit script to an associative array to effect an insertion,
 | |
|  * deletion or clearance.  As the edit script includes preallocated memory,
 | |
|  * this is guaranteed not to fail.
 | |
|  *
 | |
|  * The edit script, dead objects and dead metadata will be scheduled for
 | |
|  * destruction after an RCU grace period to permit those doing read-only
 | |
|  * accesses on the array to continue to do so under the RCU read lock whilst
 | |
|  * the edit is taking place.
 | |
|  */
 | |
| void assoc_array_apply_edit(struct assoc_array_edit *edit)
 | |
| {
 | |
| 	struct assoc_array_shortcut *shortcut;
 | |
| 	struct assoc_array_node *node;
 | |
| 	struct assoc_array_ptr *ptr;
 | |
| 	int i;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	smp_wmb();
 | |
| 	if (edit->leaf_p)
 | |
| 		*edit->leaf_p = edit->leaf;
 | |
| 
 | |
| 	smp_wmb();
 | |
| 	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
 | |
| 		if (edit->set_parent_slot[i].p)
 | |
| 			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
 | |
| 
 | |
| 	smp_wmb();
 | |
| 	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
 | |
| 		if (edit->set_backpointers[i])
 | |
| 			*edit->set_backpointers[i] = edit->set_backpointers_to;
 | |
| 
 | |
| 	smp_wmb();
 | |
| 	for (i = 0; i < ARRAY_SIZE(edit->set); i++)
 | |
| 		if (edit->set[i].ptr)
 | |
| 			*edit->set[i].ptr = edit->set[i].to;
 | |
| 
 | |
| 	if (edit->array->root == NULL) {
 | |
| 		edit->array->nr_leaves_on_tree = 0;
 | |
| 	} else if (edit->adjust_count_on) {
 | |
| 		node = edit->adjust_count_on;
 | |
| 		for (;;) {
 | |
| 			node->nr_leaves_on_branch += edit->adjust_count_by;
 | |
| 
 | |
| 			ptr = node->back_pointer;
 | |
| 			if (!ptr)
 | |
| 				break;
 | |
| 			if (assoc_array_ptr_is_shortcut(ptr)) {
 | |
| 				shortcut = assoc_array_ptr_to_shortcut(ptr);
 | |
| 				ptr = shortcut->back_pointer;
 | |
| 				if (!ptr)
 | |
| 					break;
 | |
| 			}
 | |
| 			BUG_ON(!assoc_array_ptr_is_node(ptr));
 | |
| 			node = assoc_array_ptr_to_node(ptr);
 | |
| 		}
 | |
| 
 | |
| 		edit->array->nr_leaves_on_tree += edit->adjust_count_by;
 | |
| 	}
 | |
| 
 | |
| 	call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * assoc_array_cancel_edit - Discard an edit script.
 | |
|  * @edit: The script to discard.
 | |
|  *
 | |
|  * Free an edit script and all the preallocated data it holds without making
 | |
|  * any changes to the associative array it was intended for.
 | |
|  *
 | |
|  * NOTE!  In the case of an insertion script, this does _not_ release the leaf
 | |
|  * that was to be inserted.  That is left to the caller.
 | |
|  */
 | |
| void assoc_array_cancel_edit(struct assoc_array_edit *edit)
 | |
| {
 | |
| 	struct assoc_array_ptr *ptr;
 | |
| 	int i;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	/* Clean up after an out of memory error */
 | |
| 	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
 | |
| 		ptr = edit->new_meta[i];
 | |
| 		if (ptr) {
 | |
| 			if (assoc_array_ptr_is_node(ptr))
 | |
| 				kfree(assoc_array_ptr_to_node(ptr));
 | |
| 			else
 | |
| 				kfree(assoc_array_ptr_to_shortcut(ptr));
 | |
| 		}
 | |
| 	}
 | |
| 	kfree(edit);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * assoc_array_gc - Garbage collect an associative array.
 | |
|  * @array: The array to clean.
 | |
|  * @ops: The operations to use.
 | |
|  * @iterator: A callback function to pass judgement on each object.
 | |
|  * @iterator_data: Private data for the callback function.
 | |
|  *
 | |
|  * Collect garbage from an associative array and pack down the internal tree to
 | |
|  * save memory.
 | |
|  *
 | |
|  * The iterator function is asked to pass judgement upon each object in the
 | |
|  * array.  If it returns false, the object is discard and if it returns true,
 | |
|  * the object is kept.  If it returns true, it must increment the object's
 | |
|  * usage count (or whatever it needs to do to retain it) before returning.
 | |
|  *
 | |
|  * This function returns 0 if successful or -ENOMEM if out of memory.  In the
 | |
|  * latter case, the array is not changed.
 | |
|  *
 | |
|  * The caller should lock against other modifications and must continue to hold
 | |
|  * the lock until assoc_array_apply_edit() has been called.
 | |
|  *
 | |
|  * Accesses to the tree may take place concurrently with this function,
 | |
|  * provided they hold the RCU read lock.
 | |
|  */
 | |
| int assoc_array_gc(struct assoc_array *array,
 | |
| 		   const struct assoc_array_ops *ops,
 | |
| 		   bool (*iterator)(void *object, void *iterator_data),
 | |
| 		   void *iterator_data)
 | |
| {
 | |
| 	struct assoc_array_shortcut *shortcut, *new_s;
 | |
| 	struct assoc_array_node *node, *new_n;
 | |
| 	struct assoc_array_edit *edit;
 | |
| 	struct assoc_array_ptr *cursor, *ptr;
 | |
| 	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
 | |
| 	unsigned long nr_leaves_on_tree;
 | |
| 	int keylen, slot, nr_free, next_slot, i;
 | |
| 
 | |
| 	pr_devel("-->%s()\n", __func__);
 | |
| 
 | |
| 	if (!array->root)
 | |
| 		return 0;
 | |
| 
 | |
| 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
 | |
| 	if (!edit)
 | |
| 		return -ENOMEM;
 | |
| 	edit->array = array;
 | |
| 	edit->ops = ops;
 | |
| 	edit->ops_for_excised_subtree = ops;
 | |
| 	edit->set[0].ptr = &array->root;
 | |
| 	edit->excised_subtree = array->root;
 | |
| 
 | |
| 	new_root = new_parent = NULL;
 | |
| 	new_ptr_pp = &new_root;
 | |
| 	cursor = array->root;
 | |
| 
 | |
| descend:
 | |
| 	/* If this point is a shortcut, then we need to duplicate it and
 | |
| 	 * advance the target cursor.
 | |
| 	 */
 | |
| 	if (assoc_array_ptr_is_shortcut(cursor)) {
 | |
| 		shortcut = assoc_array_ptr_to_shortcut(cursor);
 | |
| 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 | |
| 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 | |
| 		new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
 | |
| 				keylen * sizeof(unsigned long), GFP_KERNEL);
 | |
| 		if (!new_s)
 | |
| 			goto enomem;
 | |
| 		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
 | |
| 		memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
 | |
| 					 keylen * sizeof(unsigned long)));
 | |
| 		new_s->back_pointer = new_parent;
 | |
| 		new_s->parent_slot = shortcut->parent_slot;
 | |
| 		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
 | |
| 		new_ptr_pp = &new_s->next_node;
 | |
| 		cursor = shortcut->next_node;
 | |
| 	}
 | |
| 
 | |
| 	/* Duplicate the node at this position */
 | |
| 	node = assoc_array_ptr_to_node(cursor);
 | |
| 	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 | |
| 	if (!new_n)
 | |
| 		goto enomem;
 | |
| 	pr_devel("dup node %p -> %p\n", node, new_n);
 | |
| 	new_n->back_pointer = new_parent;
 | |
| 	new_n->parent_slot = node->parent_slot;
 | |
| 	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
 | |
| 	new_ptr_pp = NULL;
 | |
| 	slot = 0;
 | |
| 
 | |
| continue_node:
 | |
| 	/* Filter across any leaves and gc any subtrees */
 | |
| 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 | |
| 		ptr = node->slots[slot];
 | |
| 		if (!ptr)
 | |
| 			continue;
 | |
| 
 | |
| 		if (assoc_array_ptr_is_leaf(ptr)) {
 | |
| 			if (iterator(assoc_array_ptr_to_leaf(ptr),
 | |
| 				     iterator_data))
 | |
| 				/* The iterator will have done any reference
 | |
| 				 * counting on the object for us.
 | |
| 				 */
 | |
| 				new_n->slots[slot] = ptr;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		new_ptr_pp = &new_n->slots[slot];
 | |
| 		cursor = ptr;
 | |
| 		goto descend;
 | |
| 	}
 | |
| 
 | |
| 	pr_devel("-- compress node %p --\n", new_n);
 | |
| 
 | |
| 	/* Count up the number of empty slots in this node and work out the
 | |
| 	 * subtree leaf count.
 | |
| 	 */
 | |
| 	new_n->nr_leaves_on_branch = 0;
 | |
| 	nr_free = 0;
 | |
| 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 | |
| 		ptr = new_n->slots[slot];
 | |
| 		if (!ptr)
 | |
| 			nr_free++;
 | |
| 		else if (assoc_array_ptr_is_leaf(ptr))
 | |
| 			new_n->nr_leaves_on_branch++;
 | |
| 	}
 | |
| 	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
 | |
| 
 | |
| 	/* See what we can fold in */
 | |
| 	next_slot = 0;
 | |
| 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 | |
| 		struct assoc_array_shortcut *s;
 | |
| 		struct assoc_array_node *child;
 | |
| 
 | |
| 		ptr = new_n->slots[slot];
 | |
| 		if (!ptr || assoc_array_ptr_is_leaf(ptr))
 | |
| 			continue;
 | |
| 
 | |
| 		s = NULL;
 | |
| 		if (assoc_array_ptr_is_shortcut(ptr)) {
 | |
| 			s = assoc_array_ptr_to_shortcut(ptr);
 | |
| 			ptr = s->next_node;
 | |
| 		}
 | |
| 
 | |
| 		child = assoc_array_ptr_to_node(ptr);
 | |
| 		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
 | |
| 
 | |
| 		if (child->nr_leaves_on_branch <= nr_free + 1) {
 | |
| 			/* Fold the child node into this one */
 | |
| 			pr_devel("[%d] fold node %lu/%d [nx %d]\n",
 | |
| 				 slot, child->nr_leaves_on_branch, nr_free + 1,
 | |
| 				 next_slot);
 | |
| 
 | |
| 			/* We would already have reaped an intervening shortcut
 | |
| 			 * on the way back up the tree.
 | |
| 			 */
 | |
| 			BUG_ON(s);
 | |
| 
 | |
| 			new_n->slots[slot] = NULL;
 | |
| 			nr_free++;
 | |
| 			if (slot < next_slot)
 | |
| 				next_slot = slot;
 | |
| 			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 | |
| 				struct assoc_array_ptr *p = child->slots[i];
 | |
| 				if (!p)
 | |
| 					continue;
 | |
| 				BUG_ON(assoc_array_ptr_is_meta(p));
 | |
| 				while (new_n->slots[next_slot])
 | |
| 					next_slot++;
 | |
| 				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
 | |
| 				new_n->slots[next_slot++] = p;
 | |
| 				nr_free--;
 | |
| 			}
 | |
| 			kfree(child);
 | |
| 		} else {
 | |
| 			pr_devel("[%d] retain node %lu/%d [nx %d]\n",
 | |
| 				 slot, child->nr_leaves_on_branch, nr_free + 1,
 | |
| 				 next_slot);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
 | |
| 
 | |
| 	nr_leaves_on_tree = new_n->nr_leaves_on_branch;
 | |
| 
 | |
| 	/* Excise this node if it is singly occupied by a shortcut */
 | |
| 	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
 | |
| 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
 | |
| 			if ((ptr = new_n->slots[slot]))
 | |
| 				break;
 | |
| 
 | |
| 		if (assoc_array_ptr_is_meta(ptr) &&
 | |
| 		    assoc_array_ptr_is_shortcut(ptr)) {
 | |
| 			pr_devel("excise node %p with 1 shortcut\n", new_n);
 | |
| 			new_s = assoc_array_ptr_to_shortcut(ptr);
 | |
| 			new_parent = new_n->back_pointer;
 | |
| 			slot = new_n->parent_slot;
 | |
| 			kfree(new_n);
 | |
| 			if (!new_parent) {
 | |
| 				new_s->back_pointer = NULL;
 | |
| 				new_s->parent_slot = 0;
 | |
| 				new_root = ptr;
 | |
| 				goto gc_complete;
 | |
| 			}
 | |
| 
 | |
| 			if (assoc_array_ptr_is_shortcut(new_parent)) {
 | |
| 				/* We can discard any preceding shortcut also */
 | |
| 				struct assoc_array_shortcut *s =
 | |
| 					assoc_array_ptr_to_shortcut(new_parent);
 | |
| 
 | |
| 				pr_devel("excise preceding shortcut\n");
 | |
| 
 | |
| 				new_parent = new_s->back_pointer = s->back_pointer;
 | |
| 				slot = new_s->parent_slot = s->parent_slot;
 | |
| 				kfree(s);
 | |
| 				if (!new_parent) {
 | |
| 					new_s->back_pointer = NULL;
 | |
| 					new_s->parent_slot = 0;
 | |
| 					new_root = ptr;
 | |
| 					goto gc_complete;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			new_s->back_pointer = new_parent;
 | |
| 			new_s->parent_slot = slot;
 | |
| 			new_n = assoc_array_ptr_to_node(new_parent);
 | |
| 			new_n->slots[slot] = ptr;
 | |
| 			goto ascend_old_tree;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Excise any shortcuts we might encounter that point to nodes that
 | |
| 	 * only contain leaves.
 | |
| 	 */
 | |
| 	ptr = new_n->back_pointer;
 | |
| 	if (!ptr)
 | |
| 		goto gc_complete;
 | |
| 
 | |
| 	if (assoc_array_ptr_is_shortcut(ptr)) {
 | |
| 		new_s = assoc_array_ptr_to_shortcut(ptr);
 | |
| 		new_parent = new_s->back_pointer;
 | |
| 		slot = new_s->parent_slot;
 | |
| 
 | |
| 		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
 | |
| 			struct assoc_array_node *n;
 | |
| 
 | |
| 			pr_devel("excise shortcut\n");
 | |
| 			new_n->back_pointer = new_parent;
 | |
| 			new_n->parent_slot = slot;
 | |
| 			kfree(new_s);
 | |
| 			if (!new_parent) {
 | |
| 				new_root = assoc_array_node_to_ptr(new_n);
 | |
| 				goto gc_complete;
 | |
| 			}
 | |
| 
 | |
| 			n = assoc_array_ptr_to_node(new_parent);
 | |
| 			n->slots[slot] = assoc_array_node_to_ptr(new_n);
 | |
| 		}
 | |
| 	} else {
 | |
| 		new_parent = ptr;
 | |
| 	}
 | |
| 	new_n = assoc_array_ptr_to_node(new_parent);
 | |
| 
 | |
| ascend_old_tree:
 | |
| 	ptr = node->back_pointer;
 | |
| 	if (assoc_array_ptr_is_shortcut(ptr)) {
 | |
| 		shortcut = assoc_array_ptr_to_shortcut(ptr);
 | |
| 		slot = shortcut->parent_slot;
 | |
| 		cursor = shortcut->back_pointer;
 | |
| 		if (!cursor)
 | |
| 			goto gc_complete;
 | |
| 	} else {
 | |
| 		slot = node->parent_slot;
 | |
| 		cursor = ptr;
 | |
| 	}
 | |
| 	BUG_ON(!cursor);
 | |
| 	node = assoc_array_ptr_to_node(cursor);
 | |
| 	slot++;
 | |
| 	goto continue_node;
 | |
| 
 | |
| gc_complete:
 | |
| 	edit->set[0].to = new_root;
 | |
| 	assoc_array_apply_edit(edit);
 | |
| 	array->nr_leaves_on_tree = nr_leaves_on_tree;
 | |
| 	return 0;
 | |
| 
 | |
| enomem:
 | |
| 	pr_devel("enomem\n");
 | |
| 	assoc_array_destroy_subtree(new_root, edit->ops);
 | |
| 	kfree(edit);
 | |
| 	return -ENOMEM;
 | |
| }
 |