 10f1190016
			
		
	
	
	10f1190016
	
	
	
		
			
			Corrent code use many kinds of "clever" way to determine operation target's raid type, as: raid_map != NULL or raid_map[MAX_NR] == RAID[56]_Q_STRIPE To make code easy to maintenance, this patch put raid type into bbio, and we can always get raid type from bbio with a "stupid" way. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
		
			
				
	
	
		
			2678 lines
		
	
	
	
		
			65 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2678 lines
		
	
	
	
		
			65 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2012 Fusion-io  All rights reserved.
 | |
|  * Copyright (C) 2012 Intel Corp. All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| #include <linux/sched.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/iocontext.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/raid/pq.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/list_sort.h>
 | |
| #include <linux/raid/xor.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <asm/div64.h>
 | |
| #include "ctree.h"
 | |
| #include "extent_map.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "print-tree.h"
 | |
| #include "volumes.h"
 | |
| #include "raid56.h"
 | |
| #include "async-thread.h"
 | |
| #include "check-integrity.h"
 | |
| #include "rcu-string.h"
 | |
| 
 | |
| /* set when additional merges to this rbio are not allowed */
 | |
| #define RBIO_RMW_LOCKED_BIT	1
 | |
| 
 | |
| /*
 | |
|  * set when this rbio is sitting in the hash, but it is just a cache
 | |
|  * of past RMW
 | |
|  */
 | |
| #define RBIO_CACHE_BIT		2
 | |
| 
 | |
| /*
 | |
|  * set when it is safe to trust the stripe_pages for caching
 | |
|  */
 | |
| #define RBIO_CACHE_READY_BIT	3
 | |
| 
 | |
| #define RBIO_CACHE_SIZE 1024
 | |
| 
 | |
| enum btrfs_rbio_ops {
 | |
| 	BTRFS_RBIO_WRITE	= 0,
 | |
| 	BTRFS_RBIO_READ_REBUILD	= 1,
 | |
| 	BTRFS_RBIO_PARITY_SCRUB	= 2,
 | |
| };
 | |
| 
 | |
| struct btrfs_raid_bio {
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	struct btrfs_bio *bbio;
 | |
| 
 | |
| 	/* while we're doing rmw on a stripe
 | |
| 	 * we put it into a hash table so we can
 | |
| 	 * lock the stripe and merge more rbios
 | |
| 	 * into it.
 | |
| 	 */
 | |
| 	struct list_head hash_list;
 | |
| 
 | |
| 	/*
 | |
| 	 * LRU list for the stripe cache
 | |
| 	 */
 | |
| 	struct list_head stripe_cache;
 | |
| 
 | |
| 	/*
 | |
| 	 * for scheduling work in the helper threads
 | |
| 	 */
 | |
| 	struct btrfs_work work;
 | |
| 
 | |
| 	/*
 | |
| 	 * bio list and bio_list_lock are used
 | |
| 	 * to add more bios into the stripe
 | |
| 	 * in hopes of avoiding the full rmw
 | |
| 	 */
 | |
| 	struct bio_list bio_list;
 | |
| 	spinlock_t bio_list_lock;
 | |
| 
 | |
| 	/* also protected by the bio_list_lock, the
 | |
| 	 * plug list is used by the plugging code
 | |
| 	 * to collect partial bios while plugged.  The
 | |
| 	 * stripe locking code also uses it to hand off
 | |
| 	 * the stripe lock to the next pending IO
 | |
| 	 */
 | |
| 	struct list_head plug_list;
 | |
| 
 | |
| 	/*
 | |
| 	 * flags that tell us if it is safe to
 | |
| 	 * merge with this bio
 | |
| 	 */
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* size of each individual stripe on disk */
 | |
| 	int stripe_len;
 | |
| 
 | |
| 	/* number of data stripes (no p/q) */
 | |
| 	int nr_data;
 | |
| 
 | |
| 	int real_stripes;
 | |
| 
 | |
| 	int stripe_npages;
 | |
| 	/*
 | |
| 	 * set if we're doing a parity rebuild
 | |
| 	 * for a read from higher up, which is handled
 | |
| 	 * differently from a parity rebuild as part of
 | |
| 	 * rmw
 | |
| 	 */
 | |
| 	enum btrfs_rbio_ops operation;
 | |
| 
 | |
| 	/* first bad stripe */
 | |
| 	int faila;
 | |
| 
 | |
| 	/* second bad stripe (for raid6 use) */
 | |
| 	int failb;
 | |
| 
 | |
| 	int scrubp;
 | |
| 	/*
 | |
| 	 * number of pages needed to represent the full
 | |
| 	 * stripe
 | |
| 	 */
 | |
| 	int nr_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * size of all the bios in the bio_list.  This
 | |
| 	 * helps us decide if the rbio maps to a full
 | |
| 	 * stripe or not
 | |
| 	 */
 | |
| 	int bio_list_bytes;
 | |
| 
 | |
| 	int generic_bio_cnt;
 | |
| 
 | |
| 	atomic_t refs;
 | |
| 
 | |
| 	atomic_t stripes_pending;
 | |
| 
 | |
| 	atomic_t error;
 | |
| 	/*
 | |
| 	 * these are two arrays of pointers.  We allocate the
 | |
| 	 * rbio big enough to hold them both and setup their
 | |
| 	 * locations when the rbio is allocated
 | |
| 	 */
 | |
| 
 | |
| 	/* pointers to pages that we allocated for
 | |
| 	 * reading/writing stripes directly from the disk (including P/Q)
 | |
| 	 */
 | |
| 	struct page **stripe_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * pointers to the pages in the bio_list.  Stored
 | |
| 	 * here for faster lookup
 | |
| 	 */
 | |
| 	struct page **bio_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * bitmap to record which horizontal stripe has data
 | |
| 	 */
 | |
| 	unsigned long *dbitmap;
 | |
| };
 | |
| 
 | |
| static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 | |
| static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 | |
| static void rmw_work(struct btrfs_work *work);
 | |
| static void read_rebuild_work(struct btrfs_work *work);
 | |
| static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
 | |
| static void async_read_rebuild(struct btrfs_raid_bio *rbio);
 | |
| static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 | |
| static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 | |
| static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 | |
| static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 | |
| static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 | |
| 
 | |
| static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 | |
| 					 int need_check);
 | |
| static void async_scrub_parity(struct btrfs_raid_bio *rbio);
 | |
| 
 | |
| /*
 | |
|  * the stripe hash table is used for locking, and to collect
 | |
|  * bios in hopes of making a full stripe
 | |
|  */
 | |
| int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	struct btrfs_stripe_hash_table *x;
 | |
| 	struct btrfs_stripe_hash *cur;
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 | |
| 	int i;
 | |
| 	int table_size;
 | |
| 
 | |
| 	if (info->stripe_hash_table)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The table is large, starting with order 4 and can go as high as
 | |
| 	 * order 7 in case lock debugging is turned on.
 | |
| 	 *
 | |
| 	 * Try harder to allocate and fallback to vmalloc to lower the chance
 | |
| 	 * of a failing mount.
 | |
| 	 */
 | |
| 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
 | |
| 	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
 | |
| 	if (!table) {
 | |
| 		table = vzalloc(table_size);
 | |
| 		if (!table)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&table->cache_lock);
 | |
| 	INIT_LIST_HEAD(&table->stripe_cache);
 | |
| 
 | |
| 	h = table->table;
 | |
| 
 | |
| 	for (i = 0; i < num_entries; i++) {
 | |
| 		cur = h + i;
 | |
| 		INIT_LIST_HEAD(&cur->hash_list);
 | |
| 		spin_lock_init(&cur->lock);
 | |
| 		init_waitqueue_head(&cur->wait);
 | |
| 	}
 | |
| 
 | |
| 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 | |
| 	if (x) {
 | |
| 		if (is_vmalloc_addr(x))
 | |
| 			vfree(x);
 | |
| 		else
 | |
| 			kfree(x);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * caching an rbio means to copy anything from the
 | |
|  * bio_pages array into the stripe_pages array.  We
 | |
|  * use the page uptodate bit in the stripe cache array
 | |
|  * to indicate if it has valid data
 | |
|  *
 | |
|  * once the caching is done, we set the cache ready
 | |
|  * bit.
 | |
|  */
 | |
| static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 	char *s;
 | |
| 	char *d;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = alloc_rbio_pages(rbio);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_pages; i++) {
 | |
| 		if (!rbio->bio_pages[i])
 | |
| 			continue;
 | |
| 
 | |
| 		s = kmap(rbio->bio_pages[i]);
 | |
| 		d = kmap(rbio->stripe_pages[i]);
 | |
| 
 | |
| 		memcpy(d, s, PAGE_CACHE_SIZE);
 | |
| 
 | |
| 		kunmap(rbio->bio_pages[i]);
 | |
| 		kunmap(rbio->stripe_pages[i]);
 | |
| 		SetPageUptodate(rbio->stripe_pages[i]);
 | |
| 	}
 | |
| 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * we hash on the first logical address of the stripe
 | |
|  */
 | |
| static int rbio_bucket(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	u64 num = rbio->bbio->raid_map[0];
 | |
| 
 | |
| 	/*
 | |
| 	 * we shift down quite a bit.  We're using byte
 | |
| 	 * addressing, and most of the lower bits are zeros.
 | |
| 	 * This tends to upset hash_64, and it consistently
 | |
| 	 * returns just one or two different values.
 | |
| 	 *
 | |
| 	 * shifting off the lower bits fixes things.
 | |
| 	 */
 | |
| 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * stealing an rbio means taking all the uptodate pages from the stripe
 | |
|  * array in the source rbio and putting them into the destination rbio
 | |
|  */
 | |
| static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 | |
| {
 | |
| 	int i;
 | |
| 	struct page *s;
 | |
| 	struct page *d;
 | |
| 
 | |
| 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < dest->nr_pages; i++) {
 | |
| 		s = src->stripe_pages[i];
 | |
| 		if (!s || !PageUptodate(s)) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		d = dest->stripe_pages[i];
 | |
| 		if (d)
 | |
| 			__free_page(d);
 | |
| 
 | |
| 		dest->stripe_pages[i] = s;
 | |
| 		src->stripe_pages[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * merging means we take the bio_list from the victim and
 | |
|  * splice it into the destination.  The victim should
 | |
|  * be discarded afterwards.
 | |
|  *
 | |
|  * must be called with dest->rbio_list_lock held
 | |
|  */
 | |
| static void merge_rbio(struct btrfs_raid_bio *dest,
 | |
| 		       struct btrfs_raid_bio *victim)
 | |
| {
 | |
| 	bio_list_merge(&dest->bio_list, &victim->bio_list);
 | |
| 	dest->bio_list_bytes += victim->bio_list_bytes;
 | |
| 	dest->generic_bio_cnt += victim->generic_bio_cnt;
 | |
| 	bio_list_init(&victim->bio_list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * used to prune items that are in the cache.  The caller
 | |
|  * must hold the hash table lock.
 | |
|  */
 | |
| static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bucket = rbio_bucket(rbio);
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	int freeit = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * check the bit again under the hash table lock.
 | |
| 	 */
 | |
| 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 | |
| 		return;
 | |
| 
 | |
| 	table = rbio->fs_info->stripe_hash_table;
 | |
| 	h = table->table + bucket;
 | |
| 
 | |
| 	/* hold the lock for the bucket because we may be
 | |
| 	 * removing it from the hash table
 | |
| 	 */
 | |
| 	spin_lock(&h->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * hold the lock for the bio list because we need
 | |
| 	 * to make sure the bio list is empty
 | |
| 	 */
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 | |
| 		list_del_init(&rbio->stripe_cache);
 | |
| 		table->cache_size -= 1;
 | |
| 		freeit = 1;
 | |
| 
 | |
| 		/* if the bio list isn't empty, this rbio is
 | |
| 		 * still involved in an IO.  We take it out
 | |
| 		 * of the cache list, and drop the ref that
 | |
| 		 * was held for the list.
 | |
| 		 *
 | |
| 		 * If the bio_list was empty, we also remove
 | |
| 		 * the rbio from the hash_table, and drop
 | |
| 		 * the corresponding ref
 | |
| 		 */
 | |
| 		if (bio_list_empty(&rbio->bio_list)) {
 | |
| 			if (!list_empty(&rbio->hash_list)) {
 | |
| 				list_del_init(&rbio->hash_list);
 | |
| 				atomic_dec(&rbio->refs);
 | |
| 				BUG_ON(!list_empty(&rbio->plug_list));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 	spin_unlock(&h->lock);
 | |
| 
 | |
| 	if (freeit)
 | |
| 		__free_raid_bio(rbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prune a given rbio from the cache
 | |
|  */
 | |
| static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 | |
| 		return;
 | |
| 
 | |
| 	table = rbio->fs_info->stripe_hash_table;
 | |
| 
 | |
| 	spin_lock_irqsave(&table->cache_lock, flags);
 | |
| 	__remove_rbio_from_cache(rbio);
 | |
| 	spin_unlock_irqrestore(&table->cache_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove everything in the cache
 | |
|  */
 | |
| static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	unsigned long flags;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	table = info->stripe_hash_table;
 | |
| 
 | |
| 	spin_lock_irqsave(&table->cache_lock, flags);
 | |
| 	while (!list_empty(&table->stripe_cache)) {
 | |
| 		rbio = list_entry(table->stripe_cache.next,
 | |
| 				  struct btrfs_raid_bio,
 | |
| 				  stripe_cache);
 | |
| 		__remove_rbio_from_cache(rbio);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&table->cache_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove all cached entries and free the hash table
 | |
|  * used by unmount
 | |
|  */
 | |
| void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	if (!info->stripe_hash_table)
 | |
| 		return;
 | |
| 	btrfs_clear_rbio_cache(info);
 | |
| 	if (is_vmalloc_addr(info->stripe_hash_table))
 | |
| 		vfree(info->stripe_hash_table);
 | |
| 	else
 | |
| 		kfree(info->stripe_hash_table);
 | |
| 	info->stripe_hash_table = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * insert an rbio into the stripe cache.  It
 | |
|  * must have already been prepared by calling
 | |
|  * cache_rbio_pages
 | |
|  *
 | |
|  * If this rbio was already cached, it gets
 | |
|  * moved to the front of the lru.
 | |
|  *
 | |
|  * If the size of the rbio cache is too big, we
 | |
|  * prune an item.
 | |
|  */
 | |
| static void cache_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 | |
| 		return;
 | |
| 
 | |
| 	table = rbio->fs_info->stripe_hash_table;
 | |
| 
 | |
| 	spin_lock_irqsave(&table->cache_lock, flags);
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	/* bump our ref if we were not in the list before */
 | |
| 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 | |
| 		atomic_inc(&rbio->refs);
 | |
| 
 | |
| 	if (!list_empty(&rbio->stripe_cache)){
 | |
| 		list_move(&rbio->stripe_cache, &table->stripe_cache);
 | |
| 	} else {
 | |
| 		list_add(&rbio->stripe_cache, &table->stripe_cache);
 | |
| 		table->cache_size += 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	if (table->cache_size > RBIO_CACHE_SIZE) {
 | |
| 		struct btrfs_raid_bio *found;
 | |
| 
 | |
| 		found = list_entry(table->stripe_cache.prev,
 | |
| 				  struct btrfs_raid_bio,
 | |
| 				  stripe_cache);
 | |
| 
 | |
| 		if (found != rbio)
 | |
| 			__remove_rbio_from_cache(found);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&table->cache_lock, flags);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to run the xor_blocks api.  It is only
 | |
|  * able to do MAX_XOR_BLOCKS at a time, so we need to
 | |
|  * loop through.
 | |
|  */
 | |
| static void run_xor(void **pages, int src_cnt, ssize_t len)
 | |
| {
 | |
| 	int src_off = 0;
 | |
| 	int xor_src_cnt = 0;
 | |
| 	void *dest = pages[src_cnt];
 | |
| 
 | |
| 	while(src_cnt > 0) {
 | |
| 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 | |
| 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 | |
| 
 | |
| 		src_cnt -= xor_src_cnt;
 | |
| 		src_off += xor_src_cnt;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns true if the bio list inside this rbio
 | |
|  * covers an entire stripe (no rmw required).
 | |
|  * Must be called with the bio list lock held, or
 | |
|  * at a time when you know it is impossible to add
 | |
|  * new bios into the list
 | |
|  */
 | |
| static int __rbio_is_full(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	unsigned long size = rbio->bio_list_bytes;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	if (size != rbio->nr_data * rbio->stripe_len)
 | |
| 		ret = 0;
 | |
| 
 | |
| 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rbio_is_full(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 | |
| 	ret = __rbio_is_full(rbio);
 | |
| 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns 1 if it is safe to merge two rbios together.
 | |
|  * The merging is safe if the two rbios correspond to
 | |
|  * the same stripe and if they are both going in the same
 | |
|  * direction (read vs write), and if neither one is
 | |
|  * locked for final IO
 | |
|  *
 | |
|  * The caller is responsible for locking such that
 | |
|  * rmw_locked is safe to test
 | |
|  */
 | |
| static int rbio_can_merge(struct btrfs_raid_bio *last,
 | |
| 			  struct btrfs_raid_bio *cur)
 | |
| {
 | |
| 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 | |
| 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * we can't merge with cached rbios, since the
 | |
| 	 * idea is that when we merge the destination
 | |
| 	 * rbio is going to run our IO for us.  We can
 | |
| 	 * steal from cached rbio's though, other functions
 | |
| 	 * handle that.
 | |
| 	 */
 | |
| 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 | |
| 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (last->bbio->raid_map[0] !=
 | |
| 	    cur->bbio->raid_map[0])
 | |
| 		return 0;
 | |
| 
 | |
| 	/* we can't merge with different operations */
 | |
| 	if (last->operation != cur->operation)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We've need read the full stripe from the drive.
 | |
| 	 * check and repair the parity and write the new results.
 | |
| 	 *
 | |
| 	 * We're not allowed to add any new bios to the
 | |
| 	 * bio list here, anyone else that wants to
 | |
| 	 * change this stripe needs to do their own rmw.
 | |
| 	 */
 | |
| 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
 | |
| 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to index into the pstripe
 | |
|  */
 | |
| static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 | |
| {
 | |
| 	index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
 | |
| 	return rbio->stripe_pages[index];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to index into the qstripe, returns null
 | |
|  * if there is no qstripe
 | |
|  */
 | |
| static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 | |
| {
 | |
| 	if (rbio->nr_data + 1 == rbio->real_stripes)
 | |
| 		return NULL;
 | |
| 
 | |
| 	index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
 | |
| 		PAGE_CACHE_SHIFT;
 | |
| 	return rbio->stripe_pages[index];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The first stripe in the table for a logical address
 | |
|  * has the lock.  rbios are added in one of three ways:
 | |
|  *
 | |
|  * 1) Nobody has the stripe locked yet.  The rbio is given
 | |
|  * the lock and 0 is returned.  The caller must start the IO
 | |
|  * themselves.
 | |
|  *
 | |
|  * 2) Someone has the stripe locked, but we're able to merge
 | |
|  * with the lock owner.  The rbio is freed and the IO will
 | |
|  * start automatically along with the existing rbio.  1 is returned.
 | |
|  *
 | |
|  * 3) Someone has the stripe locked, but we're not able to merge.
 | |
|  * The rbio is added to the lock owner's plug list, or merged into
 | |
|  * an rbio already on the plug list.  When the lock owner unlocks,
 | |
|  * the next rbio on the list is run and the IO is started automatically.
 | |
|  * 1 is returned
 | |
|  *
 | |
|  * If we return 0, the caller still owns the rbio and must continue with
 | |
|  * IO submission.  If we return 1, the caller must assume the rbio has
 | |
|  * already been freed.
 | |
|  */
 | |
| static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bucket = rbio_bucket(rbio);
 | |
| 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 | |
| 	struct btrfs_raid_bio *cur;
 | |
| 	struct btrfs_raid_bio *pending;
 | |
| 	unsigned long flags;
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	struct btrfs_raid_bio *freeit = NULL;
 | |
| 	struct btrfs_raid_bio *cache_drop = NULL;
 | |
| 	int ret = 0;
 | |
| 	int walk = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	list_for_each_entry(cur, &h->hash_list, hash_list) {
 | |
| 		walk++;
 | |
| 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
 | |
| 			spin_lock(&cur->bio_list_lock);
 | |
| 
 | |
| 			/* can we steal this cached rbio's pages? */
 | |
| 			if (bio_list_empty(&cur->bio_list) &&
 | |
| 			    list_empty(&cur->plug_list) &&
 | |
| 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 | |
| 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 | |
| 				list_del_init(&cur->hash_list);
 | |
| 				atomic_dec(&cur->refs);
 | |
| 
 | |
| 				steal_rbio(cur, rbio);
 | |
| 				cache_drop = cur;
 | |
| 				spin_unlock(&cur->bio_list_lock);
 | |
| 
 | |
| 				goto lockit;
 | |
| 			}
 | |
| 
 | |
| 			/* can we merge into the lock owner? */
 | |
| 			if (rbio_can_merge(cur, rbio)) {
 | |
| 				merge_rbio(cur, rbio);
 | |
| 				spin_unlock(&cur->bio_list_lock);
 | |
| 				freeit = rbio;
 | |
| 				ret = 1;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 
 | |
| 			/*
 | |
| 			 * we couldn't merge with the running
 | |
| 			 * rbio, see if we can merge with the
 | |
| 			 * pending ones.  We don't have to
 | |
| 			 * check for rmw_locked because there
 | |
| 			 * is no way they are inside finish_rmw
 | |
| 			 * right now
 | |
| 			 */
 | |
| 			list_for_each_entry(pending, &cur->plug_list,
 | |
| 					    plug_list) {
 | |
| 				if (rbio_can_merge(pending, rbio)) {
 | |
| 					merge_rbio(pending, rbio);
 | |
| 					spin_unlock(&cur->bio_list_lock);
 | |
| 					freeit = rbio;
 | |
| 					ret = 1;
 | |
| 					goto out;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* no merging, put us on the tail of the plug list,
 | |
| 			 * our rbio will be started with the currently
 | |
| 			 * running rbio unlocks
 | |
| 			 */
 | |
| 			list_add_tail(&rbio->plug_list, &cur->plug_list);
 | |
| 			spin_unlock(&cur->bio_list_lock);
 | |
| 			ret = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| lockit:
 | |
| 	atomic_inc(&rbio->refs);
 | |
| 	list_add(&rbio->hash_list, &h->hash_list);
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 	if (cache_drop)
 | |
| 		remove_rbio_from_cache(cache_drop);
 | |
| 	if (freeit)
 | |
| 		__free_raid_bio(freeit);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called as rmw or parity rebuild is completed.  If the plug list has more
 | |
|  * rbios waiting for this stripe, the next one on the list will be started
 | |
|  */
 | |
| static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bucket;
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	unsigned long flags;
 | |
| 	int keep_cache = 0;
 | |
| 
 | |
| 	bucket = rbio_bucket(rbio);
 | |
| 	h = rbio->fs_info->stripe_hash_table->table + bucket;
 | |
| 
 | |
| 	if (list_empty(&rbio->plug_list))
 | |
| 		cache_rbio(rbio);
 | |
| 
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	if (!list_empty(&rbio->hash_list)) {
 | |
| 		/*
 | |
| 		 * if we're still cached and there is no other IO
 | |
| 		 * to perform, just leave this rbio here for others
 | |
| 		 * to steal from later
 | |
| 		 */
 | |
| 		if (list_empty(&rbio->plug_list) &&
 | |
| 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 | |
| 			keep_cache = 1;
 | |
| 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 | |
| 			BUG_ON(!bio_list_empty(&rbio->bio_list));
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		list_del_init(&rbio->hash_list);
 | |
| 		atomic_dec(&rbio->refs);
 | |
| 
 | |
| 		/*
 | |
| 		 * we use the plug list to hold all the rbios
 | |
| 		 * waiting for the chance to lock this stripe.
 | |
| 		 * hand the lock over to one of them.
 | |
| 		 */
 | |
| 		if (!list_empty(&rbio->plug_list)) {
 | |
| 			struct btrfs_raid_bio *next;
 | |
| 			struct list_head *head = rbio->plug_list.next;
 | |
| 
 | |
| 			next = list_entry(head, struct btrfs_raid_bio,
 | |
| 					  plug_list);
 | |
| 
 | |
| 			list_del_init(&rbio->plug_list);
 | |
| 
 | |
| 			list_add(&next->hash_list, &h->hash_list);
 | |
| 			atomic_inc(&next->refs);
 | |
| 			spin_unlock(&rbio->bio_list_lock);
 | |
| 			spin_unlock_irqrestore(&h->lock, flags);
 | |
| 
 | |
| 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 | |
| 				async_read_rebuild(next);
 | |
| 			else if (next->operation == BTRFS_RBIO_WRITE) {
 | |
| 				steal_rbio(rbio, next);
 | |
| 				async_rmw_stripe(next);
 | |
| 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 | |
| 				steal_rbio(rbio, next);
 | |
| 				async_scrub_parity(next);
 | |
| 			}
 | |
| 
 | |
| 			goto done_nolock;
 | |
| 		} else  if (waitqueue_active(&h->wait)) {
 | |
| 			spin_unlock(&rbio->bio_list_lock);
 | |
| 			spin_unlock_irqrestore(&h->lock, flags);
 | |
| 			wake_up(&h->wait);
 | |
| 			goto done_nolock;
 | |
| 		}
 | |
| 	}
 | |
| done:
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 
 | |
| done_nolock:
 | |
| 	if (!keep_cache)
 | |
| 		remove_rbio_from_cache(rbio);
 | |
| }
 | |
| 
 | |
| static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	WARN_ON(atomic_read(&rbio->refs) < 0);
 | |
| 	if (!atomic_dec_and_test(&rbio->refs))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(!list_empty(&rbio->stripe_cache));
 | |
| 	WARN_ON(!list_empty(&rbio->hash_list));
 | |
| 	WARN_ON(!bio_list_empty(&rbio->bio_list));
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_pages; i++) {
 | |
| 		if (rbio->stripe_pages[i]) {
 | |
| 			__free_page(rbio->stripe_pages[i]);
 | |
| 			rbio->stripe_pages[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_put_bbio(rbio->bbio);
 | |
| 	kfree(rbio);
 | |
| }
 | |
| 
 | |
| static void free_raid_bio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	unlock_stripe(rbio);
 | |
| 	__free_raid_bio(rbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this frees the rbio and runs through all the bios in the
 | |
|  * bio_list and calls end_io on them
 | |
|  */
 | |
| static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
 | |
| {
 | |
| 	struct bio *cur = bio_list_get(&rbio->bio_list);
 | |
| 	struct bio *next;
 | |
| 
 | |
| 	if (rbio->generic_bio_cnt)
 | |
| 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 | |
| 
 | |
| 	free_raid_bio(rbio);
 | |
| 
 | |
| 	while (cur) {
 | |
| 		next = cur->bi_next;
 | |
| 		cur->bi_next = NULL;
 | |
| 		if (uptodate)
 | |
| 			set_bit(BIO_UPTODATE, &cur->bi_flags);
 | |
| 		bio_endio(cur, err);
 | |
| 		cur = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * end io function used by finish_rmw.  When we finally
 | |
|  * get here, we've written a full stripe
 | |
|  */
 | |
| static void raid_write_end_io(struct bio *bio, int err)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 
 | |
| 	if (err)
 | |
| 		fail_bio_stripe(rbio, bio);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		return;
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
| 	/* OK, we have read all the stripes we need to. */
 | |
| 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
 | |
| 		err = -EIO;
 | |
| 
 | |
| 	rbio_orig_end_io(rbio, err, 0);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the read/modify/write code wants to use the original bio for
 | |
|  * any pages it included, and then use the rbio for everything
 | |
|  * else.  This function decides if a given index (stripe number)
 | |
|  * and page number in that stripe fall inside the original bio
 | |
|  * or the rbio.
 | |
|  *
 | |
|  * if you set bio_list_only, you'll get a NULL back for any ranges
 | |
|  * that are outside the bio_list
 | |
|  *
 | |
|  * This doesn't take any refs on anything, you get a bare page pointer
 | |
|  * and the caller must bump refs as required.
 | |
|  *
 | |
|  * You must call index_rbio_pages once before you can trust
 | |
|  * the answers from this function.
 | |
|  */
 | |
| static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 | |
| 				 int index, int pagenr, int bio_list_only)
 | |
| {
 | |
| 	int chunk_page;
 | |
| 	struct page *p = NULL;
 | |
| 
 | |
| 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 | |
| 
 | |
| 	spin_lock_irq(&rbio->bio_list_lock);
 | |
| 	p = rbio->bio_pages[chunk_page];
 | |
| 	spin_unlock_irq(&rbio->bio_list_lock);
 | |
| 
 | |
| 	if (p || bio_list_only)
 | |
| 		return p;
 | |
| 
 | |
| 	return rbio->stripe_pages[chunk_page];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * number of pages we need for the entire stripe across all the
 | |
|  * drives
 | |
|  */
 | |
| static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 | |
| {
 | |
| 	unsigned long nr = stripe_len * nr_stripes;
 | |
| 	return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * allocation and initial setup for the btrfs_raid_bio.  Not
 | |
|  * this does not allocate any pages for rbio->pages.
 | |
|  */
 | |
| static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
 | |
| 			  struct btrfs_bio *bbio, u64 stripe_len)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	int nr_data = 0;
 | |
| 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 | |
| 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 | |
| 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 | |
| 	void *p;
 | |
| 
 | |
| 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
 | |
| 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
 | |
| 			GFP_NOFS);
 | |
| 	if (!rbio)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	bio_list_init(&rbio->bio_list);
 | |
| 	INIT_LIST_HEAD(&rbio->plug_list);
 | |
| 	spin_lock_init(&rbio->bio_list_lock);
 | |
| 	INIT_LIST_HEAD(&rbio->stripe_cache);
 | |
| 	INIT_LIST_HEAD(&rbio->hash_list);
 | |
| 	rbio->bbio = bbio;
 | |
| 	rbio->fs_info = root->fs_info;
 | |
| 	rbio->stripe_len = stripe_len;
 | |
| 	rbio->nr_pages = num_pages;
 | |
| 	rbio->real_stripes = real_stripes;
 | |
| 	rbio->stripe_npages = stripe_npages;
 | |
| 	rbio->faila = -1;
 | |
| 	rbio->failb = -1;
 | |
| 	atomic_set(&rbio->refs, 1);
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 	atomic_set(&rbio->stripes_pending, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * the stripe_pages and bio_pages array point to the extra
 | |
| 	 * memory we allocated past the end of the rbio
 | |
| 	 */
 | |
| 	p = rbio + 1;
 | |
| 	rbio->stripe_pages = p;
 | |
| 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
 | |
| 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
 | |
| 
 | |
| 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
 | |
| 		nr_data = real_stripes - 1;
 | |
| 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 		nr_data = real_stripes - 2;
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	rbio->nr_data = nr_data;
 | |
| 	return rbio;
 | |
| }
 | |
| 
 | |
| /* allocate pages for all the stripes in the bio, including parity */
 | |
| static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_pages; i++) {
 | |
| 		if (rbio->stripe_pages[i])
 | |
| 			continue;
 | |
| 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
 | |
| 		if (!page)
 | |
| 			return -ENOMEM;
 | |
| 		rbio->stripe_pages[i] = page;
 | |
| 		ClearPageUptodate(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* allocate pages for just the p/q stripes */
 | |
| static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	for (; i < rbio->nr_pages; i++) {
 | |
| 		if (rbio->stripe_pages[i])
 | |
| 			continue;
 | |
| 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
 | |
| 		if (!page)
 | |
| 			return -ENOMEM;
 | |
| 		rbio->stripe_pages[i] = page;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add a single page from a specific stripe into our list of bios for IO
 | |
|  * this will try to merge into existing bios if possible, and returns
 | |
|  * zero if all went well.
 | |
|  */
 | |
| static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
 | |
| 			    struct bio_list *bio_list,
 | |
| 			    struct page *page,
 | |
| 			    int stripe_nr,
 | |
| 			    unsigned long page_index,
 | |
| 			    unsigned long bio_max_len)
 | |
| {
 | |
| 	struct bio *last = bio_list->tail;
 | |
| 	u64 last_end = 0;
 | |
| 	int ret;
 | |
| 	struct bio *bio;
 | |
| 	struct btrfs_bio_stripe *stripe;
 | |
| 	u64 disk_start;
 | |
| 
 | |
| 	stripe = &rbio->bbio->stripes[stripe_nr];
 | |
| 	disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
 | |
| 
 | |
| 	/* if the device is missing, just fail this stripe */
 | |
| 	if (!stripe->dev->bdev)
 | |
| 		return fail_rbio_index(rbio, stripe_nr);
 | |
| 
 | |
| 	/* see if we can add this page onto our existing bio */
 | |
| 	if (last) {
 | |
| 		last_end = (u64)last->bi_iter.bi_sector << 9;
 | |
| 		last_end += last->bi_iter.bi_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * we can't merge these if they are from different
 | |
| 		 * devices or if they are not contiguous
 | |
| 		 */
 | |
| 		if (last_end == disk_start && stripe->dev->bdev &&
 | |
| 		    test_bit(BIO_UPTODATE, &last->bi_flags) &&
 | |
| 		    last->bi_bdev == stripe->dev->bdev) {
 | |
| 			ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
 | |
| 			if (ret == PAGE_CACHE_SIZE)
 | |
| 				return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* put a new bio on the list */
 | |
| 	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
 | |
| 	if (!bio)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bio->bi_iter.bi_size = 0;
 | |
| 	bio->bi_bdev = stripe->dev->bdev;
 | |
| 	bio->bi_iter.bi_sector = disk_start >> 9;
 | |
| 	set_bit(BIO_UPTODATE, &bio->bi_flags);
 | |
| 
 | |
| 	bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 | |
| 	bio_list_add(bio_list, bio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * while we're doing the read/modify/write cycle, we could
 | |
|  * have errors in reading pages off the disk.  This checks
 | |
|  * for errors and if we're not able to read the page it'll
 | |
|  * trigger parity reconstruction.  The rmw will be finished
 | |
|  * after we've reconstructed the failed stripes
 | |
|  */
 | |
| static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	if (rbio->faila >= 0 || rbio->failb >= 0) {
 | |
| 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
 | |
| 		__raid56_parity_recover(rbio);
 | |
| 	} else {
 | |
| 		finish_rmw(rbio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * these are just the pages from the rbio array, not from anything
 | |
|  * the FS sent down to us
 | |
|  */
 | |
| static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
 | |
| {
 | |
| 	int index;
 | |
| 	index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
 | |
| 	index += page;
 | |
| 	return rbio->stripe_pages[index];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to walk our bio list and populate the bio_pages array with
 | |
|  * the result.  This seems expensive, but it is faster than constantly
 | |
|  * searching through the bio list as we setup the IO in finish_rmw or stripe
 | |
|  * reconstruction.
 | |
|  *
 | |
|  * This must be called before you trust the answers from page_in_rbio
 | |
|  */
 | |
| static void index_rbio_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	u64 start;
 | |
| 	unsigned long stripe_offset;
 | |
| 	unsigned long page_index;
 | |
| 	struct page *p;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_irq(&rbio->bio_list_lock);
 | |
| 	bio_list_for_each(bio, &rbio->bio_list) {
 | |
| 		start = (u64)bio->bi_iter.bi_sector << 9;
 | |
| 		stripe_offset = start - rbio->bbio->raid_map[0];
 | |
| 		page_index = stripe_offset >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 		for (i = 0; i < bio->bi_vcnt; i++) {
 | |
| 			p = bio->bi_io_vec[i].bv_page;
 | |
| 			rbio->bio_pages[page_index + i] = p;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(&rbio->bio_list_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is called from one of two situations.  We either
 | |
|  * have a full stripe from the higher layers, or we've read all
 | |
|  * the missing bits off disk.
 | |
|  *
 | |
|  * This will calculate the parity and then send down any
 | |
|  * changed blocks.
 | |
|  */
 | |
| static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = rbio->bbio;
 | |
| 	void *pointers[rbio->real_stripes];
 | |
| 	int stripe_len = rbio->stripe_len;
 | |
| 	int nr_data = rbio->nr_data;
 | |
| 	int stripe;
 | |
| 	int pagenr;
 | |
| 	int p_stripe = -1;
 | |
| 	int q_stripe = -1;
 | |
| 	struct bio_list bio_list;
 | |
| 	struct bio *bio;
 | |
| 	int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
 | |
| 	int ret;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	if (rbio->real_stripes - rbio->nr_data == 1) {
 | |
| 		p_stripe = rbio->real_stripes - 1;
 | |
| 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
 | |
| 		p_stripe = rbio->real_stripes - 2;
 | |
| 		q_stripe = rbio->real_stripes - 1;
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/* at this point we either have a full stripe,
 | |
| 	 * or we've read the full stripe from the drive.
 | |
| 	 * recalculate the parity and write the new results.
 | |
| 	 *
 | |
| 	 * We're not allowed to add any new bios to the
 | |
| 	 * bio list here, anyone else that wants to
 | |
| 	 * change this stripe needs to do their own rmw.
 | |
| 	 */
 | |
| 	spin_lock_irq(&rbio->bio_list_lock);
 | |
| 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 | |
| 	spin_unlock_irq(&rbio->bio_list_lock);
 | |
| 
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * now that we've set rmw_locked, run through the
 | |
| 	 * bio list one last time and map the page pointers
 | |
| 	 *
 | |
| 	 * We don't cache full rbios because we're assuming
 | |
| 	 * the higher layers are unlikely to use this area of
 | |
| 	 * the disk again soon.  If they do use it again,
 | |
| 	 * hopefully they will send another full bio.
 | |
| 	 */
 | |
| 	index_rbio_pages(rbio);
 | |
| 	if (!rbio_is_full(rbio))
 | |
| 		cache_rbio_pages(rbio);
 | |
| 	else
 | |
| 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| 
 | |
| 	for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
 | |
| 		struct page *p;
 | |
| 		/* first collect one page from each data stripe */
 | |
| 		for (stripe = 0; stripe < nr_data; stripe++) {
 | |
| 			p = page_in_rbio(rbio, stripe, pagenr, 0);
 | |
| 			pointers[stripe] = kmap(p);
 | |
| 		}
 | |
| 
 | |
| 		/* then add the parity stripe */
 | |
| 		p = rbio_pstripe_page(rbio, pagenr);
 | |
| 		SetPageUptodate(p);
 | |
| 		pointers[stripe++] = kmap(p);
 | |
| 
 | |
| 		if (q_stripe != -1) {
 | |
| 
 | |
| 			/*
 | |
| 			 * raid6, add the qstripe and call the
 | |
| 			 * library function to fill in our p/q
 | |
| 			 */
 | |
| 			p = rbio_qstripe_page(rbio, pagenr);
 | |
| 			SetPageUptodate(p);
 | |
| 			pointers[stripe++] = kmap(p);
 | |
| 
 | |
| 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
 | |
| 						pointers);
 | |
| 		} else {
 | |
| 			/* raid5 */
 | |
| 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
 | |
| 			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
 | |
| 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * time to start writing.  Make bios for everything from the
 | |
| 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
 | |
| 	 * everything else.
 | |
| 	 */
 | |
| 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
 | |
| 			struct page *page;
 | |
| 			if (stripe < rbio->nr_data) {
 | |
| 				page = page_in_rbio(rbio, stripe, pagenr, 1);
 | |
| 				if (!page)
 | |
| 					continue;
 | |
| 			} else {
 | |
| 			       page = rbio_stripe_page(rbio, stripe, pagenr);
 | |
| 			}
 | |
| 
 | |
| 			ret = rbio_add_io_page(rbio, &bio_list,
 | |
| 				       page, stripe, pagenr, rbio->stripe_len);
 | |
| 			if (ret)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!bbio->num_tgtdevs))
 | |
| 		goto write_data;
 | |
| 
 | |
| 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 		if (!bbio->tgtdev_map[stripe])
 | |
| 			continue;
 | |
| 
 | |
| 		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
 | |
| 			struct page *page;
 | |
| 			if (stripe < rbio->nr_data) {
 | |
| 				page = page_in_rbio(rbio, stripe, pagenr, 1);
 | |
| 				if (!page)
 | |
| 					continue;
 | |
| 			} else {
 | |
| 			       page = rbio_stripe_page(rbio, stripe, pagenr);
 | |
| 			}
 | |
| 
 | |
| 			ret = rbio_add_io_page(rbio, &bio_list, page,
 | |
| 					       rbio->bbio->tgtdev_map[stripe],
 | |
| 					       pagenr, rbio->stripe_len);
 | |
| 			if (ret)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| write_data:
 | |
| 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
 | |
| 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
 | |
| 
 | |
| 	while (1) {
 | |
| 		bio = bio_list_pop(&bio_list);
 | |
| 		if (!bio)
 | |
| 			break;
 | |
| 
 | |
| 		bio->bi_private = rbio;
 | |
| 		bio->bi_end_io = raid_write_end_io;
 | |
| 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
 | |
| 		submit_bio(WRITE, bio);
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 	rbio_orig_end_io(rbio, -EIO, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to find the stripe number for a given bio.  Used to figure out which
 | |
|  * stripe has failed.  This expects the bio to correspond to a physical disk,
 | |
|  * so it looks up based on physical sector numbers.
 | |
|  */
 | |
| static int find_bio_stripe(struct btrfs_raid_bio *rbio,
 | |
| 			   struct bio *bio)
 | |
| {
 | |
| 	u64 physical = bio->bi_iter.bi_sector;
 | |
| 	u64 stripe_start;
 | |
| 	int i;
 | |
| 	struct btrfs_bio_stripe *stripe;
 | |
| 
 | |
| 	physical <<= 9;
 | |
| 
 | |
| 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
 | |
| 		stripe = &rbio->bbio->stripes[i];
 | |
| 		stripe_start = stripe->physical;
 | |
| 		if (physical >= stripe_start &&
 | |
| 		    physical < stripe_start + rbio->stripe_len &&
 | |
| 		    bio->bi_bdev == stripe->dev->bdev) {
 | |
| 			return i;
 | |
| 		}
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to find the stripe number for a given
 | |
|  * bio (before mapping).  Used to figure out which stripe has
 | |
|  * failed.  This looks up based on logical block numbers.
 | |
|  */
 | |
| static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
 | |
| 				   struct bio *bio)
 | |
| {
 | |
| 	u64 logical = bio->bi_iter.bi_sector;
 | |
| 	u64 stripe_start;
 | |
| 	int i;
 | |
| 
 | |
| 	logical <<= 9;
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_data; i++) {
 | |
| 		stripe_start = rbio->bbio->raid_map[i];
 | |
| 		if (logical >= stripe_start &&
 | |
| 		    logical < stripe_start + rbio->stripe_len) {
 | |
| 			return i;
 | |
| 		}
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns -EIO if we had too many failures
 | |
|  */
 | |
| static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 | |
| 
 | |
| 	/* we already know this stripe is bad, move on */
 | |
| 	if (rbio->faila == failed || rbio->failb == failed)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (rbio->faila == -1) {
 | |
| 		/* first failure on this rbio */
 | |
| 		rbio->faila = failed;
 | |
| 		atomic_inc(&rbio->error);
 | |
| 	} else if (rbio->failb == -1) {
 | |
| 		/* second failure on this rbio */
 | |
| 		rbio->failb = failed;
 | |
| 		atomic_inc(&rbio->error);
 | |
| 	} else {
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to fail a stripe based on a physical disk
 | |
|  * bio.
 | |
|  */
 | |
| static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
 | |
| 			   struct bio *bio)
 | |
| {
 | |
| 	int failed = find_bio_stripe(rbio, bio);
 | |
| 
 | |
| 	if (failed < 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return fail_rbio_index(rbio, failed);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this sets each page in the bio uptodate.  It should only be used on private
 | |
|  * rbio pages, nothing that comes in from the higher layers
 | |
|  */
 | |
| static void set_bio_pages_uptodate(struct bio *bio)
 | |
| {
 | |
| 	int i;
 | |
| 	struct page *p;
 | |
| 
 | |
| 	for (i = 0; i < bio->bi_vcnt; i++) {
 | |
| 		p = bio->bi_io_vec[i].bv_page;
 | |
| 		SetPageUptodate(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * end io for the read phase of the rmw cycle.  All the bios here are physical
 | |
|  * stripe bios we've read from the disk so we can recalculate the parity of the
 | |
|  * stripe.
 | |
|  *
 | |
|  * This will usually kick off finish_rmw once all the bios are read in, but it
 | |
|  * may trigger parity reconstruction if we had any errors along the way
 | |
|  */
 | |
| static void raid_rmw_end_io(struct bio *bio, int err)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 
 | |
| 	if (err)
 | |
| 		fail_bio_stripe(rbio, bio);
 | |
| 	else
 | |
| 		set_bio_pages_uptodate(bio);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		return;
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	/*
 | |
| 	 * this will normally call finish_rmw to start our write
 | |
| 	 * but if there are any failed stripes we'll reconstruct
 | |
| 	 * from parity first
 | |
| 	 */
 | |
| 	validate_rbio_for_rmw(rbio);
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
| 	rbio_orig_end_io(rbio, -EIO, 0);
 | |
| }
 | |
| 
 | |
| static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
 | |
| 			rmw_work, NULL, NULL);
 | |
| 
 | |
| 	btrfs_queue_work(rbio->fs_info->rmw_workers,
 | |
| 			 &rbio->work);
 | |
| }
 | |
| 
 | |
| static void async_read_rebuild(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
 | |
| 			read_rebuild_work, NULL, NULL);
 | |
| 
 | |
| 	btrfs_queue_work(rbio->fs_info->rmw_workers,
 | |
| 			 &rbio->work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the stripe must be locked by the caller.  It will
 | |
|  * unlock after all the writes are done
 | |
|  */
 | |
| static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bios_to_read = 0;
 | |
| 	struct bio_list bio_list;
 | |
| 	int ret;
 | |
| 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
 | |
| 	int pagenr;
 | |
| 	int stripe;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	ret = alloc_rbio_pages(rbio);
 | |
| 	if (ret)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	index_rbio_pages(rbio);
 | |
| 
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 	/*
 | |
| 	 * build a list of bios to read all the missing parts of this
 | |
| 	 * stripe
 | |
| 	 */
 | |
| 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
 | |
| 		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
 | |
| 			struct page *page;
 | |
| 			/*
 | |
| 			 * we want to find all the pages missing from
 | |
| 			 * the rbio and read them from the disk.  If
 | |
| 			 * page_in_rbio finds a page in the bio list
 | |
| 			 * we don't need to read it off the stripe.
 | |
| 			 */
 | |
| 			page = page_in_rbio(rbio, stripe, pagenr, 1);
 | |
| 			if (page)
 | |
| 				continue;
 | |
| 
 | |
| 			page = rbio_stripe_page(rbio, stripe, pagenr);
 | |
| 			/*
 | |
| 			 * the bio cache may have handed us an uptodate
 | |
| 			 * page.  If so, be happy and use it
 | |
| 			 */
 | |
| 			if (PageUptodate(page))
 | |
| 				continue;
 | |
| 
 | |
| 			ret = rbio_add_io_page(rbio, &bio_list, page,
 | |
| 				       stripe, pagenr, rbio->stripe_len);
 | |
| 			if (ret)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bios_to_read = bio_list_size(&bio_list);
 | |
| 	if (!bios_to_read) {
 | |
| 		/*
 | |
| 		 * this can happen if others have merged with
 | |
| 		 * us, it means there is nothing left to read.
 | |
| 		 * But if there are missing devices it may not be
 | |
| 		 * safe to do the full stripe write yet.
 | |
| 		 */
 | |
| 		goto finish;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * the bbio may be freed once we submit the last bio.  Make sure
 | |
| 	 * not to touch it after that
 | |
| 	 */
 | |
| 	atomic_set(&rbio->stripes_pending, bios_to_read);
 | |
| 	while (1) {
 | |
| 		bio = bio_list_pop(&bio_list);
 | |
| 		if (!bio)
 | |
| 			break;
 | |
| 
 | |
| 		bio->bi_private = rbio;
 | |
| 		bio->bi_end_io = raid_rmw_end_io;
 | |
| 
 | |
| 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
 | |
| 				    BTRFS_WQ_ENDIO_RAID56);
 | |
| 
 | |
| 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
 | |
| 		submit_bio(READ, bio);
 | |
| 	}
 | |
| 	/* the actual write will happen once the reads are done */
 | |
| 	return 0;
 | |
| 
 | |
| cleanup:
 | |
| 	rbio_orig_end_io(rbio, -EIO, 0);
 | |
| 	return -EIO;
 | |
| 
 | |
| finish:
 | |
| 	validate_rbio_for_rmw(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * if the upper layers pass in a full stripe, we thank them by only allocating
 | |
|  * enough pages to hold the parity, and sending it all down quickly.
 | |
|  */
 | |
| static int full_stripe_write(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = alloc_rbio_parity_pages(rbio);
 | |
| 	if (ret) {
 | |
| 		__free_raid_bio(rbio);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = lock_stripe_add(rbio);
 | |
| 	if (ret == 0)
 | |
| 		finish_rmw(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * partial stripe writes get handed over to async helpers.
 | |
|  * We're really hoping to merge a few more writes into this
 | |
|  * rbio before calculating new parity
 | |
|  */
 | |
| static int partial_stripe_write(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = lock_stripe_add(rbio);
 | |
| 	if (ret == 0)
 | |
| 		async_rmw_stripe(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sometimes while we were reading from the drive to
 | |
|  * recalculate parity, enough new bios come into create
 | |
|  * a full stripe.  So we do a check here to see if we can
 | |
|  * go directly to finish_rmw
 | |
|  */
 | |
| static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	/* head off into rmw land if we don't have a full stripe */
 | |
| 	if (!rbio_is_full(rbio))
 | |
| 		return partial_stripe_write(rbio);
 | |
| 	return full_stripe_write(rbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use plugging call backs to collect full stripes.
 | |
|  * Any time we get a partial stripe write while plugged
 | |
|  * we collect it into a list.  When the unplug comes down,
 | |
|  * we sort the list by logical block number and merge
 | |
|  * everything we can into the same rbios
 | |
|  */
 | |
| struct btrfs_plug_cb {
 | |
| 	struct blk_plug_cb cb;
 | |
| 	struct btrfs_fs_info *info;
 | |
| 	struct list_head rbio_list;
 | |
| 	struct btrfs_work work;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * rbios on the plug list are sorted for easier merging.
 | |
|  */
 | |
| static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
 | |
| {
 | |
| 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
 | |
| 						 plug_list);
 | |
| 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
 | |
| 						 plug_list);
 | |
| 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
 | |
| 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
 | |
| 
 | |
| 	if (a_sector < b_sector)
 | |
| 		return -1;
 | |
| 	if (a_sector > b_sector)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void run_plug(struct btrfs_plug_cb *plug)
 | |
| {
 | |
| 	struct btrfs_raid_bio *cur;
 | |
| 	struct btrfs_raid_bio *last = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * sort our plug list then try to merge
 | |
| 	 * everything we can in hopes of creating full
 | |
| 	 * stripes.
 | |
| 	 */
 | |
| 	list_sort(NULL, &plug->rbio_list, plug_cmp);
 | |
| 	while (!list_empty(&plug->rbio_list)) {
 | |
| 		cur = list_entry(plug->rbio_list.next,
 | |
| 				 struct btrfs_raid_bio, plug_list);
 | |
| 		list_del_init(&cur->plug_list);
 | |
| 
 | |
| 		if (rbio_is_full(cur)) {
 | |
| 			/* we have a full stripe, send it down */
 | |
| 			full_stripe_write(cur);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (last) {
 | |
| 			if (rbio_can_merge(last, cur)) {
 | |
| 				merge_rbio(last, cur);
 | |
| 				__free_raid_bio(cur);
 | |
| 				continue;
 | |
| 
 | |
| 			}
 | |
| 			__raid56_parity_write(last);
 | |
| 		}
 | |
| 		last = cur;
 | |
| 	}
 | |
| 	if (last) {
 | |
| 		__raid56_parity_write(last);
 | |
| 	}
 | |
| 	kfree(plug);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * if the unplug comes from schedule, we have to push the
 | |
|  * work off to a helper thread
 | |
|  */
 | |
| static void unplug_work(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_plug_cb *plug;
 | |
| 	plug = container_of(work, struct btrfs_plug_cb, work);
 | |
| 	run_plug(plug);
 | |
| }
 | |
| 
 | |
| static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
 | |
| {
 | |
| 	struct btrfs_plug_cb *plug;
 | |
| 	plug = container_of(cb, struct btrfs_plug_cb, cb);
 | |
| 
 | |
| 	if (from_schedule) {
 | |
| 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
 | |
| 				unplug_work, NULL, NULL);
 | |
| 		btrfs_queue_work(plug->info->rmw_workers,
 | |
| 				 &plug->work);
 | |
| 		return;
 | |
| 	}
 | |
| 	run_plug(plug);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * our main entry point for writes from the rest of the FS.
 | |
|  */
 | |
| int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
 | |
| 			struct btrfs_bio *bbio, u64 stripe_len)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	struct btrfs_plug_cb *plug = NULL;
 | |
| 	struct blk_plug_cb *cb;
 | |
| 	int ret;
 | |
| 
 | |
| 	rbio = alloc_rbio(root, bbio, stripe_len);
 | |
| 	if (IS_ERR(rbio)) {
 | |
| 		btrfs_put_bbio(bbio);
 | |
| 		return PTR_ERR(rbio);
 | |
| 	}
 | |
| 	bio_list_add(&rbio->bio_list, bio);
 | |
| 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 | |
| 	rbio->operation = BTRFS_RBIO_WRITE;
 | |
| 
 | |
| 	btrfs_bio_counter_inc_noblocked(root->fs_info);
 | |
| 	rbio->generic_bio_cnt = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * don't plug on full rbios, just get them out the door
 | |
| 	 * as quickly as we can
 | |
| 	 */
 | |
| 	if (rbio_is_full(rbio)) {
 | |
| 		ret = full_stripe_write(rbio);
 | |
| 		if (ret)
 | |
| 			btrfs_bio_counter_dec(root->fs_info);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
 | |
| 			       sizeof(*plug));
 | |
| 	if (cb) {
 | |
| 		plug = container_of(cb, struct btrfs_plug_cb, cb);
 | |
| 		if (!plug->info) {
 | |
| 			plug->info = root->fs_info;
 | |
| 			INIT_LIST_HEAD(&plug->rbio_list);
 | |
| 		}
 | |
| 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		ret = __raid56_parity_write(rbio);
 | |
| 		if (ret)
 | |
| 			btrfs_bio_counter_dec(root->fs_info);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * all parity reconstruction happens here.  We've read in everything
 | |
|  * we can find from the drives and this does the heavy lifting of
 | |
|  * sorting the good from the bad.
 | |
|  */
 | |
| static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int pagenr, stripe;
 | |
| 	void **pointers;
 | |
| 	int faila = -1, failb = -1;
 | |
| 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| 	int i;
 | |
| 
 | |
| 	pointers = kzalloc(rbio->real_stripes * sizeof(void *),
 | |
| 			   GFP_NOFS);
 | |
| 	if (!pointers) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto cleanup_io;
 | |
| 	}
 | |
| 
 | |
| 	faila = rbio->faila;
 | |
| 	failb = rbio->failb;
 | |
| 
 | |
| 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
 | |
| 		spin_lock_irq(&rbio->bio_list_lock);
 | |
| 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 | |
| 		spin_unlock_irq(&rbio->bio_list_lock);
 | |
| 	}
 | |
| 
 | |
| 	index_rbio_pages(rbio);
 | |
| 
 | |
| 	for (pagenr = 0; pagenr < nr_pages; pagenr++) {
 | |
| 		/*
 | |
| 		 * Now we just use bitmap to mark the horizontal stripes in
 | |
| 		 * which we have data when doing parity scrub.
 | |
| 		 */
 | |
| 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
 | |
| 		    !test_bit(pagenr, rbio->dbitmap))
 | |
| 			continue;
 | |
| 
 | |
| 		/* setup our array of pointers with pages
 | |
| 		 * from each stripe
 | |
| 		 */
 | |
| 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 			/*
 | |
| 			 * if we're rebuilding a read, we have to use
 | |
| 			 * pages from the bio list
 | |
| 			 */
 | |
| 			if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
 | |
| 			    (stripe == faila || stripe == failb)) {
 | |
| 				page = page_in_rbio(rbio, stripe, pagenr, 0);
 | |
| 			} else {
 | |
| 				page = rbio_stripe_page(rbio, stripe, pagenr);
 | |
| 			}
 | |
| 			pointers[stripe] = kmap(page);
 | |
| 		}
 | |
| 
 | |
| 		/* all raid6 handling here */
 | |
| 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
 | |
| 			/*
 | |
| 			 * single failure, rebuild from parity raid5
 | |
| 			 * style
 | |
| 			 */
 | |
| 			if (failb < 0) {
 | |
| 				if (faila == rbio->nr_data) {
 | |
| 					/*
 | |
| 					 * Just the P stripe has failed, without
 | |
| 					 * a bad data or Q stripe.
 | |
| 					 * TODO, we should redo the xor here.
 | |
| 					 */
 | |
| 					err = -EIO;
 | |
| 					goto cleanup;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * a single failure in raid6 is rebuilt
 | |
| 				 * in the pstripe code below
 | |
| 				 */
 | |
| 				goto pstripe;
 | |
| 			}
 | |
| 
 | |
| 			/* make sure our ps and qs are in order */
 | |
| 			if (faila > failb) {
 | |
| 				int tmp = failb;
 | |
| 				failb = faila;
 | |
| 				faila = tmp;
 | |
| 			}
 | |
| 
 | |
| 			/* if the q stripe is failed, do a pstripe reconstruction
 | |
| 			 * from the xors.
 | |
| 			 * If both the q stripe and the P stripe are failed, we're
 | |
| 			 * here due to a crc mismatch and we can't give them the
 | |
| 			 * data they want
 | |
| 			 */
 | |
| 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
 | |
| 				if (rbio->bbio->raid_map[faila] ==
 | |
| 				    RAID5_P_STRIPE) {
 | |
| 					err = -EIO;
 | |
| 					goto cleanup;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * otherwise we have one bad data stripe and
 | |
| 				 * a good P stripe.  raid5!
 | |
| 				 */
 | |
| 				goto pstripe;
 | |
| 			}
 | |
| 
 | |
| 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
 | |
| 				raid6_datap_recov(rbio->real_stripes,
 | |
| 						  PAGE_SIZE, faila, pointers);
 | |
| 			} else {
 | |
| 				raid6_2data_recov(rbio->real_stripes,
 | |
| 						  PAGE_SIZE, faila, failb,
 | |
| 						  pointers);
 | |
| 			}
 | |
| 		} else {
 | |
| 			void *p;
 | |
| 
 | |
| 			/* rebuild from P stripe here (raid5 or raid6) */
 | |
| 			BUG_ON(failb != -1);
 | |
| pstripe:
 | |
| 			/* Copy parity block into failed block to start with */
 | |
| 			memcpy(pointers[faila],
 | |
| 			       pointers[rbio->nr_data],
 | |
| 			       PAGE_CACHE_SIZE);
 | |
| 
 | |
| 			/* rearrange the pointer array */
 | |
| 			p = pointers[faila];
 | |
| 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
 | |
| 				pointers[stripe] = pointers[stripe + 1];
 | |
| 			pointers[rbio->nr_data - 1] = p;
 | |
| 
 | |
| 			/* xor in the rest */
 | |
| 			run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
 | |
| 		}
 | |
| 		/* if we're doing this rebuild as part of an rmw, go through
 | |
| 		 * and set all of our private rbio pages in the
 | |
| 		 * failed stripes as uptodate.  This way finish_rmw will
 | |
| 		 * know they can be trusted.  If this was a read reconstruction,
 | |
| 		 * other endio functions will fiddle the uptodate bits
 | |
| 		 */
 | |
| 		if (rbio->operation == BTRFS_RBIO_WRITE) {
 | |
| 			for (i = 0;  i < nr_pages; i++) {
 | |
| 				if (faila != -1) {
 | |
| 					page = rbio_stripe_page(rbio, faila, i);
 | |
| 					SetPageUptodate(page);
 | |
| 				}
 | |
| 				if (failb != -1) {
 | |
| 					page = rbio_stripe_page(rbio, failb, i);
 | |
| 					SetPageUptodate(page);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 			/*
 | |
| 			 * if we're rebuilding a read, we have to use
 | |
| 			 * pages from the bio list
 | |
| 			 */
 | |
| 			if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
 | |
| 			    (stripe == faila || stripe == failb)) {
 | |
| 				page = page_in_rbio(rbio, stripe, pagenr, 0);
 | |
| 			} else {
 | |
| 				page = rbio_stripe_page(rbio, stripe, pagenr);
 | |
| 			}
 | |
| 			kunmap(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| cleanup:
 | |
| 	kfree(pointers);
 | |
| 
 | |
| cleanup_io:
 | |
| 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
 | |
| 		if (err == 0)
 | |
| 			cache_rbio_pages(rbio);
 | |
| 		else
 | |
| 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| 
 | |
| 		rbio_orig_end_io(rbio, err, err == 0);
 | |
| 	} else if (err == 0) {
 | |
| 		rbio->faila = -1;
 | |
| 		rbio->failb = -1;
 | |
| 
 | |
| 		if (rbio->operation == BTRFS_RBIO_WRITE)
 | |
| 			finish_rmw(rbio);
 | |
| 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
 | |
| 			finish_parity_scrub(rbio, 0);
 | |
| 		else
 | |
| 			BUG();
 | |
| 	} else {
 | |
| 		rbio_orig_end_io(rbio, err, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called only for stripes we've read from disk to
 | |
|  * reconstruct the parity.
 | |
|  */
 | |
| static void raid_recover_end_io(struct bio *bio, int err)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 
 | |
| 	/*
 | |
| 	 * we only read stripe pages off the disk, set them
 | |
| 	 * up to date if there were no errors
 | |
| 	 */
 | |
| 	if (err)
 | |
| 		fail_bio_stripe(rbio, bio);
 | |
| 	else
 | |
| 		set_bio_pages_uptodate(bio);
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		return;
 | |
| 
 | |
| 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
 | |
| 		rbio_orig_end_io(rbio, -EIO, 0);
 | |
| 	else
 | |
| 		__raid_recover_end_io(rbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * reads everything we need off the disk to reconstruct
 | |
|  * the parity. endio handlers trigger final reconstruction
 | |
|  * when the IO is done.
 | |
|  *
 | |
|  * This is used both for reads from the higher layers and for
 | |
|  * parity construction required to finish a rmw cycle.
 | |
|  */
 | |
| static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bios_to_read = 0;
 | |
| 	struct bio_list bio_list;
 | |
| 	int ret;
 | |
| 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
 | |
| 	int pagenr;
 | |
| 	int stripe;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	ret = alloc_rbio_pages(rbio);
 | |
| 	if (ret)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * read everything that hasn't failed.  Thanks to the
 | |
| 	 * stripe cache, it is possible that some or all of these
 | |
| 	 * pages are going to be uptodate.
 | |
| 	 */
 | |
| 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 		if (rbio->faila == stripe || rbio->failb == stripe) {
 | |
| 			atomic_inc(&rbio->error);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
 | |
| 			struct page *p;
 | |
| 
 | |
| 			/*
 | |
| 			 * the rmw code may have already read this
 | |
| 			 * page in
 | |
| 			 */
 | |
| 			p = rbio_stripe_page(rbio, stripe, pagenr);
 | |
| 			if (PageUptodate(p))
 | |
| 				continue;
 | |
| 
 | |
| 			ret = rbio_add_io_page(rbio, &bio_list,
 | |
| 				       rbio_stripe_page(rbio, stripe, pagenr),
 | |
| 				       stripe, pagenr, rbio->stripe_len);
 | |
| 			if (ret < 0)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bios_to_read = bio_list_size(&bio_list);
 | |
| 	if (!bios_to_read) {
 | |
| 		/*
 | |
| 		 * we might have no bios to read just because the pages
 | |
| 		 * were up to date, or we might have no bios to read because
 | |
| 		 * the devices were gone.
 | |
| 		 */
 | |
| 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
 | |
| 			__raid_recover_end_io(rbio);
 | |
| 			goto out;
 | |
| 		} else {
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * the bbio may be freed once we submit the last bio.  Make sure
 | |
| 	 * not to touch it after that
 | |
| 	 */
 | |
| 	atomic_set(&rbio->stripes_pending, bios_to_read);
 | |
| 	while (1) {
 | |
| 		bio = bio_list_pop(&bio_list);
 | |
| 		if (!bio)
 | |
| 			break;
 | |
| 
 | |
| 		bio->bi_private = rbio;
 | |
| 		bio->bi_end_io = raid_recover_end_io;
 | |
| 
 | |
| 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
 | |
| 				    BTRFS_WQ_ENDIO_RAID56);
 | |
| 
 | |
| 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
 | |
| 		submit_bio(READ, bio);
 | |
| 	}
 | |
| out:
 | |
| 	return 0;
 | |
| 
 | |
| cleanup:
 | |
| 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD)
 | |
| 		rbio_orig_end_io(rbio, -EIO, 0);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the main entry point for reads from the higher layers.  This
 | |
|  * is really only called when the normal read path had a failure,
 | |
|  * so we assume the bio they send down corresponds to a failed part
 | |
|  * of the drive.
 | |
|  */
 | |
| int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
 | |
| 			  struct btrfs_bio *bbio, u64 stripe_len,
 | |
| 			  int mirror_num, int generic_io)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	int ret;
 | |
| 
 | |
| 	rbio = alloc_rbio(root, bbio, stripe_len);
 | |
| 	if (IS_ERR(rbio)) {
 | |
| 		if (generic_io)
 | |
| 			btrfs_put_bbio(bbio);
 | |
| 		return PTR_ERR(rbio);
 | |
| 	}
 | |
| 
 | |
| 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
 | |
| 	bio_list_add(&rbio->bio_list, bio);
 | |
| 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 | |
| 
 | |
| 	rbio->faila = find_logical_bio_stripe(rbio, bio);
 | |
| 	if (rbio->faila == -1) {
 | |
| 		BUG();
 | |
| 		if (generic_io)
 | |
| 			btrfs_put_bbio(bbio);
 | |
| 		kfree(rbio);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (generic_io) {
 | |
| 		btrfs_bio_counter_inc_noblocked(root->fs_info);
 | |
| 		rbio->generic_bio_cnt = 1;
 | |
| 	} else {
 | |
| 		btrfs_get_bbio(bbio);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * reconstruct from the q stripe if they are
 | |
| 	 * asking for mirror 3
 | |
| 	 */
 | |
| 	if (mirror_num == 3)
 | |
| 		rbio->failb = rbio->real_stripes - 2;
 | |
| 
 | |
| 	ret = lock_stripe_add(rbio);
 | |
| 
 | |
| 	/*
 | |
| 	 * __raid56_parity_recover will end the bio with
 | |
| 	 * any errors it hits.  We don't want to return
 | |
| 	 * its error value up the stack because our caller
 | |
| 	 * will end up calling bio_endio with any nonzero
 | |
| 	 * return
 | |
| 	 */
 | |
| 	if (ret == 0)
 | |
| 		__raid56_parity_recover(rbio);
 | |
| 	/*
 | |
| 	 * our rbio has been added to the list of
 | |
| 	 * rbios that will be handled after the
 | |
| 	 * currently lock owner is done
 | |
| 	 */
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void rmw_work(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	rbio = container_of(work, struct btrfs_raid_bio, work);
 | |
| 	raid56_rmw_stripe(rbio);
 | |
| }
 | |
| 
 | |
| static void read_rebuild_work(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	rbio = container_of(work, struct btrfs_raid_bio, work);
 | |
| 	__raid56_parity_recover(rbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following code is used to scrub/replace the parity stripe
 | |
|  *
 | |
|  * Note: We need make sure all the pages that add into the scrub/replace
 | |
|  * raid bio are correct and not be changed during the scrub/replace. That
 | |
|  * is those pages just hold metadata or file data with checksum.
 | |
|  */
 | |
| 
 | |
| struct btrfs_raid_bio *
 | |
| raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
 | |
| 			       struct btrfs_bio *bbio, u64 stripe_len,
 | |
| 			       struct btrfs_device *scrub_dev,
 | |
| 			       unsigned long *dbitmap, int stripe_nsectors)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	int i;
 | |
| 
 | |
| 	rbio = alloc_rbio(root, bbio, stripe_len);
 | |
| 	if (IS_ERR(rbio))
 | |
| 		return NULL;
 | |
| 	bio_list_add(&rbio->bio_list, bio);
 | |
| 	/*
 | |
| 	 * This is a special bio which is used to hold the completion handler
 | |
| 	 * and make the scrub rbio is similar to the other types
 | |
| 	 */
 | |
| 	ASSERT(!bio->bi_iter.bi_size);
 | |
| 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
 | |
| 
 | |
| 	for (i = 0; i < rbio->real_stripes; i++) {
 | |
| 		if (bbio->stripes[i].dev == scrub_dev) {
 | |
| 			rbio->scrubp = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Now we just support the sectorsize equals to page size */
 | |
| 	ASSERT(root->sectorsize == PAGE_SIZE);
 | |
| 	ASSERT(rbio->stripe_npages == stripe_nsectors);
 | |
| 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
 | |
| 
 | |
| 	return rbio;
 | |
| }
 | |
| 
 | |
| void raid56_parity_add_scrub_pages(struct btrfs_raid_bio *rbio,
 | |
| 				   struct page *page, u64 logical)
 | |
| {
 | |
| 	int stripe_offset;
 | |
| 	int index;
 | |
| 
 | |
| 	ASSERT(logical >= rbio->bbio->raid_map[0]);
 | |
| 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
 | |
| 				rbio->stripe_len * rbio->nr_data);
 | |
| 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
 | |
| 	index = stripe_offset >> PAGE_CACHE_SHIFT;
 | |
| 	rbio->bio_pages[index] = page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We just scrub the parity that we have correct data on the same horizontal,
 | |
|  * so we needn't allocate all pages for all the stripes.
 | |
|  */
 | |
| static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 	int bit;
 | |
| 	int index;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
 | |
| 		for (i = 0; i < rbio->real_stripes; i++) {
 | |
| 			index = i * rbio->stripe_npages + bit;
 | |
| 			if (rbio->stripe_pages[index])
 | |
| 				continue;
 | |
| 
 | |
| 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
 | |
| 			if (!page)
 | |
| 				return -ENOMEM;
 | |
| 			rbio->stripe_pages[index] = page;
 | |
| 			ClearPageUptodate(page);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * end io function used by finish_rmw.  When we finally
 | |
|  * get here, we've written a full stripe
 | |
|  */
 | |
| static void raid_write_parity_end_io(struct bio *bio, int err)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 
 | |
| 	if (err)
 | |
| 		fail_bio_stripe(rbio, bio);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		return;
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
| 	if (atomic_read(&rbio->error))
 | |
| 		err = -EIO;
 | |
| 
 | |
| 	rbio_orig_end_io(rbio, err, 0);
 | |
| }
 | |
| 
 | |
| static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 | |
| 					 int need_check)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = rbio->bbio;
 | |
| 	void *pointers[rbio->real_stripes];
 | |
| 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
 | |
| 	int nr_data = rbio->nr_data;
 | |
| 	int stripe;
 | |
| 	int pagenr;
 | |
| 	int p_stripe = -1;
 | |
| 	int q_stripe = -1;
 | |
| 	struct page *p_page = NULL;
 | |
| 	struct page *q_page = NULL;
 | |
| 	struct bio_list bio_list;
 | |
| 	struct bio *bio;
 | |
| 	int is_replace = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	if (rbio->real_stripes - rbio->nr_data == 1) {
 | |
| 		p_stripe = rbio->real_stripes - 1;
 | |
| 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
 | |
| 		p_stripe = rbio->real_stripes - 2;
 | |
| 		q_stripe = rbio->real_stripes - 1;
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
 | |
| 		is_replace = 1;
 | |
| 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because the higher layers(scrubber) are unlikely to
 | |
| 	 * use this area of the disk again soon, so don't cache
 | |
| 	 * it.
 | |
| 	 */
 | |
| 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| 
 | |
| 	if (!need_check)
 | |
| 		goto writeback;
 | |
| 
 | |
| 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
 | |
| 	if (!p_page)
 | |
| 		goto cleanup;
 | |
| 	SetPageUptodate(p_page);
 | |
| 
 | |
| 	if (q_stripe != -1) {
 | |
| 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
 | |
| 		if (!q_page) {
 | |
| 			__free_page(p_page);
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 		SetPageUptodate(q_page);
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 
 | |
| 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
 | |
| 		struct page *p;
 | |
| 		void *parity;
 | |
| 		/* first collect one page from each data stripe */
 | |
| 		for (stripe = 0; stripe < nr_data; stripe++) {
 | |
| 			p = page_in_rbio(rbio, stripe, pagenr, 0);
 | |
| 			pointers[stripe] = kmap(p);
 | |
| 		}
 | |
| 
 | |
| 		/* then add the parity stripe */
 | |
| 		pointers[stripe++] = kmap(p_page);
 | |
| 
 | |
| 		if (q_stripe != -1) {
 | |
| 
 | |
| 			/*
 | |
| 			 * raid6, add the qstripe and call the
 | |
| 			 * library function to fill in our p/q
 | |
| 			 */
 | |
| 			pointers[stripe++] = kmap(q_page);
 | |
| 
 | |
| 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
 | |
| 						pointers);
 | |
| 		} else {
 | |
| 			/* raid5 */
 | |
| 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
 | |
| 			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
 | |
| 		}
 | |
| 
 | |
| 		/* Check scrubbing pairty and repair it */
 | |
| 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
 | |
| 		parity = kmap(p);
 | |
| 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
 | |
| 			memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
 | |
| 		else
 | |
| 			/* Parity is right, needn't writeback */
 | |
| 			bitmap_clear(rbio->dbitmap, pagenr, 1);
 | |
| 		kunmap(p);
 | |
| 
 | |
| 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
 | |
| 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
 | |
| 	}
 | |
| 
 | |
| 	__free_page(p_page);
 | |
| 	if (q_page)
 | |
| 		__free_page(q_page);
 | |
| 
 | |
| writeback:
 | |
| 	/*
 | |
| 	 * time to start writing.  Make bios for everything from the
 | |
| 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
 | |
| 	 * everything else.
 | |
| 	 */
 | |
| 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
 | |
| 		ret = rbio_add_io_page(rbio, &bio_list,
 | |
| 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
 | |
| 		if (ret)
 | |
| 			goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_replace)
 | |
| 		goto submit_write;
 | |
| 
 | |
| 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
 | |
| 		ret = rbio_add_io_page(rbio, &bio_list, page,
 | |
| 				       bbio->tgtdev_map[rbio->scrubp],
 | |
| 				       pagenr, rbio->stripe_len);
 | |
| 		if (ret)
 | |
| 			goto cleanup;
 | |
| 	}
 | |
| 
 | |
| submit_write:
 | |
| 	nr_data = bio_list_size(&bio_list);
 | |
| 	if (!nr_data) {
 | |
| 		/* Every parity is right */
 | |
| 		rbio_orig_end_io(rbio, 0, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&rbio->stripes_pending, nr_data);
 | |
| 
 | |
| 	while (1) {
 | |
| 		bio = bio_list_pop(&bio_list);
 | |
| 		if (!bio)
 | |
| 			break;
 | |
| 
 | |
| 		bio->bi_private = rbio;
 | |
| 		bio->bi_end_io = raid_write_parity_end_io;
 | |
| 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
 | |
| 		submit_bio(WRITE, bio);
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 	rbio_orig_end_io(rbio, -EIO, 0);
 | |
| }
 | |
| 
 | |
| static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
 | |
| {
 | |
| 	if (stripe >= 0 && stripe < rbio->nr_data)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * While we're doing the parity check and repair, we could have errors
 | |
|  * in reading pages off the disk.  This checks for errors and if we're
 | |
|  * not able to read the page it'll trigger parity reconstruction.  The
 | |
|  * parity scrub will be finished after we've reconstructed the failed
 | |
|  * stripes
 | |
|  */
 | |
| static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	if (rbio->faila >= 0 || rbio->failb >= 0) {
 | |
| 		int dfail = 0, failp = -1;
 | |
| 
 | |
| 		if (is_data_stripe(rbio, rbio->faila))
 | |
| 			dfail++;
 | |
| 		else if (is_parity_stripe(rbio->faila))
 | |
| 			failp = rbio->faila;
 | |
| 
 | |
| 		if (is_data_stripe(rbio, rbio->failb))
 | |
| 			dfail++;
 | |
| 		else if (is_parity_stripe(rbio->failb))
 | |
| 			failp = rbio->failb;
 | |
| 
 | |
| 		/*
 | |
| 		 * Because we can not use a scrubbing parity to repair
 | |
| 		 * the data, so the capability of the repair is declined.
 | |
| 		 * (In the case of RAID5, we can not repair anything)
 | |
| 		 */
 | |
| 		if (dfail > rbio->bbio->max_errors - 1)
 | |
| 			goto cleanup;
 | |
| 
 | |
| 		/*
 | |
| 		 * If all data is good, only parity is correctly, just
 | |
| 		 * repair the parity.
 | |
| 		 */
 | |
| 		if (dfail == 0) {
 | |
| 			finish_parity_scrub(rbio, 0);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Here means we got one corrupted data stripe and one
 | |
| 		 * corrupted parity on RAID6, if the corrupted parity
 | |
| 		 * is scrubbing parity, luckly, use the other one to repair
 | |
| 		 * the data, or we can not repair the data stripe.
 | |
| 		 */
 | |
| 		if (failp != rbio->scrubp)
 | |
| 			goto cleanup;
 | |
| 
 | |
| 		__raid_recover_end_io(rbio);
 | |
| 	} else {
 | |
| 		finish_parity_scrub(rbio, 1);
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 	rbio_orig_end_io(rbio, -EIO, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * end io for the read phase of the rmw cycle.  All the bios here are physical
 | |
|  * stripe bios we've read from the disk so we can recalculate the parity of the
 | |
|  * stripe.
 | |
|  *
 | |
|  * This will usually kick off finish_rmw once all the bios are read in, but it
 | |
|  * may trigger parity reconstruction if we had any errors along the way
 | |
|  */
 | |
| static void raid56_parity_scrub_end_io(struct bio *bio, int err)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 
 | |
| 	if (err)
 | |
| 		fail_bio_stripe(rbio, bio);
 | |
| 	else
 | |
| 		set_bio_pages_uptodate(bio);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * this will normally call finish_rmw to start our write
 | |
| 	 * but if there are any failed stripes we'll reconstruct
 | |
| 	 * from parity first
 | |
| 	 */
 | |
| 	validate_rbio_for_parity_scrub(rbio);
 | |
| }
 | |
| 
 | |
| static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bios_to_read = 0;
 | |
| 	struct bio_list bio_list;
 | |
| 	int ret;
 | |
| 	int pagenr;
 | |
| 	int stripe;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	ret = alloc_rbio_essential_pages(rbio);
 | |
| 	if (ret)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	atomic_set(&rbio->error, 0);
 | |
| 	/*
 | |
| 	 * build a list of bios to read all the missing parts of this
 | |
| 	 * stripe
 | |
| 	 */
 | |
| 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 | |
| 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
 | |
| 			struct page *page;
 | |
| 			/*
 | |
| 			 * we want to find all the pages missing from
 | |
| 			 * the rbio and read them from the disk.  If
 | |
| 			 * page_in_rbio finds a page in the bio list
 | |
| 			 * we don't need to read it off the stripe.
 | |
| 			 */
 | |
| 			page = page_in_rbio(rbio, stripe, pagenr, 1);
 | |
| 			if (page)
 | |
| 				continue;
 | |
| 
 | |
| 			page = rbio_stripe_page(rbio, stripe, pagenr);
 | |
| 			/*
 | |
| 			 * the bio cache may have handed us an uptodate
 | |
| 			 * page.  If so, be happy and use it
 | |
| 			 */
 | |
| 			if (PageUptodate(page))
 | |
| 				continue;
 | |
| 
 | |
| 			ret = rbio_add_io_page(rbio, &bio_list, page,
 | |
| 				       stripe, pagenr, rbio->stripe_len);
 | |
| 			if (ret)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bios_to_read = bio_list_size(&bio_list);
 | |
| 	if (!bios_to_read) {
 | |
| 		/*
 | |
| 		 * this can happen if others have merged with
 | |
| 		 * us, it means there is nothing left to read.
 | |
| 		 * But if there are missing devices it may not be
 | |
| 		 * safe to do the full stripe write yet.
 | |
| 		 */
 | |
| 		goto finish;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * the bbio may be freed once we submit the last bio.  Make sure
 | |
| 	 * not to touch it after that
 | |
| 	 */
 | |
| 	atomic_set(&rbio->stripes_pending, bios_to_read);
 | |
| 	while (1) {
 | |
| 		bio = bio_list_pop(&bio_list);
 | |
| 		if (!bio)
 | |
| 			break;
 | |
| 
 | |
| 		bio->bi_private = rbio;
 | |
| 		bio->bi_end_io = raid56_parity_scrub_end_io;
 | |
| 
 | |
| 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
 | |
| 				    BTRFS_WQ_ENDIO_RAID56);
 | |
| 
 | |
| 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
 | |
| 		submit_bio(READ, bio);
 | |
| 	}
 | |
| 	/* the actual write will happen once the reads are done */
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 	rbio_orig_end_io(rbio, -EIO, 0);
 | |
| 	return;
 | |
| 
 | |
| finish:
 | |
| 	validate_rbio_for_parity_scrub(rbio);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_work(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	rbio = container_of(work, struct btrfs_raid_bio, work);
 | |
| 	raid56_parity_scrub_stripe(rbio);
 | |
| }
 | |
| 
 | |
| static void async_scrub_parity(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
 | |
| 			scrub_parity_work, NULL, NULL);
 | |
| 
 | |
| 	btrfs_queue_work(rbio->fs_info->rmw_workers,
 | |
| 			 &rbio->work);
 | |
| }
 | |
| 
 | |
| void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	if (!lock_stripe_add(rbio))
 | |
| 		async_scrub_parity(rbio);
 | |
| }
 |