 2b9fb532d4
			
		
	
	
	2b9fb532d4
	
	
	
		
			
			Pull btrfs updates from Chris Mason:
 "This pull is mostly cleanups and fixes:
   - The raid5/6 cleanups from Zhao Lei fixup some long standing warts
     in the code and add improvements on top of the scrubbing support
     from 3.19.
   - Josef has round one of our ENOSPC fixes coming from large btrfs
     clusters here at FB.
   - Dave Sterba continues a long series of cleanups (thanks Dave), and
     Filipe continues hammering on corner cases in fsync and others
  This all was held up a little trying to track down a use-after-free in
  btrfs raid5/6.  It's not clear yet if this is just made easier to
  trigger with this pull or if its a new bug from the raid5/6 cleanups.
  Dave Sterba is the only one to trigger it so far, but he has a
  consistent way to reproduce, so we'll get it nailed shortly"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (68 commits)
  Btrfs: don't remove extents and xattrs when logging new names
  Btrfs: fix fsync data loss after adding hard link to inode
  Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group
  Btrfs: account for large extents with enospc
  Btrfs: don't set and clear delalloc for O_DIRECT writes
  Btrfs: only adjust outstanding_extents when we do a short write
  btrfs: Fix out-of-space bug
  Btrfs: scrub, fix sleep in atomic context
  Btrfs: fix scheduler warning when syncing log
  Btrfs: Remove unnecessary placeholder in btrfs_err_code
  btrfs: cleanup init for list in free-space-cache
  btrfs: delete chunk allocation attemp when setting block group ro
  btrfs: clear bio reference after submit_one_bio()
  Btrfs: fix scrub race leading to use-after-free
  Btrfs: add missing cleanup on sysfs init failure
  Btrfs: fix race between transaction commit and empty block group removal
  btrfs: add more checks to btrfs_read_sys_array
  btrfs: cleanup, rename a few variables in btrfs_read_sys_array
  btrfs: add checks for sys_chunk_array sizes
  btrfs: more superblock checks, lower bounds on devices and sectorsize/nodesize
  ...
		
	
			
		
			
				
	
	
		
			9758 lines
		
	
	
	
		
			261 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			9758 lines
		
	
	
	
		
			261 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| #include <linux/sched.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/percpu_counter.h>
 | |
| #include "hash.h"
 | |
| #include "tree-log.h"
 | |
| #include "disk-io.h"
 | |
| #include "print-tree.h"
 | |
| #include "volumes.h"
 | |
| #include "raid56.h"
 | |
| #include "locking.h"
 | |
| #include "free-space-cache.h"
 | |
| #include "math.h"
 | |
| #include "sysfs.h"
 | |
| #include "qgroup.h"
 | |
| 
 | |
| #undef SCRAMBLE_DELAYED_REFS
 | |
| 
 | |
| /*
 | |
|  * control flags for do_chunk_alloc's force field
 | |
|  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
 | |
|  * if we really need one.
 | |
|  *
 | |
|  * CHUNK_ALLOC_LIMITED means to only try and allocate one
 | |
|  * if we have very few chunks already allocated.  This is
 | |
|  * used as part of the clustering code to help make sure
 | |
|  * we have a good pool of storage to cluster in, without
 | |
|  * filling the FS with empty chunks
 | |
|  *
 | |
|  * CHUNK_ALLOC_FORCE means it must try to allocate one
 | |
|  *
 | |
|  */
 | |
| enum {
 | |
| 	CHUNK_ALLOC_NO_FORCE = 0,
 | |
| 	CHUNK_ALLOC_LIMITED = 1,
 | |
| 	CHUNK_ALLOC_FORCE = 2,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Control how reservations are dealt with.
 | |
|  *
 | |
|  * RESERVE_FREE - freeing a reservation.
 | |
|  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
 | |
|  *   ENOSPC accounting
 | |
|  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
 | |
|  *   bytes_may_use as the ENOSPC accounting is done elsewhere
 | |
|  */
 | |
| enum {
 | |
| 	RESERVE_FREE = 0,
 | |
| 	RESERVE_ALLOC = 1,
 | |
| 	RESERVE_ALLOC_NO_ACCOUNT = 2,
 | |
| };
 | |
| 
 | |
| static int update_block_group(struct btrfs_trans_handle *trans,
 | |
| 			      struct btrfs_root *root, u64 bytenr,
 | |
| 			      u64 num_bytes, int alloc);
 | |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root,
 | |
| 				u64 bytenr, u64 num_bytes, u64 parent,
 | |
| 				u64 root_objectid, u64 owner_objectid,
 | |
| 				u64 owner_offset, int refs_to_drop,
 | |
| 				struct btrfs_delayed_extent_op *extra_op,
 | |
| 				int no_quota);
 | |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
 | |
| 				    struct extent_buffer *leaf,
 | |
| 				    struct btrfs_extent_item *ei);
 | |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      u64 parent, u64 root_objectid,
 | |
| 				      u64 flags, u64 owner, u64 offset,
 | |
| 				      struct btrfs_key *ins, int ref_mod);
 | |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_root *root,
 | |
| 				     u64 parent, u64 root_objectid,
 | |
| 				     u64 flags, struct btrfs_disk_key *key,
 | |
| 				     int level, struct btrfs_key *ins,
 | |
| 				     int no_quota);
 | |
| static int do_chunk_alloc(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *extent_root, u64 flags,
 | |
| 			  int force);
 | |
| static int find_next_key(struct btrfs_path *path, int level,
 | |
| 			 struct btrfs_key *key);
 | |
| static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
 | |
| 			    int dump_block_groups);
 | |
| static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
 | |
| 				       u64 num_bytes, int reserve,
 | |
| 				       int delalloc);
 | |
| static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
 | |
| 			       u64 num_bytes);
 | |
| int btrfs_pin_extent(struct btrfs_root *root,
 | |
| 		     u64 bytenr, u64 num_bytes, int reserved);
 | |
| 
 | |
| static noinline int
 | |
| block_group_cache_done(struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	smp_mb();
 | |
| 	return cache->cached == BTRFS_CACHE_FINISHED ||
 | |
| 		cache->cached == BTRFS_CACHE_ERROR;
 | |
| }
 | |
| 
 | |
| static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
 | |
| {
 | |
| 	return (cache->flags & bits) == bits;
 | |
| }
 | |
| 
 | |
| static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	atomic_inc(&cache->count);
 | |
| }
 | |
| 
 | |
| void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&cache->count)) {
 | |
| 		WARN_ON(cache->pinned > 0);
 | |
| 		WARN_ON(cache->reserved > 0);
 | |
| 		kfree(cache->free_space_ctl);
 | |
| 		kfree(cache);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this adds the block group to the fs_info rb tree for the block group
 | |
|  * cache
 | |
|  */
 | |
| static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 | |
| 				struct btrfs_block_group_cache *block_group)
 | |
| {
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 
 | |
| 	spin_lock(&info->block_group_cache_lock);
 | |
| 	p = &info->block_group_cache_tree.rb_node;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		cache = rb_entry(parent, struct btrfs_block_group_cache,
 | |
| 				 cache_node);
 | |
| 		if (block_group->key.objectid < cache->key.objectid) {
 | |
| 			p = &(*p)->rb_left;
 | |
| 		} else if (block_group->key.objectid > cache->key.objectid) {
 | |
| 			p = &(*p)->rb_right;
 | |
| 		} else {
 | |
| 			spin_unlock(&info->block_group_cache_lock);
 | |
| 			return -EEXIST;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&block_group->cache_node, parent, p);
 | |
| 	rb_insert_color(&block_group->cache_node,
 | |
| 			&info->block_group_cache_tree);
 | |
| 
 | |
| 	if (info->first_logical_byte > block_group->key.objectid)
 | |
| 		info->first_logical_byte = block_group->key.objectid;
 | |
| 
 | |
| 	spin_unlock(&info->block_group_cache_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This will return the block group at or after bytenr if contains is 0, else
 | |
|  * it will return the block group that contains the bytenr
 | |
|  */
 | |
| static struct btrfs_block_group_cache *
 | |
| block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
 | |
| 			      int contains)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache, *ret = NULL;
 | |
| 	struct rb_node *n;
 | |
| 	u64 end, start;
 | |
| 
 | |
| 	spin_lock(&info->block_group_cache_lock);
 | |
| 	n = info->block_group_cache_tree.rb_node;
 | |
| 
 | |
| 	while (n) {
 | |
| 		cache = rb_entry(n, struct btrfs_block_group_cache,
 | |
| 				 cache_node);
 | |
| 		end = cache->key.objectid + cache->key.offset - 1;
 | |
| 		start = cache->key.objectid;
 | |
| 
 | |
| 		if (bytenr < start) {
 | |
| 			if (!contains && (!ret || start < ret->key.objectid))
 | |
| 				ret = cache;
 | |
| 			n = n->rb_left;
 | |
| 		} else if (bytenr > start) {
 | |
| 			if (contains && bytenr <= end) {
 | |
| 				ret = cache;
 | |
| 				break;
 | |
| 			}
 | |
| 			n = n->rb_right;
 | |
| 		} else {
 | |
| 			ret = cache;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (ret) {
 | |
| 		btrfs_get_block_group(ret);
 | |
| 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
 | |
| 			info->first_logical_byte = ret->key.objectid;
 | |
| 	}
 | |
| 	spin_unlock(&info->block_group_cache_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int add_excluded_extent(struct btrfs_root *root,
 | |
| 			       u64 start, u64 num_bytes)
 | |
| {
 | |
| 	u64 end = start + num_bytes - 1;
 | |
| 	set_extent_bits(&root->fs_info->freed_extents[0],
 | |
| 			start, end, EXTENT_UPTODATE, GFP_NOFS);
 | |
| 	set_extent_bits(&root->fs_info->freed_extents[1],
 | |
| 			start, end, EXTENT_UPTODATE, GFP_NOFS);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_excluded_extents(struct btrfs_root *root,
 | |
| 				  struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	u64 start, end;
 | |
| 
 | |
| 	start = cache->key.objectid;
 | |
| 	end = start + cache->key.offset - 1;
 | |
| 
 | |
| 	clear_extent_bits(&root->fs_info->freed_extents[0],
 | |
| 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
 | |
| 	clear_extent_bits(&root->fs_info->freed_extents[1],
 | |
| 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
 | |
| }
 | |
| 
 | |
| static int exclude_super_stripes(struct btrfs_root *root,
 | |
| 				 struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	u64 bytenr;
 | |
| 	u64 *logical;
 | |
| 	int stripe_len;
 | |
| 	int i, nr, ret;
 | |
| 
 | |
| 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
 | |
| 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
 | |
| 		cache->bytes_super += stripe_len;
 | |
| 		ret = add_excluded_extent(root, cache->key.objectid,
 | |
| 					  stripe_len);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 | |
| 		bytenr = btrfs_sb_offset(i);
 | |
| 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
 | |
| 				       cache->key.objectid, bytenr,
 | |
| 				       0, &logical, &nr, &stripe_len);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		while (nr--) {
 | |
| 			u64 start, len;
 | |
| 
 | |
| 			if (logical[nr] > cache->key.objectid +
 | |
| 			    cache->key.offset)
 | |
| 				continue;
 | |
| 
 | |
| 			if (logical[nr] + stripe_len <= cache->key.objectid)
 | |
| 				continue;
 | |
| 
 | |
| 			start = logical[nr];
 | |
| 			if (start < cache->key.objectid) {
 | |
| 				start = cache->key.objectid;
 | |
| 				len = (logical[nr] + stripe_len) - start;
 | |
| 			} else {
 | |
| 				len = min_t(u64, stripe_len,
 | |
| 					    cache->key.objectid +
 | |
| 					    cache->key.offset - start);
 | |
| 			}
 | |
| 
 | |
| 			cache->bytes_super += len;
 | |
| 			ret = add_excluded_extent(root, start, len);
 | |
| 			if (ret) {
 | |
| 				kfree(logical);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		kfree(logical);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct btrfs_caching_control *
 | |
| get_caching_control(struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	struct btrfs_caching_control *ctl;
 | |
| 
 | |
| 	spin_lock(&cache->lock);
 | |
| 	if (!cache->caching_ctl) {
 | |
| 		spin_unlock(&cache->lock);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ctl = cache->caching_ctl;
 | |
| 	atomic_inc(&ctl->count);
 | |
| 	spin_unlock(&cache->lock);
 | |
| 	return ctl;
 | |
| }
 | |
| 
 | |
| static void put_caching_control(struct btrfs_caching_control *ctl)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&ctl->count))
 | |
| 		kfree(ctl);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is only called by cache_block_group, since we could have freed extents
 | |
|  * we need to check the pinned_extents for any extents that can't be used yet
 | |
|  * since their free space will be released as soon as the transaction commits.
 | |
|  */
 | |
| static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
 | |
| 			      struct btrfs_fs_info *info, u64 start, u64 end)
 | |
| {
 | |
| 	u64 extent_start, extent_end, size, total_added = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		ret = find_first_extent_bit(info->pinned_extents, start,
 | |
| 					    &extent_start, &extent_end,
 | |
| 					    EXTENT_DIRTY | EXTENT_UPTODATE,
 | |
| 					    NULL);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		if (extent_start <= start) {
 | |
| 			start = extent_end + 1;
 | |
| 		} else if (extent_start > start && extent_start < end) {
 | |
| 			size = extent_start - start;
 | |
| 			total_added += size;
 | |
| 			ret = btrfs_add_free_space(block_group, start,
 | |
| 						   size);
 | |
| 			BUG_ON(ret); /* -ENOMEM or logic error */
 | |
| 			start = extent_end + 1;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (start < end) {
 | |
| 		size = end - start;
 | |
| 		total_added += size;
 | |
| 		ret = btrfs_add_free_space(block_group, start, size);
 | |
| 		BUG_ON(ret); /* -ENOMEM or logic error */
 | |
| 	}
 | |
| 
 | |
| 	return total_added;
 | |
| }
 | |
| 
 | |
| static noinline void caching_thread(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *block_group;
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	struct btrfs_caching_control *caching_ctl;
 | |
| 	struct btrfs_root *extent_root;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 total_found = 0;
 | |
| 	u64 last = 0;
 | |
| 	u32 nritems;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
 | |
| 	block_group = caching_ctl->block_group;
 | |
| 	fs_info = block_group->fs_info;
 | |
| 	extent_root = fs_info->extent_root;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		goto out;
 | |
| 
 | |
| 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to deadlock with somebody trying to allocate a new
 | |
| 	 * extent for the extent root while also trying to search the extent
 | |
| 	 * root to add free space.  So we skip locking and search the commit
 | |
| 	 * root, since its read-only
 | |
| 	 */
 | |
| 	path->skip_locking = 1;
 | |
| 	path->search_commit_root = 1;
 | |
| 	path->reada = 1;
 | |
| 
 | |
| 	key.objectid = last;
 | |
| 	key.offset = 0;
 | |
| 	key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| again:
 | |
| 	mutex_lock(&caching_ctl->mutex);
 | |
| 	/* need to make sure the commit_root doesn't disappear */
 | |
| 	down_read(&fs_info->commit_root_sem);
 | |
| 
 | |
| next:
 | |
| 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	nritems = btrfs_header_nritems(leaf);
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (btrfs_fs_closing(fs_info) > 1) {
 | |
| 			last = (u64)-1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (path->slots[0] < nritems) {
 | |
| 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 		} else {
 | |
| 			ret = find_next_key(path, 0, &key);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 
 | |
| 			if (need_resched() ||
 | |
| 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
 | |
| 				caching_ctl->progress = last;
 | |
| 				btrfs_release_path(path);
 | |
| 				up_read(&fs_info->commit_root_sem);
 | |
| 				mutex_unlock(&caching_ctl->mutex);
 | |
| 				cond_resched();
 | |
| 				goto again;
 | |
| 			}
 | |
| 
 | |
| 			ret = btrfs_next_leaf(extent_root, path);
 | |
| 			if (ret < 0)
 | |
| 				goto err;
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			leaf = path->nodes[0];
 | |
| 			nritems = btrfs_header_nritems(leaf);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (key.objectid < last) {
 | |
| 			key.objectid = last;
 | |
| 			key.offset = 0;
 | |
| 			key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 
 | |
| 			caching_ctl->progress = last;
 | |
| 			btrfs_release_path(path);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		if (key.objectid < block_group->key.objectid) {
 | |
| 			path->slots[0]++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (key.objectid >= block_group->key.objectid +
 | |
| 		    block_group->key.offset)
 | |
| 			break;
 | |
| 
 | |
| 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 | |
| 		    key.type == BTRFS_METADATA_ITEM_KEY) {
 | |
| 			total_found += add_new_free_space(block_group,
 | |
| 							  fs_info, last,
 | |
| 							  key.objectid);
 | |
| 			if (key.type == BTRFS_METADATA_ITEM_KEY)
 | |
| 				last = key.objectid +
 | |
| 					fs_info->tree_root->nodesize;
 | |
| 			else
 | |
| 				last = key.objectid + key.offset;
 | |
| 
 | |
| 			if (total_found > (1024 * 1024 * 2)) {
 | |
| 				total_found = 0;
 | |
| 				wake_up(&caching_ctl->wait);
 | |
| 			}
 | |
| 		}
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 
 | |
| 	total_found += add_new_free_space(block_group, fs_info, last,
 | |
| 					  block_group->key.objectid +
 | |
| 					  block_group->key.offset);
 | |
| 	caching_ctl->progress = (u64)-1;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	block_group->caching_ctl = NULL;
 | |
| 	block_group->cached = BTRFS_CACHE_FINISHED;
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| err:
 | |
| 	btrfs_free_path(path);
 | |
| 	up_read(&fs_info->commit_root_sem);
 | |
| 
 | |
| 	free_excluded_extents(extent_root, block_group);
 | |
| 
 | |
| 	mutex_unlock(&caching_ctl->mutex);
 | |
| out:
 | |
| 	if (ret) {
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		block_group->caching_ctl = NULL;
 | |
| 		block_group->cached = BTRFS_CACHE_ERROR;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 	}
 | |
| 	wake_up(&caching_ctl->wait);
 | |
| 
 | |
| 	put_caching_control(caching_ctl);
 | |
| 	btrfs_put_block_group(block_group);
 | |
| }
 | |
| 
 | |
| static int cache_block_group(struct btrfs_block_group_cache *cache,
 | |
| 			     int load_cache_only)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	struct btrfs_fs_info *fs_info = cache->fs_info;
 | |
| 	struct btrfs_caching_control *caching_ctl;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 | |
| 	if (!caching_ctl)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&caching_ctl->list);
 | |
| 	mutex_init(&caching_ctl->mutex);
 | |
| 	init_waitqueue_head(&caching_ctl->wait);
 | |
| 	caching_ctl->block_group = cache;
 | |
| 	caching_ctl->progress = cache->key.objectid;
 | |
| 	atomic_set(&caching_ctl->count, 1);
 | |
| 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
 | |
| 			caching_thread, NULL, NULL);
 | |
| 
 | |
| 	spin_lock(&cache->lock);
 | |
| 	/*
 | |
| 	 * This should be a rare occasion, but this could happen I think in the
 | |
| 	 * case where one thread starts to load the space cache info, and then
 | |
| 	 * some other thread starts a transaction commit which tries to do an
 | |
| 	 * allocation while the other thread is still loading the space cache
 | |
| 	 * info.  The previous loop should have kept us from choosing this block
 | |
| 	 * group, but if we've moved to the state where we will wait on caching
 | |
| 	 * block groups we need to first check if we're doing a fast load here,
 | |
| 	 * so we can wait for it to finish, otherwise we could end up allocating
 | |
| 	 * from a block group who's cache gets evicted for one reason or
 | |
| 	 * another.
 | |
| 	 */
 | |
| 	while (cache->cached == BTRFS_CACHE_FAST) {
 | |
| 		struct btrfs_caching_control *ctl;
 | |
| 
 | |
| 		ctl = cache->caching_ctl;
 | |
| 		atomic_inc(&ctl->count);
 | |
| 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 | |
| 		spin_unlock(&cache->lock);
 | |
| 
 | |
| 		schedule();
 | |
| 
 | |
| 		finish_wait(&ctl->wait, &wait);
 | |
| 		put_caching_control(ctl);
 | |
| 		spin_lock(&cache->lock);
 | |
| 	}
 | |
| 
 | |
| 	if (cache->cached != BTRFS_CACHE_NO) {
 | |
| 		spin_unlock(&cache->lock);
 | |
| 		kfree(caching_ctl);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	WARN_ON(cache->caching_ctl);
 | |
| 	cache->caching_ctl = caching_ctl;
 | |
| 	cache->cached = BTRFS_CACHE_FAST;
 | |
| 	spin_unlock(&cache->lock);
 | |
| 
 | |
| 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
 | |
| 		mutex_lock(&caching_ctl->mutex);
 | |
| 		ret = load_free_space_cache(fs_info, cache);
 | |
| 
 | |
| 		spin_lock(&cache->lock);
 | |
| 		if (ret == 1) {
 | |
| 			cache->caching_ctl = NULL;
 | |
| 			cache->cached = BTRFS_CACHE_FINISHED;
 | |
| 			cache->last_byte_to_unpin = (u64)-1;
 | |
| 			caching_ctl->progress = (u64)-1;
 | |
| 		} else {
 | |
| 			if (load_cache_only) {
 | |
| 				cache->caching_ctl = NULL;
 | |
| 				cache->cached = BTRFS_CACHE_NO;
 | |
| 			} else {
 | |
| 				cache->cached = BTRFS_CACHE_STARTED;
 | |
| 				cache->has_caching_ctl = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&cache->lock);
 | |
| 		mutex_unlock(&caching_ctl->mutex);
 | |
| 
 | |
| 		wake_up(&caching_ctl->wait);
 | |
| 		if (ret == 1) {
 | |
| 			put_caching_control(caching_ctl);
 | |
| 			free_excluded_extents(fs_info->extent_root, cache);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We are not going to do the fast caching, set cached to the
 | |
| 		 * appropriate value and wakeup any waiters.
 | |
| 		 */
 | |
| 		spin_lock(&cache->lock);
 | |
| 		if (load_cache_only) {
 | |
| 			cache->caching_ctl = NULL;
 | |
| 			cache->cached = BTRFS_CACHE_NO;
 | |
| 		} else {
 | |
| 			cache->cached = BTRFS_CACHE_STARTED;
 | |
| 			cache->has_caching_ctl = 1;
 | |
| 		}
 | |
| 		spin_unlock(&cache->lock);
 | |
| 		wake_up(&caching_ctl->wait);
 | |
| 	}
 | |
| 
 | |
| 	if (load_cache_only) {
 | |
| 		put_caching_control(caching_ctl);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	down_write(&fs_info->commit_root_sem);
 | |
| 	atomic_inc(&caching_ctl->count);
 | |
| 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 | |
| 	up_write(&fs_info->commit_root_sem);
 | |
| 
 | |
| 	btrfs_get_block_group(cache);
 | |
| 
 | |
| 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return the block group that starts at or after bytenr
 | |
|  */
 | |
| static struct btrfs_block_group_cache *
 | |
| btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 
 | |
| 	cache = block_group_cache_tree_search(info, bytenr, 0);
 | |
| 
 | |
| 	return cache;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return the block group that contains the given bytenr
 | |
|  */
 | |
| struct btrfs_block_group_cache *btrfs_lookup_block_group(
 | |
| 						 struct btrfs_fs_info *info,
 | |
| 						 u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 
 | |
| 	cache = block_group_cache_tree_search(info, bytenr, 1);
 | |
| 
 | |
| 	return cache;
 | |
| }
 | |
| 
 | |
| static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
 | |
| 						  u64 flags)
 | |
| {
 | |
| 	struct list_head *head = &info->space_info;
 | |
| 	struct btrfs_space_info *found;
 | |
| 
 | |
| 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(found, head, list) {
 | |
| 		if (found->flags & flags) {
 | |
| 			rcu_read_unlock();
 | |
| 			return found;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * after adding space to the filesystem, we need to clear the full flags
 | |
|  * on all the space infos.
 | |
|  */
 | |
| void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct list_head *head = &info->space_info;
 | |
| 	struct btrfs_space_info *found;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(found, head, list)
 | |
| 		found->full = 0;
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* simple helper to search for an existing data extent at a given offset */
 | |
| int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_path *path;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = start;
 | |
| 	key.offset = len;
 | |
| 	key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
 | |
| 				0, 0);
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to lookup reference count and flags of a tree block.
 | |
|  *
 | |
|  * the head node for delayed ref is used to store the sum of all the
 | |
|  * reference count modifications queued up in the rbtree. the head
 | |
|  * node may also store the extent flags to set. This way you can check
 | |
|  * to see what the reference count and extent flags would be if all of
 | |
|  * the delayed refs are not processed.
 | |
|  */
 | |
| int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root, u64 bytenr,
 | |
| 			     u64 offset, int metadata, u64 *refs, u64 *flags)
 | |
| {
 | |
| 	struct btrfs_delayed_ref_head *head;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	u32 item_size;
 | |
| 	u64 num_refs;
 | |
| 	u64 extent_flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we don't have skinny metadata, don't bother doing anything
 | |
| 	 * different
 | |
| 	 */
 | |
| 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
 | |
| 		offset = root->nodesize;
 | |
| 		metadata = 0;
 | |
| 	}
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!trans) {
 | |
| 		path->skip_locking = 1;
 | |
| 		path->search_commit_root = 1;
 | |
| 	}
 | |
| 
 | |
| search_again:
 | |
| 	key.objectid = bytenr;
 | |
| 	key.offset = offset;
 | |
| 	if (metadata)
 | |
| 		key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 	else
 | |
| 		key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
 | |
| 				&key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 | |
| 		if (path->slots[0]) {
 | |
| 			path->slots[0]--;
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 					      path->slots[0]);
 | |
| 			if (key.objectid == bytenr &&
 | |
| 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 | |
| 			    key.offset == root->nodesize)
 | |
| 				ret = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0) {
 | |
| 		leaf = path->nodes[0];
 | |
| 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 		if (item_size >= sizeof(*ei)) {
 | |
| 			ei = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					    struct btrfs_extent_item);
 | |
| 			num_refs = btrfs_extent_refs(leaf, ei);
 | |
| 			extent_flags = btrfs_extent_flags(leaf, ei);
 | |
| 		} else {
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 			struct btrfs_extent_item_v0 *ei0;
 | |
| 			BUG_ON(item_size != sizeof(*ei0));
 | |
| 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					     struct btrfs_extent_item_v0);
 | |
| 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
 | |
| 			/* FIXME: this isn't correct for data */
 | |
| 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 | |
| #else
 | |
| 			BUG();
 | |
| #endif
 | |
| 		}
 | |
| 		BUG_ON(num_refs == 0);
 | |
| 	} else {
 | |
| 		num_refs = 0;
 | |
| 		extent_flags = 0;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!trans)
 | |
| 		goto out;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 	spin_lock(&delayed_refs->lock);
 | |
| 	head = btrfs_find_delayed_ref_head(trans, bytenr);
 | |
| 	if (head) {
 | |
| 		if (!mutex_trylock(&head->mutex)) {
 | |
| 			atomic_inc(&head->node.refs);
 | |
| 			spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 			btrfs_release_path(path);
 | |
| 
 | |
| 			/*
 | |
| 			 * Mutex was contended, block until it's released and try
 | |
| 			 * again
 | |
| 			 */
 | |
| 			mutex_lock(&head->mutex);
 | |
| 			mutex_unlock(&head->mutex);
 | |
| 			btrfs_put_delayed_ref(&head->node);
 | |
| 			goto search_again;
 | |
| 		}
 | |
| 		spin_lock(&head->lock);
 | |
| 		if (head->extent_op && head->extent_op->update_flags)
 | |
| 			extent_flags |= head->extent_op->flags_to_set;
 | |
| 		else
 | |
| 			BUG_ON(num_refs == 0);
 | |
| 
 | |
| 		num_refs += head->node.ref_mod;
 | |
| 		spin_unlock(&head->lock);
 | |
| 		mutex_unlock(&head->mutex);
 | |
| 	}
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| out:
 | |
| 	WARN_ON(num_refs == 0);
 | |
| 	if (refs)
 | |
| 		*refs = num_refs;
 | |
| 	if (flags)
 | |
| 		*flags = extent_flags;
 | |
| out_free:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Back reference rules.  Back refs have three main goals:
 | |
|  *
 | |
|  * 1) differentiate between all holders of references to an extent so that
 | |
|  *    when a reference is dropped we can make sure it was a valid reference
 | |
|  *    before freeing the extent.
 | |
|  *
 | |
|  * 2) Provide enough information to quickly find the holders of an extent
 | |
|  *    if we notice a given block is corrupted or bad.
 | |
|  *
 | |
|  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 | |
|  *    maintenance.  This is actually the same as #2, but with a slightly
 | |
|  *    different use case.
 | |
|  *
 | |
|  * There are two kinds of back refs. The implicit back refs is optimized
 | |
|  * for pointers in non-shared tree blocks. For a given pointer in a block,
 | |
|  * back refs of this kind provide information about the block's owner tree
 | |
|  * and the pointer's key. These information allow us to find the block by
 | |
|  * b-tree searching. The full back refs is for pointers in tree blocks not
 | |
|  * referenced by their owner trees. The location of tree block is recorded
 | |
|  * in the back refs. Actually the full back refs is generic, and can be
 | |
|  * used in all cases the implicit back refs is used. The major shortcoming
 | |
|  * of the full back refs is its overhead. Every time a tree block gets
 | |
|  * COWed, we have to update back refs entry for all pointers in it.
 | |
|  *
 | |
|  * For a newly allocated tree block, we use implicit back refs for
 | |
|  * pointers in it. This means most tree related operations only involve
 | |
|  * implicit back refs. For a tree block created in old transaction, the
 | |
|  * only way to drop a reference to it is COW it. So we can detect the
 | |
|  * event that tree block loses its owner tree's reference and do the
 | |
|  * back refs conversion.
 | |
|  *
 | |
|  * When a tree block is COW'd through a tree, there are four cases:
 | |
|  *
 | |
|  * The reference count of the block is one and the tree is the block's
 | |
|  * owner tree. Nothing to do in this case.
 | |
|  *
 | |
|  * The reference count of the block is one and the tree is not the
 | |
|  * block's owner tree. In this case, full back refs is used for pointers
 | |
|  * in the block. Remove these full back refs, add implicit back refs for
 | |
|  * every pointers in the new block.
 | |
|  *
 | |
|  * The reference count of the block is greater than one and the tree is
 | |
|  * the block's owner tree. In this case, implicit back refs is used for
 | |
|  * pointers in the block. Add full back refs for every pointers in the
 | |
|  * block, increase lower level extents' reference counts. The original
 | |
|  * implicit back refs are entailed to the new block.
 | |
|  *
 | |
|  * The reference count of the block is greater than one and the tree is
 | |
|  * not the block's owner tree. Add implicit back refs for every pointer in
 | |
|  * the new block, increase lower level extents' reference count.
 | |
|  *
 | |
|  * Back Reference Key composing:
 | |
|  *
 | |
|  * The key objectid corresponds to the first byte in the extent,
 | |
|  * The key type is used to differentiate between types of back refs.
 | |
|  * There are different meanings of the key offset for different types
 | |
|  * of back refs.
 | |
|  *
 | |
|  * File extents can be referenced by:
 | |
|  *
 | |
|  * - multiple snapshots, subvolumes, or different generations in one subvol
 | |
|  * - different files inside a single subvolume
 | |
|  * - different offsets inside a file (bookend extents in file.c)
 | |
|  *
 | |
|  * The extent ref structure for the implicit back refs has fields for:
 | |
|  *
 | |
|  * - Objectid of the subvolume root
 | |
|  * - objectid of the file holding the reference
 | |
|  * - original offset in the file
 | |
|  * - how many bookend extents
 | |
|  *
 | |
|  * The key offset for the implicit back refs is hash of the first
 | |
|  * three fields.
 | |
|  *
 | |
|  * The extent ref structure for the full back refs has field for:
 | |
|  *
 | |
|  * - number of pointers in the tree leaf
 | |
|  *
 | |
|  * The key offset for the implicit back refs is the first byte of
 | |
|  * the tree leaf
 | |
|  *
 | |
|  * When a file extent is allocated, The implicit back refs is used.
 | |
|  * the fields are filled in:
 | |
|  *
 | |
|  *     (root_key.objectid, inode objectid, offset in file, 1)
 | |
|  *
 | |
|  * When a file extent is removed file truncation, we find the
 | |
|  * corresponding implicit back refs and check the following fields:
 | |
|  *
 | |
|  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 | |
|  *
 | |
|  * Btree extents can be referenced by:
 | |
|  *
 | |
|  * - Different subvolumes
 | |
|  *
 | |
|  * Both the implicit back refs and the full back refs for tree blocks
 | |
|  * only consist of key. The key offset for the implicit back refs is
 | |
|  * objectid of block's owner tree. The key offset for the full back refs
 | |
|  * is the first byte of parent block.
 | |
|  *
 | |
|  * When implicit back refs is used, information about the lowest key and
 | |
|  * level of the tree block are required. These information are stored in
 | |
|  * tree block info structure.
 | |
|  */
 | |
| 
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *root,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  u64 owner, u32 extra_size)
 | |
| {
 | |
| 	struct btrfs_extent_item *item;
 | |
| 	struct btrfs_extent_item_v0 *ei0;
 | |
| 	struct btrfs_extent_ref_v0 *ref0;
 | |
| 	struct btrfs_tree_block_info *bi;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	u32 new_size = sizeof(*item);
 | |
| 	u64 refs;
 | |
| 	int ret;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 			     struct btrfs_extent_item_v0);
 | |
| 	refs = btrfs_extent_refs_v0(leaf, ei0);
 | |
| 
 | |
| 	if (owner == (u64)-1) {
 | |
| 		while (1) {
 | |
| 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | |
| 				ret = btrfs_next_leaf(root, path);
 | |
| 				if (ret < 0)
 | |
| 					return ret;
 | |
| 				BUG_ON(ret > 0); /* Corruption */
 | |
| 				leaf = path->nodes[0];
 | |
| 			}
 | |
| 			btrfs_item_key_to_cpu(leaf, &found_key,
 | |
| 					      path->slots[0]);
 | |
| 			BUG_ON(key.objectid != found_key.objectid);
 | |
| 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
 | |
| 				path->slots[0]++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					      struct btrfs_extent_ref_v0);
 | |
| 			owner = btrfs_ref_objectid_v0(leaf, ref0);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
 | |
| 		new_size += sizeof(*bi);
 | |
| 
 | |
| 	new_size -= sizeof(*ei0);
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path,
 | |
| 				new_size + extra_size, 1);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	BUG_ON(ret); /* Corruption */
 | |
| 
 | |
| 	btrfs_extend_item(root, path, new_size);
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	btrfs_set_extent_refs(leaf, item, refs);
 | |
| 	/* FIXME: get real generation */
 | |
| 	btrfs_set_extent_generation(leaf, item, 0);
 | |
| 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		btrfs_set_extent_flags(leaf, item,
 | |
| 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
 | |
| 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
 | |
| 		bi = (struct btrfs_tree_block_info *)(item + 1);
 | |
| 		/* FIXME: get first key of the block */
 | |
| 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
 | |
| 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
 | |
| 	} else {
 | |
| 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
 | |
| 	}
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 | |
| {
 | |
| 	u32 high_crc = ~(u32)0;
 | |
| 	u32 low_crc = ~(u32)0;
 | |
| 	__le64 lenum;
 | |
| 
 | |
| 	lenum = cpu_to_le64(root_objectid);
 | |
| 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
 | |
| 	lenum = cpu_to_le64(owner);
 | |
| 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 | |
| 	lenum = cpu_to_le64(offset);
 | |
| 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 | |
| 
 | |
| 	return ((u64)high_crc << 31) ^ (u64)low_crc;
 | |
| }
 | |
| 
 | |
| static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 | |
| 				     struct btrfs_extent_data_ref *ref)
 | |
| {
 | |
| 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 | |
| 				    btrfs_extent_data_ref_objectid(leaf, ref),
 | |
| 				    btrfs_extent_data_ref_offset(leaf, ref));
 | |
| }
 | |
| 
 | |
| static int match_extent_data_ref(struct extent_buffer *leaf,
 | |
| 				 struct btrfs_extent_data_ref *ref,
 | |
| 				 u64 root_objectid, u64 owner, u64 offset)
 | |
| {
 | |
| 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 | |
| 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 | |
| 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 | |
| 					   struct btrfs_root *root,
 | |
| 					   struct btrfs_path *path,
 | |
| 					   u64 bytenr, u64 parent,
 | |
| 					   u64 root_objectid,
 | |
| 					   u64 owner, u64 offset)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_extent_data_ref *ref;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 nritems;
 | |
| 	int ret;
 | |
| 	int recow;
 | |
| 	int err = -ENOENT;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	if (parent) {
 | |
| 		key.type = BTRFS_SHARED_DATA_REF_KEY;
 | |
| 		key.offset = parent;
 | |
| 	} else {
 | |
| 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 | |
| 		key.offset = hash_extent_data_ref(root_objectid,
 | |
| 						  owner, offset);
 | |
| 	}
 | |
| again:
 | |
| 	recow = 0;
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret < 0) {
 | |
| 		err = ret;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (parent) {
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 		key.type = BTRFS_EXTENT_REF_V0_KEY;
 | |
| 		btrfs_release_path(path);
 | |
| 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| #endif
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	nritems = btrfs_header_nritems(leaf);
 | |
| 	while (1) {
 | |
| 		if (path->slots[0] >= nritems) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				err = ret;
 | |
| 			if (ret)
 | |
| 				goto fail;
 | |
| 
 | |
| 			leaf = path->nodes[0];
 | |
| 			nritems = btrfs_header_nritems(leaf);
 | |
| 			recow = 1;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 		if (key.objectid != bytenr ||
 | |
| 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 | |
| 			goto fail;
 | |
| 
 | |
| 		ref = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				     struct btrfs_extent_data_ref);
 | |
| 
 | |
| 		if (match_extent_data_ref(leaf, ref, root_objectid,
 | |
| 					  owner, offset)) {
 | |
| 			if (recow) {
 | |
| 				btrfs_release_path(path);
 | |
| 				goto again;
 | |
| 			}
 | |
| 			err = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| fail:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 | |
| 					   struct btrfs_root *root,
 | |
| 					   struct btrfs_path *path,
 | |
| 					   u64 bytenr, u64 parent,
 | |
| 					   u64 root_objectid, u64 owner,
 | |
| 					   u64 offset, int refs_to_add)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 size;
 | |
| 	u32 num_refs;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	if (parent) {
 | |
| 		key.type = BTRFS_SHARED_DATA_REF_KEY;
 | |
| 		key.offset = parent;
 | |
| 		size = sizeof(struct btrfs_shared_data_ref);
 | |
| 	} else {
 | |
| 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 | |
| 		key.offset = hash_extent_data_ref(root_objectid,
 | |
| 						  owner, offset);
 | |
| 		size = sizeof(struct btrfs_extent_data_ref);
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 | |
| 	if (ret && ret != -EEXIST)
 | |
| 		goto fail;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	if (parent) {
 | |
| 		struct btrfs_shared_data_ref *ref;
 | |
| 		ref = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				     struct btrfs_shared_data_ref);
 | |
| 		if (ret == 0) {
 | |
| 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 | |
| 		} else {
 | |
| 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 | |
| 			num_refs += refs_to_add;
 | |
| 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct btrfs_extent_data_ref *ref;
 | |
| 		while (ret == -EEXIST) {
 | |
| 			ref = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					     struct btrfs_extent_data_ref);
 | |
| 			if (match_extent_data_ref(leaf, ref, root_objectid,
 | |
| 						  owner, offset))
 | |
| 				break;
 | |
| 			btrfs_release_path(path);
 | |
| 			key.offset++;
 | |
| 			ret = btrfs_insert_empty_item(trans, root, path, &key,
 | |
| 						      size);
 | |
| 			if (ret && ret != -EEXIST)
 | |
| 				goto fail;
 | |
| 
 | |
| 			leaf = path->nodes[0];
 | |
| 		}
 | |
| 		ref = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				     struct btrfs_extent_data_ref);
 | |
| 		if (ret == 0) {
 | |
| 			btrfs_set_extent_data_ref_root(leaf, ref,
 | |
| 						       root_objectid);
 | |
| 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 | |
| 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 | |
| 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 | |
| 		} else {
 | |
| 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 | |
| 			num_refs += refs_to_add;
 | |
| 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	ret = 0;
 | |
| fail:
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 | |
| 					   struct btrfs_root *root,
 | |
| 					   struct btrfs_path *path,
 | |
| 					   int refs_to_drop, int *last_ref)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_extent_data_ref *ref1 = NULL;
 | |
| 	struct btrfs_shared_data_ref *ref2 = NULL;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 num_refs = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_extent_data_ref);
 | |
| 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 | |
| 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 | |
| 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_shared_data_ref);
 | |
| 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 | |
| 		struct btrfs_extent_ref_v0 *ref0;
 | |
| 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_extent_ref_v0);
 | |
| 		num_refs = btrfs_ref_count_v0(leaf, ref0);
 | |
| #endif
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(num_refs < refs_to_drop);
 | |
| 	num_refs -= refs_to_drop;
 | |
| 
 | |
| 	if (num_refs == 0) {
 | |
| 		ret = btrfs_del_item(trans, root, path);
 | |
| 		*last_ref = 1;
 | |
| 	} else {
 | |
| 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 | |
| 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 | |
| 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 | |
| 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 		else {
 | |
| 			struct btrfs_extent_ref_v0 *ref0;
 | |
| 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					struct btrfs_extent_ref_v0);
 | |
| 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
 | |
| 		}
 | |
| #endif
 | |
| 		btrfs_mark_buffer_dirty(leaf);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline u32 extent_data_ref_count(struct btrfs_root *root,
 | |
| 					  struct btrfs_path *path,
 | |
| 					  struct btrfs_extent_inline_ref *iref)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_data_ref *ref1;
 | |
| 	struct btrfs_shared_data_ref *ref2;
 | |
| 	u32 num_refs = 0;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 	if (iref) {
 | |
| 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
 | |
| 		    BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 | |
| 		} else {
 | |
| 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 | |
| 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 | |
| 		}
 | |
| 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_extent_data_ref);
 | |
| 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 | |
| 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 | |
| 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_shared_data_ref);
 | |
| 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 | |
| 		struct btrfs_extent_ref_v0 *ref0;
 | |
| 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_extent_ref_v0);
 | |
| 		num_refs = btrfs_ref_count_v0(leaf, ref0);
 | |
| #endif
 | |
| 	} else {
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 	return num_refs;
 | |
| }
 | |
| 
 | |
| static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 | |
| 					  struct btrfs_root *root,
 | |
| 					  struct btrfs_path *path,
 | |
| 					  u64 bytenr, u64 parent,
 | |
| 					  u64 root_objectid)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	if (parent) {
 | |
| 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 | |
| 		key.offset = parent;
 | |
| 	} else {
 | |
| 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 | |
| 		key.offset = root_objectid;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret > 0)
 | |
| 		ret = -ENOENT;
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 	if (ret == -ENOENT && parent) {
 | |
| 		btrfs_release_path(path);
 | |
| 		key.type = BTRFS_EXTENT_REF_V0_KEY;
 | |
| 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 		if (ret > 0)
 | |
| 			ret = -ENOENT;
 | |
| 	}
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 | |
| 					  struct btrfs_root *root,
 | |
| 					  struct btrfs_path *path,
 | |
| 					  u64 bytenr, u64 parent,
 | |
| 					  u64 root_objectid)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	if (parent) {
 | |
| 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 | |
| 		key.offset = parent;
 | |
| 	} else {
 | |
| 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 | |
| 		key.offset = root_objectid;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int extent_ref_type(u64 parent, u64 owner)
 | |
| {
 | |
| 	int type;
 | |
| 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		if (parent > 0)
 | |
| 			type = BTRFS_SHARED_BLOCK_REF_KEY;
 | |
| 		else
 | |
| 			type = BTRFS_TREE_BLOCK_REF_KEY;
 | |
| 	} else {
 | |
| 		if (parent > 0)
 | |
| 			type = BTRFS_SHARED_DATA_REF_KEY;
 | |
| 		else
 | |
| 			type = BTRFS_EXTENT_DATA_REF_KEY;
 | |
| 	}
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| static int find_next_key(struct btrfs_path *path, int level,
 | |
| 			 struct btrfs_key *key)
 | |
| 
 | |
| {
 | |
| 	for (; level < BTRFS_MAX_LEVEL; level++) {
 | |
| 		if (!path->nodes[level])
 | |
| 			break;
 | |
| 		if (path->slots[level] + 1 >=
 | |
| 		    btrfs_header_nritems(path->nodes[level]))
 | |
| 			continue;
 | |
| 		if (level == 0)
 | |
| 			btrfs_item_key_to_cpu(path->nodes[level], key,
 | |
| 					      path->slots[level] + 1);
 | |
| 		else
 | |
| 			btrfs_node_key_to_cpu(path->nodes[level], key,
 | |
| 					      path->slots[level] + 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * look for inline back ref. if back ref is found, *ref_ret is set
 | |
|  * to the address of inline back ref, and 0 is returned.
 | |
|  *
 | |
|  * if back ref isn't found, *ref_ret is set to the address where it
 | |
|  * should be inserted, and -ENOENT is returned.
 | |
|  *
 | |
|  * if insert is true and there are too many inline back refs, the path
 | |
|  * points to the extent item, and -EAGAIN is returned.
 | |
|  *
 | |
|  * NOTE: inline back refs are ordered in the same way that back ref
 | |
|  *	 items in the tree are ordered.
 | |
|  */
 | |
| static noinline_for_stack
 | |
| int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct btrfs_extent_inline_ref **ref_ret,
 | |
| 				 u64 bytenr, u64 num_bytes,
 | |
| 				 u64 parent, u64 root_objectid,
 | |
| 				 u64 owner, u64 offset, int insert)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	u64 flags;
 | |
| 	u64 item_size;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long end;
 | |
| 	int extra_size;
 | |
| 	int type;
 | |
| 	int want;
 | |
| 	int ret;
 | |
| 	int err = 0;
 | |
| 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
 | |
| 						 SKINNY_METADATA);
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	key.offset = num_bytes;
 | |
| 
 | |
| 	want = extent_ref_type(parent, owner);
 | |
| 	if (insert) {
 | |
| 		extra_size = btrfs_extent_inline_ref_size(want);
 | |
| 		path->keep_locks = 1;
 | |
| 	} else
 | |
| 		extra_size = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Owner is our parent level, so we can just add one to get the level
 | |
| 	 * for the block we are interested in.
 | |
| 	 */
 | |
| 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 		key.offset = owner;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 | |
| 	if (ret < 0) {
 | |
| 		err = ret;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We may be a newly converted file system which still has the old fat
 | |
| 	 * extent entries for metadata, so try and see if we have one of those.
 | |
| 	 */
 | |
| 	if (ret > 0 && skinny_metadata) {
 | |
| 		skinny_metadata = false;
 | |
| 		if (path->slots[0]) {
 | |
| 			path->slots[0]--;
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 					      path->slots[0]);
 | |
| 			if (key.objectid == bytenr &&
 | |
| 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 | |
| 			    key.offset == num_bytes)
 | |
| 				ret = 0;
 | |
| 		}
 | |
| 		if (ret) {
 | |
| 			key.objectid = bytenr;
 | |
| 			key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 			key.offset = num_bytes;
 | |
| 			btrfs_release_path(path);
 | |
| 			goto again;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret && !insert) {
 | |
| 		err = -ENOENT;
 | |
| 		goto out;
 | |
| 	} else if (WARN_ON(ret)) {
 | |
| 		err = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 	if (item_size < sizeof(*ei)) {
 | |
| 		if (!insert) {
 | |
| 			err = -ENOENT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = convert_extent_item_v0(trans, root, path, owner,
 | |
| 					     extra_size);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		leaf = path->nodes[0];
 | |
| 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 	}
 | |
| #endif
 | |
| 	BUG_ON(item_size < sizeof(*ei));
 | |
| 
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	flags = btrfs_extent_flags(leaf, ei);
 | |
| 
 | |
| 	ptr = (unsigned long)(ei + 1);
 | |
| 	end = (unsigned long)ei + item_size;
 | |
| 
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 | |
| 		ptr += sizeof(struct btrfs_tree_block_info);
 | |
| 		BUG_ON(ptr > end);
 | |
| 	}
 | |
| 
 | |
| 	err = -ENOENT;
 | |
| 	while (1) {
 | |
| 		if (ptr >= end) {
 | |
| 			WARN_ON(ptr > end);
 | |
| 			break;
 | |
| 		}
 | |
| 		iref = (struct btrfs_extent_inline_ref *)ptr;
 | |
| 		type = btrfs_extent_inline_ref_type(leaf, iref);
 | |
| 		if (want < type)
 | |
| 			break;
 | |
| 		if (want > type) {
 | |
| 			ptr += btrfs_extent_inline_ref_size(type);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 			struct btrfs_extent_data_ref *dref;
 | |
| 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 			if (match_extent_data_ref(leaf, dref, root_objectid,
 | |
| 						  owner, offset)) {
 | |
| 				err = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (hash_extent_data_ref_item(leaf, dref) <
 | |
| 			    hash_extent_data_ref(root_objectid, owner, offset))
 | |
| 				break;
 | |
| 		} else {
 | |
| 			u64 ref_offset;
 | |
| 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 | |
| 			if (parent > 0) {
 | |
| 				if (parent == ref_offset) {
 | |
| 					err = 0;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (ref_offset < parent)
 | |
| 					break;
 | |
| 			} else {
 | |
| 				if (root_objectid == ref_offset) {
 | |
| 					err = 0;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (ref_offset < root_objectid)
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 		ptr += btrfs_extent_inline_ref_size(type);
 | |
| 	}
 | |
| 	if (err == -ENOENT && insert) {
 | |
| 		if (item_size + extra_size >=
 | |
| 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 | |
| 			err = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * To add new inline back ref, we have to make sure
 | |
| 		 * there is no corresponding back ref item.
 | |
| 		 * For simplicity, we just do not add new inline back
 | |
| 		 * ref if there is any kind of item for this block
 | |
| 		 */
 | |
| 		if (find_next_key(path, 0, &key) == 0 &&
 | |
| 		    key.objectid == bytenr &&
 | |
| 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 | |
| 			err = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 | |
| out:
 | |
| 	if (insert) {
 | |
| 		path->keep_locks = 0;
 | |
| 		btrfs_unlock_up_safe(path, 1);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to add new inline back ref
 | |
|  */
 | |
| static noinline_for_stack
 | |
| void setup_inline_extent_backref(struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct btrfs_extent_inline_ref *iref,
 | |
| 				 u64 parent, u64 root_objectid,
 | |
| 				 u64 owner, u64 offset, int refs_to_add,
 | |
| 				 struct btrfs_delayed_extent_op *extent_op)
 | |
| {
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long end;
 | |
| 	unsigned long item_offset;
 | |
| 	u64 refs;
 | |
| 	int size;
 | |
| 	int type;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	item_offset = (unsigned long)iref - (unsigned long)ei;
 | |
| 
 | |
| 	type = extent_ref_type(parent, owner);
 | |
| 	size = btrfs_extent_inline_ref_size(type);
 | |
| 
 | |
| 	btrfs_extend_item(root, path, size);
 | |
| 
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	refs = btrfs_extent_refs(leaf, ei);
 | |
| 	refs += refs_to_add;
 | |
| 	btrfs_set_extent_refs(leaf, ei, refs);
 | |
| 	if (extent_op)
 | |
| 		__run_delayed_extent_op(extent_op, leaf, ei);
 | |
| 
 | |
| 	ptr = (unsigned long)ei + item_offset;
 | |
| 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 	if (ptr < end - size)
 | |
| 		memmove_extent_buffer(leaf, ptr + size, ptr,
 | |
| 				      end - size - ptr);
 | |
| 
 | |
| 	iref = (struct btrfs_extent_inline_ref *)ptr;
 | |
| 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 | |
| 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 		struct btrfs_extent_data_ref *dref;
 | |
| 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
 | |
| 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
 | |
| 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
 | |
| 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
 | |
| 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
 | |
| 		struct btrfs_shared_data_ref *sref;
 | |
| 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
 | |
| 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 | |
| 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 | |
| 	} else {
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
 | |
| 	}
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| }
 | |
| 
 | |
| static int lookup_extent_backref(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct btrfs_extent_inline_ref **ref_ret,
 | |
| 				 u64 bytenr, u64 num_bytes, u64 parent,
 | |
| 				 u64 root_objectid, u64 owner, u64 offset)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
 | |
| 					   bytenr, num_bytes, parent,
 | |
| 					   root_objectid, owner, offset, 0);
 | |
| 	if (ret != -ENOENT)
 | |
| 		return ret;
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	*ref_ret = NULL;
 | |
| 
 | |
| 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
 | |
| 					    root_objectid);
 | |
| 	} else {
 | |
| 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
 | |
| 					     root_objectid, owner, offset);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to update/remove inline back ref
 | |
|  */
 | |
| static noinline_for_stack
 | |
| void update_inline_extent_backref(struct btrfs_root *root,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  struct btrfs_extent_inline_ref *iref,
 | |
| 				  int refs_to_mod,
 | |
| 				  struct btrfs_delayed_extent_op *extent_op,
 | |
| 				  int *last_ref)
 | |
| {
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct btrfs_extent_data_ref *dref = NULL;
 | |
| 	struct btrfs_shared_data_ref *sref = NULL;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long end;
 | |
| 	u32 item_size;
 | |
| 	int size;
 | |
| 	int type;
 | |
| 	u64 refs;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	refs = btrfs_extent_refs(leaf, ei);
 | |
| 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
 | |
| 	refs += refs_to_mod;
 | |
| 	btrfs_set_extent_refs(leaf, ei, refs);
 | |
| 	if (extent_op)
 | |
| 		__run_delayed_extent_op(extent_op, leaf, ei);
 | |
| 
 | |
| 	type = btrfs_extent_inline_ref_type(leaf, iref);
 | |
| 
 | |
| 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 		refs = btrfs_extent_data_ref_count(leaf, dref);
 | |
| 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
 | |
| 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
 | |
| 		refs = btrfs_shared_data_ref_count(leaf, sref);
 | |
| 	} else {
 | |
| 		refs = 1;
 | |
| 		BUG_ON(refs_to_mod != -1);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
 | |
| 	refs += refs_to_mod;
 | |
| 
 | |
| 	if (refs > 0) {
 | |
| 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
 | |
| 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
 | |
| 		else
 | |
| 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
 | |
| 	} else {
 | |
| 		*last_ref = 1;
 | |
| 		size =  btrfs_extent_inline_ref_size(type);
 | |
| 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 		ptr = (unsigned long)iref;
 | |
| 		end = (unsigned long)ei + item_size;
 | |
| 		if (ptr + size < end)
 | |
| 			memmove_extent_buffer(leaf, ptr, ptr + size,
 | |
| 					      end - ptr - size);
 | |
| 		item_size -= size;
 | |
| 		btrfs_truncate_item(root, path, item_size, 1);
 | |
| 	}
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack
 | |
| int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 u64 bytenr, u64 num_bytes, u64 parent,
 | |
| 				 u64 root_objectid, u64 owner,
 | |
| 				 u64 offset, int refs_to_add,
 | |
| 				 struct btrfs_delayed_extent_op *extent_op)
 | |
| {
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
 | |
| 					   bytenr, num_bytes, parent,
 | |
| 					   root_objectid, owner, offset, 1);
 | |
| 	if (ret == 0) {
 | |
| 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
 | |
| 		update_inline_extent_backref(root, path, iref,
 | |
| 					     refs_to_add, extent_op, NULL);
 | |
| 	} else if (ret == -ENOENT) {
 | |
| 		setup_inline_extent_backref(root, path, iref, parent,
 | |
| 					    root_objectid, owner, offset,
 | |
| 					    refs_to_add, extent_op);
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int insert_extent_backref(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 u64 bytenr, u64 parent, u64 root_objectid,
 | |
| 				 u64 owner, u64 offset, int refs_to_add)
 | |
| {
 | |
| 	int ret;
 | |
| 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		BUG_ON(refs_to_add != 1);
 | |
| 		ret = insert_tree_block_ref(trans, root, path, bytenr,
 | |
| 					    parent, root_objectid);
 | |
| 	} else {
 | |
| 		ret = insert_extent_data_ref(trans, root, path, bytenr,
 | |
| 					     parent, root_objectid,
 | |
| 					     owner, offset, refs_to_add);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int remove_extent_backref(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct btrfs_extent_inline_ref *iref,
 | |
| 				 int refs_to_drop, int is_data, int *last_ref)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(!is_data && refs_to_drop != 1);
 | |
| 	if (iref) {
 | |
| 		update_inline_extent_backref(root, path, iref,
 | |
| 					     -refs_to_drop, NULL, last_ref);
 | |
| 	} else if (is_data) {
 | |
| 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
 | |
| 					     last_ref);
 | |
| 	} else {
 | |
| 		*last_ref = 1;
 | |
| 		ret = btrfs_del_item(trans, root, path);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_issue_discard(struct block_device *bdev,
 | |
| 				u64 start, u64 len)
 | |
| {
 | |
| 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
 | |
| }
 | |
| 
 | |
| int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
 | |
| 			 u64 num_bytes, u64 *actual_bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 discarded_bytes = 0;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 
 | |
| 
 | |
| 	/* Tell the block device(s) that the sectors can be discarded */
 | |
| 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
 | |
| 			      bytenr, &num_bytes, &bbio, 0);
 | |
| 	/* Error condition is -ENOMEM */
 | |
| 	if (!ret) {
 | |
| 		struct btrfs_bio_stripe *stripe = bbio->stripes;
 | |
| 		int i;
 | |
| 
 | |
| 
 | |
| 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
 | |
| 			if (!stripe->dev->can_discard)
 | |
| 				continue;
 | |
| 
 | |
| 			ret = btrfs_issue_discard(stripe->dev->bdev,
 | |
| 						  stripe->physical,
 | |
| 						  stripe->length);
 | |
| 			if (!ret)
 | |
| 				discarded_bytes += stripe->length;
 | |
| 			else if (ret != -EOPNOTSUPP)
 | |
| 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
 | |
| 
 | |
| 			/*
 | |
| 			 * Just in case we get back EOPNOTSUPP for some reason,
 | |
| 			 * just ignore the return value so we don't screw up
 | |
| 			 * people calling discard_extent.
 | |
| 			 */
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 		btrfs_put_bbio(bbio);
 | |
| 	}
 | |
| 
 | |
| 	if (actual_bytes)
 | |
| 		*actual_bytes = discarded_bytes;
 | |
| 
 | |
| 
 | |
| 	if (ret == -EOPNOTSUPP)
 | |
| 		ret = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Can return -ENOMEM */
 | |
| int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 | |
| 			 struct btrfs_root *root,
 | |
| 			 u64 bytenr, u64 num_bytes, u64 parent,
 | |
| 			 u64 root_objectid, u64 owner, u64 offset,
 | |
| 			 int no_quota)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 
 | |
| 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
 | |
| 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
 | |
| 
 | |
| 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
 | |
| 					num_bytes,
 | |
| 					parent, root_objectid, (int)owner,
 | |
| 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
 | |
| 	} else {
 | |
| 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
 | |
| 					num_bytes,
 | |
| 					parent, root_objectid, owner, offset,
 | |
| 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *root,
 | |
| 				  u64 bytenr, u64 num_bytes,
 | |
| 				  u64 parent, u64 root_objectid,
 | |
| 				  u64 owner, u64 offset, int refs_to_add,
 | |
| 				  int no_quota,
 | |
| 				  struct btrfs_delayed_extent_op *extent_op)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_item *item;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 refs;
 | |
| 	int ret;
 | |
| 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
 | |
| 		no_quota = 1;
 | |
| 
 | |
| 	path->reada = 1;
 | |
| 	path->leave_spinning = 1;
 | |
| 	/* this will setup the path even if it fails to insert the back ref */
 | |
| 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
 | |
| 					   bytenr, num_bytes, parent,
 | |
| 					   root_objectid, owner, offset,
 | |
| 					   refs_to_add, extent_op);
 | |
| 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * Ok we were able to insert an inline extent and it appears to be a new
 | |
| 	 * reference, deal with the qgroup accounting.
 | |
| 	 */
 | |
| 	if (!ret && !no_quota) {
 | |
| 		ASSERT(root->fs_info->quota_enabled);
 | |
| 		leaf = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 		item = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				      struct btrfs_extent_item);
 | |
| 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
 | |
| 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
 | |
| 					      bytenr, num_bytes, type, 0);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok we had -EAGAIN which means we didn't have space to insert and
 | |
| 	 * inline extent ref, so just update the reference count and add a
 | |
| 	 * normal backref.
 | |
| 	 */
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	refs = btrfs_extent_refs(leaf, item);
 | |
| 	if (refs)
 | |
| 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
 | |
| 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
 | |
| 	if (extent_op)
 | |
| 		__run_delayed_extent_op(extent_op, leaf, item);
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	if (!no_quota) {
 | |
| 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
 | |
| 					      bytenr, num_bytes, type, 0);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	path->reada = 1;
 | |
| 	path->leave_spinning = 1;
 | |
| 	/* now insert the actual backref */
 | |
| 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
 | |
| 				    path, bytenr, parent, root_objectid,
 | |
| 				    owner, offset, refs_to_add);
 | |
| 	if (ret)
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root,
 | |
| 				struct btrfs_delayed_ref_node *node,
 | |
| 				struct btrfs_delayed_extent_op *extent_op,
 | |
| 				int insert_reserved)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_delayed_data_ref *ref;
 | |
| 	struct btrfs_key ins;
 | |
| 	u64 parent = 0;
 | |
| 	u64 ref_root = 0;
 | |
| 	u64 flags = 0;
 | |
| 
 | |
| 	ins.objectid = node->bytenr;
 | |
| 	ins.offset = node->num_bytes;
 | |
| 	ins.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 
 | |
| 	ref = btrfs_delayed_node_to_data_ref(node);
 | |
| 	trace_run_delayed_data_ref(node, ref, node->action);
 | |
| 
 | |
| 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
 | |
| 		parent = ref->parent;
 | |
| 	ref_root = ref->root;
 | |
| 
 | |
| 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 | |
| 		if (extent_op)
 | |
| 			flags |= extent_op->flags_to_set;
 | |
| 		ret = alloc_reserved_file_extent(trans, root,
 | |
| 						 parent, ref_root, flags,
 | |
| 						 ref->objectid, ref->offset,
 | |
| 						 &ins, node->ref_mod);
 | |
| 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
 | |
| 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
 | |
| 					     node->num_bytes, parent,
 | |
| 					     ref_root, ref->objectid,
 | |
| 					     ref->offset, node->ref_mod,
 | |
| 					     node->no_quota, extent_op);
 | |
| 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
 | |
| 		ret = __btrfs_free_extent(trans, root, node->bytenr,
 | |
| 					  node->num_bytes, parent,
 | |
| 					  ref_root, ref->objectid,
 | |
| 					  ref->offset, node->ref_mod,
 | |
| 					  extent_op, node->no_quota);
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
 | |
| 				    struct extent_buffer *leaf,
 | |
| 				    struct btrfs_extent_item *ei)
 | |
| {
 | |
| 	u64 flags = btrfs_extent_flags(leaf, ei);
 | |
| 	if (extent_op->update_flags) {
 | |
| 		flags |= extent_op->flags_to_set;
 | |
| 		btrfs_set_extent_flags(leaf, ei, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (extent_op->update_key) {
 | |
| 		struct btrfs_tree_block_info *bi;
 | |
| 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
 | |
| 		bi = (struct btrfs_tree_block_info *)(ei + 1);
 | |
| 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_delayed_ref_node *node,
 | |
| 				 struct btrfs_delayed_extent_op *extent_op)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 item_size;
 | |
| 	int ret;
 | |
| 	int err = 0;
 | |
| 	int metadata = !extent_op->is_data;
 | |
| 
 | |
| 	if (trans->aborted)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
 | |
| 		metadata = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = node->bytenr;
 | |
| 
 | |
| 	if (metadata) {
 | |
| 		key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 		key.offset = extent_op->level;
 | |
| 	} else {
 | |
| 		key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 		key.offset = node->num_bytes;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	path->reada = 1;
 | |
| 	path->leave_spinning = 1;
 | |
| 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
 | |
| 				path, 0, 1);
 | |
| 	if (ret < 0) {
 | |
| 		err = ret;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (ret > 0) {
 | |
| 		if (metadata) {
 | |
| 			if (path->slots[0] > 0) {
 | |
| 				path->slots[0]--;
 | |
| 				btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 						      path->slots[0]);
 | |
| 				if (key.objectid == node->bytenr &&
 | |
| 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
 | |
| 				    key.offset == node->num_bytes)
 | |
| 					ret = 0;
 | |
| 			}
 | |
| 			if (ret > 0) {
 | |
| 				btrfs_release_path(path);
 | |
| 				metadata = 0;
 | |
| 
 | |
| 				key.objectid = node->bytenr;
 | |
| 				key.offset = node->num_bytes;
 | |
| 				key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 				goto again;
 | |
| 			}
 | |
| 		} else {
 | |
| 			err = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 	if (item_size < sizeof(*ei)) {
 | |
| 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
 | |
| 					     path, (u64)-1, 0);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		leaf = path->nodes[0];
 | |
| 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 	}
 | |
| #endif
 | |
| 	BUG_ON(item_size < sizeof(*ei));
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 	__run_delayed_extent_op(extent_op, leaf, ei);
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root,
 | |
| 				struct btrfs_delayed_ref_node *node,
 | |
| 				struct btrfs_delayed_extent_op *extent_op,
 | |
| 				int insert_reserved)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_delayed_tree_ref *ref;
 | |
| 	struct btrfs_key ins;
 | |
| 	u64 parent = 0;
 | |
| 	u64 ref_root = 0;
 | |
| 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
 | |
| 						 SKINNY_METADATA);
 | |
| 
 | |
| 	ref = btrfs_delayed_node_to_tree_ref(node);
 | |
| 	trace_run_delayed_tree_ref(node, ref, node->action);
 | |
| 
 | |
| 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
 | |
| 		parent = ref->parent;
 | |
| 	ref_root = ref->root;
 | |
| 
 | |
| 	ins.objectid = node->bytenr;
 | |
| 	if (skinny_metadata) {
 | |
| 		ins.offset = ref->level;
 | |
| 		ins.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 	} else {
 | |
| 		ins.offset = node->num_bytes;
 | |
| 		ins.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(node->ref_mod != 1);
 | |
| 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 | |
| 		BUG_ON(!extent_op || !extent_op->update_flags);
 | |
| 		ret = alloc_reserved_tree_block(trans, root,
 | |
| 						parent, ref_root,
 | |
| 						extent_op->flags_to_set,
 | |
| 						&extent_op->key,
 | |
| 						ref->level, &ins,
 | |
| 						node->no_quota);
 | |
| 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
 | |
| 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
 | |
| 					     node->num_bytes, parent, ref_root,
 | |
| 					     ref->level, 0, 1, node->no_quota,
 | |
| 					     extent_op);
 | |
| 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
 | |
| 		ret = __btrfs_free_extent(trans, root, node->bytenr,
 | |
| 					  node->num_bytes, parent, ref_root,
 | |
| 					  ref->level, 0, 1, extent_op,
 | |
| 					  node->no_quota);
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* helper function to actually process a single delayed ref entry */
 | |
| static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root,
 | |
| 			       struct btrfs_delayed_ref_node *node,
 | |
| 			       struct btrfs_delayed_extent_op *extent_op,
 | |
| 			       int insert_reserved)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (trans->aborted) {
 | |
| 		if (insert_reserved)
 | |
| 			btrfs_pin_extent(root, node->bytenr,
 | |
| 					 node->num_bytes, 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_delayed_ref_is_head(node)) {
 | |
| 		struct btrfs_delayed_ref_head *head;
 | |
| 		/*
 | |
| 		 * we've hit the end of the chain and we were supposed
 | |
| 		 * to insert this extent into the tree.  But, it got
 | |
| 		 * deleted before we ever needed to insert it, so all
 | |
| 		 * we have to do is clean up the accounting
 | |
| 		 */
 | |
| 		BUG_ON(extent_op);
 | |
| 		head = btrfs_delayed_node_to_head(node);
 | |
| 		trace_run_delayed_ref_head(node, head, node->action);
 | |
| 
 | |
| 		if (insert_reserved) {
 | |
| 			btrfs_pin_extent(root, node->bytenr,
 | |
| 					 node->num_bytes, 1);
 | |
| 			if (head->is_data) {
 | |
| 				ret = btrfs_del_csums(trans, root,
 | |
| 						      node->bytenr,
 | |
| 						      node->num_bytes);
 | |
| 			}
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
 | |
| 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
 | |
| 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
 | |
| 					   insert_reserved);
 | |
| 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
 | |
| 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
 | |
| 		ret = run_delayed_data_ref(trans, root, node, extent_op,
 | |
| 					   insert_reserved);
 | |
| 	else
 | |
| 		BUG();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline struct btrfs_delayed_ref_node *
 | |
| select_delayed_ref(struct btrfs_delayed_ref_head *head)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
 | |
| 
 | |
| 	/*
 | |
| 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
 | |
| 	 * this prevents ref count from going down to zero when
 | |
| 	 * there still are pending delayed ref.
 | |
| 	 */
 | |
| 	node = rb_first(&head->ref_root);
 | |
| 	while (node) {
 | |
| 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
 | |
| 				rb_node);
 | |
| 		if (ref->action == BTRFS_ADD_DELAYED_REF)
 | |
| 			return ref;
 | |
| 		else if (last == NULL)
 | |
| 			last = ref;
 | |
| 		node = rb_next(node);
 | |
| 	}
 | |
| 	return last;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns 0 on success or if called with an already aborted transaction.
 | |
|  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
 | |
|  */
 | |
| static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 | |
| 					     struct btrfs_root *root,
 | |
| 					     unsigned long nr)
 | |
| {
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	struct btrfs_delayed_ref_node *ref;
 | |
| 	struct btrfs_delayed_ref_head *locked_ref = NULL;
 | |
| 	struct btrfs_delayed_extent_op *extent_op;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	ktime_t start = ktime_get();
 | |
| 	int ret;
 | |
| 	unsigned long count = 0;
 | |
| 	unsigned long actual_count = 0;
 | |
| 	int must_insert_reserved = 0;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 	while (1) {
 | |
| 		if (!locked_ref) {
 | |
| 			if (count >= nr)
 | |
| 				break;
 | |
| 
 | |
| 			spin_lock(&delayed_refs->lock);
 | |
| 			locked_ref = btrfs_select_ref_head(trans);
 | |
| 			if (!locked_ref) {
 | |
| 				spin_unlock(&delayed_refs->lock);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* grab the lock that says we are going to process
 | |
| 			 * all the refs for this head */
 | |
| 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
 | |
| 			spin_unlock(&delayed_refs->lock);
 | |
| 			/*
 | |
| 			 * we may have dropped the spin lock to get the head
 | |
| 			 * mutex lock, and that might have given someone else
 | |
| 			 * time to free the head.  If that's true, it has been
 | |
| 			 * removed from our list and we can move on.
 | |
| 			 */
 | |
| 			if (ret == -EAGAIN) {
 | |
| 				locked_ref = NULL;
 | |
| 				count++;
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to try and merge add/drops of the same ref since we
 | |
| 		 * can run into issues with relocate dropping the implicit ref
 | |
| 		 * and then it being added back again before the drop can
 | |
| 		 * finish.  If we merged anything we need to re-loop so we can
 | |
| 		 * get a good ref.
 | |
| 		 */
 | |
| 		spin_lock(&locked_ref->lock);
 | |
| 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
 | |
| 					 locked_ref);
 | |
| 
 | |
| 		/*
 | |
| 		 * locked_ref is the head node, so we have to go one
 | |
| 		 * node back for any delayed ref updates
 | |
| 		 */
 | |
| 		ref = select_delayed_ref(locked_ref);
 | |
| 
 | |
| 		if (ref && ref->seq &&
 | |
| 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
 | |
| 			spin_unlock(&locked_ref->lock);
 | |
| 			btrfs_delayed_ref_unlock(locked_ref);
 | |
| 			spin_lock(&delayed_refs->lock);
 | |
| 			locked_ref->processing = 0;
 | |
| 			delayed_refs->num_heads_ready++;
 | |
| 			spin_unlock(&delayed_refs->lock);
 | |
| 			locked_ref = NULL;
 | |
| 			cond_resched();
 | |
| 			count++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * record the must insert reserved flag before we
 | |
| 		 * drop the spin lock.
 | |
| 		 */
 | |
| 		must_insert_reserved = locked_ref->must_insert_reserved;
 | |
| 		locked_ref->must_insert_reserved = 0;
 | |
| 
 | |
| 		extent_op = locked_ref->extent_op;
 | |
| 		locked_ref->extent_op = NULL;
 | |
| 
 | |
| 		if (!ref) {
 | |
| 
 | |
| 
 | |
| 			/* All delayed refs have been processed, Go ahead
 | |
| 			 * and send the head node to run_one_delayed_ref,
 | |
| 			 * so that any accounting fixes can happen
 | |
| 			 */
 | |
| 			ref = &locked_ref->node;
 | |
| 
 | |
| 			if (extent_op && must_insert_reserved) {
 | |
| 				btrfs_free_delayed_extent_op(extent_op);
 | |
| 				extent_op = NULL;
 | |
| 			}
 | |
| 
 | |
| 			if (extent_op) {
 | |
| 				spin_unlock(&locked_ref->lock);
 | |
| 				ret = run_delayed_extent_op(trans, root,
 | |
| 							    ref, extent_op);
 | |
| 				btrfs_free_delayed_extent_op(extent_op);
 | |
| 
 | |
| 				if (ret) {
 | |
| 					/*
 | |
| 					 * Need to reset must_insert_reserved if
 | |
| 					 * there was an error so the abort stuff
 | |
| 					 * can cleanup the reserved space
 | |
| 					 * properly.
 | |
| 					 */
 | |
| 					if (must_insert_reserved)
 | |
| 						locked_ref->must_insert_reserved = 1;
 | |
| 					locked_ref->processing = 0;
 | |
| 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
 | |
| 					btrfs_delayed_ref_unlock(locked_ref);
 | |
| 					return ret;
 | |
| 				}
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Need to drop our head ref lock and re-aqcuire the
 | |
| 			 * delayed ref lock and then re-check to make sure
 | |
| 			 * nobody got added.
 | |
| 			 */
 | |
| 			spin_unlock(&locked_ref->lock);
 | |
| 			spin_lock(&delayed_refs->lock);
 | |
| 			spin_lock(&locked_ref->lock);
 | |
| 			if (rb_first(&locked_ref->ref_root) ||
 | |
| 			    locked_ref->extent_op) {
 | |
| 				spin_unlock(&locked_ref->lock);
 | |
| 				spin_unlock(&delayed_refs->lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 			ref->in_tree = 0;
 | |
| 			delayed_refs->num_heads--;
 | |
| 			rb_erase(&locked_ref->href_node,
 | |
| 				 &delayed_refs->href_root);
 | |
| 			spin_unlock(&delayed_refs->lock);
 | |
| 		} else {
 | |
| 			actual_count++;
 | |
| 			ref->in_tree = 0;
 | |
| 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
 | |
| 		}
 | |
| 		atomic_dec(&delayed_refs->num_entries);
 | |
| 
 | |
| 		if (!btrfs_delayed_ref_is_head(ref)) {
 | |
| 			/*
 | |
| 			 * when we play the delayed ref, also correct the
 | |
| 			 * ref_mod on head
 | |
| 			 */
 | |
| 			switch (ref->action) {
 | |
| 			case BTRFS_ADD_DELAYED_REF:
 | |
| 			case BTRFS_ADD_DELAYED_EXTENT:
 | |
| 				locked_ref->node.ref_mod -= ref->ref_mod;
 | |
| 				break;
 | |
| 			case BTRFS_DROP_DELAYED_REF:
 | |
| 				locked_ref->node.ref_mod += ref->ref_mod;
 | |
| 				break;
 | |
| 			default:
 | |
| 				WARN_ON(1);
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&locked_ref->lock);
 | |
| 
 | |
| 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
 | |
| 					  must_insert_reserved);
 | |
| 
 | |
| 		btrfs_free_delayed_extent_op(extent_op);
 | |
| 		if (ret) {
 | |
| 			locked_ref->processing = 0;
 | |
| 			btrfs_delayed_ref_unlock(locked_ref);
 | |
| 			btrfs_put_delayed_ref(ref);
 | |
| 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If this node is a head, that means all the refs in this head
 | |
| 		 * have been dealt with, and we will pick the next head to deal
 | |
| 		 * with, so we must unlock the head and drop it from the cluster
 | |
| 		 * list before we release it.
 | |
| 		 */
 | |
| 		if (btrfs_delayed_ref_is_head(ref)) {
 | |
| 			btrfs_delayed_ref_unlock(locked_ref);
 | |
| 			locked_ref = NULL;
 | |
| 		}
 | |
| 		btrfs_put_delayed_ref(ref);
 | |
| 		count++;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to include ref heads since we can have empty ref heads
 | |
| 	 * and those will drastically skew our runtime down since we just do
 | |
| 	 * accounting, no actual extent tree updates.
 | |
| 	 */
 | |
| 	if (actual_count > 0) {
 | |
| 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
 | |
| 		u64 avg;
 | |
| 
 | |
| 		/*
 | |
| 		 * We weigh the current average higher than our current runtime
 | |
| 		 * to avoid large swings in the average.
 | |
| 		 */
 | |
| 		spin_lock(&delayed_refs->lock);
 | |
| 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
 | |
| 		avg = div64_u64(avg, 4);
 | |
| 		fs_info->avg_delayed_ref_runtime = avg;
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef SCRAMBLE_DELAYED_REFS
 | |
| /*
 | |
|  * Normally delayed refs get processed in ascending bytenr order. This
 | |
|  * correlates in most cases to the order added. To expose dependencies on this
 | |
|  * order, we start to process the tree in the middle instead of the beginning
 | |
|  */
 | |
| static u64 find_middle(struct rb_root *root)
 | |
| {
 | |
| 	struct rb_node *n = root->rb_node;
 | |
| 	struct btrfs_delayed_ref_node *entry;
 | |
| 	int alt = 1;
 | |
| 	u64 middle;
 | |
| 	u64 first = 0, last = 0;
 | |
| 
 | |
| 	n = rb_first(root);
 | |
| 	if (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 | |
| 		first = entry->bytenr;
 | |
| 	}
 | |
| 	n = rb_last(root);
 | |
| 	if (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 | |
| 		last = entry->bytenr;
 | |
| 	}
 | |
| 	n = root->rb_node;
 | |
| 
 | |
| 	while (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 | |
| 		WARN_ON(!entry->in_tree);
 | |
| 
 | |
| 		middle = entry->bytenr;
 | |
| 
 | |
| 		if (alt)
 | |
| 			n = n->rb_left;
 | |
| 		else
 | |
| 			n = n->rb_right;
 | |
| 
 | |
| 		alt = 1 - alt;
 | |
| 	}
 | |
| 	return middle;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
 | |
| {
 | |
| 	u64 num_bytes;
 | |
| 
 | |
| 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
 | |
| 			     sizeof(struct btrfs_extent_inline_ref));
 | |
| 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
 | |
| 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
 | |
| 	 * closer to what we're really going to want to ouse.
 | |
| 	 */
 | |
| 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
 | |
| }
 | |
| 
 | |
| int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_block_rsv *global_rsv;
 | |
| 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
 | |
| 	u64 num_bytes;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 | |
| 	num_heads = heads_to_leaves(root, num_heads);
 | |
| 	if (num_heads > 1)
 | |
| 		num_bytes += (num_heads - 1) * root->nodesize;
 | |
| 	num_bytes <<= 1;
 | |
| 	global_rsv = &root->fs_info->global_block_rsv;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
 | |
| 	 * wiggle room since running delayed refs can create more delayed refs.
 | |
| 	 */
 | |
| 	if (global_rsv->space_info->full)
 | |
| 		num_bytes <<= 1;
 | |
| 
 | |
| 	spin_lock(&global_rsv->lock);
 | |
| 	if (global_rsv->reserved <= num_bytes)
 | |
| 		ret = 1;
 | |
| 	spin_unlock(&global_rsv->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 num_entries =
 | |
| 		atomic_read(&trans->transaction->delayed_refs.num_entries);
 | |
| 	u64 avg_runtime;
 | |
| 	u64 val;
 | |
| 
 | |
| 	smp_mb();
 | |
| 	avg_runtime = fs_info->avg_delayed_ref_runtime;
 | |
| 	val = num_entries * avg_runtime;
 | |
| 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
 | |
| 		return 1;
 | |
| 	if (val >= NSEC_PER_SEC / 2)
 | |
| 		return 2;
 | |
| 
 | |
| 	return btrfs_check_space_for_delayed_refs(trans, root);
 | |
| }
 | |
| 
 | |
| struct async_delayed_refs {
 | |
| 	struct btrfs_root *root;
 | |
| 	int count;
 | |
| 	int error;
 | |
| 	int sync;
 | |
| 	struct completion wait;
 | |
| 	struct btrfs_work work;
 | |
| };
 | |
| 
 | |
| static void delayed_ref_async_start(struct btrfs_work *work)
 | |
| {
 | |
| 	struct async_delayed_refs *async;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	int ret;
 | |
| 
 | |
| 	async = container_of(work, struct async_delayed_refs, work);
 | |
| 
 | |
| 	trans = btrfs_join_transaction(async->root);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		async->error = PTR_ERR(trans);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * trans->sync means that when we call end_transaciton, we won't
 | |
| 	 * wait on delayed refs
 | |
| 	 */
 | |
| 	trans->sync = true;
 | |
| 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
 | |
| 	if (ret)
 | |
| 		async->error = ret;
 | |
| 
 | |
| 	ret = btrfs_end_transaction(trans, async->root);
 | |
| 	if (ret && !async->error)
 | |
| 		async->error = ret;
 | |
| done:
 | |
| 	if (async->sync)
 | |
| 		complete(&async->wait);
 | |
| 	else
 | |
| 		kfree(async);
 | |
| }
 | |
| 
 | |
| int btrfs_async_run_delayed_refs(struct btrfs_root *root,
 | |
| 				 unsigned long count, int wait)
 | |
| {
 | |
| 	struct async_delayed_refs *async;
 | |
| 	int ret;
 | |
| 
 | |
| 	async = kmalloc(sizeof(*async), GFP_NOFS);
 | |
| 	if (!async)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	async->root = root->fs_info->tree_root;
 | |
| 	async->count = count;
 | |
| 	async->error = 0;
 | |
| 	if (wait)
 | |
| 		async->sync = 1;
 | |
| 	else
 | |
| 		async->sync = 0;
 | |
| 	init_completion(&async->wait);
 | |
| 
 | |
| 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
 | |
| 			delayed_ref_async_start, NULL, NULL);
 | |
| 
 | |
| 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
 | |
| 
 | |
| 	if (wait) {
 | |
| 		wait_for_completion(&async->wait);
 | |
| 		ret = async->error;
 | |
| 		kfree(async);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this starts processing the delayed reference count updates and
 | |
|  * extent insertions we have queued up so far.  count can be
 | |
|  * 0, which means to process everything in the tree at the start
 | |
|  * of the run (but not newly added entries), or it can be some target
 | |
|  * number you'd like to process.
 | |
|  *
 | |
|  * Returns 0 on success or if called with an aborted transaction
 | |
|  * Returns <0 on error and aborts the transaction
 | |
|  */
 | |
| int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root, unsigned long count)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	struct btrfs_delayed_ref_head *head;
 | |
| 	int ret;
 | |
| 	int run_all = count == (unsigned long)-1;
 | |
| 
 | |
| 	/* We'll clean this up in btrfs_cleanup_transaction */
 | |
| 	if (trans->aborted)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (root == root->fs_info->extent_root)
 | |
| 		root = root->fs_info->tree_root;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 	if (count == 0)
 | |
| 		count = atomic_read(&delayed_refs->num_entries) * 2;
 | |
| 
 | |
| again:
 | |
| #ifdef SCRAMBLE_DELAYED_REFS
 | |
| 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
 | |
| #endif
 | |
| 	ret = __btrfs_run_delayed_refs(trans, root, count);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (run_all) {
 | |
| 		if (!list_empty(&trans->new_bgs))
 | |
| 			btrfs_create_pending_block_groups(trans, root);
 | |
| 
 | |
| 		spin_lock(&delayed_refs->lock);
 | |
| 		node = rb_first(&delayed_refs->href_root);
 | |
| 		if (!node) {
 | |
| 			spin_unlock(&delayed_refs->lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		count = (unsigned long)-1;
 | |
| 
 | |
| 		while (node) {
 | |
| 			head = rb_entry(node, struct btrfs_delayed_ref_head,
 | |
| 					href_node);
 | |
| 			if (btrfs_delayed_ref_is_head(&head->node)) {
 | |
| 				struct btrfs_delayed_ref_node *ref;
 | |
| 
 | |
| 				ref = &head->node;
 | |
| 				atomic_inc(&ref->refs);
 | |
| 
 | |
| 				spin_unlock(&delayed_refs->lock);
 | |
| 				/*
 | |
| 				 * Mutex was contended, block until it's
 | |
| 				 * released and try again
 | |
| 				 */
 | |
| 				mutex_lock(&head->mutex);
 | |
| 				mutex_unlock(&head->mutex);
 | |
| 
 | |
| 				btrfs_put_delayed_ref(ref);
 | |
| 				cond_resched();
 | |
| 				goto again;
 | |
| 			} else {
 | |
| 				WARN_ON(1);
 | |
| 			}
 | |
| 			node = rb_next(node);
 | |
| 		}
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 		cond_resched();
 | |
| 		goto again;
 | |
| 	}
 | |
| out:
 | |
| 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	assert_qgroups_uptodate(trans);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root,
 | |
| 				u64 bytenr, u64 num_bytes, u64 flags,
 | |
| 				int level, int is_data)
 | |
| {
 | |
| 	struct btrfs_delayed_extent_op *extent_op;
 | |
| 	int ret;
 | |
| 
 | |
| 	extent_op = btrfs_alloc_delayed_extent_op();
 | |
| 	if (!extent_op)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	extent_op->flags_to_set = flags;
 | |
| 	extent_op->update_flags = 1;
 | |
| 	extent_op->update_key = 0;
 | |
| 	extent_op->is_data = is_data ? 1 : 0;
 | |
| 	extent_op->level = level;
 | |
| 
 | |
| 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
 | |
| 					  num_bytes, extent_op);
 | |
| 	if (ret)
 | |
| 		btrfs_free_delayed_extent_op(extent_op);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      u64 objectid, u64 offset, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_delayed_ref_head *head;
 | |
| 	struct btrfs_delayed_ref_node *ref;
 | |
| 	struct btrfs_delayed_data_ref *data_ref;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	struct rb_node *node;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 	spin_lock(&delayed_refs->lock);
 | |
| 	head = btrfs_find_delayed_ref_head(trans, bytenr);
 | |
| 	if (!head) {
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!mutex_trylock(&head->mutex)) {
 | |
| 		atomic_inc(&head->node.refs);
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		/*
 | |
| 		 * Mutex was contended, block until it's released and let
 | |
| 		 * caller try again
 | |
| 		 */
 | |
| 		mutex_lock(&head->mutex);
 | |
| 		mutex_unlock(&head->mutex);
 | |
| 		btrfs_put_delayed_ref(&head->node);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 	spin_lock(&head->lock);
 | |
| 	node = rb_first(&head->ref_root);
 | |
| 	while (node) {
 | |
| 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
 | |
| 		node = rb_next(node);
 | |
| 
 | |
| 		/* If it's a shared ref we know a cross reference exists */
 | |
| 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		data_ref = btrfs_delayed_node_to_data_ref(ref);
 | |
| 
 | |
| 		/*
 | |
| 		 * If our ref doesn't match the one we're currently looking at
 | |
| 		 * then we have a cross reference.
 | |
| 		 */
 | |
| 		if (data_ref->root != root->root_key.objectid ||
 | |
| 		    data_ref->objectid != objectid ||
 | |
| 		    data_ref->offset != offset) {
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&head->lock);
 | |
| 	mutex_unlock(&head->mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
 | |
| 					struct btrfs_root *root,
 | |
| 					struct btrfs_path *path,
 | |
| 					u64 objectid, u64 offset, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_root *extent_root = root->fs_info->extent_root;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_data_ref *ref;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct btrfs_key key;
 | |
| 	u32 item_size;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = bytenr;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	BUG_ON(ret == 0); /* Corruption */
 | |
| 
 | |
| 	ret = -ENOENT;
 | |
| 	if (path->slots[0] == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	path->slots[0]--;
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 1;
 | |
| 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 	if (item_size < sizeof(*ei)) {
 | |
| 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 | |
| 		goto out;
 | |
| 	}
 | |
| #endif
 | |
| 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 | |
| 
 | |
| 	if (item_size != sizeof(*ei) +
 | |
| 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (btrfs_extent_generation(leaf, ei) <=
 | |
| 	    btrfs_root_last_snapshot(&root->root_item))
 | |
| 		goto out;
 | |
| 
 | |
| 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
 | |
| 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
 | |
| 	    BTRFS_EXTENT_DATA_REF_KEY)
 | |
| 		goto out;
 | |
| 
 | |
| 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 	if (btrfs_extent_refs(leaf, ei) !=
 | |
| 	    btrfs_extent_data_ref_count(leaf, ref) ||
 | |
| 	    btrfs_extent_data_ref_root(leaf, ref) !=
 | |
| 	    root->root_key.objectid ||
 | |
| 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
 | |
| 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root,
 | |
| 			  u64 objectid, u64 offset, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 	int ret2;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	do {
 | |
| 		ret = check_committed_ref(trans, root, path, objectid,
 | |
| 					  offset, bytenr);
 | |
| 		if (ret && ret != -ENOENT)
 | |
| 			goto out;
 | |
| 
 | |
| 		ret2 = check_delayed_ref(trans, root, path, objectid,
 | |
| 					 offset, bytenr);
 | |
| 	} while (ret2 == -EAGAIN);
 | |
| 
 | |
| 	if (ret2 && ret2 != -ENOENT) {
 | |
| 		ret = ret2;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (ret != -ENOENT || ret2 != -ENOENT)
 | |
| 		ret = 0;
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
 | |
| 		WARN_ON(ret > 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root,
 | |
| 			   struct extent_buffer *buf,
 | |
| 			   int full_backref, int inc)
 | |
| {
 | |
| 	u64 bytenr;
 | |
| 	u64 num_bytes;
 | |
| 	u64 parent;
 | |
| 	u64 ref_root;
 | |
| 	u32 nritems;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	int i;
 | |
| 	int level;
 | |
| 	int ret = 0;
 | |
| 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
 | |
| 			    u64, u64, u64, u64, u64, u64, int);
 | |
| 
 | |
| 
 | |
| 	if (btrfs_test_is_dummy_root(root))
 | |
| 		return 0;
 | |
| 
 | |
| 	ref_root = btrfs_header_owner(buf);
 | |
| 	nritems = btrfs_header_nritems(buf);
 | |
| 	level = btrfs_header_level(buf);
 | |
| 
 | |
| 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (inc)
 | |
| 		process_func = btrfs_inc_extent_ref;
 | |
| 	else
 | |
| 		process_func = btrfs_free_extent;
 | |
| 
 | |
| 	if (full_backref)
 | |
| 		parent = buf->start;
 | |
| 	else
 | |
| 		parent = 0;
 | |
| 
 | |
| 	for (i = 0; i < nritems; i++) {
 | |
| 		if (level == 0) {
 | |
| 			btrfs_item_key_to_cpu(buf, &key, i);
 | |
| 			if (key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 				continue;
 | |
| 			fi = btrfs_item_ptr(buf, i,
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			if (btrfs_file_extent_type(buf, fi) ==
 | |
| 			    BTRFS_FILE_EXTENT_INLINE)
 | |
| 				continue;
 | |
| 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
 | |
| 			if (bytenr == 0)
 | |
| 				continue;
 | |
| 
 | |
| 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
 | |
| 			key.offset -= btrfs_file_extent_offset(buf, fi);
 | |
| 			ret = process_func(trans, root, bytenr, num_bytes,
 | |
| 					   parent, ref_root, key.objectid,
 | |
| 					   key.offset, 1);
 | |
| 			if (ret)
 | |
| 				goto fail;
 | |
| 		} else {
 | |
| 			bytenr = btrfs_node_blockptr(buf, i);
 | |
| 			num_bytes = root->nodesize;
 | |
| 			ret = process_func(trans, root, bytenr, num_bytes,
 | |
| 					   parent, ref_root, level - 1, 0,
 | |
| 					   1);
 | |
| 			if (ret)
 | |
| 				goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		  struct extent_buffer *buf, int full_backref)
 | |
| {
 | |
| 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
 | |
| }
 | |
| 
 | |
| int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		  struct extent_buffer *buf, int full_backref)
 | |
| {
 | |
| 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
 | |
| }
 | |
| 
 | |
| static int write_one_cache_group(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_root *extent_root = root->fs_info->extent_root;
 | |
| 	unsigned long bi;
 | |
| 	struct extent_buffer *leaf;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
 | |
| 	if (ret) {
 | |
| 		if (ret > 0)
 | |
| 			ret = -ENOENT;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | |
| 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	btrfs_release_path(path);
 | |
| fail:
 | |
| 	if (ret)
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| static struct btrfs_block_group_cache *
 | |
| next_block_group(struct btrfs_root *root,
 | |
| 		 struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	spin_lock(&root->fs_info->block_group_cache_lock);
 | |
| 
 | |
| 	/* If our block group was removed, we need a full search. */
 | |
| 	if (RB_EMPTY_NODE(&cache->cache_node)) {
 | |
| 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
 | |
| 
 | |
| 		spin_unlock(&root->fs_info->block_group_cache_lock);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		cache = btrfs_lookup_first_block_group(root->fs_info,
 | |
| 						       next_bytenr);
 | |
| 		return cache;
 | |
| 	}
 | |
| 	node = rb_next(&cache->cache_node);
 | |
| 	btrfs_put_block_group(cache);
 | |
| 	if (node) {
 | |
| 		cache = rb_entry(node, struct btrfs_block_group_cache,
 | |
| 				 cache_node);
 | |
| 		btrfs_get_block_group(cache);
 | |
| 	} else
 | |
| 		cache = NULL;
 | |
| 	spin_unlock(&root->fs_info->block_group_cache_lock);
 | |
| 	return cache;
 | |
| }
 | |
| 
 | |
| static int cache_save_setup(struct btrfs_block_group_cache *block_group,
 | |
| 			    struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_path *path)
 | |
| {
 | |
| 	struct btrfs_root *root = block_group->fs_info->tree_root;
 | |
| 	struct inode *inode = NULL;
 | |
| 	u64 alloc_hint = 0;
 | |
| 	int dcs = BTRFS_DC_ERROR;
 | |
| 	int num_pages = 0;
 | |
| 	int retries = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this block group is smaller than 100 megs don't bother caching the
 | |
| 	 * block group.
 | |
| 	 */
 | |
| 	if (block_group->key.offset < (100 * 1024 * 1024)) {
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	inode = lookup_free_space_inode(root, block_group, path);
 | |
| 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
 | |
| 		ret = PTR_ERR(inode);
 | |
| 		btrfs_release_path(path);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		BUG_ON(retries);
 | |
| 		retries++;
 | |
| 
 | |
| 		if (block_group->ro)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		ret = create_free_space_inode(root, trans, block_group, path);
 | |
| 		if (ret)
 | |
| 			goto out_free;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	/* We've already setup this transaction, go ahead and exit */
 | |
| 	if (block_group->cache_generation == trans->transid &&
 | |
| 	    i_size_read(inode)) {
 | |
| 		dcs = BTRFS_DC_SETUP;
 | |
| 		goto out_put;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to set the generation to 0, that way if anything goes wrong
 | |
| 	 * from here on out we know not to trust this cache when we load up next
 | |
| 	 * time.
 | |
| 	 */
 | |
| 	BTRFS_I(inode)->generation = 0;
 | |
| 	ret = btrfs_update_inode(trans, root, inode);
 | |
| 	WARN_ON(ret);
 | |
| 
 | |
| 	if (i_size_read(inode) > 0) {
 | |
| 		ret = btrfs_check_trunc_cache_free_space(root,
 | |
| 					&root->fs_info->global_block_rsv);
 | |
| 		if (ret)
 | |
| 			goto out_put;
 | |
| 
 | |
| 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
 | |
| 		if (ret)
 | |
| 			goto out_put;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
 | |
| 	    !btrfs_test_opt(root, SPACE_CACHE) ||
 | |
| 	    block_group->delalloc_bytes) {
 | |
| 		/*
 | |
| 		 * don't bother trying to write stuff out _if_
 | |
| 		 * a) we're not cached,
 | |
| 		 * b) we're with nospace_cache mount option.
 | |
| 		 */
 | |
| 		dcs = BTRFS_DC_WRITTEN;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		goto out_put;
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to preallocate enough space based on how big the block group is.
 | |
| 	 * Keep in mind this has to include any pinned space which could end up
 | |
| 	 * taking up quite a bit since it's not folded into the other space
 | |
| 	 * cache.
 | |
| 	 */
 | |
| 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
 | |
| 	if (!num_pages)
 | |
| 		num_pages = 1;
 | |
| 
 | |
| 	num_pages *= 16;
 | |
| 	num_pages *= PAGE_CACHE_SIZE;
 | |
| 
 | |
| 	ret = btrfs_check_data_free_space(inode, num_pages);
 | |
| 	if (ret)
 | |
| 		goto out_put;
 | |
| 
 | |
| 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
 | |
| 					      num_pages, num_pages,
 | |
| 					      &alloc_hint);
 | |
| 	if (!ret)
 | |
| 		dcs = BTRFS_DC_SETUP;
 | |
| 	btrfs_free_reserved_data_space(inode, num_pages);
 | |
| 
 | |
| out_put:
 | |
| 	iput(inode);
 | |
| out_free:
 | |
| 	btrfs_release_path(path);
 | |
| out:
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (!ret && dcs == BTRFS_DC_SETUP)
 | |
| 		block_group->cache_generation = trans->transid;
 | |
| 	block_group->disk_cache_state = dcs;
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 	struct btrfs_transaction *cur_trans = trans->transaction;
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_path *path;
 | |
| 
 | |
| 	if (list_empty(&cur_trans->dirty_bgs))
 | |
| 		return 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't need the lock here since we are protected by the transaction
 | |
| 	 * commit.  We want to do the cache_save_setup first and then run the
 | |
| 	 * delayed refs to make sure we have the best chance at doing this all
 | |
| 	 * in one shot.
 | |
| 	 */
 | |
| 	while (!list_empty(&cur_trans->dirty_bgs)) {
 | |
| 		cache = list_first_entry(&cur_trans->dirty_bgs,
 | |
| 					 struct btrfs_block_group_cache,
 | |
| 					 dirty_list);
 | |
| 		list_del_init(&cache->dirty_list);
 | |
| 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
 | |
| 			cache_save_setup(cache, trans, path);
 | |
| 		if (!ret)
 | |
| 			ret = btrfs_run_delayed_refs(trans, root,
 | |
| 						     (unsigned long) -1);
 | |
| 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
 | |
| 			btrfs_write_out_cache(root, trans, cache, path);
 | |
| 		if (!ret)
 | |
| 			ret = write_one_cache_group(trans, root, path, cache);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *block_group;
 | |
| 	int readonly = 0;
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
 | |
| 	if (!block_group || block_group->ro)
 | |
| 		readonly = 1;
 | |
| 	if (block_group)
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 	return readonly;
 | |
| }
 | |
| 
 | |
| static const char *alloc_name(u64 flags)
 | |
| {
 | |
| 	switch (flags) {
 | |
| 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
 | |
| 		return "mixed";
 | |
| 	case BTRFS_BLOCK_GROUP_METADATA:
 | |
| 		return "metadata";
 | |
| 	case BTRFS_BLOCK_GROUP_DATA:
 | |
| 		return "data";
 | |
| 	case BTRFS_BLOCK_GROUP_SYSTEM:
 | |
| 		return "system";
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 		return "invalid-combination";
 | |
| 	};
 | |
| }
 | |
| 
 | |
| static int update_space_info(struct btrfs_fs_info *info, u64 flags,
 | |
| 			     u64 total_bytes, u64 bytes_used,
 | |
| 			     struct btrfs_space_info **space_info)
 | |
| {
 | |
| 	struct btrfs_space_info *found;
 | |
| 	int i;
 | |
| 	int factor;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 		     BTRFS_BLOCK_GROUP_RAID10))
 | |
| 		factor = 2;
 | |
| 	else
 | |
| 		factor = 1;
 | |
| 
 | |
| 	found = __find_space_info(info, flags);
 | |
| 	if (found) {
 | |
| 		spin_lock(&found->lock);
 | |
| 		found->total_bytes += total_bytes;
 | |
| 		found->disk_total += total_bytes * factor;
 | |
| 		found->bytes_used += bytes_used;
 | |
| 		found->disk_used += bytes_used * factor;
 | |
| 		found->full = 0;
 | |
| 		spin_unlock(&found->lock);
 | |
| 		*space_info = found;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	found = kzalloc(sizeof(*found), GFP_NOFS);
 | |
| 	if (!found)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
 | |
| 	if (ret) {
 | |
| 		kfree(found);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 | |
| 		INIT_LIST_HEAD(&found->block_groups[i]);
 | |
| 	init_rwsem(&found->groups_sem);
 | |
| 	spin_lock_init(&found->lock);
 | |
| 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
 | |
| 	found->total_bytes = total_bytes;
 | |
| 	found->disk_total = total_bytes * factor;
 | |
| 	found->bytes_used = bytes_used;
 | |
| 	found->disk_used = bytes_used * factor;
 | |
| 	found->bytes_pinned = 0;
 | |
| 	found->bytes_reserved = 0;
 | |
| 	found->bytes_readonly = 0;
 | |
| 	found->bytes_may_use = 0;
 | |
| 	found->full = 0;
 | |
| 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
 | |
| 	found->chunk_alloc = 0;
 | |
| 	found->flush = 0;
 | |
| 	init_waitqueue_head(&found->wait);
 | |
| 	INIT_LIST_HEAD(&found->ro_bgs);
 | |
| 
 | |
| 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
 | |
| 				    info->space_info_kobj, "%s",
 | |
| 				    alloc_name(found->flags));
 | |
| 	if (ret) {
 | |
| 		kfree(found);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	*space_info = found;
 | |
| 	list_add_rcu(&found->list, &info->space_info);
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_DATA)
 | |
| 		info->data_sinfo = found;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 | |
| {
 | |
| 	u64 extra_flags = chunk_to_extended(flags) &
 | |
| 				BTRFS_EXTENDED_PROFILE_MASK;
 | |
| 
 | |
| 	write_seqlock(&fs_info->profiles_lock);
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_DATA)
 | |
| 		fs_info->avail_data_alloc_bits |= extra_flags;
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 | |
| 		fs_info->avail_metadata_alloc_bits |= extra_flags;
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 | |
| 		fs_info->avail_system_alloc_bits |= extra_flags;
 | |
| 	write_sequnlock(&fs_info->profiles_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns target flags in extended format or 0 if restripe for this
 | |
|  * chunk_type is not in progress
 | |
|  *
 | |
|  * should be called with either volume_mutex or balance_lock held
 | |
|  */
 | |
| static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
 | |
| {
 | |
| 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 | |
| 	u64 target = 0;
 | |
| 
 | |
| 	if (!bctl)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
 | |
| 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 | |
| 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
 | |
| 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
 | |
| 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 | |
| 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
 | |
| 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
 | |
| 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 | |
| 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
 | |
| 	}
 | |
| 
 | |
| 	return target;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @flags: available profiles in extended format (see ctree.h)
 | |
|  *
 | |
|  * Returns reduced profile in chunk format.  If profile changing is in
 | |
|  * progress (either running or paused) picks the target profile (if it's
 | |
|  * already available), otherwise falls back to plain reducing.
 | |
|  */
 | |
| static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
 | |
| {
 | |
| 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
 | |
| 	u64 target;
 | |
| 	u64 tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * see if restripe for this chunk_type is in progress, if so
 | |
| 	 * try to reduce to the target profile
 | |
| 	 */
 | |
| 	spin_lock(&root->fs_info->balance_lock);
 | |
| 	target = get_restripe_target(root->fs_info, flags);
 | |
| 	if (target) {
 | |
| 		/* pick target profile only if it's already available */
 | |
| 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
 | |
| 			spin_unlock(&root->fs_info->balance_lock);
 | |
| 			return extended_to_chunk(target);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&root->fs_info->balance_lock);
 | |
| 
 | |
| 	/* First, mask out the RAID levels which aren't possible */
 | |
| 	if (num_devices == 1)
 | |
| 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 			   BTRFS_BLOCK_GROUP_RAID5);
 | |
| 	if (num_devices < 3)
 | |
| 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
 | |
| 	if (num_devices < 4)
 | |
| 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
 | |
| 
 | |
| 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
 | |
| 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
 | |
| 	flags &= ~tmp;
 | |
| 
 | |
| 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 		tmp = BTRFS_BLOCK_GROUP_RAID6;
 | |
| 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
 | |
| 		tmp = BTRFS_BLOCK_GROUP_RAID5;
 | |
| 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
 | |
| 		tmp = BTRFS_BLOCK_GROUP_RAID10;
 | |
| 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
 | |
| 		tmp = BTRFS_BLOCK_GROUP_RAID1;
 | |
| 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
 | |
| 		tmp = BTRFS_BLOCK_GROUP_RAID0;
 | |
| 
 | |
| 	return extended_to_chunk(flags | tmp);
 | |
| }
 | |
| 
 | |
| static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
 | |
| {
 | |
| 	unsigned seq;
 | |
| 	u64 flags;
 | |
| 
 | |
| 	do {
 | |
| 		flags = orig_flags;
 | |
| 		seq = read_seqbegin(&root->fs_info->profiles_lock);
 | |
| 
 | |
| 		if (flags & BTRFS_BLOCK_GROUP_DATA)
 | |
| 			flags |= root->fs_info->avail_data_alloc_bits;
 | |
| 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 | |
| 			flags |= root->fs_info->avail_system_alloc_bits;
 | |
| 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
 | |
| 			flags |= root->fs_info->avail_metadata_alloc_bits;
 | |
| 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
 | |
| 
 | |
| 	return btrfs_reduce_alloc_profile(root, flags);
 | |
| }
 | |
| 
 | |
| u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
 | |
| {
 | |
| 	u64 flags;
 | |
| 	u64 ret;
 | |
| 
 | |
| 	if (data)
 | |
| 		flags = BTRFS_BLOCK_GROUP_DATA;
 | |
| 	else if (root == root->fs_info->chunk_root)
 | |
| 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
 | |
| 	else
 | |
| 		flags = BTRFS_BLOCK_GROUP_METADATA;
 | |
| 
 | |
| 	ret = get_alloc_profile(root, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This will check the space that the inode allocates from to make sure we have
 | |
|  * enough space for bytes.
 | |
|  */
 | |
| int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
 | |
| {
 | |
| 	struct btrfs_space_info *data_sinfo;
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 used;
 | |
| 	int ret = 0, committed = 0, alloc_chunk = 1;
 | |
| 
 | |
| 	/* make sure bytes are sectorsize aligned */
 | |
| 	bytes = ALIGN(bytes, root->sectorsize);
 | |
| 
 | |
| 	if (btrfs_is_free_space_inode(inode)) {
 | |
| 		committed = 1;
 | |
| 		ASSERT(current->journal_info);
 | |
| 	}
 | |
| 
 | |
| 	data_sinfo = fs_info->data_sinfo;
 | |
| 	if (!data_sinfo)
 | |
| 		goto alloc;
 | |
| 
 | |
| again:
 | |
| 	/* make sure we have enough space to handle the data first */
 | |
| 	spin_lock(&data_sinfo->lock);
 | |
| 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
 | |
| 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
 | |
| 		data_sinfo->bytes_may_use;
 | |
| 
 | |
| 	if (used + bytes > data_sinfo->total_bytes) {
 | |
| 		struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 		/*
 | |
| 		 * if we don't have enough free bytes in this space then we need
 | |
| 		 * to alloc a new chunk.
 | |
| 		 */
 | |
| 		if (!data_sinfo->full && alloc_chunk) {
 | |
| 			u64 alloc_target;
 | |
| 
 | |
| 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
 | |
| 			spin_unlock(&data_sinfo->lock);
 | |
| alloc:
 | |
| 			alloc_target = btrfs_get_alloc_profile(root, 1);
 | |
| 			/*
 | |
| 			 * It is ugly that we don't call nolock join
 | |
| 			 * transaction for the free space inode case here.
 | |
| 			 * But it is safe because we only do the data space
 | |
| 			 * reservation for the free space cache in the
 | |
| 			 * transaction context, the common join transaction
 | |
| 			 * just increase the counter of the current transaction
 | |
| 			 * handler, doesn't try to acquire the trans_lock of
 | |
| 			 * the fs.
 | |
| 			 */
 | |
| 			trans = btrfs_join_transaction(root);
 | |
| 			if (IS_ERR(trans))
 | |
| 				return PTR_ERR(trans);
 | |
| 
 | |
| 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
 | |
| 					     alloc_target,
 | |
| 					     CHUNK_ALLOC_NO_FORCE);
 | |
| 			btrfs_end_transaction(trans, root);
 | |
| 			if (ret < 0) {
 | |
| 				if (ret != -ENOSPC)
 | |
| 					return ret;
 | |
| 				else
 | |
| 					goto commit_trans;
 | |
| 			}
 | |
| 
 | |
| 			if (!data_sinfo)
 | |
| 				data_sinfo = fs_info->data_sinfo;
 | |
| 
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we don't have enough pinned space to deal with this
 | |
| 		 * allocation don't bother committing the transaction.
 | |
| 		 */
 | |
| 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
 | |
| 					   bytes) < 0)
 | |
| 			committed = 1;
 | |
| 		spin_unlock(&data_sinfo->lock);
 | |
| 
 | |
| 		/* commit the current transaction and try again */
 | |
| commit_trans:
 | |
| 		if (!committed &&
 | |
| 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
 | |
| 			committed = 1;
 | |
| 
 | |
| 			trans = btrfs_join_transaction(root);
 | |
| 			if (IS_ERR(trans))
 | |
| 				return PTR_ERR(trans);
 | |
| 			ret = btrfs_commit_transaction(trans, root);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		trace_btrfs_space_reservation(root->fs_info,
 | |
| 					      "space_info:enospc",
 | |
| 					      data_sinfo->flags, bytes, 1);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 	data_sinfo->bytes_may_use += bytes;
 | |
| 	trace_btrfs_space_reservation(root->fs_info, "space_info",
 | |
| 				      data_sinfo->flags, bytes, 1);
 | |
| 	spin_unlock(&data_sinfo->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called if we need to clear a data reservation for this inode.
 | |
|  */
 | |
| void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct btrfs_space_info *data_sinfo;
 | |
| 
 | |
| 	/* make sure bytes are sectorsize aligned */
 | |
| 	bytes = ALIGN(bytes, root->sectorsize);
 | |
| 
 | |
| 	data_sinfo = root->fs_info->data_sinfo;
 | |
| 	spin_lock(&data_sinfo->lock);
 | |
| 	WARN_ON(data_sinfo->bytes_may_use < bytes);
 | |
| 	data_sinfo->bytes_may_use -= bytes;
 | |
| 	trace_btrfs_space_reservation(root->fs_info, "space_info",
 | |
| 				      data_sinfo->flags, bytes, 0);
 | |
| 	spin_unlock(&data_sinfo->lock);
 | |
| }
 | |
| 
 | |
| static void force_metadata_allocation(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct list_head *head = &info->space_info;
 | |
| 	struct btrfs_space_info *found;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(found, head, list) {
 | |
| 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
 | |
| 			found->force_alloc = CHUNK_ALLOC_FORCE;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
 | |
| {
 | |
| 	return (global->size << 1);
 | |
| }
 | |
| 
 | |
| static int should_alloc_chunk(struct btrfs_root *root,
 | |
| 			      struct btrfs_space_info *sinfo, int force)
 | |
| {
 | |
| 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
 | |
| 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
 | |
| 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
 | |
| 	u64 thresh;
 | |
| 
 | |
| 	if (force == CHUNK_ALLOC_FORCE)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to take into account the global rsv because for all intents
 | |
| 	 * and purposes it's used space.  Don't worry about locking the
 | |
| 	 * global_rsv, it doesn't change except when the transaction commits.
 | |
| 	 */
 | |
| 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
 | |
| 		num_allocated += calc_global_rsv_need_space(global_rsv);
 | |
| 
 | |
| 	/*
 | |
| 	 * in limited mode, we want to have some free space up to
 | |
| 	 * about 1% of the FS size.
 | |
| 	 */
 | |
| 	if (force == CHUNK_ALLOC_LIMITED) {
 | |
| 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
 | |
| 		thresh = max_t(u64, 64 * 1024 * 1024,
 | |
| 			       div_factor_fine(thresh, 1));
 | |
| 
 | |
| 		if (num_bytes - num_allocated < thresh)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
 | |
| {
 | |
| 	u64 num_dev;
 | |
| 
 | |
| 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
 | |
| 		    BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 		    BTRFS_BLOCK_GROUP_RAID5 |
 | |
| 		    BTRFS_BLOCK_GROUP_RAID6))
 | |
| 		num_dev = root->fs_info->fs_devices->rw_devices;
 | |
| 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
 | |
| 		num_dev = 2;
 | |
| 	else
 | |
| 		num_dev = 1;	/* DUP or single */
 | |
| 
 | |
| 	/* metadata for updaing devices and chunk tree */
 | |
| 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
 | |
| }
 | |
| 
 | |
| static void check_system_chunk(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root, u64 type)
 | |
| {
 | |
| 	struct btrfs_space_info *info;
 | |
| 	u64 left;
 | |
| 	u64 thresh;
 | |
| 
 | |
| 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
 | |
| 	spin_lock(&info->lock);
 | |
| 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
 | |
| 		info->bytes_reserved - info->bytes_readonly;
 | |
| 	spin_unlock(&info->lock);
 | |
| 
 | |
| 	thresh = get_system_chunk_thresh(root, type);
 | |
| 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
 | |
| 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
 | |
| 			left, thresh, type);
 | |
| 		dump_space_info(info, 0, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (left < thresh) {
 | |
| 		u64 flags;
 | |
| 
 | |
| 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
 | |
| 		btrfs_alloc_chunk(trans, root, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int do_chunk_alloc(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *extent_root, u64 flags, int force)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 | |
| 	int wait_for_alloc = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Don't re-enter if we're already allocating a chunk */
 | |
| 	if (trans->allocating_chunk)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	space_info = __find_space_info(extent_root->fs_info, flags);
 | |
| 	if (!space_info) {
 | |
| 		ret = update_space_info(extent_root->fs_info, flags,
 | |
| 					0, 0, &space_info);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 	}
 | |
| 	BUG_ON(!space_info); /* Logic error */
 | |
| 
 | |
| again:
 | |
| 	spin_lock(&space_info->lock);
 | |
| 	if (force < space_info->force_alloc)
 | |
| 		force = space_info->force_alloc;
 | |
| 	if (space_info->full) {
 | |
| 		if (should_alloc_chunk(extent_root, space_info, force))
 | |
| 			ret = -ENOSPC;
 | |
| 		else
 | |
| 			ret = 0;
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!should_alloc_chunk(extent_root, space_info, force)) {
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 		return 0;
 | |
| 	} else if (space_info->chunk_alloc) {
 | |
| 		wait_for_alloc = 1;
 | |
| 	} else {
 | |
| 		space_info->chunk_alloc = 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&space_info->lock);
 | |
| 
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * The chunk_mutex is held throughout the entirety of a chunk
 | |
| 	 * allocation, so once we've acquired the chunk_mutex we know that the
 | |
| 	 * other guy is done and we need to recheck and see if we should
 | |
| 	 * allocate.
 | |
| 	 */
 | |
| 	if (wait_for_alloc) {
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 		wait_for_alloc = 0;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	trans->allocating_chunk = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have mixed data/metadata chunks we want to make sure we keep
 | |
| 	 * allocating mixed chunks instead of individual chunks.
 | |
| 	 */
 | |
| 	if (btrfs_mixed_space_info(space_info))
 | |
| 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
 | |
| 
 | |
| 	/*
 | |
| 	 * if we're doing a data chunk, go ahead and make sure that
 | |
| 	 * we keep a reasonable number of metadata chunks allocated in the
 | |
| 	 * FS as well.
 | |
| 	 */
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
 | |
| 		fs_info->data_chunk_allocations++;
 | |
| 		if (!(fs_info->data_chunk_allocations %
 | |
| 		      fs_info->metadata_ratio))
 | |
| 			force_metadata_allocation(fs_info);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if we have enough space in SYSTEM chunk because we may need
 | |
| 	 * to update devices.
 | |
| 	 */
 | |
| 	check_system_chunk(trans, extent_root, flags);
 | |
| 
 | |
| 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
 | |
| 	trans->allocating_chunk = false;
 | |
| 
 | |
| 	spin_lock(&space_info->lock);
 | |
| 	if (ret < 0 && ret != -ENOSPC)
 | |
| 		goto out;
 | |
| 	if (ret)
 | |
| 		space_info->full = 1;
 | |
| 	else
 | |
| 		ret = 1;
 | |
| 
 | |
| 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
 | |
| out:
 | |
| 	space_info->chunk_alloc = 0;
 | |
| 	spin_unlock(&space_info->lock);
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int can_overcommit(struct btrfs_root *root,
 | |
| 			  struct btrfs_space_info *space_info, u64 bytes,
 | |
| 			  enum btrfs_reserve_flush_enum flush)
 | |
| {
 | |
| 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
 | |
| 	u64 profile = btrfs_get_alloc_profile(root, 0);
 | |
| 	u64 space_size;
 | |
| 	u64 avail;
 | |
| 	u64 used;
 | |
| 
 | |
| 	used = space_info->bytes_used + space_info->bytes_reserved +
 | |
| 		space_info->bytes_pinned + space_info->bytes_readonly;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only want to allow over committing if we have lots of actual space
 | |
| 	 * free, but if we don't have enough space to handle the global reserve
 | |
| 	 * space then we could end up having a real enospc problem when trying
 | |
| 	 * to allocate a chunk or some other such important allocation.
 | |
| 	 */
 | |
| 	spin_lock(&global_rsv->lock);
 | |
| 	space_size = calc_global_rsv_need_space(global_rsv);
 | |
| 	spin_unlock(&global_rsv->lock);
 | |
| 	if (used + space_size >= space_info->total_bytes)
 | |
| 		return 0;
 | |
| 
 | |
| 	used += space_info->bytes_may_use;
 | |
| 
 | |
| 	spin_lock(&root->fs_info->free_chunk_lock);
 | |
| 	avail = root->fs_info->free_chunk_space;
 | |
| 	spin_unlock(&root->fs_info->free_chunk_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have dup, raid1 or raid10 then only half of the free
 | |
| 	 * space is actually useable.  For raid56, the space info used
 | |
| 	 * doesn't include the parity drive, so we don't have to
 | |
| 	 * change the math
 | |
| 	 */
 | |
| 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
 | |
| 		       BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 		       BTRFS_BLOCK_GROUP_RAID10))
 | |
| 		avail >>= 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we aren't flushing all things, let us overcommit up to
 | |
| 	 * 1/2th of the space. If we can flush, don't let us overcommit
 | |
| 	 * too much, let it overcommit up to 1/8 of the space.
 | |
| 	 */
 | |
| 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 | |
| 		avail >>= 3;
 | |
| 	else
 | |
| 		avail >>= 1;
 | |
| 
 | |
| 	if (used + bytes < space_info->total_bytes + avail)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
 | |
| 					 unsigned long nr_pages, int nr_items)
 | |
| {
 | |
| 	struct super_block *sb = root->fs_info->sb;
 | |
| 
 | |
| 	if (down_read_trylock(&sb->s_umount)) {
 | |
| 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
 | |
| 		up_read(&sb->s_umount);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We needn't worry the filesystem going from r/w to r/o though
 | |
| 		 * we don't acquire ->s_umount mutex, because the filesystem
 | |
| 		 * should guarantee the delalloc inodes list be empty after
 | |
| 		 * the filesystem is readonly(all dirty pages are written to
 | |
| 		 * the disk).
 | |
| 		 */
 | |
| 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
 | |
| 		if (!current->journal_info)
 | |
| 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
 | |
| {
 | |
| 	u64 bytes;
 | |
| 	int nr;
 | |
| 
 | |
| 	bytes = btrfs_calc_trans_metadata_size(root, 1);
 | |
| 	nr = (int)div64_u64(to_reclaim, bytes);
 | |
| 	if (!nr)
 | |
| 		nr = 1;
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
 | |
| 
 | |
| /*
 | |
|  * shrink metadata reservation for delalloc
 | |
|  */
 | |
| static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
 | |
| 			    bool wait_ordered)
 | |
| {
 | |
| 	struct btrfs_block_rsv *block_rsv;
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	u64 delalloc_bytes;
 | |
| 	u64 max_reclaim;
 | |
| 	long time_left;
 | |
| 	unsigned long nr_pages;
 | |
| 	int loops;
 | |
| 	int items;
 | |
| 	enum btrfs_reserve_flush_enum flush;
 | |
| 
 | |
| 	/* Calc the number of the pages we need flush for space reservation */
 | |
| 	items = calc_reclaim_items_nr(root, to_reclaim);
 | |
| 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
 | |
| 
 | |
| 	trans = (struct btrfs_trans_handle *)current->journal_info;
 | |
| 	block_rsv = &root->fs_info->delalloc_block_rsv;
 | |
| 	space_info = block_rsv->space_info;
 | |
| 
 | |
| 	delalloc_bytes = percpu_counter_sum_positive(
 | |
| 						&root->fs_info->delalloc_bytes);
 | |
| 	if (delalloc_bytes == 0) {
 | |
| 		if (trans)
 | |
| 			return;
 | |
| 		if (wait_ordered)
 | |
| 			btrfs_wait_ordered_roots(root->fs_info, items);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	loops = 0;
 | |
| 	while (delalloc_bytes && loops < 3) {
 | |
| 		max_reclaim = min(delalloc_bytes, to_reclaim);
 | |
| 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
 | |
| 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
 | |
| 		/*
 | |
| 		 * We need to wait for the async pages to actually start before
 | |
| 		 * we do anything.
 | |
| 		 */
 | |
| 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
 | |
| 		if (!max_reclaim)
 | |
| 			goto skip_async;
 | |
| 
 | |
| 		if (max_reclaim <= nr_pages)
 | |
| 			max_reclaim = 0;
 | |
| 		else
 | |
| 			max_reclaim -= nr_pages;
 | |
| 
 | |
| 		wait_event(root->fs_info->async_submit_wait,
 | |
| 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
 | |
| 			   (int)max_reclaim);
 | |
| skip_async:
 | |
| 		if (!trans)
 | |
| 			flush = BTRFS_RESERVE_FLUSH_ALL;
 | |
| 		else
 | |
| 			flush = BTRFS_RESERVE_NO_FLUSH;
 | |
| 		spin_lock(&space_info->lock);
 | |
| 		if (can_overcommit(root, space_info, orig, flush)) {
 | |
| 			spin_unlock(&space_info->lock);
 | |
| 			break;
 | |
| 		}
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 
 | |
| 		loops++;
 | |
| 		if (wait_ordered && !trans) {
 | |
| 			btrfs_wait_ordered_roots(root->fs_info, items);
 | |
| 		} else {
 | |
| 			time_left = schedule_timeout_killable(1);
 | |
| 			if (time_left)
 | |
| 				break;
 | |
| 		}
 | |
| 		delalloc_bytes = percpu_counter_sum_positive(
 | |
| 						&root->fs_info->delalloc_bytes);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * maybe_commit_transaction - possibly commit the transaction if its ok to
 | |
|  * @root - the root we're allocating for
 | |
|  * @bytes - the number of bytes we want to reserve
 | |
|  * @force - force the commit
 | |
|  *
 | |
|  * This will check to make sure that committing the transaction will actually
 | |
|  * get us somewhere and then commit the transaction if it does.  Otherwise it
 | |
|  * will return -ENOSPC.
 | |
|  */
 | |
| static int may_commit_transaction(struct btrfs_root *root,
 | |
| 				  struct btrfs_space_info *space_info,
 | |
| 				  u64 bytes, int force)
 | |
| {
 | |
| 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 	trans = (struct btrfs_trans_handle *)current->journal_info;
 | |
| 	if (trans)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	if (force)
 | |
| 		goto commit;
 | |
| 
 | |
| 	/* See if there is enough pinned space to make this reservation */
 | |
| 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
 | |
| 				   bytes) >= 0)
 | |
| 		goto commit;
 | |
| 
 | |
| 	/*
 | |
| 	 * See if there is some space in the delayed insertion reservation for
 | |
| 	 * this reservation.
 | |
| 	 */
 | |
| 	if (space_info != delayed_rsv->space_info)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	spin_lock(&delayed_rsv->lock);
 | |
| 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
 | |
| 				   bytes - delayed_rsv->size) >= 0) {
 | |
| 		spin_unlock(&delayed_rsv->lock);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 	spin_unlock(&delayed_rsv->lock);
 | |
| 
 | |
| commit:
 | |
| 	trans = btrfs_join_transaction(root);
 | |
| 	if (IS_ERR(trans))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	return btrfs_commit_transaction(trans, root);
 | |
| }
 | |
| 
 | |
| enum flush_state {
 | |
| 	FLUSH_DELAYED_ITEMS_NR	=	1,
 | |
| 	FLUSH_DELAYED_ITEMS	=	2,
 | |
| 	FLUSH_DELALLOC		=	3,
 | |
| 	FLUSH_DELALLOC_WAIT	=	4,
 | |
| 	ALLOC_CHUNK		=	5,
 | |
| 	COMMIT_TRANS		=	6,
 | |
| };
 | |
| 
 | |
| static int flush_space(struct btrfs_root *root,
 | |
| 		       struct btrfs_space_info *space_info, u64 num_bytes,
 | |
| 		       u64 orig_bytes, int state)
 | |
| {
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	int nr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case FLUSH_DELAYED_ITEMS_NR:
 | |
| 	case FLUSH_DELAYED_ITEMS:
 | |
| 		if (state == FLUSH_DELAYED_ITEMS_NR)
 | |
| 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
 | |
| 		else
 | |
| 			nr = -1;
 | |
| 
 | |
| 		trans = btrfs_join_transaction(root);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			ret = PTR_ERR(trans);
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| 		break;
 | |
| 	case FLUSH_DELALLOC:
 | |
| 	case FLUSH_DELALLOC_WAIT:
 | |
| 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
 | |
| 				state == FLUSH_DELALLOC_WAIT);
 | |
| 		break;
 | |
| 	case ALLOC_CHUNK:
 | |
| 		trans = btrfs_join_transaction(root);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			ret = PTR_ERR(trans);
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
 | |
| 				     btrfs_get_alloc_profile(root, 0),
 | |
| 				     CHUNK_ALLOC_NO_FORCE);
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| 		if (ret == -ENOSPC)
 | |
| 			ret = 0;
 | |
| 		break;
 | |
| 	case COMMIT_TRANS:
 | |
| 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -ENOSPC;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline u64
 | |
| btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
 | |
| 				 struct btrfs_space_info *space_info)
 | |
| {
 | |
| 	u64 used;
 | |
| 	u64 expected;
 | |
| 	u64 to_reclaim;
 | |
| 
 | |
| 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
 | |
| 				16 * 1024 * 1024);
 | |
| 	spin_lock(&space_info->lock);
 | |
| 	if (can_overcommit(root, space_info, to_reclaim,
 | |
| 			   BTRFS_RESERVE_FLUSH_ALL)) {
 | |
| 		to_reclaim = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	used = space_info->bytes_used + space_info->bytes_reserved +
 | |
| 	       space_info->bytes_pinned + space_info->bytes_readonly +
 | |
| 	       space_info->bytes_may_use;
 | |
| 	if (can_overcommit(root, space_info, 1024 * 1024,
 | |
| 			   BTRFS_RESERVE_FLUSH_ALL))
 | |
| 		expected = div_factor_fine(space_info->total_bytes, 95);
 | |
| 	else
 | |
| 		expected = div_factor_fine(space_info->total_bytes, 90);
 | |
| 
 | |
| 	if (used > expected)
 | |
| 		to_reclaim = used - expected;
 | |
| 	else
 | |
| 		to_reclaim = 0;
 | |
| 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
 | |
| 				     space_info->bytes_reserved);
 | |
| out:
 | |
| 	spin_unlock(&space_info->lock);
 | |
| 
 | |
| 	return to_reclaim;
 | |
| }
 | |
| 
 | |
| static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
 | |
| 					struct btrfs_fs_info *fs_info, u64 used)
 | |
| {
 | |
| 	return (used >= div_factor_fine(space_info->total_bytes, 98) &&
 | |
| 		!btrfs_fs_closing(fs_info) &&
 | |
| 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 | |
| }
 | |
| 
 | |
| static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
 | |
| 				       struct btrfs_fs_info *fs_info,
 | |
| 				       int flush_state)
 | |
| {
 | |
| 	u64 used;
 | |
| 
 | |
| 	spin_lock(&space_info->lock);
 | |
| 	/*
 | |
| 	 * We run out of space and have not got any free space via flush_space,
 | |
| 	 * so don't bother doing async reclaim.
 | |
| 	 */
 | |
| 	if (flush_state > COMMIT_TRANS && space_info->full) {
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	used = space_info->bytes_used + space_info->bytes_reserved +
 | |
| 	       space_info->bytes_pinned + space_info->bytes_readonly +
 | |
| 	       space_info->bytes_may_use;
 | |
| 	if (need_do_async_reclaim(space_info, fs_info, used)) {
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	spin_unlock(&space_info->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	u64 to_reclaim;
 | |
| 	int flush_state;
 | |
| 
 | |
| 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 | |
| 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 | |
| 
 | |
| 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
 | |
| 						      space_info);
 | |
| 	if (!to_reclaim)
 | |
| 		return;
 | |
| 
 | |
| 	flush_state = FLUSH_DELAYED_ITEMS_NR;
 | |
| 	do {
 | |
| 		flush_space(fs_info->fs_root, space_info, to_reclaim,
 | |
| 			    to_reclaim, flush_state);
 | |
| 		flush_state++;
 | |
| 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
 | |
| 						 flush_state))
 | |
| 			return;
 | |
| 	} while (flush_state <= COMMIT_TRANS);
 | |
| 
 | |
| 	if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
 | |
| 		queue_work(system_unbound_wq, work);
 | |
| }
 | |
| 
 | |
| void btrfs_init_async_reclaim_work(struct work_struct *work)
 | |
| {
 | |
| 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
 | |
|  * @root - the root we're allocating for
 | |
|  * @block_rsv - the block_rsv we're allocating for
 | |
|  * @orig_bytes - the number of bytes we want
 | |
|  * @flush - whether or not we can flush to make our reservation
 | |
|  *
 | |
|  * This will reserve orgi_bytes number of bytes from the space info associated
 | |
|  * with the block_rsv.  If there is not enough space it will make an attempt to
 | |
|  * flush out space to make room.  It will do this by flushing delalloc if
 | |
|  * possible or committing the transaction.  If flush is 0 then no attempts to
 | |
|  * regain reservations will be made and this will fail if there is not enough
 | |
|  * space already.
 | |
|  */
 | |
| static int reserve_metadata_bytes(struct btrfs_root *root,
 | |
| 				  struct btrfs_block_rsv *block_rsv,
 | |
| 				  u64 orig_bytes,
 | |
| 				  enum btrfs_reserve_flush_enum flush)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info = block_rsv->space_info;
 | |
| 	u64 used;
 | |
| 	u64 num_bytes = orig_bytes;
 | |
| 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
 | |
| 	int ret = 0;
 | |
| 	bool flushing = false;
 | |
| 
 | |
| again:
 | |
| 	ret = 0;
 | |
| 	spin_lock(&space_info->lock);
 | |
| 	/*
 | |
| 	 * We only want to wait if somebody other than us is flushing and we
 | |
| 	 * are actually allowed to flush all things.
 | |
| 	 */
 | |
| 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
 | |
| 	       space_info->flush) {
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 		/*
 | |
| 		 * If we have a trans handle we can't wait because the flusher
 | |
| 		 * may have to commit the transaction, which would mean we would
 | |
| 		 * deadlock since we are waiting for the flusher to finish, but
 | |
| 		 * hold the current transaction open.
 | |
| 		 */
 | |
| 		if (current->journal_info)
 | |
| 			return -EAGAIN;
 | |
| 		ret = wait_event_killable(space_info->wait, !space_info->flush);
 | |
| 		/* Must have been killed, return */
 | |
| 		if (ret)
 | |
| 			return -EINTR;
 | |
| 
 | |
| 		spin_lock(&space_info->lock);
 | |
| 	}
 | |
| 
 | |
| 	ret = -ENOSPC;
 | |
| 	used = space_info->bytes_used + space_info->bytes_reserved +
 | |
| 		space_info->bytes_pinned + space_info->bytes_readonly +
 | |
| 		space_info->bytes_may_use;
 | |
| 
 | |
| 	/*
 | |
| 	 * The idea here is that we've not already over-reserved the block group
 | |
| 	 * then we can go ahead and save our reservation first and then start
 | |
| 	 * flushing if we need to.  Otherwise if we've already overcommitted
 | |
| 	 * lets start flushing stuff first and then come back and try to make
 | |
| 	 * our reservation.
 | |
| 	 */
 | |
| 	if (used <= space_info->total_bytes) {
 | |
| 		if (used + orig_bytes <= space_info->total_bytes) {
 | |
| 			space_info->bytes_may_use += orig_bytes;
 | |
| 			trace_btrfs_space_reservation(root->fs_info,
 | |
| 				"space_info", space_info->flags, orig_bytes, 1);
 | |
| 			ret = 0;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Ok set num_bytes to orig_bytes since we aren't
 | |
| 			 * overocmmitted, this way we only try and reclaim what
 | |
| 			 * we need.
 | |
| 			 */
 | |
| 			num_bytes = orig_bytes;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Ok we're over committed, set num_bytes to the overcommitted
 | |
| 		 * amount plus the amount of bytes that we need for this
 | |
| 		 * reservation.
 | |
| 		 */
 | |
| 		num_bytes = used - space_info->total_bytes +
 | |
| 			(orig_bytes * 2);
 | |
| 	}
 | |
| 
 | |
| 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
 | |
| 		space_info->bytes_may_use += orig_bytes;
 | |
| 		trace_btrfs_space_reservation(root->fs_info, "space_info",
 | |
| 					      space_info->flags, orig_bytes,
 | |
| 					      1);
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Couldn't make our reservation, save our place so while we're trying
 | |
| 	 * to reclaim space we can actually use it instead of somebody else
 | |
| 	 * stealing it from us.
 | |
| 	 *
 | |
| 	 * We make the other tasks wait for the flush only when we can flush
 | |
| 	 * all things.
 | |
| 	 */
 | |
| 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
 | |
| 		flushing = true;
 | |
| 		space_info->flush = 1;
 | |
| 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
 | |
| 		used += orig_bytes;
 | |
| 		/*
 | |
| 		 * We will do the space reservation dance during log replay,
 | |
| 		 * which means we won't have fs_info->fs_root set, so don't do
 | |
| 		 * the async reclaim as we will panic.
 | |
| 		 */
 | |
| 		if (!root->fs_info->log_root_recovering &&
 | |
| 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
 | |
| 		    !work_busy(&root->fs_info->async_reclaim_work))
 | |
| 			queue_work(system_unbound_wq,
 | |
| 				   &root->fs_info->async_reclaim_work);
 | |
| 	}
 | |
| 	spin_unlock(&space_info->lock);
 | |
| 
 | |
| 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
 | |
| 			  flush_state);
 | |
| 	flush_state++;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
 | |
| 	 * would happen. So skip delalloc flush.
 | |
| 	 */
 | |
| 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
 | |
| 	    (flush_state == FLUSH_DELALLOC ||
 | |
| 	     flush_state == FLUSH_DELALLOC_WAIT))
 | |
| 		flush_state = ALLOC_CHUNK;
 | |
| 
 | |
| 	if (!ret)
 | |
| 		goto again;
 | |
| 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
 | |
| 		 flush_state < COMMIT_TRANS)
 | |
| 		goto again;
 | |
| 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
 | |
| 		 flush_state <= COMMIT_TRANS)
 | |
| 		goto again;
 | |
| 
 | |
| out:
 | |
| 	if (ret == -ENOSPC &&
 | |
| 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
 | |
| 		struct btrfs_block_rsv *global_rsv =
 | |
| 			&root->fs_info->global_block_rsv;
 | |
| 
 | |
| 		if (block_rsv != global_rsv &&
 | |
| 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
 | |
| 			ret = 0;
 | |
| 	}
 | |
| 	if (ret == -ENOSPC)
 | |
| 		trace_btrfs_space_reservation(root->fs_info,
 | |
| 					      "space_info:enospc",
 | |
| 					      space_info->flags, orig_bytes, 1);
 | |
| 	if (flushing) {
 | |
| 		spin_lock(&space_info->lock);
 | |
| 		space_info->flush = 0;
 | |
| 		wake_up_all(&space_info->wait);
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct btrfs_block_rsv *get_block_rsv(
 | |
| 					const struct btrfs_trans_handle *trans,
 | |
| 					const struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_block_rsv *block_rsv = NULL;
 | |
| 
 | |
| 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 | |
| 		block_rsv = trans->block_rsv;
 | |
| 
 | |
| 	if (root == root->fs_info->csum_root && trans->adding_csums)
 | |
| 		block_rsv = trans->block_rsv;
 | |
| 
 | |
| 	if (root == root->fs_info->uuid_root)
 | |
| 		block_rsv = trans->block_rsv;
 | |
| 
 | |
| 	if (!block_rsv)
 | |
| 		block_rsv = root->block_rsv;
 | |
| 
 | |
| 	if (!block_rsv)
 | |
| 		block_rsv = &root->fs_info->empty_block_rsv;
 | |
| 
 | |
| 	return block_rsv;
 | |
| }
 | |
| 
 | |
| static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
 | |
| 			       u64 num_bytes)
 | |
| {
 | |
| 	int ret = -ENOSPC;
 | |
| 	spin_lock(&block_rsv->lock);
 | |
| 	if (block_rsv->reserved >= num_bytes) {
 | |
| 		block_rsv->reserved -= num_bytes;
 | |
| 		if (block_rsv->reserved < block_rsv->size)
 | |
| 			block_rsv->full = 0;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 	spin_unlock(&block_rsv->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
 | |
| 				u64 num_bytes, int update_size)
 | |
| {
 | |
| 	spin_lock(&block_rsv->lock);
 | |
| 	block_rsv->reserved += num_bytes;
 | |
| 	if (update_size)
 | |
| 		block_rsv->size += num_bytes;
 | |
| 	else if (block_rsv->reserved >= block_rsv->size)
 | |
| 		block_rsv->full = 1;
 | |
| 	spin_unlock(&block_rsv->lock);
 | |
| }
 | |
| 
 | |
| int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
 | |
| 			     struct btrfs_block_rsv *dest, u64 num_bytes,
 | |
| 			     int min_factor)
 | |
| {
 | |
| 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 | |
| 	u64 min_bytes;
 | |
| 
 | |
| 	if (global_rsv->space_info != dest->space_info)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	spin_lock(&global_rsv->lock);
 | |
| 	min_bytes = div_factor(global_rsv->size, min_factor);
 | |
| 	if (global_rsv->reserved < min_bytes + num_bytes) {
 | |
| 		spin_unlock(&global_rsv->lock);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 	global_rsv->reserved -= num_bytes;
 | |
| 	if (global_rsv->reserved < global_rsv->size)
 | |
| 		global_rsv->full = 0;
 | |
| 	spin_unlock(&global_rsv->lock);
 | |
| 
 | |
| 	block_rsv_add_bytes(dest, num_bytes, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
 | |
| 				    struct btrfs_block_rsv *block_rsv,
 | |
| 				    struct btrfs_block_rsv *dest, u64 num_bytes)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info = block_rsv->space_info;
 | |
| 
 | |
| 	spin_lock(&block_rsv->lock);
 | |
| 	if (num_bytes == (u64)-1)
 | |
| 		num_bytes = block_rsv->size;
 | |
| 	block_rsv->size -= num_bytes;
 | |
| 	if (block_rsv->reserved >= block_rsv->size) {
 | |
| 		num_bytes = block_rsv->reserved - block_rsv->size;
 | |
| 		block_rsv->reserved = block_rsv->size;
 | |
| 		block_rsv->full = 1;
 | |
| 	} else {
 | |
| 		num_bytes = 0;
 | |
| 	}
 | |
| 	spin_unlock(&block_rsv->lock);
 | |
| 
 | |
| 	if (num_bytes > 0) {
 | |
| 		if (dest) {
 | |
| 			spin_lock(&dest->lock);
 | |
| 			if (!dest->full) {
 | |
| 				u64 bytes_to_add;
 | |
| 
 | |
| 				bytes_to_add = dest->size - dest->reserved;
 | |
| 				bytes_to_add = min(num_bytes, bytes_to_add);
 | |
| 				dest->reserved += bytes_to_add;
 | |
| 				if (dest->reserved >= dest->size)
 | |
| 					dest->full = 1;
 | |
| 				num_bytes -= bytes_to_add;
 | |
| 			}
 | |
| 			spin_unlock(&dest->lock);
 | |
| 		}
 | |
| 		if (num_bytes) {
 | |
| 			spin_lock(&space_info->lock);
 | |
| 			space_info->bytes_may_use -= num_bytes;
 | |
| 			trace_btrfs_space_reservation(fs_info, "space_info",
 | |
| 					space_info->flags, num_bytes, 0);
 | |
| 			spin_unlock(&space_info->lock);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
 | |
| 				   struct btrfs_block_rsv *dst, u64 num_bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = block_rsv_use_bytes(src, num_bytes);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	block_rsv_add_bytes(dst, num_bytes, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
 | |
| {
 | |
| 	memset(rsv, 0, sizeof(*rsv));
 | |
| 	spin_lock_init(&rsv->lock);
 | |
| 	rsv->type = type;
 | |
| }
 | |
| 
 | |
| struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
 | |
| 					      unsigned short type)
 | |
| {
 | |
| 	struct btrfs_block_rsv *block_rsv;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 
 | |
| 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
 | |
| 	if (!block_rsv)
 | |
| 		return NULL;
 | |
| 
 | |
| 	btrfs_init_block_rsv(block_rsv, type);
 | |
| 	block_rsv->space_info = __find_space_info(fs_info,
 | |
| 						  BTRFS_BLOCK_GROUP_METADATA);
 | |
| 	return block_rsv;
 | |
| }
 | |
| 
 | |
| void btrfs_free_block_rsv(struct btrfs_root *root,
 | |
| 			  struct btrfs_block_rsv *rsv)
 | |
| {
 | |
| 	if (!rsv)
 | |
| 		return;
 | |
| 	btrfs_block_rsv_release(root, rsv, (u64)-1);
 | |
| 	kfree(rsv);
 | |
| }
 | |
| 
 | |
| int btrfs_block_rsv_add(struct btrfs_root *root,
 | |
| 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
 | |
| 			enum btrfs_reserve_flush_enum flush)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (num_bytes == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
 | |
| 	if (!ret) {
 | |
| 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_block_rsv_check(struct btrfs_root *root,
 | |
| 			  struct btrfs_block_rsv *block_rsv, int min_factor)
 | |
| {
 | |
| 	u64 num_bytes = 0;
 | |
| 	int ret = -ENOSPC;
 | |
| 
 | |
| 	if (!block_rsv)
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&block_rsv->lock);
 | |
| 	num_bytes = div_factor(block_rsv->size, min_factor);
 | |
| 	if (block_rsv->reserved >= num_bytes)
 | |
| 		ret = 0;
 | |
| 	spin_unlock(&block_rsv->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_block_rsv_refill(struct btrfs_root *root,
 | |
| 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
 | |
| 			   enum btrfs_reserve_flush_enum flush)
 | |
| {
 | |
| 	u64 num_bytes = 0;
 | |
| 	int ret = -ENOSPC;
 | |
| 
 | |
| 	if (!block_rsv)
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&block_rsv->lock);
 | |
| 	num_bytes = min_reserved;
 | |
| 	if (block_rsv->reserved >= num_bytes)
 | |
| 		ret = 0;
 | |
| 	else
 | |
| 		num_bytes -= block_rsv->reserved;
 | |
| 	spin_unlock(&block_rsv->lock);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
 | |
| 	if (!ret) {
 | |
| 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
 | |
| 			    struct btrfs_block_rsv *dst_rsv,
 | |
| 			    u64 num_bytes)
 | |
| {
 | |
| 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
 | |
| }
 | |
| 
 | |
| void btrfs_block_rsv_release(struct btrfs_root *root,
 | |
| 			     struct btrfs_block_rsv *block_rsv,
 | |
| 			     u64 num_bytes)
 | |
| {
 | |
| 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
 | |
| 	if (global_rsv == block_rsv ||
 | |
| 	    block_rsv->space_info != global_rsv->space_info)
 | |
| 		global_rsv = NULL;
 | |
| 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
 | |
| 				num_bytes);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to calculate size of global block reservation.
 | |
|  * the desired value is sum of space used by extent tree,
 | |
|  * checksum tree and root tree
 | |
|  */
 | |
| static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_space_info *sinfo;
 | |
| 	u64 num_bytes;
 | |
| 	u64 meta_used;
 | |
| 	u64 data_used;
 | |
| 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
 | |
| 
 | |
| 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
 | |
| 	spin_lock(&sinfo->lock);
 | |
| 	data_used = sinfo->bytes_used;
 | |
| 	spin_unlock(&sinfo->lock);
 | |
| 
 | |
| 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 | |
| 	spin_lock(&sinfo->lock);
 | |
| 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
 | |
| 		data_used = 0;
 | |
| 	meta_used = sinfo->bytes_used;
 | |
| 	spin_unlock(&sinfo->lock);
 | |
| 
 | |
| 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
 | |
| 		    csum_size * 2;
 | |
| 	num_bytes += div64_u64(data_used + meta_used, 50);
 | |
| 
 | |
| 	if (num_bytes * 3 > meta_used)
 | |
| 		num_bytes = div64_u64(meta_used, 3);
 | |
| 
 | |
| 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
 | |
| }
 | |
| 
 | |
| static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
 | |
| 	struct btrfs_space_info *sinfo = block_rsv->space_info;
 | |
| 	u64 num_bytes;
 | |
| 
 | |
| 	num_bytes = calc_global_metadata_size(fs_info);
 | |
| 
 | |
| 	spin_lock(&sinfo->lock);
 | |
| 	spin_lock(&block_rsv->lock);
 | |
| 
 | |
| 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
 | |
| 
 | |
| 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
 | |
| 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
 | |
| 		    sinfo->bytes_may_use;
 | |
| 
 | |
| 	if (sinfo->total_bytes > num_bytes) {
 | |
| 		num_bytes = sinfo->total_bytes - num_bytes;
 | |
| 		block_rsv->reserved += num_bytes;
 | |
| 		sinfo->bytes_may_use += num_bytes;
 | |
| 		trace_btrfs_space_reservation(fs_info, "space_info",
 | |
| 				      sinfo->flags, num_bytes, 1);
 | |
| 	}
 | |
| 
 | |
| 	if (block_rsv->reserved >= block_rsv->size) {
 | |
| 		num_bytes = block_rsv->reserved - block_rsv->size;
 | |
| 		sinfo->bytes_may_use -= num_bytes;
 | |
| 		trace_btrfs_space_reservation(fs_info, "space_info",
 | |
| 				      sinfo->flags, num_bytes, 0);
 | |
| 		block_rsv->reserved = block_rsv->size;
 | |
| 		block_rsv->full = 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&block_rsv->lock);
 | |
| 	spin_unlock(&sinfo->lock);
 | |
| }
 | |
| 
 | |
| static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 
 | |
| 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
 | |
| 	fs_info->chunk_block_rsv.space_info = space_info;
 | |
| 
 | |
| 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 | |
| 	fs_info->global_block_rsv.space_info = space_info;
 | |
| 	fs_info->delalloc_block_rsv.space_info = space_info;
 | |
| 	fs_info->trans_block_rsv.space_info = space_info;
 | |
| 	fs_info->empty_block_rsv.space_info = space_info;
 | |
| 	fs_info->delayed_block_rsv.space_info = space_info;
 | |
| 
 | |
| 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
 | |
| 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
 | |
| 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
 | |
| 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
 | |
| 	if (fs_info->quota_root)
 | |
| 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
 | |
| 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
 | |
| 
 | |
| 	update_global_block_rsv(fs_info);
 | |
| }
 | |
| 
 | |
| static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
 | |
| 				(u64)-1);
 | |
| 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
 | |
| 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
 | |
| 	WARN_ON(fs_info->trans_block_rsv.size > 0);
 | |
| 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
 | |
| 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
 | |
| 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
 | |
| 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
 | |
| 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
 | |
| }
 | |
| 
 | |
| void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *root)
 | |
| {
 | |
| 	if (!trans->block_rsv)
 | |
| 		return;
 | |
| 
 | |
| 	if (!trans->bytes_reserved)
 | |
| 		return;
 | |
| 
 | |
| 	trace_btrfs_space_reservation(root->fs_info, "transaction",
 | |
| 				      trans->transid, trans->bytes_reserved, 0);
 | |
| 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
 | |
| 	trans->bytes_reserved = 0;
 | |
| }
 | |
| 
 | |
| /* Can only return 0 or -ENOSPC */
 | |
| int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
 | |
| 				  struct inode *inode)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
 | |
| 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to hold space in order to delete our orphan item once we've
 | |
| 	 * added it, so this takes the reservation so we can release it later
 | |
| 	 * when we are truly done with the orphan item.
 | |
| 	 */
 | |
| 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 | |
| 	trace_btrfs_space_reservation(root->fs_info, "orphan",
 | |
| 				      btrfs_ino(inode), num_bytes, 1);
 | |
| 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
 | |
| }
 | |
| 
 | |
| void btrfs_orphan_release_metadata(struct inode *inode)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 | |
| 	trace_btrfs_space_reservation(root->fs_info, "orphan",
 | |
| 				      btrfs_ino(inode), num_bytes, 0);
 | |
| 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
 | |
|  * root: the root of the parent directory
 | |
|  * rsv: block reservation
 | |
|  * items: the number of items that we need do reservation
 | |
|  * qgroup_reserved: used to return the reserved size in qgroup
 | |
|  *
 | |
|  * This function is used to reserve the space for snapshot/subvolume
 | |
|  * creation and deletion. Those operations are different with the
 | |
|  * common file/directory operations, they change two fs/file trees
 | |
|  * and root tree, the number of items that the qgroup reserves is
 | |
|  * different with the free space reservation. So we can not use
 | |
|  * the space reseravtion mechanism in start_transaction().
 | |
|  */
 | |
| int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
 | |
| 				     struct btrfs_block_rsv *rsv,
 | |
| 				     int items,
 | |
| 				     u64 *qgroup_reserved,
 | |
| 				     bool use_global_rsv)
 | |
| {
 | |
| 	u64 num_bytes;
 | |
| 	int ret;
 | |
| 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
 | |
| 
 | |
| 	if (root->fs_info->quota_enabled) {
 | |
| 		/* One for parent inode, two for dir entries */
 | |
| 		num_bytes = 3 * root->nodesize;
 | |
| 		ret = btrfs_qgroup_reserve(root, num_bytes);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} else {
 | |
| 		num_bytes = 0;
 | |
| 	}
 | |
| 
 | |
| 	*qgroup_reserved = num_bytes;
 | |
| 
 | |
| 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
 | |
| 	rsv->space_info = __find_space_info(root->fs_info,
 | |
| 					    BTRFS_BLOCK_GROUP_METADATA);
 | |
| 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
 | |
| 				  BTRFS_RESERVE_FLUSH_ALL);
 | |
| 
 | |
| 	if (ret == -ENOSPC && use_global_rsv)
 | |
| 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		if (*qgroup_reserved)
 | |
| 			btrfs_qgroup_free(root, *qgroup_reserved);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_subvolume_release_metadata(struct btrfs_root *root,
 | |
| 				      struct btrfs_block_rsv *rsv,
 | |
| 				      u64 qgroup_reserved)
 | |
| {
 | |
| 	btrfs_block_rsv_release(root, rsv, (u64)-1);
 | |
| 	if (qgroup_reserved)
 | |
| 		btrfs_qgroup_free(root, qgroup_reserved);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * drop_outstanding_extent - drop an outstanding extent
 | |
|  * @inode: the inode we're dropping the extent for
 | |
|  * @num_bytes: the number of bytes we're relaseing.
 | |
|  *
 | |
|  * This is called when we are freeing up an outstanding extent, either called
 | |
|  * after an error or after an extent is written.  This will return the number of
 | |
|  * reserved extents that need to be freed.  This must be called with
 | |
|  * BTRFS_I(inode)->lock held.
 | |
|  */
 | |
| static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
 | |
| {
 | |
| 	unsigned drop_inode_space = 0;
 | |
| 	unsigned dropped_extents = 0;
 | |
| 	unsigned num_extents = 0;
 | |
| 
 | |
| 	num_extents = (unsigned)div64_u64(num_bytes +
 | |
| 					  BTRFS_MAX_EXTENT_SIZE - 1,
 | |
| 					  BTRFS_MAX_EXTENT_SIZE);
 | |
| 	ASSERT(num_extents);
 | |
| 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
 | |
| 	BTRFS_I(inode)->outstanding_extents -= num_extents;
 | |
| 
 | |
| 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
 | |
| 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 | |
| 			       &BTRFS_I(inode)->runtime_flags))
 | |
| 		drop_inode_space = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have more or the same amount of outsanding extents than we have
 | |
| 	 * reserved then we need to leave the reserved extents count alone.
 | |
| 	 */
 | |
| 	if (BTRFS_I(inode)->outstanding_extents >=
 | |
| 	    BTRFS_I(inode)->reserved_extents)
 | |
| 		return drop_inode_space;
 | |
| 
 | |
| 	dropped_extents = BTRFS_I(inode)->reserved_extents -
 | |
| 		BTRFS_I(inode)->outstanding_extents;
 | |
| 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
 | |
| 	return dropped_extents + drop_inode_space;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * calc_csum_metadata_size - return the amount of metada space that must be
 | |
|  *	reserved/free'd for the given bytes.
 | |
|  * @inode: the inode we're manipulating
 | |
|  * @num_bytes: the number of bytes in question
 | |
|  * @reserve: 1 if we are reserving space, 0 if we are freeing space
 | |
|  *
 | |
|  * This adjusts the number of csum_bytes in the inode and then returns the
 | |
|  * correct amount of metadata that must either be reserved or freed.  We
 | |
|  * calculate how many checksums we can fit into one leaf and then divide the
 | |
|  * number of bytes that will need to be checksumed by this value to figure out
 | |
|  * how many checksums will be required.  If we are adding bytes then the number
 | |
|  * may go up and we will return the number of additional bytes that must be
 | |
|  * reserved.  If it is going down we will return the number of bytes that must
 | |
|  * be freed.
 | |
|  *
 | |
|  * This must be called with BTRFS_I(inode)->lock held.
 | |
|  */
 | |
| static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
 | |
| 				   int reserve)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	u64 csum_size;
 | |
| 	int num_csums_per_leaf;
 | |
| 	int num_csums;
 | |
| 	int old_csums;
 | |
| 
 | |
| 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
 | |
| 	    BTRFS_I(inode)->csum_bytes == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
 | |
| 	if (reserve)
 | |
| 		BTRFS_I(inode)->csum_bytes += num_bytes;
 | |
| 	else
 | |
| 		BTRFS_I(inode)->csum_bytes -= num_bytes;
 | |
| 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
 | |
| 	num_csums_per_leaf = (int)div64_u64(csum_size,
 | |
| 					    sizeof(struct btrfs_csum_item) +
 | |
| 					    sizeof(struct btrfs_disk_key));
 | |
| 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
 | |
| 	num_csums = num_csums + num_csums_per_leaf - 1;
 | |
| 	num_csums = num_csums / num_csums_per_leaf;
 | |
| 
 | |
| 	old_csums = old_csums + num_csums_per_leaf - 1;
 | |
| 	old_csums = old_csums / num_csums_per_leaf;
 | |
| 
 | |
| 	/* No change, no need to reserve more */
 | |
| 	if (old_csums == num_csums)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (reserve)
 | |
| 		return btrfs_calc_trans_metadata_size(root,
 | |
| 						      num_csums - old_csums);
 | |
| 
 | |
| 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
 | |
| }
 | |
| 
 | |
| int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
 | |
| 	u64 to_reserve = 0;
 | |
| 	u64 csum_bytes;
 | |
| 	unsigned nr_extents = 0;
 | |
| 	int extra_reserve = 0;
 | |
| 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
 | |
| 	int ret = 0;
 | |
| 	bool delalloc_lock = true;
 | |
| 	u64 to_free = 0;
 | |
| 	unsigned dropped;
 | |
| 
 | |
| 	/* If we are a free space inode we need to not flush since we will be in
 | |
| 	 * the middle of a transaction commit.  We also don't need the delalloc
 | |
| 	 * mutex since we won't race with anybody.  We need this mostly to make
 | |
| 	 * lockdep shut its filthy mouth.
 | |
| 	 */
 | |
| 	if (btrfs_is_free_space_inode(inode)) {
 | |
| 		flush = BTRFS_RESERVE_NO_FLUSH;
 | |
| 		delalloc_lock = false;
 | |
| 	}
 | |
| 
 | |
| 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
 | |
| 	    btrfs_transaction_in_commit(root->fs_info))
 | |
| 		schedule_timeout(1);
 | |
| 
 | |
| 	if (delalloc_lock)
 | |
| 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
 | |
| 
 | |
| 	num_bytes = ALIGN(num_bytes, root->sectorsize);
 | |
| 
 | |
| 	spin_lock(&BTRFS_I(inode)->lock);
 | |
| 	BTRFS_I(inode)->outstanding_extents++;
 | |
| 
 | |
| 	if (BTRFS_I(inode)->outstanding_extents >
 | |
| 	    BTRFS_I(inode)->reserved_extents)
 | |
| 		nr_extents = BTRFS_I(inode)->outstanding_extents -
 | |
| 			BTRFS_I(inode)->reserved_extents;
 | |
| 
 | |
| 	/*
 | |
| 	 * Add an item to reserve for updating the inode when we complete the
 | |
| 	 * delalloc io.
 | |
| 	 */
 | |
| 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 | |
| 		      &BTRFS_I(inode)->runtime_flags)) {
 | |
| 		nr_extents++;
 | |
| 		extra_reserve = 1;
 | |
| 	}
 | |
| 
 | |
| 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
 | |
| 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
 | |
| 	csum_bytes = BTRFS_I(inode)->csum_bytes;
 | |
| 	spin_unlock(&BTRFS_I(inode)->lock);
 | |
| 
 | |
| 	if (root->fs_info->quota_enabled) {
 | |
| 		ret = btrfs_qgroup_reserve(root, num_bytes +
 | |
| 					   nr_extents * root->nodesize);
 | |
| 		if (ret)
 | |
| 			goto out_fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
 | |
| 	if (unlikely(ret)) {
 | |
| 		if (root->fs_info->quota_enabled)
 | |
| 			btrfs_qgroup_free(root, num_bytes +
 | |
| 						nr_extents * root->nodesize);
 | |
| 		goto out_fail;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&BTRFS_I(inode)->lock);
 | |
| 	if (extra_reserve) {
 | |
| 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 | |
| 			&BTRFS_I(inode)->runtime_flags);
 | |
| 		nr_extents--;
 | |
| 	}
 | |
| 	BTRFS_I(inode)->reserved_extents += nr_extents;
 | |
| 	spin_unlock(&BTRFS_I(inode)->lock);
 | |
| 
 | |
| 	if (delalloc_lock)
 | |
| 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
 | |
| 
 | |
| 	if (to_reserve)
 | |
| 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 | |
| 					      btrfs_ino(inode), to_reserve, 1);
 | |
| 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_fail:
 | |
| 	spin_lock(&BTRFS_I(inode)->lock);
 | |
| 	dropped = drop_outstanding_extent(inode, num_bytes);
 | |
| 	/*
 | |
| 	 * If the inodes csum_bytes is the same as the original
 | |
| 	 * csum_bytes then we know we haven't raced with any free()ers
 | |
| 	 * so we can just reduce our inodes csum bytes and carry on.
 | |
| 	 */
 | |
| 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
 | |
| 		calc_csum_metadata_size(inode, num_bytes, 0);
 | |
| 	} else {
 | |
| 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
 | |
| 		u64 bytes;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is tricky, but first we need to figure out how much we
 | |
| 		 * free'd from any free-ers that occured during this
 | |
| 		 * reservation, so we reset ->csum_bytes to the csum_bytes
 | |
| 		 * before we dropped our lock, and then call the free for the
 | |
| 		 * number of bytes that were freed while we were trying our
 | |
| 		 * reservation.
 | |
| 		 */
 | |
| 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
 | |
| 		BTRFS_I(inode)->csum_bytes = csum_bytes;
 | |
| 		to_free = calc_csum_metadata_size(inode, bytes, 0);
 | |
| 
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we need to see how much we would have freed had we not
 | |
| 		 * been making this reservation and our ->csum_bytes were not
 | |
| 		 * artificially inflated.
 | |
| 		 */
 | |
| 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
 | |
| 		bytes = csum_bytes - orig_csum_bytes;
 | |
| 		bytes = calc_csum_metadata_size(inode, bytes, 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * Now reset ->csum_bytes to what it should be.  If bytes is
 | |
| 		 * more than to_free then we would have free'd more space had we
 | |
| 		 * not had an artificially high ->csum_bytes, so we need to free
 | |
| 		 * the remainder.  If bytes is the same or less then we don't
 | |
| 		 * need to do anything, the other free-ers did the correct
 | |
| 		 * thing.
 | |
| 		 */
 | |
| 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
 | |
| 		if (bytes > to_free)
 | |
| 			to_free = bytes - to_free;
 | |
| 		else
 | |
| 			to_free = 0;
 | |
| 	}
 | |
| 	spin_unlock(&BTRFS_I(inode)->lock);
 | |
| 	if (dropped)
 | |
| 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
 | |
| 
 | |
| 	if (to_free) {
 | |
| 		btrfs_block_rsv_release(root, block_rsv, to_free);
 | |
| 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 | |
| 					      btrfs_ino(inode), to_free, 0);
 | |
| 	}
 | |
| 	if (delalloc_lock)
 | |
| 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
 | |
|  * @inode: the inode to release the reservation for
 | |
|  * @num_bytes: the number of bytes we're releasing
 | |
|  *
 | |
|  * This will release the metadata reservation for an inode.  This can be called
 | |
|  * once we complete IO for a given set of bytes to release their metadata
 | |
|  * reservations.
 | |
|  */
 | |
| void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	u64 to_free = 0;
 | |
| 	unsigned dropped;
 | |
| 
 | |
| 	num_bytes = ALIGN(num_bytes, root->sectorsize);
 | |
| 	spin_lock(&BTRFS_I(inode)->lock);
 | |
| 	dropped = drop_outstanding_extent(inode, num_bytes);
 | |
| 
 | |
| 	if (num_bytes)
 | |
| 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
 | |
| 	spin_unlock(&BTRFS_I(inode)->lock);
 | |
| 	if (dropped > 0)
 | |
| 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
 | |
| 
 | |
| 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
 | |
| 				      btrfs_ino(inode), to_free, 0);
 | |
| 	if (root->fs_info->quota_enabled) {
 | |
| 		btrfs_qgroup_free(root, num_bytes +
 | |
| 					dropped * root->nodesize);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
 | |
| 				to_free);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
 | |
|  * @inode: inode we're writing to
 | |
|  * @num_bytes: the number of bytes we want to allocate
 | |
|  *
 | |
|  * This will do the following things
 | |
|  *
 | |
|  * o reserve space in the data space info for num_bytes
 | |
|  * o reserve space in the metadata space info based on number of outstanding
 | |
|  *   extents and how much csums will be needed
 | |
|  * o add to the inodes ->delalloc_bytes
 | |
|  * o add it to the fs_info's delalloc inodes list.
 | |
|  *
 | |
|  * This will return 0 for success and -ENOSPC if there is no space left.
 | |
|  */
 | |
| int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_check_data_free_space(inode, num_bytes);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
 | |
| 	if (ret) {
 | |
| 		btrfs_free_reserved_data_space(inode, num_bytes);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * btrfs_delalloc_release_space - release data and metadata space for delalloc
 | |
|  * @inode: inode we're releasing space for
 | |
|  * @num_bytes: the number of bytes we want to free up
 | |
|  *
 | |
|  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
 | |
|  * called in the case that we don't need the metadata AND data reservations
 | |
|  * anymore.  So if there is an error or we insert an inline extent.
 | |
|  *
 | |
|  * This function will release the metadata space that was not used and will
 | |
|  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
 | |
|  * list if there are no delalloc bytes left.
 | |
|  */
 | |
| void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
 | |
| {
 | |
| 	btrfs_delalloc_release_metadata(inode, num_bytes);
 | |
| 	btrfs_free_reserved_data_space(inode, num_bytes);
 | |
| }
 | |
| 
 | |
| static int update_block_group(struct btrfs_trans_handle *trans,
 | |
| 			      struct btrfs_root *root, u64 bytenr,
 | |
| 			      u64 num_bytes, int alloc)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache = NULL;
 | |
| 	struct btrfs_fs_info *info = root->fs_info;
 | |
| 	u64 total = num_bytes;
 | |
| 	u64 old_val;
 | |
| 	u64 byte_in_group;
 | |
| 	int factor;
 | |
| 
 | |
| 	/* block accounting for super block */
 | |
| 	spin_lock(&info->delalloc_root_lock);
 | |
| 	old_val = btrfs_super_bytes_used(info->super_copy);
 | |
| 	if (alloc)
 | |
| 		old_val += num_bytes;
 | |
| 	else
 | |
| 		old_val -= num_bytes;
 | |
| 	btrfs_set_super_bytes_used(info->super_copy, old_val);
 | |
| 	spin_unlock(&info->delalloc_root_lock);
 | |
| 
 | |
| 	while (total) {
 | |
| 		cache = btrfs_lookup_block_group(info, bytenr);
 | |
| 		if (!cache)
 | |
| 			return -ENOENT;
 | |
| 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
 | |
| 				    BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 				    BTRFS_BLOCK_GROUP_RAID10))
 | |
| 			factor = 2;
 | |
| 		else
 | |
| 			factor = 1;
 | |
| 		/*
 | |
| 		 * If this block group has free space cache written out, we
 | |
| 		 * need to make sure to load it if we are removing space.  This
 | |
| 		 * is because we need the unpinning stage to actually add the
 | |
| 		 * space back to the block group, otherwise we will leak space.
 | |
| 		 */
 | |
| 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
 | |
| 			cache_block_group(cache, 1);
 | |
| 
 | |
| 		spin_lock(&trans->transaction->dirty_bgs_lock);
 | |
| 		if (list_empty(&cache->dirty_list)) {
 | |
| 			list_add_tail(&cache->dirty_list,
 | |
| 				      &trans->transaction->dirty_bgs);
 | |
| 			btrfs_get_block_group(cache);
 | |
| 		}
 | |
| 		spin_unlock(&trans->transaction->dirty_bgs_lock);
 | |
| 
 | |
| 		byte_in_group = bytenr - cache->key.objectid;
 | |
| 		WARN_ON(byte_in_group > cache->key.offset);
 | |
| 
 | |
| 		spin_lock(&cache->space_info->lock);
 | |
| 		spin_lock(&cache->lock);
 | |
| 
 | |
| 		if (btrfs_test_opt(root, SPACE_CACHE) &&
 | |
| 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
 | |
| 			cache->disk_cache_state = BTRFS_DC_CLEAR;
 | |
| 
 | |
| 		old_val = btrfs_block_group_used(&cache->item);
 | |
| 		num_bytes = min(total, cache->key.offset - byte_in_group);
 | |
| 		if (alloc) {
 | |
| 			old_val += num_bytes;
 | |
| 			btrfs_set_block_group_used(&cache->item, old_val);
 | |
| 			cache->reserved -= num_bytes;
 | |
| 			cache->space_info->bytes_reserved -= num_bytes;
 | |
| 			cache->space_info->bytes_used += num_bytes;
 | |
| 			cache->space_info->disk_used += num_bytes * factor;
 | |
| 			spin_unlock(&cache->lock);
 | |
| 			spin_unlock(&cache->space_info->lock);
 | |
| 		} else {
 | |
| 			old_val -= num_bytes;
 | |
| 			btrfs_set_block_group_used(&cache->item, old_val);
 | |
| 			cache->pinned += num_bytes;
 | |
| 			cache->space_info->bytes_pinned += num_bytes;
 | |
| 			cache->space_info->bytes_used -= num_bytes;
 | |
| 			cache->space_info->disk_used -= num_bytes * factor;
 | |
| 			spin_unlock(&cache->lock);
 | |
| 			spin_unlock(&cache->space_info->lock);
 | |
| 
 | |
| 			set_extent_dirty(info->pinned_extents,
 | |
| 					 bytenr, bytenr + num_bytes - 1,
 | |
| 					 GFP_NOFS | __GFP_NOFAIL);
 | |
| 			/*
 | |
| 			 * No longer have used bytes in this block group, queue
 | |
| 			 * it for deletion.
 | |
| 			 */
 | |
| 			if (old_val == 0) {
 | |
| 				spin_lock(&info->unused_bgs_lock);
 | |
| 				if (list_empty(&cache->bg_list)) {
 | |
| 					btrfs_get_block_group(cache);
 | |
| 					list_add_tail(&cache->bg_list,
 | |
| 						      &info->unused_bgs);
 | |
| 				}
 | |
| 				spin_unlock(&info->unused_bgs_lock);
 | |
| 			}
 | |
| 		}
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		total -= num_bytes;
 | |
| 		bytenr += num_bytes;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 	u64 bytenr;
 | |
| 
 | |
| 	spin_lock(&root->fs_info->block_group_cache_lock);
 | |
| 	bytenr = root->fs_info->first_logical_byte;
 | |
| 	spin_unlock(&root->fs_info->block_group_cache_lock);
 | |
| 
 | |
| 	if (bytenr < (u64)-1)
 | |
| 		return bytenr;
 | |
| 
 | |
| 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
 | |
| 	if (!cache)
 | |
| 		return 0;
 | |
| 
 | |
| 	bytenr = cache->key.objectid;
 | |
| 	btrfs_put_block_group(cache);
 | |
| 
 | |
| 	return bytenr;
 | |
| }
 | |
| 
 | |
| static int pin_down_extent(struct btrfs_root *root,
 | |
| 			   struct btrfs_block_group_cache *cache,
 | |
| 			   u64 bytenr, u64 num_bytes, int reserved)
 | |
| {
 | |
| 	spin_lock(&cache->space_info->lock);
 | |
| 	spin_lock(&cache->lock);
 | |
| 	cache->pinned += num_bytes;
 | |
| 	cache->space_info->bytes_pinned += num_bytes;
 | |
| 	if (reserved) {
 | |
| 		cache->reserved -= num_bytes;
 | |
| 		cache->space_info->bytes_reserved -= num_bytes;
 | |
| 	}
 | |
| 	spin_unlock(&cache->lock);
 | |
| 	spin_unlock(&cache->space_info->lock);
 | |
| 
 | |
| 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
 | |
| 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
 | |
| 	if (reserved)
 | |
| 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this function must be called within transaction
 | |
|  */
 | |
| int btrfs_pin_extent(struct btrfs_root *root,
 | |
| 		     u64 bytenr, u64 num_bytes, int reserved)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
 | |
| 	BUG_ON(!cache); /* Logic error */
 | |
| 
 | |
| 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
 | |
| 
 | |
| 	btrfs_put_block_group(cache);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this function must be called within transaction
 | |
|  */
 | |
| int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
 | |
| 				    u64 bytenr, u64 num_bytes)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 	int ret;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
 | |
| 	if (!cache)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * pull in the free space cache (if any) so that our pin
 | |
| 	 * removes the free space from the cache.  We have load_only set
 | |
| 	 * to one because the slow code to read in the free extents does check
 | |
| 	 * the pinned extents.
 | |
| 	 */
 | |
| 	cache_block_group(cache, 1);
 | |
| 
 | |
| 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
 | |
| 
 | |
| 	/* remove us from the free space cache (if we're there at all) */
 | |
| 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
 | |
| 	btrfs_put_block_group(cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_block_group_cache *block_group;
 | |
| 	struct btrfs_caching_control *caching_ctl;
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(root->fs_info, start);
 | |
| 	if (!block_group)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cache_block_group(block_group, 0);
 | |
| 	caching_ctl = get_caching_control(block_group);
 | |
| 
 | |
| 	if (!caching_ctl) {
 | |
| 		/* Logic error */
 | |
| 		BUG_ON(!block_group_cache_done(block_group));
 | |
| 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
 | |
| 	} else {
 | |
| 		mutex_lock(&caching_ctl->mutex);
 | |
| 
 | |
| 		if (start >= caching_ctl->progress) {
 | |
| 			ret = add_excluded_extent(root, start, num_bytes);
 | |
| 		} else if (start + num_bytes <= caching_ctl->progress) {
 | |
| 			ret = btrfs_remove_free_space(block_group,
 | |
| 						      start, num_bytes);
 | |
| 		} else {
 | |
| 			num_bytes = caching_ctl->progress - start;
 | |
| 			ret = btrfs_remove_free_space(block_group,
 | |
| 						      start, num_bytes);
 | |
| 			if (ret)
 | |
| 				goto out_lock;
 | |
| 
 | |
| 			num_bytes = (start + num_bytes) -
 | |
| 				caching_ctl->progress;
 | |
| 			start = caching_ctl->progress;
 | |
| 			ret = add_excluded_extent(root, start, num_bytes);
 | |
| 		}
 | |
| out_lock:
 | |
| 		mutex_unlock(&caching_ctl->mutex);
 | |
| 		put_caching_control(caching_ctl);
 | |
| 	}
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_exclude_logged_extents(struct btrfs_root *log,
 | |
| 				 struct extent_buffer *eb)
 | |
| {
 | |
| 	struct btrfs_file_extent_item *item;
 | |
| 	struct btrfs_key key;
 | |
| 	int found_type;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
 | |
| 		btrfs_item_key_to_cpu(eb, &key, i);
 | |
| 		if (key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 			continue;
 | |
| 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
 | |
| 		found_type = btrfs_file_extent_type(eb, item);
 | |
| 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
 | |
| 			continue;
 | |
| 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 | |
| 			continue;
 | |
| 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 | |
| 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 | |
| 		__exclude_logged_extent(log, key.objectid, key.offset);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * btrfs_update_reserved_bytes - update the block_group and space info counters
 | |
|  * @cache:	The cache we are manipulating
 | |
|  * @num_bytes:	The number of bytes in question
 | |
|  * @reserve:	One of the reservation enums
 | |
|  * @delalloc:   The blocks are allocated for the delalloc write
 | |
|  *
 | |
|  * This is called by the allocator when it reserves space, or by somebody who is
 | |
|  * freeing space that was never actually used on disk.  For example if you
 | |
|  * reserve some space for a new leaf in transaction A and before transaction A
 | |
|  * commits you free that leaf, you call this with reserve set to 0 in order to
 | |
|  * clear the reservation.
 | |
|  *
 | |
|  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
 | |
|  * ENOSPC accounting.  For data we handle the reservation through clearing the
 | |
|  * delalloc bits in the io_tree.  We have to do this since we could end up
 | |
|  * allocating less disk space for the amount of data we have reserved in the
 | |
|  * case of compression.
 | |
|  *
 | |
|  * If this is a reservation and the block group has become read only we cannot
 | |
|  * make the reservation and return -EAGAIN, otherwise this function always
 | |
|  * succeeds.
 | |
|  */
 | |
| static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
 | |
| 				       u64 num_bytes, int reserve, int delalloc)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info = cache->space_info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&space_info->lock);
 | |
| 	spin_lock(&cache->lock);
 | |
| 	if (reserve != RESERVE_FREE) {
 | |
| 		if (cache->ro) {
 | |
| 			ret = -EAGAIN;
 | |
| 		} else {
 | |
| 			cache->reserved += num_bytes;
 | |
| 			space_info->bytes_reserved += num_bytes;
 | |
| 			if (reserve == RESERVE_ALLOC) {
 | |
| 				trace_btrfs_space_reservation(cache->fs_info,
 | |
| 						"space_info", space_info->flags,
 | |
| 						num_bytes, 0);
 | |
| 				space_info->bytes_may_use -= num_bytes;
 | |
| 			}
 | |
| 
 | |
| 			if (delalloc)
 | |
| 				cache->delalloc_bytes += num_bytes;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (cache->ro)
 | |
| 			space_info->bytes_readonly += num_bytes;
 | |
| 		cache->reserved -= num_bytes;
 | |
| 		space_info->bytes_reserved -= num_bytes;
 | |
| 
 | |
| 		if (delalloc)
 | |
| 			cache->delalloc_bytes -= num_bytes;
 | |
| 	}
 | |
| 	spin_unlock(&cache->lock);
 | |
| 	spin_unlock(&space_info->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_caching_control *next;
 | |
| 	struct btrfs_caching_control *caching_ctl;
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 
 | |
| 	down_write(&fs_info->commit_root_sem);
 | |
| 
 | |
| 	list_for_each_entry_safe(caching_ctl, next,
 | |
| 				 &fs_info->caching_block_groups, list) {
 | |
| 		cache = caching_ctl->block_group;
 | |
| 		if (block_group_cache_done(cache)) {
 | |
| 			cache->last_byte_to_unpin = (u64)-1;
 | |
| 			list_del_init(&caching_ctl->list);
 | |
| 			put_caching_control(caching_ctl);
 | |
| 		} else {
 | |
| 			cache->last_byte_to_unpin = caching_ctl->progress;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
 | |
| 		fs_info->pinned_extents = &fs_info->freed_extents[1];
 | |
| 	else
 | |
| 		fs_info->pinned_extents = &fs_info->freed_extents[0];
 | |
| 
 | |
| 	up_write(&fs_info->commit_root_sem);
 | |
| 
 | |
| 	update_global_block_rsv(fs_info);
 | |
| }
 | |
| 
 | |
| static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
 | |
| 			      const bool return_free_space)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_block_group_cache *cache = NULL;
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 | |
| 	u64 len;
 | |
| 	bool readonly;
 | |
| 
 | |
| 	while (start <= end) {
 | |
| 		readonly = false;
 | |
| 		if (!cache ||
 | |
| 		    start >= cache->key.objectid + cache->key.offset) {
 | |
| 			if (cache)
 | |
| 				btrfs_put_block_group(cache);
 | |
| 			cache = btrfs_lookup_block_group(fs_info, start);
 | |
| 			BUG_ON(!cache); /* Logic error */
 | |
| 		}
 | |
| 
 | |
| 		len = cache->key.objectid + cache->key.offset - start;
 | |
| 		len = min(len, end + 1 - start);
 | |
| 
 | |
| 		if (start < cache->last_byte_to_unpin) {
 | |
| 			len = min(len, cache->last_byte_to_unpin - start);
 | |
| 			if (return_free_space)
 | |
| 				btrfs_add_free_space(cache, start, len);
 | |
| 		}
 | |
| 
 | |
| 		start += len;
 | |
| 		space_info = cache->space_info;
 | |
| 
 | |
| 		spin_lock(&space_info->lock);
 | |
| 		spin_lock(&cache->lock);
 | |
| 		cache->pinned -= len;
 | |
| 		space_info->bytes_pinned -= len;
 | |
| 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
 | |
| 		if (cache->ro) {
 | |
| 			space_info->bytes_readonly += len;
 | |
| 			readonly = true;
 | |
| 		}
 | |
| 		spin_unlock(&cache->lock);
 | |
| 		if (!readonly && global_rsv->space_info == space_info) {
 | |
| 			spin_lock(&global_rsv->lock);
 | |
| 			if (!global_rsv->full) {
 | |
| 				len = min(len, global_rsv->size -
 | |
| 					  global_rsv->reserved);
 | |
| 				global_rsv->reserved += len;
 | |
| 				space_info->bytes_may_use += len;
 | |
| 				if (global_rsv->reserved >= global_rsv->size)
 | |
| 					global_rsv->full = 1;
 | |
| 			}
 | |
| 			spin_unlock(&global_rsv->lock);
 | |
| 		}
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 	}
 | |
| 
 | |
| 	if (cache)
 | |
| 		btrfs_put_block_group(cache);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct extent_io_tree *unpin;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (trans->aborted)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
 | |
| 		unpin = &fs_info->freed_extents[1];
 | |
| 	else
 | |
| 		unpin = &fs_info->freed_extents[0];
 | |
| 
 | |
| 	while (1) {
 | |
| 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
 | |
| 		ret = find_first_extent_bit(unpin, 0, &start, &end,
 | |
| 					    EXTENT_DIRTY, NULL);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (btrfs_test_opt(root, DISCARD))
 | |
| 			ret = btrfs_discard_extent(root, start,
 | |
| 						   end + 1 - start, NULL);
 | |
| 
 | |
| 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
 | |
| 		unpin_extent_range(root, start, end, true);
 | |
| 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
 | |
| 			     u64 owner, u64 root_objectid)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	u64 flags;
 | |
| 
 | |
| 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
 | |
| 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
 | |
| 		else
 | |
| 			flags = BTRFS_BLOCK_GROUP_METADATA;
 | |
| 	} else {
 | |
| 		flags = BTRFS_BLOCK_GROUP_DATA;
 | |
| 	}
 | |
| 
 | |
| 	space_info = __find_space_info(fs_info, flags);
 | |
| 	BUG_ON(!space_info); /* Logic bug */
 | |
| 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root,
 | |
| 				u64 bytenr, u64 num_bytes, u64 parent,
 | |
| 				u64 root_objectid, u64 owner_objectid,
 | |
| 				u64 owner_offset, int refs_to_drop,
 | |
| 				struct btrfs_delayed_extent_op *extent_op,
 | |
| 				int no_quota)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_fs_info *info = root->fs_info;
 | |
| 	struct btrfs_root *extent_root = info->extent_root;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	int ret;
 | |
| 	int is_data;
 | |
| 	int extent_slot = 0;
 | |
| 	int found_extent = 0;
 | |
| 	int num_to_del = 1;
 | |
| 	u32 item_size;
 | |
| 	u64 refs;
 | |
| 	int last_ref = 0;
 | |
| 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
 | |
| 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
 | |
| 						 SKINNY_METADATA);
 | |
| 
 | |
| 	if (!info->quota_enabled || !is_fstree(root_objectid))
 | |
| 		no_quota = 1;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->reada = 1;
 | |
| 	path->leave_spinning = 1;
 | |
| 
 | |
| 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
 | |
| 	BUG_ON(!is_data && refs_to_drop != 1);
 | |
| 
 | |
| 	if (is_data)
 | |
| 		skinny_metadata = 0;
 | |
| 
 | |
| 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
 | |
| 				    bytenr, num_bytes, parent,
 | |
| 				    root_objectid, owner_objectid,
 | |
| 				    owner_offset);
 | |
| 	if (ret == 0) {
 | |
| 		extent_slot = path->slots[0];
 | |
| 		while (extent_slot >= 0) {
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 					      extent_slot);
 | |
| 			if (key.objectid != bytenr)
 | |
| 				break;
 | |
| 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 | |
| 			    key.offset == num_bytes) {
 | |
| 				found_extent = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
 | |
| 			    key.offset == owner_objectid) {
 | |
| 				found_extent = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (path->slots[0] - extent_slot > 5)
 | |
| 				break;
 | |
| 			extent_slot--;
 | |
| 		}
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
 | |
| 		if (found_extent && item_size < sizeof(*ei))
 | |
| 			found_extent = 0;
 | |
| #endif
 | |
| 		if (!found_extent) {
 | |
| 			BUG_ON(iref);
 | |
| 			ret = remove_extent_backref(trans, extent_root, path,
 | |
| 						    NULL, refs_to_drop,
 | |
| 						    is_data, &last_ref);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			btrfs_release_path(path);
 | |
| 			path->leave_spinning = 1;
 | |
| 
 | |
| 			key.objectid = bytenr;
 | |
| 			key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 			key.offset = num_bytes;
 | |
| 
 | |
| 			if (!is_data && skinny_metadata) {
 | |
| 				key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 				key.offset = owner_objectid;
 | |
| 			}
 | |
| 
 | |
| 			ret = btrfs_search_slot(trans, extent_root,
 | |
| 						&key, path, -1, 1);
 | |
| 			if (ret > 0 && skinny_metadata && path->slots[0]) {
 | |
| 				/*
 | |
| 				 * Couldn't find our skinny metadata item,
 | |
| 				 * see if we have ye olde extent item.
 | |
| 				 */
 | |
| 				path->slots[0]--;
 | |
| 				btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 						      path->slots[0]);
 | |
| 				if (key.objectid == bytenr &&
 | |
| 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
 | |
| 				    key.offset == num_bytes)
 | |
| 					ret = 0;
 | |
| 			}
 | |
| 
 | |
| 			if (ret > 0 && skinny_metadata) {
 | |
| 				skinny_metadata = false;
 | |
| 				key.objectid = bytenr;
 | |
| 				key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 				key.offset = num_bytes;
 | |
| 				btrfs_release_path(path);
 | |
| 				ret = btrfs_search_slot(trans, extent_root,
 | |
| 							&key, path, -1, 1);
 | |
| 			}
 | |
| 
 | |
| 			if (ret) {
 | |
| 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
 | |
| 					ret, bytenr);
 | |
| 				if (ret > 0)
 | |
| 					btrfs_print_leaf(extent_root,
 | |
| 							 path->nodes[0]);
 | |
| 			}
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			extent_slot = path->slots[0];
 | |
| 		}
 | |
| 	} else if (WARN_ON(ret == -ENOENT)) {
 | |
| 		btrfs_print_leaf(extent_root, path->nodes[0]);
 | |
| 		btrfs_err(info,
 | |
| 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
 | |
| 			bytenr, parent, root_objectid, owner_objectid,
 | |
| 			owner_offset);
 | |
| 		btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 		goto out;
 | |
| 	} else {
 | |
| 		btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	item_size = btrfs_item_size_nr(leaf, extent_slot);
 | |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 | |
| 	if (item_size < sizeof(*ei)) {
 | |
| 		BUG_ON(found_extent || extent_slot != path->slots[0]);
 | |
| 		ret = convert_extent_item_v0(trans, extent_root, path,
 | |
| 					     owner_objectid, 0);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 		path->leave_spinning = 1;
 | |
| 
 | |
| 		key.objectid = bytenr;
 | |
| 		key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 		key.offset = num_bytes;
 | |
| 
 | |
| 		ret = btrfs_search_slot(trans, extent_root, &key, path,
 | |
| 					-1, 1);
 | |
| 		if (ret) {
 | |
| 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
 | |
| 				ret, bytenr);
 | |
| 			btrfs_print_leaf(extent_root, path->nodes[0]);
 | |
| 		}
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		extent_slot = path->slots[0];
 | |
| 		leaf = path->nodes[0];
 | |
| 		item_size = btrfs_item_size_nr(leaf, extent_slot);
 | |
| 	}
 | |
| #endif
 | |
| 	BUG_ON(item_size < sizeof(*ei));
 | |
| 	ei = btrfs_item_ptr(leaf, extent_slot,
 | |
| 			    struct btrfs_extent_item);
 | |
| 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
 | |
| 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
 | |
| 		struct btrfs_tree_block_info *bi;
 | |
| 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
 | |
| 		bi = (struct btrfs_tree_block_info *)(ei + 1);
 | |
| 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
 | |
| 	}
 | |
| 
 | |
| 	refs = btrfs_extent_refs(leaf, ei);
 | |
| 	if (refs < refs_to_drop) {
 | |
| 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
 | |
| 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
 | |
| 		ret = -EINVAL;
 | |
| 		btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	refs -= refs_to_drop;
 | |
| 
 | |
| 	if (refs > 0) {
 | |
| 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
 | |
| 		if (extent_op)
 | |
| 			__run_delayed_extent_op(extent_op, leaf, ei);
 | |
| 		/*
 | |
| 		 * In the case of inline back ref, reference count will
 | |
| 		 * be updated by remove_extent_backref
 | |
| 		 */
 | |
| 		if (iref) {
 | |
| 			BUG_ON(!found_extent);
 | |
| 		} else {
 | |
| 			btrfs_set_extent_refs(leaf, ei, refs);
 | |
| 			btrfs_mark_buffer_dirty(leaf);
 | |
| 		}
 | |
| 		if (found_extent) {
 | |
| 			ret = remove_extent_backref(trans, extent_root, path,
 | |
| 						    iref, refs_to_drop,
 | |
| 						    is_data, &last_ref);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
 | |
| 				 root_objectid);
 | |
| 	} else {
 | |
| 		if (found_extent) {
 | |
| 			BUG_ON(is_data && refs_to_drop !=
 | |
| 			       extent_data_ref_count(root, path, iref));
 | |
| 			if (iref) {
 | |
| 				BUG_ON(path->slots[0] != extent_slot);
 | |
| 			} else {
 | |
| 				BUG_ON(path->slots[0] != extent_slot + 1);
 | |
| 				path->slots[0] = extent_slot;
 | |
| 				num_to_del = 2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		last_ref = 1;
 | |
| 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
 | |
| 				      num_to_del);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		if (is_data) {
 | |
| 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* Deal with the quota accounting */
 | |
| 	if (!ret && last_ref && !no_quota) {
 | |
| 		int mod_seq = 0;
 | |
| 
 | |
| 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
 | |
| 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
 | |
| 			mod_seq = 1;
 | |
| 
 | |
| 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
 | |
| 					      bytenr, num_bytes, type,
 | |
| 					      mod_seq);
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when we free an block, it is possible (and likely) that we free the last
 | |
|  * delayed ref for that extent as well.  This searches the delayed ref tree for
 | |
|  * a given extent, and if there are no other delayed refs to be processed, it
 | |
|  * removes it from the tree.
 | |
|  */
 | |
| static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_delayed_ref_head *head;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	delayed_refs = &trans->transaction->delayed_refs;
 | |
| 	spin_lock(&delayed_refs->lock);
 | |
| 	head = btrfs_find_delayed_ref_head(trans, bytenr);
 | |
| 	if (!head)
 | |
| 		goto out_delayed_unlock;
 | |
| 
 | |
| 	spin_lock(&head->lock);
 | |
| 	if (rb_first(&head->ref_root))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (head->extent_op) {
 | |
| 		if (!head->must_insert_reserved)
 | |
| 			goto out;
 | |
| 		btrfs_free_delayed_extent_op(head->extent_op);
 | |
| 		head->extent_op = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * waiting for the lock here would deadlock.  If someone else has it
 | |
| 	 * locked they are already in the process of dropping it anyway
 | |
| 	 */
 | |
| 	if (!mutex_trylock(&head->mutex))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * at this point we have a head with no other entries.  Go
 | |
| 	 * ahead and process it.
 | |
| 	 */
 | |
| 	head->node.in_tree = 0;
 | |
| 	rb_erase(&head->href_node, &delayed_refs->href_root);
 | |
| 
 | |
| 	atomic_dec(&delayed_refs->num_entries);
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't take a ref on the node because we're removing it from the
 | |
| 	 * tree, so we just steal the ref the tree was holding.
 | |
| 	 */
 | |
| 	delayed_refs->num_heads--;
 | |
| 	if (head->processing == 0)
 | |
| 		delayed_refs->num_heads_ready--;
 | |
| 	head->processing = 0;
 | |
| 	spin_unlock(&head->lock);
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 	BUG_ON(head->extent_op);
 | |
| 	if (head->must_insert_reserved)
 | |
| 		ret = 1;
 | |
| 
 | |
| 	mutex_unlock(&head->mutex);
 | |
| 	btrfs_put_delayed_ref(&head->node);
 | |
| 	return ret;
 | |
| out:
 | |
| 	spin_unlock(&head->lock);
 | |
| 
 | |
| out_delayed_unlock:
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root,
 | |
| 			   struct extent_buffer *buf,
 | |
| 			   u64 parent, int last_ref)
 | |
| {
 | |
| 	int pin = 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 | |
| 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
 | |
| 					buf->start, buf->len,
 | |
| 					parent, root->root_key.objectid,
 | |
| 					btrfs_header_level(buf),
 | |
| 					BTRFS_DROP_DELAYED_REF, NULL, 0);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 	}
 | |
| 
 | |
| 	if (!last_ref)
 | |
| 		return;
 | |
| 
 | |
| 	if (btrfs_header_generation(buf) == trans->transid) {
 | |
| 		struct btrfs_block_group_cache *cache;
 | |
| 
 | |
| 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 | |
| 			ret = check_ref_cleanup(trans, root, buf->start);
 | |
| 			if (!ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
 | |
| 
 | |
| 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
 | |
| 			pin_down_extent(root, cache, buf->start, buf->len, 1);
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
 | |
| 
 | |
| 		btrfs_add_free_space(cache, buf->start, buf->len);
 | |
| 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
 | |
| 		pin = 0;
 | |
| 	}
 | |
| out:
 | |
| 	if (pin)
 | |
| 		add_pinned_bytes(root->fs_info, buf->len,
 | |
| 				 btrfs_header_level(buf),
 | |
| 				 root->root_key.objectid);
 | |
| 
 | |
| 	/*
 | |
| 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
 | |
| 	 * anymore.
 | |
| 	 */
 | |
| 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
 | |
| }
 | |
| 
 | |
| /* Can return -ENOMEM */
 | |
| int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
 | |
| 		      u64 owner, u64 offset, int no_quota)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 
 | |
| 	if (btrfs_test_is_dummy_root(root))
 | |
| 		return 0;
 | |
| 
 | |
| 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
 | |
| 
 | |
| 	/*
 | |
| 	 * tree log blocks never actually go into the extent allocation
 | |
| 	 * tree, just update pinning info and exit early.
 | |
| 	 */
 | |
| 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
 | |
| 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
 | |
| 		/* unlocks the pinned mutex */
 | |
| 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
 | |
| 		ret = 0;
 | |
| 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 | |
| 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
 | |
| 					num_bytes,
 | |
| 					parent, root_objectid, (int)owner,
 | |
| 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
 | |
| 	} else {
 | |
| 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
 | |
| 						num_bytes,
 | |
| 						parent, root_objectid, owner,
 | |
| 						offset, BTRFS_DROP_DELAYED_REF,
 | |
| 						NULL, no_quota);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when we wait for progress in the block group caching, its because
 | |
|  * our allocation attempt failed at least once.  So, we must sleep
 | |
|  * and let some progress happen before we try again.
 | |
|  *
 | |
|  * This function will sleep at least once waiting for new free space to
 | |
|  * show up, and then it will check the block group free space numbers
 | |
|  * for our min num_bytes.  Another option is to have it go ahead
 | |
|  * and look in the rbtree for a free extent of a given size, but this
 | |
|  * is a good start.
 | |
|  *
 | |
|  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 | |
|  * any of the information in this block group.
 | |
|  */
 | |
| static noinline void
 | |
| wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
 | |
| 				u64 num_bytes)
 | |
| {
 | |
| 	struct btrfs_caching_control *caching_ctl;
 | |
| 
 | |
| 	caching_ctl = get_caching_control(cache);
 | |
| 	if (!caching_ctl)
 | |
| 		return;
 | |
| 
 | |
| 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
 | |
| 		   (cache->free_space_ctl->free_space >= num_bytes));
 | |
| 
 | |
| 	put_caching_control(caching_ctl);
 | |
| }
 | |
| 
 | |
| static noinline int
 | |
| wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	struct btrfs_caching_control *caching_ctl;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	caching_ctl = get_caching_control(cache);
 | |
| 	if (!caching_ctl)
 | |
| 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
 | |
| 
 | |
| 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
 | |
| 	if (cache->cached == BTRFS_CACHE_ERROR)
 | |
| 		ret = -EIO;
 | |
| 	put_caching_control(caching_ctl);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __get_raid_index(u64 flags)
 | |
| {
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
 | |
| 		return BTRFS_RAID_RAID10;
 | |
| 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
 | |
| 		return BTRFS_RAID_RAID1;
 | |
| 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
 | |
| 		return BTRFS_RAID_DUP;
 | |
| 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
 | |
| 		return BTRFS_RAID_RAID0;
 | |
| 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
 | |
| 		return BTRFS_RAID_RAID5;
 | |
| 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 		return BTRFS_RAID_RAID6;
 | |
| 
 | |
| 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
 | |
| }
 | |
| 
 | |
| int get_block_group_index(struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	return __get_raid_index(cache->flags);
 | |
| }
 | |
| 
 | |
| static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
 | |
| 	[BTRFS_RAID_RAID10]	= "raid10",
 | |
| 	[BTRFS_RAID_RAID1]	= "raid1",
 | |
| 	[BTRFS_RAID_DUP]	= "dup",
 | |
| 	[BTRFS_RAID_RAID0]	= "raid0",
 | |
| 	[BTRFS_RAID_SINGLE]	= "single",
 | |
| 	[BTRFS_RAID_RAID5]	= "raid5",
 | |
| 	[BTRFS_RAID_RAID6]	= "raid6",
 | |
| };
 | |
| 
 | |
| static const char *get_raid_name(enum btrfs_raid_types type)
 | |
| {
 | |
| 	if (type >= BTRFS_NR_RAID_TYPES)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return btrfs_raid_type_names[type];
 | |
| }
 | |
| 
 | |
| enum btrfs_loop_type {
 | |
| 	LOOP_CACHING_NOWAIT = 0,
 | |
| 	LOOP_CACHING_WAIT = 1,
 | |
| 	LOOP_ALLOC_CHUNK = 2,
 | |
| 	LOOP_NO_EMPTY_SIZE = 3,
 | |
| };
 | |
| 
 | |
| static inline void
 | |
| btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
 | |
| 		       int delalloc)
 | |
| {
 | |
| 	if (delalloc)
 | |
| 		down_read(&cache->data_rwsem);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
 | |
| 		       int delalloc)
 | |
| {
 | |
| 	btrfs_get_block_group(cache);
 | |
| 	if (delalloc)
 | |
| 		down_read(&cache->data_rwsem);
 | |
| }
 | |
| 
 | |
| static struct btrfs_block_group_cache *
 | |
| btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
 | |
| 		   struct btrfs_free_cluster *cluster,
 | |
| 		   int delalloc)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *used_bg;
 | |
| 	bool locked = false;
 | |
| again:
 | |
| 	spin_lock(&cluster->refill_lock);
 | |
| 	if (locked) {
 | |
| 		if (used_bg == cluster->block_group)
 | |
| 			return used_bg;
 | |
| 
 | |
| 		up_read(&used_bg->data_rwsem);
 | |
| 		btrfs_put_block_group(used_bg);
 | |
| 	}
 | |
| 
 | |
| 	used_bg = cluster->block_group;
 | |
| 	if (!used_bg)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (used_bg == block_group)
 | |
| 		return used_bg;
 | |
| 
 | |
| 	btrfs_get_block_group(used_bg);
 | |
| 
 | |
| 	if (!delalloc)
 | |
| 		return used_bg;
 | |
| 
 | |
| 	if (down_read_trylock(&used_bg->data_rwsem))
 | |
| 		return used_bg;
 | |
| 
 | |
| 	spin_unlock(&cluster->refill_lock);
 | |
| 	down_read(&used_bg->data_rwsem);
 | |
| 	locked = true;
 | |
| 	goto again;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| btrfs_release_block_group(struct btrfs_block_group_cache *cache,
 | |
| 			 int delalloc)
 | |
| {
 | |
| 	if (delalloc)
 | |
| 		up_read(&cache->data_rwsem);
 | |
| 	btrfs_put_block_group(cache);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * walks the btree of allocated extents and find a hole of a given size.
 | |
|  * The key ins is changed to record the hole:
 | |
|  * ins->objectid == start position
 | |
|  * ins->flags = BTRFS_EXTENT_ITEM_KEY
 | |
|  * ins->offset == the size of the hole.
 | |
|  * Any available blocks before search_start are skipped.
 | |
|  *
 | |
|  * If there is no suitable free space, we will record the max size of
 | |
|  * the free space extent currently.
 | |
|  */
 | |
| static noinline int find_free_extent(struct btrfs_root *orig_root,
 | |
| 				     u64 num_bytes, u64 empty_size,
 | |
| 				     u64 hint_byte, struct btrfs_key *ins,
 | |
| 				     u64 flags, int delalloc)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_root *root = orig_root->fs_info->extent_root;
 | |
| 	struct btrfs_free_cluster *last_ptr = NULL;
 | |
| 	struct btrfs_block_group_cache *block_group = NULL;
 | |
| 	u64 search_start = 0;
 | |
| 	u64 max_extent_size = 0;
 | |
| 	int empty_cluster = 2 * 1024 * 1024;
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	int loop = 0;
 | |
| 	int index = __get_raid_index(flags);
 | |
| 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
 | |
| 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
 | |
| 	bool failed_cluster_refill = false;
 | |
| 	bool failed_alloc = false;
 | |
| 	bool use_cluster = true;
 | |
| 	bool have_caching_bg = false;
 | |
| 
 | |
| 	WARN_ON(num_bytes < root->sectorsize);
 | |
| 	ins->type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	ins->objectid = 0;
 | |
| 	ins->offset = 0;
 | |
| 
 | |
| 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
 | |
| 
 | |
| 	space_info = __find_space_info(root->fs_info, flags);
 | |
| 	if (!space_info) {
 | |
| 		btrfs_err(root->fs_info, "No space info for %llu", flags);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the space info is for both data and metadata it means we have a
 | |
| 	 * small filesystem and we can't use the clustering stuff.
 | |
| 	 */
 | |
| 	if (btrfs_mixed_space_info(space_info))
 | |
| 		use_cluster = false;
 | |
| 
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
 | |
| 		last_ptr = &root->fs_info->meta_alloc_cluster;
 | |
| 		if (!btrfs_test_opt(root, SSD))
 | |
| 			empty_cluster = 64 * 1024;
 | |
| 	}
 | |
| 
 | |
| 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
 | |
| 	    btrfs_test_opt(root, SSD)) {
 | |
| 		last_ptr = &root->fs_info->data_alloc_cluster;
 | |
| 	}
 | |
| 
 | |
| 	if (last_ptr) {
 | |
| 		spin_lock(&last_ptr->lock);
 | |
| 		if (last_ptr->block_group)
 | |
| 			hint_byte = last_ptr->window_start;
 | |
| 		spin_unlock(&last_ptr->lock);
 | |
| 	}
 | |
| 
 | |
| 	search_start = max(search_start, first_logical_byte(root, 0));
 | |
| 	search_start = max(search_start, hint_byte);
 | |
| 
 | |
| 	if (!last_ptr)
 | |
| 		empty_cluster = 0;
 | |
| 
 | |
| 	if (search_start == hint_byte) {
 | |
| 		block_group = btrfs_lookup_block_group(root->fs_info,
 | |
| 						       search_start);
 | |
| 		/*
 | |
| 		 * we don't want to use the block group if it doesn't match our
 | |
| 		 * allocation bits, or if its not cached.
 | |
| 		 *
 | |
| 		 * However if we are re-searching with an ideal block group
 | |
| 		 * picked out then we don't care that the block group is cached.
 | |
| 		 */
 | |
| 		if (block_group && block_group_bits(block_group, flags) &&
 | |
| 		    block_group->cached != BTRFS_CACHE_NO) {
 | |
| 			down_read(&space_info->groups_sem);
 | |
| 			if (list_empty(&block_group->list) ||
 | |
| 			    block_group->ro) {
 | |
| 				/*
 | |
| 				 * someone is removing this block group,
 | |
| 				 * we can't jump into the have_block_group
 | |
| 				 * target because our list pointers are not
 | |
| 				 * valid
 | |
| 				 */
 | |
| 				btrfs_put_block_group(block_group);
 | |
| 				up_read(&space_info->groups_sem);
 | |
| 			} else {
 | |
| 				index = get_block_group_index(block_group);
 | |
| 				btrfs_lock_block_group(block_group, delalloc);
 | |
| 				goto have_block_group;
 | |
| 			}
 | |
| 		} else if (block_group) {
 | |
| 			btrfs_put_block_group(block_group);
 | |
| 		}
 | |
| 	}
 | |
| search:
 | |
| 	have_caching_bg = false;
 | |
| 	down_read(&space_info->groups_sem);
 | |
| 	list_for_each_entry(block_group, &space_info->block_groups[index],
 | |
| 			    list) {
 | |
| 		u64 offset;
 | |
| 		int cached;
 | |
| 
 | |
| 		btrfs_grab_block_group(block_group, delalloc);
 | |
| 		search_start = block_group->key.objectid;
 | |
| 
 | |
| 		/*
 | |
| 		 * this can happen if we end up cycling through all the
 | |
| 		 * raid types, but we want to make sure we only allocate
 | |
| 		 * for the proper type.
 | |
| 		 */
 | |
| 		if (!block_group_bits(block_group, flags)) {
 | |
| 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
 | |
| 				BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 				BTRFS_BLOCK_GROUP_RAID5 |
 | |
| 				BTRFS_BLOCK_GROUP_RAID6 |
 | |
| 				BTRFS_BLOCK_GROUP_RAID10;
 | |
| 
 | |
| 			/*
 | |
| 			 * if they asked for extra copies and this block group
 | |
| 			 * doesn't provide them, bail.  This does allow us to
 | |
| 			 * fill raid0 from raid1.
 | |
| 			 */
 | |
| 			if ((flags & extra) && !(block_group->flags & extra))
 | |
| 				goto loop;
 | |
| 		}
 | |
| 
 | |
| have_block_group:
 | |
| 		cached = block_group_cache_done(block_group);
 | |
| 		if (unlikely(!cached)) {
 | |
| 			ret = cache_block_group(block_group, 0);
 | |
| 			BUG_ON(ret < 0);
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
 | |
| 			goto loop;
 | |
| 		if (unlikely(block_group->ro))
 | |
| 			goto loop;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok we want to try and use the cluster allocator, so
 | |
| 		 * lets look there
 | |
| 		 */
 | |
| 		if (last_ptr) {
 | |
| 			struct btrfs_block_group_cache *used_block_group;
 | |
| 			unsigned long aligned_cluster;
 | |
| 			/*
 | |
| 			 * the refill lock keeps out other
 | |
| 			 * people trying to start a new cluster
 | |
| 			 */
 | |
| 			used_block_group = btrfs_lock_cluster(block_group,
 | |
| 							      last_ptr,
 | |
| 							      delalloc);
 | |
| 			if (!used_block_group)
 | |
| 				goto refill_cluster;
 | |
| 
 | |
| 			if (used_block_group != block_group &&
 | |
| 			    (used_block_group->ro ||
 | |
| 			     !block_group_bits(used_block_group, flags)))
 | |
| 				goto release_cluster;
 | |
| 
 | |
| 			offset = btrfs_alloc_from_cluster(used_block_group,
 | |
| 						last_ptr,
 | |
| 						num_bytes,
 | |
| 						used_block_group->key.objectid,
 | |
| 						&max_extent_size);
 | |
| 			if (offset) {
 | |
| 				/* we have a block, we're done */
 | |
| 				spin_unlock(&last_ptr->refill_lock);
 | |
| 				trace_btrfs_reserve_extent_cluster(root,
 | |
| 						used_block_group,
 | |
| 						search_start, num_bytes);
 | |
| 				if (used_block_group != block_group) {
 | |
| 					btrfs_release_block_group(block_group,
 | |
| 								  delalloc);
 | |
| 					block_group = used_block_group;
 | |
| 				}
 | |
| 				goto checks;
 | |
| 			}
 | |
| 
 | |
| 			WARN_ON(last_ptr->block_group != used_block_group);
 | |
| release_cluster:
 | |
| 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
 | |
| 			 * set up a new clusters, so lets just skip it
 | |
| 			 * and let the allocator find whatever block
 | |
| 			 * it can find.  If we reach this point, we
 | |
| 			 * will have tried the cluster allocator
 | |
| 			 * plenty of times and not have found
 | |
| 			 * anything, so we are likely way too
 | |
| 			 * fragmented for the clustering stuff to find
 | |
| 			 * anything.
 | |
| 			 *
 | |
| 			 * However, if the cluster is taken from the
 | |
| 			 * current block group, release the cluster
 | |
| 			 * first, so that we stand a better chance of
 | |
| 			 * succeeding in the unclustered
 | |
| 			 * allocation.  */
 | |
| 			if (loop >= LOOP_NO_EMPTY_SIZE &&
 | |
| 			    used_block_group != block_group) {
 | |
| 				spin_unlock(&last_ptr->refill_lock);
 | |
| 				btrfs_release_block_group(used_block_group,
 | |
| 							  delalloc);
 | |
| 				goto unclustered_alloc;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * this cluster didn't work out, free it and
 | |
| 			 * start over
 | |
| 			 */
 | |
| 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
 | |
| 
 | |
| 			if (used_block_group != block_group)
 | |
| 				btrfs_release_block_group(used_block_group,
 | |
| 							  delalloc);
 | |
| refill_cluster:
 | |
| 			if (loop >= LOOP_NO_EMPTY_SIZE) {
 | |
| 				spin_unlock(&last_ptr->refill_lock);
 | |
| 				goto unclustered_alloc;
 | |
| 			}
 | |
| 
 | |
| 			aligned_cluster = max_t(unsigned long,
 | |
| 						empty_cluster + empty_size,
 | |
| 					      block_group->full_stripe_len);
 | |
| 
 | |
| 			/* allocate a cluster in this block group */
 | |
| 			ret = btrfs_find_space_cluster(root, block_group,
 | |
| 						       last_ptr, search_start,
 | |
| 						       num_bytes,
 | |
| 						       aligned_cluster);
 | |
| 			if (ret == 0) {
 | |
| 				/*
 | |
| 				 * now pull our allocation out of this
 | |
| 				 * cluster
 | |
| 				 */
 | |
| 				offset = btrfs_alloc_from_cluster(block_group,
 | |
| 							last_ptr,
 | |
| 							num_bytes,
 | |
| 							search_start,
 | |
| 							&max_extent_size);
 | |
| 				if (offset) {
 | |
| 					/* we found one, proceed */
 | |
| 					spin_unlock(&last_ptr->refill_lock);
 | |
| 					trace_btrfs_reserve_extent_cluster(root,
 | |
| 						block_group, search_start,
 | |
| 						num_bytes);
 | |
| 					goto checks;
 | |
| 				}
 | |
| 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
 | |
| 				   && !failed_cluster_refill) {
 | |
| 				spin_unlock(&last_ptr->refill_lock);
 | |
| 
 | |
| 				failed_cluster_refill = true;
 | |
| 				wait_block_group_cache_progress(block_group,
 | |
| 				       num_bytes + empty_cluster + empty_size);
 | |
| 				goto have_block_group;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * at this point we either didn't find a cluster
 | |
| 			 * or we weren't able to allocate a block from our
 | |
| 			 * cluster.  Free the cluster we've been trying
 | |
| 			 * to use, and go to the next block group
 | |
| 			 */
 | |
| 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
 | |
| 			spin_unlock(&last_ptr->refill_lock);
 | |
| 			goto loop;
 | |
| 		}
 | |
| 
 | |
| unclustered_alloc:
 | |
| 		spin_lock(&block_group->free_space_ctl->tree_lock);
 | |
| 		if (cached &&
 | |
| 		    block_group->free_space_ctl->free_space <
 | |
| 		    num_bytes + empty_cluster + empty_size) {
 | |
| 			if (block_group->free_space_ctl->free_space >
 | |
| 			    max_extent_size)
 | |
| 				max_extent_size =
 | |
| 					block_group->free_space_ctl->free_space;
 | |
| 			spin_unlock(&block_group->free_space_ctl->tree_lock);
 | |
| 			goto loop;
 | |
| 		}
 | |
| 		spin_unlock(&block_group->free_space_ctl->tree_lock);
 | |
| 
 | |
| 		offset = btrfs_find_space_for_alloc(block_group, search_start,
 | |
| 						    num_bytes, empty_size,
 | |
| 						    &max_extent_size);
 | |
| 		/*
 | |
| 		 * If we didn't find a chunk, and we haven't failed on this
 | |
| 		 * block group before, and this block group is in the middle of
 | |
| 		 * caching and we are ok with waiting, then go ahead and wait
 | |
| 		 * for progress to be made, and set failed_alloc to true.
 | |
| 		 *
 | |
| 		 * If failed_alloc is true then we've already waited on this
 | |
| 		 * block group once and should move on to the next block group.
 | |
| 		 */
 | |
| 		if (!offset && !failed_alloc && !cached &&
 | |
| 		    loop > LOOP_CACHING_NOWAIT) {
 | |
| 			wait_block_group_cache_progress(block_group,
 | |
| 						num_bytes + empty_size);
 | |
| 			failed_alloc = true;
 | |
| 			goto have_block_group;
 | |
| 		} else if (!offset) {
 | |
| 			if (!cached)
 | |
| 				have_caching_bg = true;
 | |
| 			goto loop;
 | |
| 		}
 | |
| checks:
 | |
| 		search_start = ALIGN(offset, root->stripesize);
 | |
| 
 | |
| 		/* move on to the next group */
 | |
| 		if (search_start + num_bytes >
 | |
| 		    block_group->key.objectid + block_group->key.offset) {
 | |
| 			btrfs_add_free_space(block_group, offset, num_bytes);
 | |
| 			goto loop;
 | |
| 		}
 | |
| 
 | |
| 		if (offset < search_start)
 | |
| 			btrfs_add_free_space(block_group, offset,
 | |
| 					     search_start - offset);
 | |
| 		BUG_ON(offset > search_start);
 | |
| 
 | |
| 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
 | |
| 						  alloc_type, delalloc);
 | |
| 		if (ret == -EAGAIN) {
 | |
| 			btrfs_add_free_space(block_group, offset, num_bytes);
 | |
| 			goto loop;
 | |
| 		}
 | |
| 
 | |
| 		/* we are all good, lets return */
 | |
| 		ins->objectid = search_start;
 | |
| 		ins->offset = num_bytes;
 | |
| 
 | |
| 		trace_btrfs_reserve_extent(orig_root, block_group,
 | |
| 					   search_start, num_bytes);
 | |
| 		btrfs_release_block_group(block_group, delalloc);
 | |
| 		break;
 | |
| loop:
 | |
| 		failed_cluster_refill = false;
 | |
| 		failed_alloc = false;
 | |
| 		BUG_ON(index != get_block_group_index(block_group));
 | |
| 		btrfs_release_block_group(block_group, delalloc);
 | |
| 	}
 | |
| 	up_read(&space_info->groups_sem);
 | |
| 
 | |
| 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
 | |
| 		goto search;
 | |
| 
 | |
| 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
 | |
| 		goto search;
 | |
| 
 | |
| 	/*
 | |
| 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
 | |
| 	 *			caching kthreads as we move along
 | |
| 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
 | |
| 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
 | |
| 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
 | |
| 	 *			again
 | |
| 	 */
 | |
| 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
 | |
| 		index = 0;
 | |
| 		loop++;
 | |
| 		if (loop == LOOP_ALLOC_CHUNK) {
 | |
| 			struct btrfs_trans_handle *trans;
 | |
| 			int exist = 0;
 | |
| 
 | |
| 			trans = current->journal_info;
 | |
| 			if (trans)
 | |
| 				exist = 1;
 | |
| 			else
 | |
| 				trans = btrfs_join_transaction(root);
 | |
| 
 | |
| 			if (IS_ERR(trans)) {
 | |
| 				ret = PTR_ERR(trans);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			ret = do_chunk_alloc(trans, root, flags,
 | |
| 					     CHUNK_ALLOC_FORCE);
 | |
| 			/*
 | |
| 			 * Do not bail out on ENOSPC since we
 | |
| 			 * can do more things.
 | |
| 			 */
 | |
| 			if (ret < 0 && ret != -ENOSPC)
 | |
| 				btrfs_abort_transaction(trans,
 | |
| 							root, ret);
 | |
| 			else
 | |
| 				ret = 0;
 | |
| 			if (!exist)
 | |
| 				btrfs_end_transaction(trans, root);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (loop == LOOP_NO_EMPTY_SIZE) {
 | |
| 			empty_size = 0;
 | |
| 			empty_cluster = 0;
 | |
| 		}
 | |
| 
 | |
| 		goto search;
 | |
| 	} else if (!ins->objectid) {
 | |
| 		ret = -ENOSPC;
 | |
| 	} else if (ins->objectid) {
 | |
| 		ret = 0;
 | |
| 	}
 | |
| out:
 | |
| 	if (ret == -ENOSPC)
 | |
| 		ins->offset = max_extent_size;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
 | |
| 			    int dump_block_groups)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 	int index = 0;
 | |
| 
 | |
| 	spin_lock(&info->lock);
 | |
| 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
 | |
| 	       info->flags,
 | |
| 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
 | |
| 	       info->bytes_reserved - info->bytes_readonly,
 | |
| 	       (info->full) ? "" : "not ");
 | |
| 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
 | |
| 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
 | |
| 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
 | |
| 	       info->bytes_reserved, info->bytes_may_use,
 | |
| 	       info->bytes_readonly);
 | |
| 	spin_unlock(&info->lock);
 | |
| 
 | |
| 	if (!dump_block_groups)
 | |
| 		return;
 | |
| 
 | |
| 	down_read(&info->groups_sem);
 | |
| again:
 | |
| 	list_for_each_entry(cache, &info->block_groups[index], list) {
 | |
| 		spin_lock(&cache->lock);
 | |
| 		printk(KERN_INFO "BTRFS: "
 | |
| 			   "block group %llu has %llu bytes, "
 | |
| 			   "%llu used %llu pinned %llu reserved %s\n",
 | |
| 		       cache->key.objectid, cache->key.offset,
 | |
| 		       btrfs_block_group_used(&cache->item), cache->pinned,
 | |
| 		       cache->reserved, cache->ro ? "[readonly]" : "");
 | |
| 		btrfs_dump_free_space(cache, bytes);
 | |
| 		spin_unlock(&cache->lock);
 | |
| 	}
 | |
| 	if (++index < BTRFS_NR_RAID_TYPES)
 | |
| 		goto again;
 | |
| 	up_read(&info->groups_sem);
 | |
| }
 | |
| 
 | |
| int btrfs_reserve_extent(struct btrfs_root *root,
 | |
| 			 u64 num_bytes, u64 min_alloc_size,
 | |
| 			 u64 empty_size, u64 hint_byte,
 | |
| 			 struct btrfs_key *ins, int is_data, int delalloc)
 | |
| {
 | |
| 	bool final_tried = false;
 | |
| 	u64 flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	flags = btrfs_get_alloc_profile(root, is_data);
 | |
| again:
 | |
| 	WARN_ON(num_bytes < root->sectorsize);
 | |
| 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
 | |
| 			       flags, delalloc);
 | |
| 
 | |
| 	if (ret == -ENOSPC) {
 | |
| 		if (!final_tried && ins->offset) {
 | |
| 			num_bytes = min(num_bytes >> 1, ins->offset);
 | |
| 			num_bytes = round_down(num_bytes, root->sectorsize);
 | |
| 			num_bytes = max(num_bytes, min_alloc_size);
 | |
| 			if (num_bytes == min_alloc_size)
 | |
| 				final_tried = true;
 | |
| 			goto again;
 | |
| 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
 | |
| 			struct btrfs_space_info *sinfo;
 | |
| 
 | |
| 			sinfo = __find_space_info(root->fs_info, flags);
 | |
| 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
 | |
| 				flags, num_bytes);
 | |
| 			if (sinfo)
 | |
| 				dump_space_info(sinfo, num_bytes, 1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __btrfs_free_reserved_extent(struct btrfs_root *root,
 | |
| 					u64 start, u64 len,
 | |
| 					int pin, int delalloc)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(root->fs_info, start);
 | |
| 	if (!cache) {
 | |
| 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
 | |
| 			start);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_test_opt(root, DISCARD))
 | |
| 		ret = btrfs_discard_extent(root, start, len, NULL);
 | |
| 
 | |
| 	if (pin)
 | |
| 		pin_down_extent(root, cache, start, len, 1);
 | |
| 	else {
 | |
| 		btrfs_add_free_space(cache, start, len);
 | |
| 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
 | |
| 	}
 | |
| 	btrfs_put_block_group(cache);
 | |
| 
 | |
| 	trace_btrfs_reserved_extent_free(root, start, len);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_free_reserved_extent(struct btrfs_root *root,
 | |
| 			       u64 start, u64 len, int delalloc)
 | |
| {
 | |
| 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
 | |
| }
 | |
| 
 | |
| int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
 | |
| 				       u64 start, u64 len)
 | |
| {
 | |
| 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
 | |
| }
 | |
| 
 | |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      u64 parent, u64 root_objectid,
 | |
| 				      u64 flags, u64 owner, u64 offset,
 | |
| 				      struct btrfs_key *ins, int ref_mod)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_extent_item *extent_item;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int type;
 | |
| 	u32 size;
 | |
| 
 | |
| 	if (parent > 0)
 | |
| 		type = BTRFS_SHARED_DATA_REF_KEY;
 | |
| 	else
 | |
| 		type = BTRFS_EXTENT_DATA_REF_KEY;
 | |
| 
 | |
| 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->leave_spinning = 1;
 | |
| 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
 | |
| 				      ins, size);
 | |
| 	if (ret) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				     struct btrfs_extent_item);
 | |
| 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
 | |
| 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
 | |
| 	btrfs_set_extent_flags(leaf, extent_item,
 | |
| 			       flags | BTRFS_EXTENT_FLAG_DATA);
 | |
| 
 | |
| 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 | |
| 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 | |
| 	if (parent > 0) {
 | |
| 		struct btrfs_shared_data_ref *ref;
 | |
| 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 | |
| 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
 | |
| 	} else {
 | |
| 		struct btrfs_extent_data_ref *ref;
 | |
| 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | |
| 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
 | |
| 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 | |
| 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 | |
| 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	/* Always set parent to 0 here since its exclusive anyway. */
 | |
| 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
 | |
| 				      ins->objectid, ins->offset,
 | |
| 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
 | |
| 	if (ret) { /* -ENOENT, logic error */
 | |
| 		btrfs_err(fs_info, "update block group failed for %llu %llu",
 | |
| 			ins->objectid, ins->offset);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_root *root,
 | |
| 				     u64 parent, u64 root_objectid,
 | |
| 				     u64 flags, struct btrfs_disk_key *key,
 | |
| 				     int level, struct btrfs_key *ins,
 | |
| 				     int no_quota)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_extent_item *extent_item;
 | |
| 	struct btrfs_tree_block_info *block_info;
 | |
| 	struct btrfs_extent_inline_ref *iref;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 size = sizeof(*extent_item) + sizeof(*iref);
 | |
| 	u64 num_bytes = ins->offset;
 | |
| 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
 | |
| 						 SKINNY_METADATA);
 | |
| 
 | |
| 	if (!skinny_metadata)
 | |
| 		size += sizeof(*block_info);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
 | |
| 						   root->nodesize);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	path->leave_spinning = 1;
 | |
| 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
 | |
| 				      ins, size);
 | |
| 	if (ret) {
 | |
| 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
 | |
| 						   root->nodesize);
 | |
| 		btrfs_free_path(path);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				     struct btrfs_extent_item);
 | |
| 	btrfs_set_extent_refs(leaf, extent_item, 1);
 | |
| 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
 | |
| 	btrfs_set_extent_flags(leaf, extent_item,
 | |
| 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
 | |
| 
 | |
| 	if (skinny_metadata) {
 | |
| 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 | |
| 		num_bytes = root->nodesize;
 | |
| 	} else {
 | |
| 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
 | |
| 		btrfs_set_tree_block_key(leaf, block_info, key);
 | |
| 		btrfs_set_tree_block_level(leaf, block_info, level);
 | |
| 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
 | |
| 	}
 | |
| 
 | |
| 	if (parent > 0) {
 | |
| 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 | |
| 		btrfs_set_extent_inline_ref_type(leaf, iref,
 | |
| 						 BTRFS_SHARED_BLOCK_REF_KEY);
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 | |
| 	} else {
 | |
| 		btrfs_set_extent_inline_ref_type(leaf, iref,
 | |
| 						 BTRFS_TREE_BLOCK_REF_KEY);
 | |
| 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	if (!no_quota) {
 | |
| 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
 | |
| 					      ins->objectid, num_bytes,
 | |
| 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
 | |
| 				 1);
 | |
| 	if (ret) { /* -ENOENT, logic error */
 | |
| 		btrfs_err(fs_info, "update block group failed for %llu %llu",
 | |
| 			ins->objectid, ins->offset);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_root *root,
 | |
| 				     u64 root_objectid, u64 owner,
 | |
| 				     u64 offset, struct btrfs_key *ins)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
 | |
| 
 | |
| 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
 | |
| 					 ins->offset, 0,
 | |
| 					 root_objectid, owner, offset,
 | |
| 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is used by the tree logging recovery code.  It records that
 | |
|  * an extent has been allocated and makes sure to clear the free
 | |
|  * space cache bits as well
 | |
|  */
 | |
| int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   u64 root_objectid, u64 owner, u64 offset,
 | |
| 				   struct btrfs_key *ins)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_block_group_cache *block_group;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mixed block groups will exclude before processing the log so we only
 | |
| 	 * need to do the exlude dance if this fs isn't mixed.
 | |
| 	 */
 | |
| 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
 | |
| 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
 | |
| 	if (!block_group)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
 | |
| 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
 | |
| 	BUG_ON(ret); /* logic error */
 | |
| 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
 | |
| 					 0, owner, offset, ins, 1);
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct extent_buffer *
 | |
| btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		      u64 bytenr, int level)
 | |
| {
 | |
| 	struct extent_buffer *buf;
 | |
| 
 | |
| 	buf = btrfs_find_create_tree_block(root, bytenr);
 | |
| 	if (!buf)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	btrfs_set_header_generation(buf, trans->transid);
 | |
| 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
 | |
| 	btrfs_tree_lock(buf);
 | |
| 	clean_tree_block(trans, root, buf);
 | |
| 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
 | |
| 
 | |
| 	btrfs_set_lock_blocking(buf);
 | |
| 	btrfs_set_buffer_uptodate(buf);
 | |
| 
 | |
| 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
 | |
| 		buf->log_index = root->log_transid % 2;
 | |
| 		/*
 | |
| 		 * we allow two log transactions at a time, use different
 | |
| 		 * EXENT bit to differentiate dirty pages.
 | |
| 		 */
 | |
| 		if (buf->log_index == 0)
 | |
| 			set_extent_dirty(&root->dirty_log_pages, buf->start,
 | |
| 					buf->start + buf->len - 1, GFP_NOFS);
 | |
| 		else
 | |
| 			set_extent_new(&root->dirty_log_pages, buf->start,
 | |
| 					buf->start + buf->len - 1, GFP_NOFS);
 | |
| 	} else {
 | |
| 		buf->log_index = -1;
 | |
| 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
 | |
| 			 buf->start + buf->len - 1, GFP_NOFS);
 | |
| 	}
 | |
| 	trans->blocks_used++;
 | |
| 	/* this returns a buffer locked for blocking */
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| static struct btrfs_block_rsv *
 | |
| use_block_rsv(struct btrfs_trans_handle *trans,
 | |
| 	      struct btrfs_root *root, u32 blocksize)
 | |
| {
 | |
| 	struct btrfs_block_rsv *block_rsv;
 | |
| 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
 | |
| 	int ret;
 | |
| 	bool global_updated = false;
 | |
| 
 | |
| 	block_rsv = get_block_rsv(trans, root);
 | |
| 
 | |
| 	if (unlikely(block_rsv->size == 0))
 | |
| 		goto try_reserve;
 | |
| again:
 | |
| 	ret = block_rsv_use_bytes(block_rsv, blocksize);
 | |
| 	if (!ret)
 | |
| 		return block_rsv;
 | |
| 
 | |
| 	if (block_rsv->failfast)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
 | |
| 		global_updated = true;
 | |
| 		update_global_block_rsv(root->fs_info);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
 | |
| 		static DEFINE_RATELIMIT_STATE(_rs,
 | |
| 				DEFAULT_RATELIMIT_INTERVAL * 10,
 | |
| 				/*DEFAULT_RATELIMIT_BURST*/ 1);
 | |
| 		if (__ratelimit(&_rs))
 | |
| 			WARN(1, KERN_DEBUG
 | |
| 				"BTRFS: block rsv returned %d\n", ret);
 | |
| 	}
 | |
| try_reserve:
 | |
| 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
 | |
| 				     BTRFS_RESERVE_NO_FLUSH);
 | |
| 	if (!ret)
 | |
| 		return block_rsv;
 | |
| 	/*
 | |
| 	 * If we couldn't reserve metadata bytes try and use some from
 | |
| 	 * the global reserve if its space type is the same as the global
 | |
| 	 * reservation.
 | |
| 	 */
 | |
| 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
 | |
| 	    block_rsv->space_info == global_rsv->space_info) {
 | |
| 		ret = block_rsv_use_bytes(global_rsv, blocksize);
 | |
| 		if (!ret)
 | |
| 			return global_rsv;
 | |
| 	}
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
 | |
| 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
 | |
| {
 | |
| 	block_rsv_add_bytes(block_rsv, blocksize, 0);
 | |
| 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * finds a free extent and does all the dirty work required for allocation
 | |
|  * returns the key for the extent through ins, and a tree buffer for
 | |
|  * the first block of the extent through buf.
 | |
|  *
 | |
|  * returns the tree buffer or NULL.
 | |
|  */
 | |
| struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
 | |
| 					struct btrfs_root *root,
 | |
| 					u64 parent, u64 root_objectid,
 | |
| 					struct btrfs_disk_key *key, int level,
 | |
| 					u64 hint, u64 empty_size)
 | |
| {
 | |
| 	struct btrfs_key ins;
 | |
| 	struct btrfs_block_rsv *block_rsv;
 | |
| 	struct extent_buffer *buf;
 | |
| 	u64 flags = 0;
 | |
| 	int ret;
 | |
| 	u32 blocksize = root->nodesize;
 | |
| 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
 | |
| 						 SKINNY_METADATA);
 | |
| 
 | |
| 	if (btrfs_test_is_dummy_root(root)) {
 | |
| 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
 | |
| 					    level);
 | |
| 		if (!IS_ERR(buf))
 | |
| 			root->alloc_bytenr += blocksize;
 | |
| 		return buf;
 | |
| 	}
 | |
| 
 | |
| 	block_rsv = use_block_rsv(trans, root, blocksize);
 | |
| 	if (IS_ERR(block_rsv))
 | |
| 		return ERR_CAST(block_rsv);
 | |
| 
 | |
| 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
 | |
| 				   empty_size, hint, &ins, 0, 0);
 | |
| 	if (ret) {
 | |
| 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
 | |
| 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
 | |
| 
 | |
| 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
 | |
| 		if (parent == 0)
 | |
| 			parent = ins.objectid;
 | |
| 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 | |
| 	} else
 | |
| 		BUG_ON(parent > 0);
 | |
| 
 | |
| 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
 | |
| 		struct btrfs_delayed_extent_op *extent_op;
 | |
| 		extent_op = btrfs_alloc_delayed_extent_op();
 | |
| 		BUG_ON(!extent_op); /* -ENOMEM */
 | |
| 		if (key)
 | |
| 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
 | |
| 		else
 | |
| 			memset(&extent_op->key, 0, sizeof(extent_op->key));
 | |
| 		extent_op->flags_to_set = flags;
 | |
| 		if (skinny_metadata)
 | |
| 			extent_op->update_key = 0;
 | |
| 		else
 | |
| 			extent_op->update_key = 1;
 | |
| 		extent_op->update_flags = 1;
 | |
| 		extent_op->is_data = 0;
 | |
| 		extent_op->level = level;
 | |
| 
 | |
| 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
 | |
| 					ins.objectid,
 | |
| 					ins.offset, parent, root_objectid,
 | |
| 					level, BTRFS_ADD_DELAYED_EXTENT,
 | |
| 					extent_op, 0);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 	}
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| struct walk_control {
 | |
| 	u64 refs[BTRFS_MAX_LEVEL];
 | |
| 	u64 flags[BTRFS_MAX_LEVEL];
 | |
| 	struct btrfs_key update_progress;
 | |
| 	int stage;
 | |
| 	int level;
 | |
| 	int shared_level;
 | |
| 	int update_ref;
 | |
| 	int keep_locks;
 | |
| 	int reada_slot;
 | |
| 	int reada_count;
 | |
| 	int for_reloc;
 | |
| };
 | |
| 
 | |
| #define DROP_REFERENCE	1
 | |
| #define UPDATE_BACKREF	2
 | |
| 
 | |
| static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_root *root,
 | |
| 				     struct walk_control *wc,
 | |
| 				     struct btrfs_path *path)
 | |
| {
 | |
| 	u64 bytenr;
 | |
| 	u64 generation;
 | |
| 	u64 refs;
 | |
| 	u64 flags;
 | |
| 	u32 nritems;
 | |
| 	u32 blocksize;
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	int nread = 0;
 | |
| 
 | |
| 	if (path->slots[wc->level] < wc->reada_slot) {
 | |
| 		wc->reada_count = wc->reada_count * 2 / 3;
 | |
| 		wc->reada_count = max(wc->reada_count, 2);
 | |
| 	} else {
 | |
| 		wc->reada_count = wc->reada_count * 3 / 2;
 | |
| 		wc->reada_count = min_t(int, wc->reada_count,
 | |
| 					BTRFS_NODEPTRS_PER_BLOCK(root));
 | |
| 	}
 | |
| 
 | |
| 	eb = path->nodes[wc->level];
 | |
| 	nritems = btrfs_header_nritems(eb);
 | |
| 	blocksize = root->nodesize;
 | |
| 
 | |
| 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
 | |
| 		if (nread >= wc->reada_count)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 		bytenr = btrfs_node_blockptr(eb, slot);
 | |
| 		generation = btrfs_node_ptr_generation(eb, slot);
 | |
| 
 | |
| 		if (slot == path->slots[wc->level])
 | |
| 			goto reada;
 | |
| 
 | |
| 		if (wc->stage == UPDATE_BACKREF &&
 | |
| 		    generation <= root->root_key.offset)
 | |
| 			continue;
 | |
| 
 | |
| 		/* We don't lock the tree block, it's OK to be racy here */
 | |
| 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
 | |
| 					       wc->level - 1, 1, &refs,
 | |
| 					       &flags);
 | |
| 		/* We don't care about errors in readahead. */
 | |
| 		if (ret < 0)
 | |
| 			continue;
 | |
| 		BUG_ON(refs == 0);
 | |
| 
 | |
| 		if (wc->stage == DROP_REFERENCE) {
 | |
| 			if (refs == 1)
 | |
| 				goto reada;
 | |
| 
 | |
| 			if (wc->level == 1 &&
 | |
| 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 | |
| 				continue;
 | |
| 			if (!wc->update_ref ||
 | |
| 			    generation <= root->root_key.offset)
 | |
| 				continue;
 | |
| 			btrfs_node_key_to_cpu(eb, &key, slot);
 | |
| 			ret = btrfs_comp_cpu_keys(&key,
 | |
| 						  &wc->update_progress);
 | |
| 			if (ret < 0)
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			if (wc->level == 1 &&
 | |
| 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 | |
| 				continue;
 | |
| 		}
 | |
| reada:
 | |
| 		readahead_tree_block(root, bytenr);
 | |
| 		nread++;
 | |
| 	}
 | |
| 	wc->reada_slot = slot;
 | |
| }
 | |
| 
 | |
| static int account_leaf_items(struct btrfs_trans_handle *trans,
 | |
| 			      struct btrfs_root *root,
 | |
| 			      struct extent_buffer *eb)
 | |
| {
 | |
| 	int nr = btrfs_header_nritems(eb);
 | |
| 	int i, extent_type, ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	u64 bytenr, num_bytes;
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		btrfs_item_key_to_cpu(eb, &key, i);
 | |
| 
 | |
| 		if (key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 			continue;
 | |
| 
 | |
| 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
 | |
| 		/* filter out non qgroup-accountable extents  */
 | |
| 		extent_type = btrfs_file_extent_type(eb, fi);
 | |
| 
 | |
| 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 | |
| 			continue;
 | |
| 
 | |
| 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
 | |
| 		if (!bytenr)
 | |
| 			continue;
 | |
| 
 | |
| 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
 | |
| 
 | |
| 		ret = btrfs_qgroup_record_ref(trans, root->fs_info,
 | |
| 					      root->objectid,
 | |
| 					      bytenr, num_bytes,
 | |
| 					      BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk up the tree from the bottom, freeing leaves and any interior
 | |
|  * nodes which have had all slots visited. If a node (leaf or
 | |
|  * interior) is freed, the node above it will have it's slot
 | |
|  * incremented. The root node will never be freed.
 | |
|  *
 | |
|  * At the end of this function, we should have a path which has all
 | |
|  * slots incremented to the next position for a search. If we need to
 | |
|  * read a new node it will be NULL and the node above it will have the
 | |
|  * correct slot selected for a later read.
 | |
|  *
 | |
|  * If we increment the root nodes slot counter past the number of
 | |
|  * elements, 1 is returned to signal completion of the search.
 | |
|  */
 | |
| static int adjust_slots_upwards(struct btrfs_root *root,
 | |
| 				struct btrfs_path *path, int root_level)
 | |
| {
 | |
| 	int level = 0;
 | |
| 	int nr, slot;
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	if (root_level == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	while (level <= root_level) {
 | |
| 		eb = path->nodes[level];
 | |
| 		nr = btrfs_header_nritems(eb);
 | |
| 		path->slots[level]++;
 | |
| 		slot = path->slots[level];
 | |
| 		if (slot >= nr || level == 0) {
 | |
| 			/*
 | |
| 			 * Don't free the root -  we will detect this
 | |
| 			 * condition after our loop and return a
 | |
| 			 * positive value for caller to stop walking the tree.
 | |
| 			 */
 | |
| 			if (level != root_level) {
 | |
| 				btrfs_tree_unlock_rw(eb, path->locks[level]);
 | |
| 				path->locks[level] = 0;
 | |
| 
 | |
| 				free_extent_buffer(eb);
 | |
| 				path->nodes[level] = NULL;
 | |
| 				path->slots[level] = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We have a valid slot to walk back down
 | |
| 			 * from. Stop here so caller can process these
 | |
| 			 * new nodes.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		level++;
 | |
| 	}
 | |
| 
 | |
| 	eb = path->nodes[root_level];
 | |
| 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * root_eb is the subtree root and is locked before this function is called.
 | |
|  */
 | |
| static int account_shared_subtree(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *root,
 | |
| 				  struct extent_buffer *root_eb,
 | |
| 				  u64 root_gen,
 | |
| 				  int root_level)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int level;
 | |
| 	struct extent_buffer *eb = root_eb;
 | |
| 	struct btrfs_path *path = NULL;
 | |
| 
 | |
| 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
 | |
| 	BUG_ON(root_eb == NULL);
 | |
| 
 | |
| 	if (!root->fs_info->quota_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!extent_buffer_uptodate(root_eb)) {
 | |
| 		ret = btrfs_read_buffer(root_eb, root_gen);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (root_level == 0) {
 | |
| 		ret = account_leaf_items(trans, root, root_eb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk down the tree.  Missing extent blocks are filled in as
 | |
| 	 * we go. Metadata is accounted every time we read a new
 | |
| 	 * extent block.
 | |
| 	 *
 | |
| 	 * When we reach a leaf, we account for file extent items in it,
 | |
| 	 * walk back up the tree (adjusting slot pointers as we go)
 | |
| 	 * and restart the search process.
 | |
| 	 */
 | |
| 	extent_buffer_get(root_eb); /* For path */
 | |
| 	path->nodes[root_level] = root_eb;
 | |
| 	path->slots[root_level] = 0;
 | |
| 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
 | |
| walk_down:
 | |
| 	level = root_level;
 | |
| 	while (level >= 0) {
 | |
| 		if (path->nodes[level] == NULL) {
 | |
| 			int parent_slot;
 | |
| 			u64 child_gen;
 | |
| 			u64 child_bytenr;
 | |
| 
 | |
| 			/* We need to get child blockptr/gen from
 | |
| 			 * parent before we can read it. */
 | |
| 			eb = path->nodes[level + 1];
 | |
| 			parent_slot = path->slots[level + 1];
 | |
| 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
 | |
| 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
 | |
| 
 | |
| 			eb = read_tree_block(root, child_bytenr, child_gen);
 | |
| 			if (!eb || !extent_buffer_uptodate(eb)) {
 | |
| 				ret = -EIO;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			path->nodes[level] = eb;
 | |
| 			path->slots[level] = 0;
 | |
| 
 | |
| 			btrfs_tree_read_lock(eb);
 | |
| 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 | |
| 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
 | |
| 
 | |
| 			ret = btrfs_qgroup_record_ref(trans, root->fs_info,
 | |
| 						root->objectid,
 | |
| 						child_bytenr,
 | |
| 						root->nodesize,
 | |
| 						BTRFS_QGROUP_OPER_SUB_SUBTREE,
 | |
| 						0);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		if (level == 0) {
 | |
| 			ret = account_leaf_items(trans, root, path->nodes[level]);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 
 | |
| 			/* Nonzero return here means we completed our search */
 | |
| 			ret = adjust_slots_upwards(root, path, root_level);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 
 | |
| 			/* Restart search with new slots */
 | |
| 			goto walk_down;
 | |
| 		}
 | |
| 
 | |
| 		level--;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to process tree block while walking down the tree.
 | |
|  *
 | |
|  * when wc->stage == UPDATE_BACKREF, this function updates
 | |
|  * back refs for pointers in the block.
 | |
|  *
 | |
|  * NOTE: return value 1 means we should stop walking down.
 | |
|  */
 | |
| static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   struct walk_control *wc, int lookup_info)
 | |
| {
 | |
| 	int level = wc->level;
 | |
| 	struct extent_buffer *eb = path->nodes[level];
 | |
| 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (wc->stage == UPDATE_BACKREF &&
 | |
| 	    btrfs_header_owner(eb) != root->root_key.objectid)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * when reference count of tree block is 1, it won't increase
 | |
| 	 * again. once full backref flag is set, we never clear it.
 | |
| 	 */
 | |
| 	if (lookup_info &&
 | |
| 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
 | |
| 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
 | |
| 		BUG_ON(!path->locks[level]);
 | |
| 		ret = btrfs_lookup_extent_info(trans, root,
 | |
| 					       eb->start, level, 1,
 | |
| 					       &wc->refs[level],
 | |
| 					       &wc->flags[level]);
 | |
| 		BUG_ON(ret == -ENOMEM);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		BUG_ON(wc->refs[level] == 0);
 | |
| 	}
 | |
| 
 | |
| 	if (wc->stage == DROP_REFERENCE) {
 | |
| 		if (wc->refs[level] > 1)
 | |
| 			return 1;
 | |
| 
 | |
| 		if (path->locks[level] && !wc->keep_locks) {
 | |
| 			btrfs_tree_unlock_rw(eb, path->locks[level]);
 | |
| 			path->locks[level] = 0;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* wc->stage == UPDATE_BACKREF */
 | |
| 	if (!(wc->flags[level] & flag)) {
 | |
| 		BUG_ON(!path->locks[level]);
 | |
| 		ret = btrfs_inc_ref(trans, root, eb, 1);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 		ret = btrfs_dec_ref(trans, root, eb, 0);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
 | |
| 						  eb->len, flag,
 | |
| 						  btrfs_header_level(eb), 0);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 		wc->flags[level] |= flag;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * the block is shared by multiple trees, so it's not good to
 | |
| 	 * keep the tree lock
 | |
| 	 */
 | |
| 	if (path->locks[level] && level > 0) {
 | |
| 		btrfs_tree_unlock_rw(eb, path->locks[level]);
 | |
| 		path->locks[level] = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to process tree block pointer.
 | |
|  *
 | |
|  * when wc->stage == DROP_REFERENCE, this function checks
 | |
|  * reference count of the block pointed to. if the block
 | |
|  * is shared and we need update back refs for the subtree
 | |
|  * rooted at the block, this function changes wc->stage to
 | |
|  * UPDATE_BACKREF. if the block is shared and there is no
 | |
|  * need to update back, this function drops the reference
 | |
|  * to the block.
 | |
|  *
 | |
|  * NOTE: return value 1 means we should stop walking down.
 | |
|  */
 | |
| static noinline int do_walk_down(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct walk_control *wc, int *lookup_info)
 | |
| {
 | |
| 	u64 bytenr;
 | |
| 	u64 generation;
 | |
| 	u64 parent;
 | |
| 	u32 blocksize;
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *next;
 | |
| 	int level = wc->level;
 | |
| 	int reada = 0;
 | |
| 	int ret = 0;
 | |
| 	bool need_account = false;
 | |
| 
 | |
| 	generation = btrfs_node_ptr_generation(path->nodes[level],
 | |
| 					       path->slots[level]);
 | |
| 	/*
 | |
| 	 * if the lower level block was created before the snapshot
 | |
| 	 * was created, we know there is no need to update back refs
 | |
| 	 * for the subtree
 | |
| 	 */
 | |
| 	if (wc->stage == UPDATE_BACKREF &&
 | |
| 	    generation <= root->root_key.offset) {
 | |
| 		*lookup_info = 1;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
 | |
| 	blocksize = root->nodesize;
 | |
| 
 | |
| 	next = btrfs_find_tree_block(root, bytenr);
 | |
| 	if (!next) {
 | |
| 		next = btrfs_find_create_tree_block(root, bytenr);
 | |
| 		if (!next)
 | |
| 			return -ENOMEM;
 | |
| 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
 | |
| 					       level - 1);
 | |
| 		reada = 1;
 | |
| 	}
 | |
| 	btrfs_tree_lock(next);
 | |
| 	btrfs_set_lock_blocking(next);
 | |
| 
 | |
| 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
 | |
| 				       &wc->refs[level - 1],
 | |
| 				       &wc->flags[level - 1]);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_tree_unlock(next);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(wc->refs[level - 1] == 0)) {
 | |
| 		btrfs_err(root->fs_info, "Missing references.");
 | |
| 		BUG();
 | |
| 	}
 | |
| 	*lookup_info = 0;
 | |
| 
 | |
| 	if (wc->stage == DROP_REFERENCE) {
 | |
| 		if (wc->refs[level - 1] > 1) {
 | |
| 			need_account = true;
 | |
| 			if (level == 1 &&
 | |
| 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 | |
| 				goto skip;
 | |
| 
 | |
| 			if (!wc->update_ref ||
 | |
| 			    generation <= root->root_key.offset)
 | |
| 				goto skip;
 | |
| 
 | |
| 			btrfs_node_key_to_cpu(path->nodes[level], &key,
 | |
| 					      path->slots[level]);
 | |
| 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
 | |
| 			if (ret < 0)
 | |
| 				goto skip;
 | |
| 
 | |
| 			wc->stage = UPDATE_BACKREF;
 | |
| 			wc->shared_level = level - 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (level == 1 &&
 | |
| 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 | |
| 			goto skip;
 | |
| 	}
 | |
| 
 | |
| 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
 | |
| 		btrfs_tree_unlock(next);
 | |
| 		free_extent_buffer(next);
 | |
| 		next = NULL;
 | |
| 		*lookup_info = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!next) {
 | |
| 		if (reada && level == 1)
 | |
| 			reada_walk_down(trans, root, wc, path);
 | |
| 		next = read_tree_block(root, bytenr, generation);
 | |
| 		if (!next || !extent_buffer_uptodate(next)) {
 | |
| 			free_extent_buffer(next);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		btrfs_tree_lock(next);
 | |
| 		btrfs_set_lock_blocking(next);
 | |
| 	}
 | |
| 
 | |
| 	level--;
 | |
| 	BUG_ON(level != btrfs_header_level(next));
 | |
| 	path->nodes[level] = next;
 | |
| 	path->slots[level] = 0;
 | |
| 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 	wc->level = level;
 | |
| 	if (wc->level == 1)
 | |
| 		wc->reada_slot = 0;
 | |
| 	return 0;
 | |
| skip:
 | |
| 	wc->refs[level - 1] = 0;
 | |
| 	wc->flags[level - 1] = 0;
 | |
| 	if (wc->stage == DROP_REFERENCE) {
 | |
| 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 | |
| 			parent = path->nodes[level]->start;
 | |
| 		} else {
 | |
| 			BUG_ON(root->root_key.objectid !=
 | |
| 			       btrfs_header_owner(path->nodes[level]));
 | |
| 			parent = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (need_account) {
 | |
| 			ret = account_shared_subtree(trans, root, next,
 | |
| 						     generation, level - 1);
 | |
| 			if (ret) {
 | |
| 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
 | |
| 					"%d accounting shared subtree. Quota "
 | |
| 					"is out of sync, rescan required.\n",
 | |
| 					root->fs_info->sb->s_id, ret);
 | |
| 			}
 | |
| 		}
 | |
| 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
 | |
| 				root->root_key.objectid, level - 1, 0, 0);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 	}
 | |
| 	btrfs_tree_unlock(next);
 | |
| 	free_extent_buffer(next);
 | |
| 	*lookup_info = 1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to process tree block while walking up the tree.
 | |
|  *
 | |
|  * when wc->stage == DROP_REFERENCE, this function drops
 | |
|  * reference count on the block.
 | |
|  *
 | |
|  * when wc->stage == UPDATE_BACKREF, this function changes
 | |
|  * wc->stage back to DROP_REFERENCE if we changed wc->stage
 | |
|  * to UPDATE_BACKREF previously while processing the block.
 | |
|  *
 | |
|  * NOTE: return value 1 means we should stop walking up.
 | |
|  */
 | |
| static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct walk_control *wc)
 | |
| {
 | |
| 	int ret;
 | |
| 	int level = wc->level;
 | |
| 	struct extent_buffer *eb = path->nodes[level];
 | |
| 	u64 parent = 0;
 | |
| 
 | |
| 	if (wc->stage == UPDATE_BACKREF) {
 | |
| 		BUG_ON(wc->shared_level < level);
 | |
| 		if (level < wc->shared_level)
 | |
| 			goto out;
 | |
| 
 | |
| 		ret = find_next_key(path, level + 1, &wc->update_progress);
 | |
| 		if (ret > 0)
 | |
| 			wc->update_ref = 0;
 | |
| 
 | |
| 		wc->stage = DROP_REFERENCE;
 | |
| 		wc->shared_level = -1;
 | |
| 		path->slots[level] = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * check reference count again if the block isn't locked.
 | |
| 		 * we should start walking down the tree again if reference
 | |
| 		 * count is one.
 | |
| 		 */
 | |
| 		if (!path->locks[level]) {
 | |
| 			BUG_ON(level == 0);
 | |
| 			btrfs_tree_lock(eb);
 | |
| 			btrfs_set_lock_blocking(eb);
 | |
| 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 
 | |
| 			ret = btrfs_lookup_extent_info(trans, root,
 | |
| 						       eb->start, level, 1,
 | |
| 						       &wc->refs[level],
 | |
| 						       &wc->flags[level]);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_tree_unlock_rw(eb, path->locks[level]);
 | |
| 				path->locks[level] = 0;
 | |
| 				return ret;
 | |
| 			}
 | |
| 			BUG_ON(wc->refs[level] == 0);
 | |
| 			if (wc->refs[level] == 1) {
 | |
| 				btrfs_tree_unlock_rw(eb, path->locks[level]);
 | |
| 				path->locks[level] = 0;
 | |
| 				return 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* wc->stage == DROP_REFERENCE */
 | |
| 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
 | |
| 
 | |
| 	if (wc->refs[level] == 1) {
 | |
| 		if (level == 0) {
 | |
| 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 | |
| 				ret = btrfs_dec_ref(trans, root, eb, 1);
 | |
| 			else
 | |
| 				ret = btrfs_dec_ref(trans, root, eb, 0);
 | |
| 			BUG_ON(ret); /* -ENOMEM */
 | |
| 			ret = account_leaf_items(trans, root, eb);
 | |
| 			if (ret) {
 | |
| 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
 | |
| 					"%d accounting leaf items. Quota "
 | |
| 					"is out of sync, rescan required.\n",
 | |
| 					root->fs_info->sb->s_id, ret);
 | |
| 			}
 | |
| 		}
 | |
| 		/* make block locked assertion in clean_tree_block happy */
 | |
| 		if (!path->locks[level] &&
 | |
| 		    btrfs_header_generation(eb) == trans->transid) {
 | |
| 			btrfs_tree_lock(eb);
 | |
| 			btrfs_set_lock_blocking(eb);
 | |
| 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 		}
 | |
| 		clean_tree_block(trans, root, eb);
 | |
| 	}
 | |
| 
 | |
| 	if (eb == root->node) {
 | |
| 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 | |
| 			parent = eb->start;
 | |
| 		else
 | |
| 			BUG_ON(root->root_key.objectid !=
 | |
| 			       btrfs_header_owner(eb));
 | |
| 	} else {
 | |
| 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 | |
| 			parent = path->nodes[level + 1]->start;
 | |
| 		else
 | |
| 			BUG_ON(root->root_key.objectid !=
 | |
| 			       btrfs_header_owner(path->nodes[level + 1]));
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
 | |
| out:
 | |
| 	wc->refs[level] = 0;
 | |
| 	wc->flags[level] = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   struct walk_control *wc)
 | |
| {
 | |
| 	int level = wc->level;
 | |
| 	int lookup_info = 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	while (level >= 0) {
 | |
| 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
 | |
| 		if (ret > 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (level == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (path->slots[level] >=
 | |
| 		    btrfs_header_nritems(path->nodes[level]))
 | |
| 			break;
 | |
| 
 | |
| 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
 | |
| 		if (ret > 0) {
 | |
| 			path->slots[level]++;
 | |
| 			continue;
 | |
| 		} else if (ret < 0)
 | |
| 			return ret;
 | |
| 		level = wc->level;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct walk_control *wc, int max_level)
 | |
| {
 | |
| 	int level = wc->level;
 | |
| 	int ret;
 | |
| 
 | |
| 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
 | |
| 	while (level < max_level && path->nodes[level]) {
 | |
| 		wc->level = level;
 | |
| 		if (path->slots[level] + 1 <
 | |
| 		    btrfs_header_nritems(path->nodes[level])) {
 | |
| 			path->slots[level]++;
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			ret = walk_up_proc(trans, root, path, wc);
 | |
| 			if (ret > 0)
 | |
| 				return 0;
 | |
| 
 | |
| 			if (path->locks[level]) {
 | |
| 				btrfs_tree_unlock_rw(path->nodes[level],
 | |
| 						     path->locks[level]);
 | |
| 				path->locks[level] = 0;
 | |
| 			}
 | |
| 			free_extent_buffer(path->nodes[level]);
 | |
| 			path->nodes[level] = NULL;
 | |
| 			level++;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * drop a subvolume tree.
 | |
|  *
 | |
|  * this function traverses the tree freeing any blocks that only
 | |
|  * referenced by the tree.
 | |
|  *
 | |
|  * when a shared tree block is found. this function decreases its
 | |
|  * reference count by one. if update_ref is true, this function
 | |
|  * also make sure backrefs for the shared block and all lower level
 | |
|  * blocks are properly updated.
 | |
|  *
 | |
|  * If called with for_reloc == 0, may exit early with -EAGAIN
 | |
|  */
 | |
| int btrfs_drop_snapshot(struct btrfs_root *root,
 | |
| 			 struct btrfs_block_rsv *block_rsv, int update_ref,
 | |
| 			 int for_reloc)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_root *tree_root = root->fs_info->tree_root;
 | |
| 	struct btrfs_root_item *root_item = &root->root_item;
 | |
| 	struct walk_control *wc;
 | |
| 	struct btrfs_key key;
 | |
| 	int err = 0;
 | |
| 	int ret;
 | |
| 	int level;
 | |
| 	bool root_dropped = false;
 | |
| 
 | |
| 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
 | |
| 	if (!wc) {
 | |
| 		btrfs_free_path(path);
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	trans = btrfs_start_transaction(tree_root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		err = PTR_ERR(trans);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	if (block_rsv)
 | |
| 		trans->block_rsv = block_rsv;
 | |
| 
 | |
| 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
 | |
| 		level = btrfs_header_level(root->node);
 | |
| 		path->nodes[level] = btrfs_lock_root_node(root);
 | |
| 		btrfs_set_lock_blocking(path->nodes[level]);
 | |
| 		path->slots[level] = 0;
 | |
| 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 		memset(&wc->update_progress, 0,
 | |
| 		       sizeof(wc->update_progress));
 | |
| 	} else {
 | |
| 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
 | |
| 		memcpy(&wc->update_progress, &key,
 | |
| 		       sizeof(wc->update_progress));
 | |
| 
 | |
| 		level = root_item->drop_level;
 | |
| 		BUG_ON(level == 0);
 | |
| 		path->lowest_level = level;
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		path->lowest_level = 0;
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			goto out_end_trans;
 | |
| 		}
 | |
| 		WARN_ON(ret > 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * unlock our path, this is safe because only this
 | |
| 		 * function is allowed to delete this snapshot
 | |
| 		 */
 | |
| 		btrfs_unlock_up_safe(path, 0);
 | |
| 
 | |
| 		level = btrfs_header_level(root->node);
 | |
| 		while (1) {
 | |
| 			btrfs_tree_lock(path->nodes[level]);
 | |
| 			btrfs_set_lock_blocking(path->nodes[level]);
 | |
| 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 
 | |
| 			ret = btrfs_lookup_extent_info(trans, root,
 | |
| 						path->nodes[level]->start,
 | |
| 						level, 1, &wc->refs[level],
 | |
| 						&wc->flags[level]);
 | |
| 			if (ret < 0) {
 | |
| 				err = ret;
 | |
| 				goto out_end_trans;
 | |
| 			}
 | |
| 			BUG_ON(wc->refs[level] == 0);
 | |
| 
 | |
| 			if (level == root_item->drop_level)
 | |
| 				break;
 | |
| 
 | |
| 			btrfs_tree_unlock(path->nodes[level]);
 | |
| 			path->locks[level] = 0;
 | |
| 			WARN_ON(wc->refs[level] != 1);
 | |
| 			level--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	wc->level = level;
 | |
| 	wc->shared_level = -1;
 | |
| 	wc->stage = DROP_REFERENCE;
 | |
| 	wc->update_ref = update_ref;
 | |
| 	wc->keep_locks = 0;
 | |
| 	wc->for_reloc = for_reloc;
 | |
| 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
 | |
| 
 | |
| 	while (1) {
 | |
| 
 | |
| 		ret = walk_down_tree(trans, root, path, wc);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (ret > 0) {
 | |
| 			BUG_ON(wc->stage != DROP_REFERENCE);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (wc->stage == DROP_REFERENCE) {
 | |
| 			level = wc->level;
 | |
| 			btrfs_node_key(path->nodes[level],
 | |
| 				       &root_item->drop_progress,
 | |
| 				       path->slots[level]);
 | |
| 			root_item->drop_level = level;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(wc->level == 0);
 | |
| 		if (btrfs_should_end_transaction(trans, tree_root) ||
 | |
| 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
 | |
| 			ret = btrfs_update_root(trans, tree_root,
 | |
| 						&root->root_key,
 | |
| 						root_item);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, tree_root, ret);
 | |
| 				err = ret;
 | |
| 				goto out_end_trans;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Qgroup update accounting is run from
 | |
| 			 * delayed ref handling. This usually works
 | |
| 			 * out because delayed refs are normally the
 | |
| 			 * only way qgroup updates are added. However,
 | |
| 			 * we may have added updates during our tree
 | |
| 			 * walk so run qgroups here to make sure we
 | |
| 			 * don't lose any updates.
 | |
| 			 */
 | |
| 			ret = btrfs_delayed_qgroup_accounting(trans,
 | |
| 							      root->fs_info);
 | |
| 			if (ret)
 | |
| 				printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
 | |
| 						   "running qgroup updates "
 | |
| 						   "during snapshot delete. "
 | |
| 						   "Quota is out of sync, "
 | |
| 						   "rescan required.\n", ret);
 | |
| 
 | |
| 			btrfs_end_transaction_throttle(trans, tree_root);
 | |
| 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
 | |
| 				pr_debug("BTRFS: drop snapshot early exit\n");
 | |
| 				err = -EAGAIN;
 | |
| 				goto out_free;
 | |
| 			}
 | |
| 
 | |
| 			trans = btrfs_start_transaction(tree_root, 0);
 | |
| 			if (IS_ERR(trans)) {
 | |
| 				err = PTR_ERR(trans);
 | |
| 				goto out_free;
 | |
| 			}
 | |
| 			if (block_rsv)
 | |
| 				trans->block_rsv = block_rsv;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	if (err)
 | |
| 		goto out_end_trans;
 | |
| 
 | |
| 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, tree_root, ret);
 | |
| 		goto out_end_trans;
 | |
| 	}
 | |
| 
 | |
| 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
 | |
| 		ret = btrfs_find_root(tree_root, &root->root_key, path,
 | |
| 				      NULL, NULL);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, tree_root, ret);
 | |
| 			err = ret;
 | |
| 			goto out_end_trans;
 | |
| 		} else if (ret > 0) {
 | |
| 			/* if we fail to delete the orphan item this time
 | |
| 			 * around, it'll get picked up the next time.
 | |
| 			 *
 | |
| 			 * The most common failure here is just -ENOENT.
 | |
| 			 */
 | |
| 			btrfs_del_orphan_item(trans, tree_root,
 | |
| 					      root->root_key.objectid);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
 | |
| 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
 | |
| 	} else {
 | |
| 		free_extent_buffer(root->node);
 | |
| 		free_extent_buffer(root->commit_root);
 | |
| 		btrfs_put_fs_root(root);
 | |
| 	}
 | |
| 	root_dropped = true;
 | |
| out_end_trans:
 | |
| 	ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
 | |
| 	if (ret)
 | |
| 		printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
 | |
| 				   "running qgroup updates "
 | |
| 				   "during snapshot delete. "
 | |
| 				   "Quota is out of sync, "
 | |
| 				   "rescan required.\n", ret);
 | |
| 
 | |
| 	btrfs_end_transaction_throttle(trans, tree_root);
 | |
| out_free:
 | |
| 	kfree(wc);
 | |
| 	btrfs_free_path(path);
 | |
| out:
 | |
| 	/*
 | |
| 	 * So if we need to stop dropping the snapshot for whatever reason we
 | |
| 	 * need to make sure to add it back to the dead root list so that we
 | |
| 	 * keep trying to do the work later.  This also cleans up roots if we
 | |
| 	 * don't have it in the radix (like when we recover after a power fail
 | |
| 	 * or unmount) so we don't leak memory.
 | |
| 	 */
 | |
| 	if (!for_reloc && root_dropped == false)
 | |
| 		btrfs_add_dead_root(root);
 | |
| 	if (err && err != -EAGAIN)
 | |
| 		btrfs_std_error(root->fs_info, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * drop subtree rooted at tree block 'node'.
 | |
|  *
 | |
|  * NOTE: this function will unlock and release tree block 'node'
 | |
|  * only used by relocation code
 | |
|  */
 | |
| int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
 | |
| 			struct btrfs_root *root,
 | |
| 			struct extent_buffer *node,
 | |
| 			struct extent_buffer *parent)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct walk_control *wc;
 | |
| 	int level;
 | |
| 	int parent_level;
 | |
| 	int ret = 0;
 | |
| 	int wret;
 | |
| 
 | |
| 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
 | |
| 	if (!wc) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_assert_tree_locked(parent);
 | |
| 	parent_level = btrfs_header_level(parent);
 | |
| 	extent_buffer_get(parent);
 | |
| 	path->nodes[parent_level] = parent;
 | |
| 	path->slots[parent_level] = btrfs_header_nritems(parent);
 | |
| 
 | |
| 	btrfs_assert_tree_locked(node);
 | |
| 	level = btrfs_header_level(node);
 | |
| 	path->nodes[level] = node;
 | |
| 	path->slots[level] = 0;
 | |
| 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 | |
| 
 | |
| 	wc->refs[parent_level] = 1;
 | |
| 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 | |
| 	wc->level = level;
 | |
| 	wc->shared_level = -1;
 | |
| 	wc->stage = DROP_REFERENCE;
 | |
| 	wc->update_ref = 0;
 | |
| 	wc->keep_locks = 1;
 | |
| 	wc->for_reloc = 1;
 | |
| 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
 | |
| 
 | |
| 	while (1) {
 | |
| 		wret = walk_down_tree(trans, root, path, wc);
 | |
| 		if (wret < 0) {
 | |
| 			ret = wret;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		wret = walk_up_tree(trans, root, path, wc, parent_level);
 | |
| 		if (wret < 0)
 | |
| 			ret = wret;
 | |
| 		if (wret != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	kfree(wc);
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
 | |
| {
 | |
| 	u64 num_devices;
 | |
| 	u64 stripped;
 | |
| 
 | |
| 	/*
 | |
| 	 * if restripe for this chunk_type is on pick target profile and
 | |
| 	 * return, otherwise do the usual balance
 | |
| 	 */
 | |
| 	stripped = get_restripe_target(root->fs_info, flags);
 | |
| 	if (stripped)
 | |
| 		return extended_to_chunk(stripped);
 | |
| 
 | |
| 	num_devices = root->fs_info->fs_devices->rw_devices;
 | |
| 
 | |
| 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
 | |
| 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
 | |
| 
 | |
| 	if (num_devices == 1) {
 | |
| 		stripped |= BTRFS_BLOCK_GROUP_DUP;
 | |
| 		stripped = flags & ~stripped;
 | |
| 
 | |
| 		/* turn raid0 into single device chunks */
 | |
| 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
 | |
| 			return stripped;
 | |
| 
 | |
| 		/* turn mirroring into duplication */
 | |
| 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 			     BTRFS_BLOCK_GROUP_RAID10))
 | |
| 			return stripped | BTRFS_BLOCK_GROUP_DUP;
 | |
| 	} else {
 | |
| 		/* they already had raid on here, just return */
 | |
| 		if (flags & stripped)
 | |
| 			return flags;
 | |
| 
 | |
| 		stripped |= BTRFS_BLOCK_GROUP_DUP;
 | |
| 		stripped = flags & ~stripped;
 | |
| 
 | |
| 		/* switch duplicated blocks with raid1 */
 | |
| 		if (flags & BTRFS_BLOCK_GROUP_DUP)
 | |
| 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
 | |
| 
 | |
| 		/* this is drive concat, leave it alone */
 | |
| 	}
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
 | |
| {
 | |
| 	struct btrfs_space_info *sinfo = cache->space_info;
 | |
| 	u64 num_bytes;
 | |
| 	u64 min_allocable_bytes;
 | |
| 	int ret = -ENOSPC;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * We need some metadata space and system metadata space for
 | |
| 	 * allocating chunks in some corner cases until we force to set
 | |
| 	 * it to be readonly.
 | |
| 	 */
 | |
| 	if ((sinfo->flags &
 | |
| 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
 | |
| 	    !force)
 | |
| 		min_allocable_bytes = 1 * 1024 * 1024;
 | |
| 	else
 | |
| 		min_allocable_bytes = 0;
 | |
| 
 | |
| 	spin_lock(&sinfo->lock);
 | |
| 	spin_lock(&cache->lock);
 | |
| 
 | |
| 	if (cache->ro) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
 | |
| 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
 | |
| 
 | |
| 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
 | |
| 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
 | |
| 	    min_allocable_bytes <= sinfo->total_bytes) {
 | |
| 		sinfo->bytes_readonly += num_bytes;
 | |
| 		cache->ro = 1;
 | |
| 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
 | |
| 		ret = 0;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&cache->lock);
 | |
| 	spin_unlock(&sinfo->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_set_block_group_ro(struct btrfs_root *root,
 | |
| 			     struct btrfs_block_group_cache *cache)
 | |
| 
 | |
| {
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	u64 alloc_flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(cache->ro);
 | |
| 
 | |
| 	trans = btrfs_join_transaction(root);
 | |
| 	if (IS_ERR(trans))
 | |
| 		return PTR_ERR(trans);
 | |
| 
 | |
| 	ret = set_block_group_ro(cache, 0);
 | |
| 	if (!ret)
 | |
| 		goto out;
 | |
| 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
 | |
| 	ret = do_chunk_alloc(trans, root, alloc_flags,
 | |
| 			     CHUNK_ALLOC_FORCE);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	ret = set_block_group_ro(cache, 0);
 | |
| out:
 | |
| 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
 | |
| 		alloc_flags = update_block_group_flags(root, cache->flags);
 | |
| 		check_system_chunk(trans, root, alloc_flags);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_end_transaction(trans, root);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_root *root, u64 type)
 | |
| {
 | |
| 	u64 alloc_flags = get_alloc_profile(root, type);
 | |
| 	return do_chunk_alloc(trans, root, alloc_flags,
 | |
| 			      CHUNK_ALLOC_FORCE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to account the unused space of all the readonly block group in the
 | |
|  * space_info. takes mirrors into account.
 | |
|  */
 | |
| u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *block_group;
 | |
| 	u64 free_bytes = 0;
 | |
| 	int factor;
 | |
| 
 | |
| 	/* It's df, we don't care if it's racey */
 | |
| 	if (list_empty(&sinfo->ro_bgs))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&sinfo->lock);
 | |
| 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
 | |
| 		spin_lock(&block_group->lock);
 | |
| 
 | |
| 		if (!block_group->ro) {
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 					  BTRFS_BLOCK_GROUP_RAID10 |
 | |
| 					  BTRFS_BLOCK_GROUP_DUP))
 | |
| 			factor = 2;
 | |
| 		else
 | |
| 			factor = 1;
 | |
| 
 | |
| 		free_bytes += (block_group->key.offset -
 | |
| 			       btrfs_block_group_used(&block_group->item)) *
 | |
| 			       factor;
 | |
| 
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 	}
 | |
| 	spin_unlock(&sinfo->lock);
 | |
| 
 | |
| 	return free_bytes;
 | |
| }
 | |
| 
 | |
| void btrfs_set_block_group_rw(struct btrfs_root *root,
 | |
| 			      struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	struct btrfs_space_info *sinfo = cache->space_info;
 | |
| 	u64 num_bytes;
 | |
| 
 | |
| 	BUG_ON(!cache->ro);
 | |
| 
 | |
| 	spin_lock(&sinfo->lock);
 | |
| 	spin_lock(&cache->lock);
 | |
| 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
 | |
| 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
 | |
| 	sinfo->bytes_readonly -= num_bytes;
 | |
| 	cache->ro = 0;
 | |
| 	list_del_init(&cache->ro_list);
 | |
| 	spin_unlock(&cache->lock);
 | |
| 	spin_unlock(&sinfo->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * checks to see if its even possible to relocate this block group.
 | |
|  *
 | |
|  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
 | |
|  * ok to go ahead and try.
 | |
|  */
 | |
| int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *block_group;
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	u64 min_free;
 | |
| 	u64 dev_min = 1;
 | |
| 	u64 dev_nr = 0;
 | |
| 	u64 target;
 | |
| 	int index;
 | |
| 	int full = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
 | |
| 
 | |
| 	/* odd, couldn't find the block group, leave it alone */
 | |
| 	if (!block_group)
 | |
| 		return -1;
 | |
| 
 | |
| 	min_free = btrfs_block_group_used(&block_group->item);
 | |
| 
 | |
| 	/* no bytes used, we're good */
 | |
| 	if (!min_free)
 | |
| 		goto out;
 | |
| 
 | |
| 	space_info = block_group->space_info;
 | |
| 	spin_lock(&space_info->lock);
 | |
| 
 | |
| 	full = space_info->full;
 | |
| 
 | |
| 	/*
 | |
| 	 * if this is the last block group we have in this space, we can't
 | |
| 	 * relocate it unless we're able to allocate a new chunk below.
 | |
| 	 *
 | |
| 	 * Otherwise, we need to make sure we have room in the space to handle
 | |
| 	 * all of the extents from this block group.  If we can, we're good
 | |
| 	 */
 | |
| 	if ((space_info->total_bytes != block_group->key.offset) &&
 | |
| 	    (space_info->bytes_used + space_info->bytes_reserved +
 | |
| 	     space_info->bytes_pinned + space_info->bytes_readonly +
 | |
| 	     min_free < space_info->total_bytes)) {
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	spin_unlock(&space_info->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * ok we don't have enough space, but maybe we have free space on our
 | |
| 	 * devices to allocate new chunks for relocation, so loop through our
 | |
| 	 * alloc devices and guess if we have enough space.  if this block
 | |
| 	 * group is going to be restriped, run checks against the target
 | |
| 	 * profile instead of the current one.
 | |
| 	 */
 | |
| 	ret = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * index:
 | |
| 	 *      0: raid10
 | |
| 	 *      1: raid1
 | |
| 	 *      2: dup
 | |
| 	 *      3: raid0
 | |
| 	 *      4: single
 | |
| 	 */
 | |
| 	target = get_restripe_target(root->fs_info, block_group->flags);
 | |
| 	if (target) {
 | |
| 		index = __get_raid_index(extended_to_chunk(target));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * this is just a balance, so if we were marked as full
 | |
| 		 * we know there is no space for a new chunk
 | |
| 		 */
 | |
| 		if (full)
 | |
| 			goto out;
 | |
| 
 | |
| 		index = get_block_group_index(block_group);
 | |
| 	}
 | |
| 
 | |
| 	if (index == BTRFS_RAID_RAID10) {
 | |
| 		dev_min = 4;
 | |
| 		/* Divide by 2 */
 | |
| 		min_free >>= 1;
 | |
| 	} else if (index == BTRFS_RAID_RAID1) {
 | |
| 		dev_min = 2;
 | |
| 	} else if (index == BTRFS_RAID_DUP) {
 | |
| 		/* Multiply by 2 */
 | |
| 		min_free <<= 1;
 | |
| 	} else if (index == BTRFS_RAID_RAID0) {
 | |
| 		dev_min = fs_devices->rw_devices;
 | |
| 		do_div(min_free, dev_min);
 | |
| 	}
 | |
| 
 | |
| 	/* We need to do this so that we can look at pending chunks */
 | |
| 	trans = btrfs_join_transaction(root);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&root->fs_info->chunk_mutex);
 | |
| 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
 | |
| 		u64 dev_offset;
 | |
| 
 | |
| 		/*
 | |
| 		 * check to make sure we can actually find a chunk with enough
 | |
| 		 * space to fit our block group in.
 | |
| 		 */
 | |
| 		if (device->total_bytes > device->bytes_used + min_free &&
 | |
| 		    !device->is_tgtdev_for_dev_replace) {
 | |
| 			ret = find_free_dev_extent(trans, device, min_free,
 | |
| 						   &dev_offset, NULL);
 | |
| 			if (!ret)
 | |
| 				dev_nr++;
 | |
| 
 | |
| 			if (dev_nr >= dev_min)
 | |
| 				break;
 | |
| 
 | |
| 			ret = -1;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&root->fs_info->chunk_mutex);
 | |
| 	btrfs_end_transaction(trans, root);
 | |
| out:
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int find_first_block_group(struct btrfs_root *root,
 | |
| 		struct btrfs_path *path, struct btrfs_key *key)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int slot;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (1) {
 | |
| 		slot = path->slots[0];
 | |
| 		leaf = path->nodes[0];
 | |
| 		if (slot >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret == 0)
 | |
| 				continue;
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 			break;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
 | |
| 
 | |
| 		if (found_key.objectid >= key->objectid &&
 | |
| 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *block_group;
 | |
| 	u64 last = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct inode *inode;
 | |
| 
 | |
| 		block_group = btrfs_lookup_first_block_group(info, last);
 | |
| 		while (block_group) {
 | |
| 			spin_lock(&block_group->lock);
 | |
| 			if (block_group->iref)
 | |
| 				break;
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			block_group = next_block_group(info->tree_root,
 | |
| 						       block_group);
 | |
| 		}
 | |
| 		if (!block_group) {
 | |
| 			if (last == 0)
 | |
| 				break;
 | |
| 			last = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		inode = block_group->inode;
 | |
| 		block_group->iref = 0;
 | |
| 		block_group->inode = NULL;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		iput(inode);
 | |
| 		last = block_group->key.objectid + block_group->key.offset;
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int btrfs_free_block_groups(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *block_group;
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	struct btrfs_caching_control *caching_ctl;
 | |
| 	struct rb_node *n;
 | |
| 
 | |
| 	down_write(&info->commit_root_sem);
 | |
| 	while (!list_empty(&info->caching_block_groups)) {
 | |
| 		caching_ctl = list_entry(info->caching_block_groups.next,
 | |
| 					 struct btrfs_caching_control, list);
 | |
| 		list_del(&caching_ctl->list);
 | |
| 		put_caching_control(caching_ctl);
 | |
| 	}
 | |
| 	up_write(&info->commit_root_sem);
 | |
| 
 | |
| 	spin_lock(&info->unused_bgs_lock);
 | |
| 	while (!list_empty(&info->unused_bgs)) {
 | |
| 		block_group = list_first_entry(&info->unused_bgs,
 | |
| 					       struct btrfs_block_group_cache,
 | |
| 					       bg_list);
 | |
| 		list_del_init(&block_group->bg_list);
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 	}
 | |
| 	spin_unlock(&info->unused_bgs_lock);
 | |
| 
 | |
| 	spin_lock(&info->block_group_cache_lock);
 | |
| 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
 | |
| 		block_group = rb_entry(n, struct btrfs_block_group_cache,
 | |
| 				       cache_node);
 | |
| 		rb_erase(&block_group->cache_node,
 | |
| 			 &info->block_group_cache_tree);
 | |
| 		RB_CLEAR_NODE(&block_group->cache_node);
 | |
| 		spin_unlock(&info->block_group_cache_lock);
 | |
| 
 | |
| 		down_write(&block_group->space_info->groups_sem);
 | |
| 		list_del(&block_group->list);
 | |
| 		up_write(&block_group->space_info->groups_sem);
 | |
| 
 | |
| 		if (block_group->cached == BTRFS_CACHE_STARTED)
 | |
| 			wait_block_group_cache_done(block_group);
 | |
| 
 | |
| 		/*
 | |
| 		 * We haven't cached this block group, which means we could
 | |
| 		 * possibly have excluded extents on this block group.
 | |
| 		 */
 | |
| 		if (block_group->cached == BTRFS_CACHE_NO ||
 | |
| 		    block_group->cached == BTRFS_CACHE_ERROR)
 | |
| 			free_excluded_extents(info->extent_root, block_group);
 | |
| 
 | |
| 		btrfs_remove_free_space_cache(block_group);
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 
 | |
| 		spin_lock(&info->block_group_cache_lock);
 | |
| 	}
 | |
| 	spin_unlock(&info->block_group_cache_lock);
 | |
| 
 | |
| 	/* now that all the block groups are freed, go through and
 | |
| 	 * free all the space_info structs.  This is only called during
 | |
| 	 * the final stages of unmount, and so we know nobody is
 | |
| 	 * using them.  We call synchronize_rcu() once before we start,
 | |
| 	 * just to be on the safe side.
 | |
| 	 */
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	release_global_block_rsv(info);
 | |
| 
 | |
| 	while (!list_empty(&info->space_info)) {
 | |
| 		int i;
 | |
| 
 | |
| 		space_info = list_entry(info->space_info.next,
 | |
| 					struct btrfs_space_info,
 | |
| 					list);
 | |
| 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
 | |
| 			if (WARN_ON(space_info->bytes_pinned > 0 ||
 | |
| 			    space_info->bytes_reserved > 0 ||
 | |
| 			    space_info->bytes_may_use > 0)) {
 | |
| 				dump_space_info(space_info, 0, 0);
 | |
| 			}
 | |
| 		}
 | |
| 		list_del(&space_info->list);
 | |
| 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
 | |
| 			struct kobject *kobj;
 | |
| 			kobj = space_info->block_group_kobjs[i];
 | |
| 			space_info->block_group_kobjs[i] = NULL;
 | |
| 			if (kobj) {
 | |
| 				kobject_del(kobj);
 | |
| 				kobject_put(kobj);
 | |
| 			}
 | |
| 		}
 | |
| 		kobject_del(&space_info->kobj);
 | |
| 		kobject_put(&space_info->kobj);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __link_block_group(struct btrfs_space_info *space_info,
 | |
| 			       struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	int index = get_block_group_index(cache);
 | |
| 	bool first = false;
 | |
| 
 | |
| 	down_write(&space_info->groups_sem);
 | |
| 	if (list_empty(&space_info->block_groups[index]))
 | |
| 		first = true;
 | |
| 	list_add_tail(&cache->list, &space_info->block_groups[index]);
 | |
| 	up_write(&space_info->groups_sem);
 | |
| 
 | |
| 	if (first) {
 | |
| 		struct raid_kobject *rkobj;
 | |
| 		int ret;
 | |
| 
 | |
| 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
 | |
| 		if (!rkobj)
 | |
| 			goto out_err;
 | |
| 		rkobj->raid_type = index;
 | |
| 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
 | |
| 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
 | |
| 				  "%s", get_raid_name(index));
 | |
| 		if (ret) {
 | |
| 			kobject_put(&rkobj->kobj);
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 		space_info->block_group_kobjs[index] = &rkobj->kobj;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| out_err:
 | |
| 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
 | |
| }
 | |
| 
 | |
| static struct btrfs_block_group_cache *
 | |
| btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 
 | |
| 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
 | |
| 	if (!cache)
 | |
| 		return NULL;
 | |
| 
 | |
| 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
 | |
| 					GFP_NOFS);
 | |
| 	if (!cache->free_space_ctl) {
 | |
| 		kfree(cache);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	cache->key.objectid = start;
 | |
| 	cache->key.offset = size;
 | |
| 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 | |
| 
 | |
| 	cache->sectorsize = root->sectorsize;
 | |
| 	cache->fs_info = root->fs_info;
 | |
| 	cache->full_stripe_len = btrfs_full_stripe_len(root,
 | |
| 					       &root->fs_info->mapping_tree,
 | |
| 					       start);
 | |
| 	atomic_set(&cache->count, 1);
 | |
| 	spin_lock_init(&cache->lock);
 | |
| 	init_rwsem(&cache->data_rwsem);
 | |
| 	INIT_LIST_HEAD(&cache->list);
 | |
| 	INIT_LIST_HEAD(&cache->cluster_list);
 | |
| 	INIT_LIST_HEAD(&cache->bg_list);
 | |
| 	INIT_LIST_HEAD(&cache->ro_list);
 | |
| 	INIT_LIST_HEAD(&cache->dirty_list);
 | |
| 	btrfs_init_free_space_ctl(cache);
 | |
| 	atomic_set(&cache->trimming, 0);
 | |
| 
 | |
| 	return cache;
 | |
| }
 | |
| 
 | |
| int btrfs_read_block_groups(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 	struct btrfs_fs_info *info = root->fs_info;
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int need_clear = 0;
 | |
| 	u64 cache_gen;
 | |
| 
 | |
| 	root = info->extent_root;
 | |
| 	key.objectid = 0;
 | |
| 	key.offset = 0;
 | |
| 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	path->reada = 1;
 | |
| 
 | |
| 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
 | |
| 	if (btrfs_test_opt(root, SPACE_CACHE) &&
 | |
| 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
 | |
| 		need_clear = 1;
 | |
| 	if (btrfs_test_opt(root, CLEAR_CACHE))
 | |
| 		need_clear = 1;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = find_first_block_group(root, path, &key);
 | |
| 		if (ret > 0)
 | |
| 			break;
 | |
| 		if (ret != 0)
 | |
| 			goto error;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 
 | |
| 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
 | |
| 						       found_key.offset);
 | |
| 		if (!cache) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		if (need_clear) {
 | |
| 			/*
 | |
| 			 * When we mount with old space cache, we need to
 | |
| 			 * set BTRFS_DC_CLEAR and set dirty flag.
 | |
| 			 *
 | |
| 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
 | |
| 			 *    truncate the old free space cache inode and
 | |
| 			 *    setup a new one.
 | |
| 			 * b) Setting 'dirty flag' makes sure that we flush
 | |
| 			 *    the new space cache info onto disk.
 | |
| 			 */
 | |
| 			if (btrfs_test_opt(root, SPACE_CACHE))
 | |
| 				cache->disk_cache_state = BTRFS_DC_CLEAR;
 | |
| 		}
 | |
| 
 | |
| 		read_extent_buffer(leaf, &cache->item,
 | |
| 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
 | |
| 				   sizeof(cache->item));
 | |
| 		cache->flags = btrfs_block_group_flags(&cache->item);
 | |
| 
 | |
| 		key.objectid = found_key.objectid + found_key.offset;
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to exclude the super stripes now so that the space
 | |
| 		 * info has super bytes accounted for, otherwise we'll think
 | |
| 		 * we have more space than we actually do.
 | |
| 		 */
 | |
| 		ret = exclude_super_stripes(root, cache);
 | |
| 		if (ret) {
 | |
| 			/*
 | |
| 			 * We may have excluded something, so call this just in
 | |
| 			 * case.
 | |
| 			 */
 | |
| 			free_excluded_extents(root, cache);
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * check for two cases, either we are full, and therefore
 | |
| 		 * don't need to bother with the caching work since we won't
 | |
| 		 * find any space, or we are empty, and we can just add all
 | |
| 		 * the space in and be done with it.  This saves us _alot_ of
 | |
| 		 * time, particularly in the full case.
 | |
| 		 */
 | |
| 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
 | |
| 			cache->last_byte_to_unpin = (u64)-1;
 | |
| 			cache->cached = BTRFS_CACHE_FINISHED;
 | |
| 			free_excluded_extents(root, cache);
 | |
| 		} else if (btrfs_block_group_used(&cache->item) == 0) {
 | |
| 			cache->last_byte_to_unpin = (u64)-1;
 | |
| 			cache->cached = BTRFS_CACHE_FINISHED;
 | |
| 			add_new_free_space(cache, root->fs_info,
 | |
| 					   found_key.objectid,
 | |
| 					   found_key.objectid +
 | |
| 					   found_key.offset);
 | |
| 			free_excluded_extents(root, cache);
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
 | |
| 		if (ret) {
 | |
| 			btrfs_remove_free_space_cache(cache);
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		ret = update_space_info(info, cache->flags, found_key.offset,
 | |
| 					btrfs_block_group_used(&cache->item),
 | |
| 					&space_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_remove_free_space_cache(cache);
 | |
| 			spin_lock(&info->block_group_cache_lock);
 | |
| 			rb_erase(&cache->cache_node,
 | |
| 				 &info->block_group_cache_tree);
 | |
| 			RB_CLEAR_NODE(&cache->cache_node);
 | |
| 			spin_unlock(&info->block_group_cache_lock);
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		cache->space_info = space_info;
 | |
| 		spin_lock(&cache->space_info->lock);
 | |
| 		cache->space_info->bytes_readonly += cache->bytes_super;
 | |
| 		spin_unlock(&cache->space_info->lock);
 | |
| 
 | |
| 		__link_block_group(space_info, cache);
 | |
| 
 | |
| 		set_avail_alloc_bits(root->fs_info, cache->flags);
 | |
| 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
 | |
| 			set_block_group_ro(cache, 1);
 | |
| 		} else if (btrfs_block_group_used(&cache->item) == 0) {
 | |
| 			spin_lock(&info->unused_bgs_lock);
 | |
| 			/* Should always be true but just in case. */
 | |
| 			if (list_empty(&cache->bg_list)) {
 | |
| 				btrfs_get_block_group(cache);
 | |
| 				list_add_tail(&cache->bg_list,
 | |
| 					      &info->unused_bgs);
 | |
| 			}
 | |
| 			spin_unlock(&info->unused_bgs_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
 | |
| 		if (!(get_alloc_profile(root, space_info->flags) &
 | |
| 		      (BTRFS_BLOCK_GROUP_RAID10 |
 | |
| 		       BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 		       BTRFS_BLOCK_GROUP_RAID5 |
 | |
| 		       BTRFS_BLOCK_GROUP_RAID6 |
 | |
| 		       BTRFS_BLOCK_GROUP_DUP)))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * avoid allocating from un-mirrored block group if there are
 | |
| 		 * mirrored block groups.
 | |
| 		 */
 | |
| 		list_for_each_entry(cache,
 | |
| 				&space_info->block_groups[BTRFS_RAID_RAID0],
 | |
| 				list)
 | |
| 			set_block_group_ro(cache, 1);
 | |
| 		list_for_each_entry(cache,
 | |
| 				&space_info->block_groups[BTRFS_RAID_SINGLE],
 | |
| 				list)
 | |
| 			set_block_group_ro(cache, 1);
 | |
| 	}
 | |
| 
 | |
| 	init_global_block_rsv(info);
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *block_group, *tmp;
 | |
| 	struct btrfs_root *extent_root = root->fs_info->extent_root;
 | |
| 	struct btrfs_block_group_item item;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
 | |
| 		if (ret)
 | |
| 			goto next;
 | |
| 
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		memcpy(&item, &block_group->item, sizeof(item));
 | |
| 		memcpy(&key, &block_group->key, sizeof(key));
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 
 | |
| 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
 | |
| 					sizeof(item));
 | |
| 		if (ret)
 | |
| 			btrfs_abort_transaction(trans, extent_root, ret);
 | |
| 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
 | |
| 					       key.objectid, key.offset);
 | |
| 		if (ret)
 | |
| 			btrfs_abort_transaction(trans, extent_root, ret);
 | |
| next:
 | |
| 		list_del_init(&block_group->bg_list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int btrfs_make_block_group(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root, u64 bytes_used,
 | |
| 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
 | |
| 			   u64 size)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_root *extent_root;
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 
 | |
| 	extent_root = root->fs_info->extent_root;
 | |
| 
 | |
| 	btrfs_set_log_full_commit(root->fs_info, trans);
 | |
| 
 | |
| 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
 | |
| 	if (!cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	btrfs_set_block_group_used(&cache->item, bytes_used);
 | |
| 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
 | |
| 	btrfs_set_block_group_flags(&cache->item, type);
 | |
| 
 | |
| 	cache->flags = type;
 | |
| 	cache->last_byte_to_unpin = (u64)-1;
 | |
| 	cache->cached = BTRFS_CACHE_FINISHED;
 | |
| 	ret = exclude_super_stripes(root, cache);
 | |
| 	if (ret) {
 | |
| 		/*
 | |
| 		 * We may have excluded something, so call this just in
 | |
| 		 * case.
 | |
| 		 */
 | |
| 		free_excluded_extents(root, cache);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	add_new_free_space(cache, root->fs_info, chunk_offset,
 | |
| 			   chunk_offset + size);
 | |
| 
 | |
| 	free_excluded_extents(root, cache);
 | |
| 
 | |
| 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
 | |
| 	if (ret) {
 | |
| 		btrfs_remove_free_space_cache(cache);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
 | |
| 				&cache->space_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_remove_free_space_cache(cache);
 | |
| 		spin_lock(&root->fs_info->block_group_cache_lock);
 | |
| 		rb_erase(&cache->cache_node,
 | |
| 			 &root->fs_info->block_group_cache_tree);
 | |
| 		RB_CLEAR_NODE(&cache->cache_node);
 | |
| 		spin_unlock(&root->fs_info->block_group_cache_lock);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	update_global_block_rsv(root->fs_info);
 | |
| 
 | |
| 	spin_lock(&cache->space_info->lock);
 | |
| 	cache->space_info->bytes_readonly += cache->bytes_super;
 | |
| 	spin_unlock(&cache->space_info->lock);
 | |
| 
 | |
| 	__link_block_group(cache->space_info, cache);
 | |
| 
 | |
| 	list_add_tail(&cache->bg_list, &trans->new_bgs);
 | |
| 
 | |
| 	set_avail_alloc_bits(extent_root->fs_info, type);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 | |
| {
 | |
| 	u64 extra_flags = chunk_to_extended(flags) &
 | |
| 				BTRFS_EXTENDED_PROFILE_MASK;
 | |
| 
 | |
| 	write_seqlock(&fs_info->profiles_lock);
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_DATA)
 | |
| 		fs_info->avail_data_alloc_bits &= ~extra_flags;
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 | |
| 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
 | |
| 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 | |
| 		fs_info->avail_system_alloc_bits &= ~extra_flags;
 | |
| 	write_sequnlock(&fs_info->profiles_lock);
 | |
| }
 | |
| 
 | |
| int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root, u64 group_start,
 | |
| 			     struct extent_map *em)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_block_group_cache *block_group;
 | |
| 	struct btrfs_free_cluster *cluster;
 | |
| 	struct btrfs_root *tree_root = root->fs_info->tree_root;
 | |
| 	struct btrfs_key key;
 | |
| 	struct inode *inode;
 | |
| 	struct kobject *kobj = NULL;
 | |
| 	int ret;
 | |
| 	int index;
 | |
| 	int factor;
 | |
| 	struct btrfs_caching_control *caching_ctl = NULL;
 | |
| 	bool remove_em;
 | |
| 
 | |
| 	root = root->fs_info->extent_root;
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
 | |
| 	BUG_ON(!block_group);
 | |
| 	BUG_ON(!block_group->ro);
 | |
| 
 | |
| 	/*
 | |
| 	 * Free the reserved super bytes from this block group before
 | |
| 	 * remove it.
 | |
| 	 */
 | |
| 	free_excluded_extents(root, block_group);
 | |
| 
 | |
| 	memcpy(&key, &block_group->key, sizeof(key));
 | |
| 	index = get_block_group_index(block_group);
 | |
| 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
 | |
| 				  BTRFS_BLOCK_GROUP_RAID1 |
 | |
| 				  BTRFS_BLOCK_GROUP_RAID10))
 | |
| 		factor = 2;
 | |
| 	else
 | |
| 		factor = 1;
 | |
| 
 | |
| 	/* make sure this block group isn't part of an allocation cluster */
 | |
| 	cluster = &root->fs_info->data_alloc_cluster;
 | |
| 	spin_lock(&cluster->refill_lock);
 | |
| 	btrfs_return_cluster_to_free_space(block_group, cluster);
 | |
| 	spin_unlock(&cluster->refill_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure this block group isn't part of a metadata
 | |
| 	 * allocation cluster
 | |
| 	 */
 | |
| 	cluster = &root->fs_info->meta_alloc_cluster;
 | |
| 	spin_lock(&cluster->refill_lock);
 | |
| 	btrfs_return_cluster_to_free_space(block_group, cluster);
 | |
| 	spin_unlock(&cluster->refill_lock);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	inode = lookup_free_space_inode(tree_root, block_group, path);
 | |
| 	if (!IS_ERR(inode)) {
 | |
| 		ret = btrfs_orphan_add(trans, inode);
 | |
| 		if (ret) {
 | |
| 			btrfs_add_delayed_iput(inode);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		clear_nlink(inode);
 | |
| 		/* One for the block groups ref */
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		if (block_group->iref) {
 | |
| 			block_group->iref = 0;
 | |
| 			block_group->inode = NULL;
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			iput(inode);
 | |
| 		} else {
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 		}
 | |
| 		/* One for our lookup ref */
 | |
| 		btrfs_add_delayed_iput(inode);
 | |
| 	}
 | |
| 
 | |
| 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 | |
| 	key.offset = block_group->key.objectid;
 | |
| 	key.type = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0)
 | |
| 		btrfs_release_path(path);
 | |
| 	if (ret == 0) {
 | |
| 		ret = btrfs_del_item(trans, tree_root, path);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&root->fs_info->block_group_cache_lock);
 | |
| 	rb_erase(&block_group->cache_node,
 | |
| 		 &root->fs_info->block_group_cache_tree);
 | |
| 	RB_CLEAR_NODE(&block_group->cache_node);
 | |
| 
 | |
| 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
 | |
| 		root->fs_info->first_logical_byte = (u64)-1;
 | |
| 	spin_unlock(&root->fs_info->block_group_cache_lock);
 | |
| 
 | |
| 	down_write(&block_group->space_info->groups_sem);
 | |
| 	/*
 | |
| 	 * we must use list_del_init so people can check to see if they
 | |
| 	 * are still on the list after taking the semaphore
 | |
| 	 */
 | |
| 	list_del_init(&block_group->list);
 | |
| 	if (list_empty(&block_group->space_info->block_groups[index])) {
 | |
| 		kobj = block_group->space_info->block_group_kobjs[index];
 | |
| 		block_group->space_info->block_group_kobjs[index] = NULL;
 | |
| 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
 | |
| 	}
 | |
| 	up_write(&block_group->space_info->groups_sem);
 | |
| 	if (kobj) {
 | |
| 		kobject_del(kobj);
 | |
| 		kobject_put(kobj);
 | |
| 	}
 | |
| 
 | |
| 	if (block_group->has_caching_ctl)
 | |
| 		caching_ctl = get_caching_control(block_group);
 | |
| 	if (block_group->cached == BTRFS_CACHE_STARTED)
 | |
| 		wait_block_group_cache_done(block_group);
 | |
| 	if (block_group->has_caching_ctl) {
 | |
| 		down_write(&root->fs_info->commit_root_sem);
 | |
| 		if (!caching_ctl) {
 | |
| 			struct btrfs_caching_control *ctl;
 | |
| 
 | |
| 			list_for_each_entry(ctl,
 | |
| 				    &root->fs_info->caching_block_groups, list)
 | |
| 				if (ctl->block_group == block_group) {
 | |
| 					caching_ctl = ctl;
 | |
| 					atomic_inc(&caching_ctl->count);
 | |
| 					break;
 | |
| 				}
 | |
| 		}
 | |
| 		if (caching_ctl)
 | |
| 			list_del_init(&caching_ctl->list);
 | |
| 		up_write(&root->fs_info->commit_root_sem);
 | |
| 		if (caching_ctl) {
 | |
| 			/* Once for the caching bgs list and once for us. */
 | |
| 			put_caching_control(caching_ctl);
 | |
| 			put_caching_control(caching_ctl);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&trans->transaction->dirty_bgs_lock);
 | |
| 	if (!list_empty(&block_group->dirty_list)) {
 | |
| 		list_del_init(&block_group->dirty_list);
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 	}
 | |
| 	spin_unlock(&trans->transaction->dirty_bgs_lock);
 | |
| 
 | |
| 	btrfs_remove_free_space_cache(block_group);
 | |
| 
 | |
| 	spin_lock(&block_group->space_info->lock);
 | |
| 	list_del_init(&block_group->ro_list);
 | |
| 	block_group->space_info->total_bytes -= block_group->key.offset;
 | |
| 	block_group->space_info->bytes_readonly -= block_group->key.offset;
 | |
| 	block_group->space_info->disk_total -= block_group->key.offset * factor;
 | |
| 	spin_unlock(&block_group->space_info->lock);
 | |
| 
 | |
| 	memcpy(&key, &block_group->key, sizeof(key));
 | |
| 
 | |
| 	lock_chunks(root);
 | |
| 	if (!list_empty(&em->list)) {
 | |
| 		/* We're in the transaction->pending_chunks list. */
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	block_group->removed = 1;
 | |
| 	/*
 | |
| 	 * At this point trimming can't start on this block group, because we
 | |
| 	 * removed the block group from the tree fs_info->block_group_cache_tree
 | |
| 	 * so no one can't find it anymore and even if someone already got this
 | |
| 	 * block group before we removed it from the rbtree, they have already
 | |
| 	 * incremented block_group->trimming - if they didn't, they won't find
 | |
| 	 * any free space entries because we already removed them all when we
 | |
| 	 * called btrfs_remove_free_space_cache().
 | |
| 	 *
 | |
| 	 * And we must not remove the extent map from the fs_info->mapping_tree
 | |
| 	 * to prevent the same logical address range and physical device space
 | |
| 	 * ranges from being reused for a new block group. This is because our
 | |
| 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
 | |
| 	 * completely transactionless, so while it is trimming a range the
 | |
| 	 * currently running transaction might finish and a new one start,
 | |
| 	 * allowing for new block groups to be created that can reuse the same
 | |
| 	 * physical device locations unless we take this special care.
 | |
| 	 */
 | |
| 	remove_em = (atomic_read(&block_group->trimming) == 0);
 | |
| 	/*
 | |
| 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
 | |
| 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
 | |
| 	 * before checking block_group->removed).
 | |
| 	 */
 | |
| 	if (!remove_em) {
 | |
| 		/*
 | |
| 		 * Our em might be in trans->transaction->pending_chunks which
 | |
| 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
 | |
| 		 * and so is the fs_info->pinned_chunks list.
 | |
| 		 *
 | |
| 		 * So at this point we must be holding the chunk_mutex to avoid
 | |
| 		 * any races with chunk allocation (more specifically at
 | |
| 		 * volumes.c:contains_pending_extent()), to ensure it always
 | |
| 		 * sees the em, either in the pending_chunks list or in the
 | |
| 		 * pinned_chunks list.
 | |
| 		 */
 | |
| 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	if (remove_em) {
 | |
| 		struct extent_map_tree *em_tree;
 | |
| 
 | |
| 		em_tree = &root->fs_info->mapping_tree.map_tree;
 | |
| 		write_lock(&em_tree->lock);
 | |
| 		/*
 | |
| 		 * The em might be in the pending_chunks list, so make sure the
 | |
| 		 * chunk mutex is locked, since remove_extent_mapping() will
 | |
| 		 * delete us from that list.
 | |
| 		 */
 | |
| 		remove_extent_mapping(em_tree, em);
 | |
| 		write_unlock(&em_tree->lock);
 | |
| 		/* once for the tree */
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 
 | |
| 	unlock_chunks(root);
 | |
| 
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret > 0)
 | |
| 		ret = -EIO;
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = btrfs_del_item(trans, root, path);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process the unused_bgs list and remove any that don't have any allocated
 | |
|  * space inside of them.
 | |
|  */
 | |
| void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *block_group;
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	struct btrfs_root *root = fs_info->extent_root;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!fs_info->open)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&fs_info->unused_bgs_lock);
 | |
| 	while (!list_empty(&fs_info->unused_bgs)) {
 | |
| 		u64 start, end;
 | |
| 
 | |
| 		block_group = list_first_entry(&fs_info->unused_bgs,
 | |
| 					       struct btrfs_block_group_cache,
 | |
| 					       bg_list);
 | |
| 		space_info = block_group->space_info;
 | |
| 		list_del_init(&block_group->bg_list);
 | |
| 		if (ret || btrfs_mixed_space_info(space_info)) {
 | |
| 			btrfs_put_block_group(block_group);
 | |
| 			continue;
 | |
| 		}
 | |
| 		spin_unlock(&fs_info->unused_bgs_lock);
 | |
| 
 | |
| 		/* Don't want to race with allocators so take the groups_sem */
 | |
| 		down_write(&space_info->groups_sem);
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		if (block_group->reserved ||
 | |
| 		    btrfs_block_group_used(&block_group->item) ||
 | |
| 		    block_group->ro) {
 | |
| 			/*
 | |
| 			 * We want to bail if we made new allocations or have
 | |
| 			 * outstanding allocations in this block group.  We do
 | |
| 			 * the ro check in case balance is currently acting on
 | |
| 			 * this block group.
 | |
| 			 */
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			up_write(&space_info->groups_sem);
 | |
| 			goto next;
 | |
| 		}
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 
 | |
| 		/* We don't want to force the issue, only flip if it's ok. */
 | |
| 		ret = set_block_group_ro(block_group, 0);
 | |
| 		up_write(&space_info->groups_sem);
 | |
| 		if (ret < 0) {
 | |
| 			ret = 0;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Want to do this before we do anything else so we can recover
 | |
| 		 * properly if we fail to join the transaction.
 | |
| 		 */
 | |
| 		/* 1 for btrfs_orphan_reserve_metadata() */
 | |
| 		trans = btrfs_start_transaction(root, 1);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			btrfs_set_block_group_rw(root, block_group);
 | |
| 			ret = PTR_ERR(trans);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We could have pending pinned extents for this block group,
 | |
| 		 * just delete them, we don't care about them anymore.
 | |
| 		 */
 | |
| 		start = block_group->key.objectid;
 | |
| 		end = start + block_group->key.offset - 1;
 | |
| 		/*
 | |
| 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
 | |
| 		 * btrfs_finish_extent_commit(). If we are at transaction N,
 | |
| 		 * another task might be running finish_extent_commit() for the
 | |
| 		 * previous transaction N - 1, and have seen a range belonging
 | |
| 		 * to the block group in freed_extents[] before we were able to
 | |
| 		 * clear the whole block group range from freed_extents[]. This
 | |
| 		 * means that task can lookup for the block group after we
 | |
| 		 * unpinned it from freed_extents[] and removed it, leading to
 | |
| 		 * a BUG_ON() at btrfs_unpin_extent_range().
 | |
| 		 */
 | |
| 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
 | |
| 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
 | |
| 				  EXTENT_DIRTY, GFP_NOFS);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 | |
| 			btrfs_set_block_group_rw(root, block_group);
 | |
| 			goto end_trans;
 | |
| 		}
 | |
| 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
 | |
| 				  EXTENT_DIRTY, GFP_NOFS);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 | |
| 			btrfs_set_block_group_rw(root, block_group);
 | |
| 			goto end_trans;
 | |
| 		}
 | |
| 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 | |
| 
 | |
| 		/* Reset pinned so btrfs_put_block_group doesn't complain */
 | |
| 		block_group->pinned = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Btrfs_remove_chunk will abort the transaction if things go
 | |
| 		 * horribly wrong.
 | |
| 		 */
 | |
| 		ret = btrfs_remove_chunk(trans, root,
 | |
| 					 block_group->key.objectid);
 | |
| end_trans:
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| next:
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 		spin_lock(&fs_info->unused_bgs_lock);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->unused_bgs_lock);
 | |
| }
 | |
| 
 | |
| int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info;
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	u64 features;
 | |
| 	u64 flags;
 | |
| 	int mixed = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	disk_super = fs_info->super_copy;
 | |
| 	if (!btrfs_super_root(disk_super))
 | |
| 		return 1;
 | |
| 
 | |
| 	features = btrfs_super_incompat_flags(disk_super);
 | |
| 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
 | |
| 		mixed = 1;
 | |
| 
 | |
| 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
 | |
| 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (mixed) {
 | |
| 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
 | |
| 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
 | |
| 	} else {
 | |
| 		flags = BTRFS_BLOCK_GROUP_METADATA;
 | |
| 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		flags = BTRFS_BLOCK_GROUP_DATA;
 | |
| 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
 | |
| {
 | |
| 	return unpin_extent_range(root, start, end, false);
 | |
| }
 | |
| 
 | |
| int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_block_group_cache *cache = NULL;
 | |
| 	u64 group_trimmed;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	u64 trimmed = 0;
 | |
| 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * try to trim all FS space, our block group may start from non-zero.
 | |
| 	 */
 | |
| 	if (range->len == total_bytes)
 | |
| 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
 | |
| 	else
 | |
| 		cache = btrfs_lookup_block_group(fs_info, range->start);
 | |
| 
 | |
| 	while (cache) {
 | |
| 		if (cache->key.objectid >= (range->start + range->len)) {
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		start = max(range->start, cache->key.objectid);
 | |
| 		end = min(range->start + range->len,
 | |
| 				cache->key.objectid + cache->key.offset);
 | |
| 
 | |
| 		if (end - start >= range->minlen) {
 | |
| 			if (!block_group_cache_done(cache)) {
 | |
| 				ret = cache_block_group(cache, 0);
 | |
| 				if (ret) {
 | |
| 					btrfs_put_block_group(cache);
 | |
| 					break;
 | |
| 				}
 | |
| 				ret = wait_block_group_cache_done(cache);
 | |
| 				if (ret) {
 | |
| 					btrfs_put_block_group(cache);
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			ret = btrfs_trim_block_group(cache,
 | |
| 						     &group_trimmed,
 | |
| 						     start,
 | |
| 						     end,
 | |
| 						     range->minlen);
 | |
| 
 | |
| 			trimmed += group_trimmed;
 | |
| 			if (ret) {
 | |
| 				btrfs_put_block_group(cache);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		cache = next_block_group(fs_info->tree_root, cache);
 | |
| 	}
 | |
| 
 | |
| 	range->len = trimmed;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_{start,end}_write_no_snapshoting() are similar to
 | |
|  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
 | |
|  * data into the page cache through nocow before the subvolume is snapshoted,
 | |
|  * but flush the data into disk after the snapshot creation, or to prevent
 | |
|  * operations while snapshoting is ongoing and that cause the snapshot to be
 | |
|  * inconsistent (writes followed by expanding truncates for example).
 | |
|  */
 | |
| void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
 | |
| {
 | |
| 	percpu_counter_dec(&root->subv_writers->counter);
 | |
| 	/*
 | |
| 	 * Make sure counter is updated before we wake up
 | |
| 	 * waiters.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (waitqueue_active(&root->subv_writers->wait))
 | |
| 		wake_up(&root->subv_writers->wait);
 | |
| }
 | |
| 
 | |
| int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
 | |
| {
 | |
| 	if (atomic_read(&root->will_be_snapshoted))
 | |
| 		return 0;
 | |
| 
 | |
| 	percpu_counter_inc(&root->subv_writers->counter);
 | |
| 	/*
 | |
| 	 * Make sure counter is updated before we check for snapshot creation.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (atomic_read(&root->will_be_snapshoted)) {
 | |
| 		btrfs_end_write_no_snapshoting(root);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 |