 c93ecedab3
			
		
	
	
	c93ecedab3
	
	
	
		
			
			Pull x86 fpu updates from Ingo Molnar: "Initial round of kernel_fpu_begin/end cleanups from Oleg Nesterov, plus a cleanup from Borislav Petkov" * 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86, fpu: Fix math_state_restore() race with kernel_fpu_begin() x86, fpu: Don't abuse has_fpu in __kernel_fpu_begin/end() x86, fpu: Introduce per-cpu in_kernel_fpu state x86/fpu: Use a symbolic name for asm operand
		
			
				
	
	
		
			1015 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1015 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
 | |
|  *
 | |
|  *  Pentium III FXSR, SSE support
 | |
|  *	Gareth Hughes <gareth@valinux.com>, May 2000
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Handle hardware traps and faults.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/context_tracking.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/kgdb.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/uprobes.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #ifdef CONFIG_EISA
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/eisa.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_EDAC)
 | |
| #include <linux/edac.h>
 | |
| #endif
 | |
| 
 | |
| #include <asm/kmemcheck.h>
 | |
| #include <asm/stacktrace.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/debugreg.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/ftrace.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/i387.h>
 | |
| #include <asm/fpu-internal.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/mach_traps.h>
 | |
| #include <asm/alternative.h>
 | |
| #include <asm/mpx.h>
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| #include <asm/x86_init.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/proto.h>
 | |
| 
 | |
| /* No need to be aligned, but done to keep all IDTs defined the same way. */
 | |
| gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
 | |
| #else
 | |
| #include <asm/processor-flags.h>
 | |
| #include <asm/setup.h>
 | |
| 
 | |
| asmlinkage int system_call(void);
 | |
| #endif
 | |
| 
 | |
| /* Must be page-aligned because the real IDT is used in a fixmap. */
 | |
| gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
 | |
| 
 | |
| DECLARE_BITMAP(used_vectors, NR_VECTORS);
 | |
| EXPORT_SYMBOL_GPL(used_vectors);
 | |
| 
 | |
| static inline void conditional_sti(struct pt_regs *regs)
 | |
| {
 | |
| 	if (regs->flags & X86_EFLAGS_IF)
 | |
| 		local_irq_enable();
 | |
| }
 | |
| 
 | |
| static inline void preempt_conditional_sti(struct pt_regs *regs)
 | |
| {
 | |
| 	preempt_count_inc();
 | |
| 	if (regs->flags & X86_EFLAGS_IF)
 | |
| 		local_irq_enable();
 | |
| }
 | |
| 
 | |
| static inline void conditional_cli(struct pt_regs *regs)
 | |
| {
 | |
| 	if (regs->flags & X86_EFLAGS_IF)
 | |
| 		local_irq_disable();
 | |
| }
 | |
| 
 | |
| static inline void preempt_conditional_cli(struct pt_regs *regs)
 | |
| {
 | |
| 	if (regs->flags & X86_EFLAGS_IF)
 | |
| 		local_irq_disable();
 | |
| 	preempt_count_dec();
 | |
| }
 | |
| 
 | |
| enum ctx_state ist_enter(struct pt_regs *regs)
 | |
| {
 | |
| 	enum ctx_state prev_state;
 | |
| 
 | |
| 	if (user_mode_vm(regs)) {
 | |
| 		/* Other than that, we're just an exception. */
 | |
| 		prev_state = exception_enter();
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We might have interrupted pretty much anything.  In
 | |
| 		 * fact, if we're a machine check, we can even interrupt
 | |
| 		 * NMI processing.  We don't want in_nmi() to return true,
 | |
| 		 * but we need to notify RCU.
 | |
| 		 */
 | |
| 		rcu_nmi_enter();
 | |
| 		prev_state = IN_KERNEL;  /* the value is irrelevant. */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are atomic because we're on the IST stack (or we're on x86_32,
 | |
| 	 * in which case we still shouldn't schedule).
 | |
| 	 *
 | |
| 	 * This must be after exception_enter(), because exception_enter()
 | |
| 	 * won't do anything if in_interrupt() returns true.
 | |
| 	 */
 | |
| 	preempt_count_add(HARDIRQ_OFFSET);
 | |
| 
 | |
| 	/* This code is a bit fragile.  Test it. */
 | |
| 	rcu_lockdep_assert(rcu_is_watching(), "ist_enter didn't work");
 | |
| 
 | |
| 	return prev_state;
 | |
| }
 | |
| 
 | |
| void ist_exit(struct pt_regs *regs, enum ctx_state prev_state)
 | |
| {
 | |
| 	/* Must be before exception_exit. */
 | |
| 	preempt_count_sub(HARDIRQ_OFFSET);
 | |
| 
 | |
| 	if (user_mode_vm(regs))
 | |
| 		return exception_exit(prev_state);
 | |
| 	else
 | |
| 		rcu_nmi_exit();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
 | |
|  * @regs:	regs passed to the IST exception handler
 | |
|  *
 | |
|  * IST exception handlers normally cannot schedule.  As a special
 | |
|  * exception, if the exception interrupted userspace code (i.e.
 | |
|  * user_mode_vm(regs) would return true) and the exception was not
 | |
|  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
 | |
|  * begins a non-atomic section within an ist_enter()/ist_exit() region.
 | |
|  * Callers are responsible for enabling interrupts themselves inside
 | |
|  * the non-atomic section, and callers must call is_end_non_atomic()
 | |
|  * before ist_exit().
 | |
|  */
 | |
| void ist_begin_non_atomic(struct pt_regs *regs)
 | |
| {
 | |
| 	BUG_ON(!user_mode_vm(regs));
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity check: we need to be on the normal thread stack.  This
 | |
| 	 * will catch asm bugs and any attempt to use ist_preempt_enable
 | |
| 	 * from double_fault.
 | |
| 	 */
 | |
| 	BUG_ON(((current_stack_pointer() ^ this_cpu_read_stable(kernel_stack))
 | |
| 		& ~(THREAD_SIZE - 1)) != 0);
 | |
| 
 | |
| 	preempt_count_sub(HARDIRQ_OFFSET);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
 | |
|  *
 | |
|  * Ends a non-atomic section started with ist_begin_non_atomic().
 | |
|  */
 | |
| void ist_end_non_atomic(void)
 | |
| {
 | |
| 	preempt_count_add(HARDIRQ_OFFSET);
 | |
| }
 | |
| 
 | |
| static nokprobe_inline int
 | |
| do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
 | |
| 		  struct pt_regs *regs,	long error_code)
 | |
| {
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (regs->flags & X86_VM_MASK) {
 | |
| 		/*
 | |
| 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 | |
| 		 * On nmi (interrupt 2), do_trap should not be called.
 | |
| 		 */
 | |
| 		if (trapnr < X86_TRAP_UD) {
 | |
| 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 | |
| 						error_code, trapnr))
 | |
| 				return 0;
 | |
| 		}
 | |
| 		return -1;
 | |
| 	}
 | |
| #endif
 | |
| 	if (!user_mode(regs)) {
 | |
| 		if (!fixup_exception(regs)) {
 | |
| 			tsk->thread.error_code = error_code;
 | |
| 			tsk->thread.trap_nr = trapnr;
 | |
| 			die(str, regs, error_code);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
 | |
| 				siginfo_t *info)
 | |
| {
 | |
| 	unsigned long siaddr;
 | |
| 	int sicode;
 | |
| 
 | |
| 	switch (trapnr) {
 | |
| 	default:
 | |
| 		return SEND_SIG_PRIV;
 | |
| 
 | |
| 	case X86_TRAP_DE:
 | |
| 		sicode = FPE_INTDIV;
 | |
| 		siaddr = uprobe_get_trap_addr(regs);
 | |
| 		break;
 | |
| 	case X86_TRAP_UD:
 | |
| 		sicode = ILL_ILLOPN;
 | |
| 		siaddr = uprobe_get_trap_addr(regs);
 | |
| 		break;
 | |
| 	case X86_TRAP_AC:
 | |
| 		sicode = BUS_ADRALN;
 | |
| 		siaddr = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	info->si_signo = signr;
 | |
| 	info->si_errno = 0;
 | |
| 	info->si_code = sicode;
 | |
| 	info->si_addr = (void __user *)siaddr;
 | |
| 	return info;
 | |
| }
 | |
| 
 | |
| static void
 | |
| do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 | |
| 	long error_code, siginfo_t *info)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 
 | |
| 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * We want error_code and trap_nr set for userspace faults and
 | |
| 	 * kernelspace faults which result in die(), but not
 | |
| 	 * kernelspace faults which are fixed up.  die() gives the
 | |
| 	 * process no chance to handle the signal and notice the
 | |
| 	 * kernel fault information, so that won't result in polluting
 | |
| 	 * the information about previously queued, but not yet
 | |
| 	 * delivered, faults.  See also do_general_protection below.
 | |
| 	 */
 | |
| 	tsk->thread.error_code = error_code;
 | |
| 	tsk->thread.trap_nr = trapnr;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 | |
| 	    printk_ratelimit()) {
 | |
| 		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
 | |
| 			tsk->comm, tsk->pid, str,
 | |
| 			regs->ip, regs->sp, error_code);
 | |
| 		print_vma_addr(" in ", regs->ip);
 | |
| 		pr_cont("\n");
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
 | |
| }
 | |
| NOKPROBE_SYMBOL(do_trap);
 | |
| 
 | |
| static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 | |
| 			  unsigned long trapnr, int signr)
 | |
| {
 | |
| 	enum ctx_state prev_state = exception_enter();
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 | |
| 			NOTIFY_STOP) {
 | |
| 		conditional_sti(regs);
 | |
| 		do_trap(trapnr, signr, str, regs, error_code,
 | |
| 			fill_trap_info(regs, signr, trapnr, &info));
 | |
| 	}
 | |
| 
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| 
 | |
| #define DO_ERROR(trapnr, signr, str, name)				\
 | |
| dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
 | |
| {									\
 | |
| 	do_error_trap(regs, error_code, str, trapnr, signr);		\
 | |
| }
 | |
| 
 | |
| DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
 | |
| DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
 | |
| DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
 | |
| DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
 | |
| DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
 | |
| DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
 | |
| DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
 | |
| DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| /* Runs on IST stack */
 | |
| dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	static const char str[] = "double fault";
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| #ifdef CONFIG_X86_ESPFIX64
 | |
| 	extern unsigned char native_irq_return_iret[];
 | |
| 
 | |
| 	/*
 | |
| 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
 | |
| 	 * end up promoting it to a doublefault.  In that case, modify
 | |
| 	 * the stack to make it look like we just entered the #GP
 | |
| 	 * handler from user space, similar to bad_iret.
 | |
| 	 *
 | |
| 	 * No need for ist_enter here because we don't use RCU.
 | |
| 	 */
 | |
| 	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
 | |
| 		regs->cs == __KERNEL_CS &&
 | |
| 		regs->ip == (unsigned long)native_irq_return_iret)
 | |
| 	{
 | |
| 		struct pt_regs *normal_regs = task_pt_regs(current);
 | |
| 
 | |
| 		/* Fake a #GP(0) from userspace. */
 | |
| 		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
 | |
| 		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
 | |
| 		regs->ip = (unsigned long)general_protection;
 | |
| 		regs->sp = (unsigned long)&normal_regs->orig_ax;
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	ist_enter(regs);  /* Discard prev_state because we won't return. */
 | |
| 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 | |
| 
 | |
| 	tsk->thread.error_code = error_code;
 | |
| 	tsk->thread.trap_nr = X86_TRAP_DF;
 | |
| 
 | |
| #ifdef CONFIG_DOUBLEFAULT
 | |
| 	df_debug(regs, error_code);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * This is always a kernel trap and never fixable (and thus must
 | |
| 	 * never return).
 | |
| 	 */
 | |
| 	for (;;)
 | |
| 		die(str, regs, error_code);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct xsave_struct *xsave_buf;
 | |
| 	enum ctx_state prev_state;
 | |
| 	struct bndcsr *bndcsr;
 | |
| 	siginfo_t *info;
 | |
| 
 | |
| 	prev_state = exception_enter();
 | |
| 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
 | |
| 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 | |
| 		goto exit;
 | |
| 	conditional_sti(regs);
 | |
| 
 | |
| 	if (!user_mode(regs))
 | |
| 		die("bounds", regs, error_code);
 | |
| 
 | |
| 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
 | |
| 		/* The exception is not from Intel MPX */
 | |
| 		goto exit_trap;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to look at BNDSTATUS to resolve this exception.
 | |
| 	 * It is not directly accessible, though, so we need to
 | |
| 	 * do an xsave and then pull it out of the xsave buffer.
 | |
| 	 */
 | |
| 	fpu_save_init(&tsk->thread.fpu);
 | |
| 	xsave_buf = &(tsk->thread.fpu.state->xsave);
 | |
| 	bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
 | |
| 	if (!bndcsr)
 | |
| 		goto exit_trap;
 | |
| 
 | |
| 	/*
 | |
| 	 * The error code field of the BNDSTATUS register communicates status
 | |
| 	 * information of a bound range exception #BR or operation involving
 | |
| 	 * bound directory.
 | |
| 	 */
 | |
| 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
 | |
| 	case 2:	/* Bound directory has invalid entry. */
 | |
| 		if (mpx_handle_bd_fault(xsave_buf))
 | |
| 			goto exit_trap;
 | |
| 		break; /* Success, it was handled */
 | |
| 	case 1: /* Bound violation. */
 | |
| 		info = mpx_generate_siginfo(regs, xsave_buf);
 | |
| 		if (IS_ERR(info)) {
 | |
| 			/*
 | |
| 			 * We failed to decode the MPX instruction.  Act as if
 | |
| 			 * the exception was not caused by MPX.
 | |
| 			 */
 | |
| 			goto exit_trap;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Success, we decoded the instruction and retrieved
 | |
| 		 * an 'info' containing the address being accessed
 | |
| 		 * which caused the exception.  This information
 | |
| 		 * allows and application to possibly handle the
 | |
| 		 * #BR exception itself.
 | |
| 		 */
 | |
| 		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
 | |
| 		kfree(info);
 | |
| 		break;
 | |
| 	case 0: /* No exception caused by Intel MPX operations. */
 | |
| 		goto exit_trap;
 | |
| 	default:
 | |
| 		die("bounds", regs, error_code);
 | |
| 	}
 | |
| 
 | |
| exit:
 | |
| 	exception_exit(prev_state);
 | |
| 	return;
 | |
| exit_trap:
 | |
| 	/*
 | |
| 	 * This path out is for all the cases where we could not
 | |
| 	 * handle the exception in some way (like allocating a
 | |
| 	 * table or telling userspace about it.  We will also end
 | |
| 	 * up here if the kernel has MPX turned off at compile
 | |
| 	 * time..
 | |
| 	 */
 | |
| 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| 
 | |
| dotraplinkage void
 | |
| do_general_protection(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	enum ctx_state prev_state;
 | |
| 
 | |
| 	prev_state = exception_enter();
 | |
| 	conditional_sti(regs);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (regs->flags & X86_VM_MASK) {
 | |
| 		local_irq_enable();
 | |
| 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 | |
| 		goto exit;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	tsk = current;
 | |
| 	if (!user_mode(regs)) {
 | |
| 		if (fixup_exception(regs))
 | |
| 			goto exit;
 | |
| 
 | |
| 		tsk->thread.error_code = error_code;
 | |
| 		tsk->thread.trap_nr = X86_TRAP_GP;
 | |
| 		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
 | |
| 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
 | |
| 			die("general protection fault", regs, error_code);
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	tsk->thread.error_code = error_code;
 | |
| 	tsk->thread.trap_nr = X86_TRAP_GP;
 | |
| 
 | |
| 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
 | |
| 			printk_ratelimit()) {
 | |
| 		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
 | |
| 			tsk->comm, task_pid_nr(tsk),
 | |
| 			regs->ip, regs->sp, error_code);
 | |
| 		print_vma_addr(" in ", regs->ip);
 | |
| 		pr_cont("\n");
 | |
| 	}
 | |
| 
 | |
| 	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
 | |
| exit:
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| NOKPROBE_SYMBOL(do_general_protection);
 | |
| 
 | |
| /* May run on IST stack. */
 | |
| dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	enum ctx_state prev_state;
 | |
| 
 | |
| #ifdef CONFIG_DYNAMIC_FTRACE
 | |
| 	/*
 | |
| 	 * ftrace must be first, everything else may cause a recursive crash.
 | |
| 	 * See note by declaration of modifying_ftrace_code in ftrace.c
 | |
| 	 */
 | |
| 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
 | |
| 	    ftrace_int3_handler(regs))
 | |
| 		return;
 | |
| #endif
 | |
| 	if (poke_int3_handler(regs))
 | |
| 		return;
 | |
| 
 | |
| 	prev_state = ist_enter(regs);
 | |
| #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 | |
| 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
 | |
| 				SIGTRAP) == NOTIFY_STOP)
 | |
| 		goto exit;
 | |
| #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 | |
| 
 | |
| #ifdef CONFIG_KPROBES
 | |
| 	if (kprobe_int3_handler(regs))
 | |
| 		goto exit;
 | |
| #endif
 | |
| 
 | |
| 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
 | |
| 			SIGTRAP) == NOTIFY_STOP)
 | |
| 		goto exit;
 | |
| 
 | |
| 	/*
 | |
| 	 * Let others (NMI) know that the debug stack is in use
 | |
| 	 * as we may switch to the interrupt stack.
 | |
| 	 */
 | |
| 	debug_stack_usage_inc();
 | |
| 	preempt_conditional_sti(regs);
 | |
| 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
 | |
| 	preempt_conditional_cli(regs);
 | |
| 	debug_stack_usage_dec();
 | |
| exit:
 | |
| 	ist_exit(regs, prev_state);
 | |
| }
 | |
| NOKPROBE_SYMBOL(do_int3);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| /*
 | |
|  * Help handler running on IST stack to switch off the IST stack if the
 | |
|  * interrupted code was in user mode. The actual stack switch is done in
 | |
|  * entry_64.S
 | |
|  */
 | |
| asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
 | |
| {
 | |
| 	struct pt_regs *regs = task_pt_regs(current);
 | |
| 	*regs = *eregs;
 | |
| 	return regs;
 | |
| }
 | |
| NOKPROBE_SYMBOL(sync_regs);
 | |
| 
 | |
| struct bad_iret_stack {
 | |
| 	void *error_entry_ret;
 | |
| 	struct pt_regs regs;
 | |
| };
 | |
| 
 | |
| asmlinkage __visible notrace
 | |
| struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 | |
| {
 | |
| 	/*
 | |
| 	 * This is called from entry_64.S early in handling a fault
 | |
| 	 * caused by a bad iret to user mode.  To handle the fault
 | |
| 	 * correctly, we want move our stack frame to task_pt_regs
 | |
| 	 * and we want to pretend that the exception came from the
 | |
| 	 * iret target.
 | |
| 	 */
 | |
| 	struct bad_iret_stack *new_stack =
 | |
| 		container_of(task_pt_regs(current),
 | |
| 			     struct bad_iret_stack, regs);
 | |
| 
 | |
| 	/* Copy the IRET target to the new stack. */
 | |
| 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
 | |
| 
 | |
| 	/* Copy the remainder of the stack from the current stack. */
 | |
| 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
 | |
| 
 | |
| 	BUG_ON(!user_mode_vm(&new_stack->regs));
 | |
| 	return new_stack;
 | |
| }
 | |
| NOKPROBE_SYMBOL(fixup_bad_iret);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Our handling of the processor debug registers is non-trivial.
 | |
|  * We do not clear them on entry and exit from the kernel. Therefore
 | |
|  * it is possible to get a watchpoint trap here from inside the kernel.
 | |
|  * However, the code in ./ptrace.c has ensured that the user can
 | |
|  * only set watchpoints on userspace addresses. Therefore the in-kernel
 | |
|  * watchpoint trap can only occur in code which is reading/writing
 | |
|  * from user space. Such code must not hold kernel locks (since it
 | |
|  * can equally take a page fault), therefore it is safe to call
 | |
|  * force_sig_info even though that claims and releases locks.
 | |
|  *
 | |
|  * Code in ./signal.c ensures that the debug control register
 | |
|  * is restored before we deliver any signal, and therefore that
 | |
|  * user code runs with the correct debug control register even though
 | |
|  * we clear it here.
 | |
|  *
 | |
|  * Being careful here means that we don't have to be as careful in a
 | |
|  * lot of more complicated places (task switching can be a bit lazy
 | |
|  * about restoring all the debug state, and ptrace doesn't have to
 | |
|  * find every occurrence of the TF bit that could be saved away even
 | |
|  * by user code)
 | |
|  *
 | |
|  * May run on IST stack.
 | |
|  */
 | |
| dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	enum ctx_state prev_state;
 | |
| 	int user_icebp = 0;
 | |
| 	unsigned long dr6;
 | |
| 	int si_code;
 | |
| 
 | |
| 	prev_state = ist_enter(regs);
 | |
| 
 | |
| 	get_debugreg(dr6, 6);
 | |
| 
 | |
| 	/* Filter out all the reserved bits which are preset to 1 */
 | |
| 	dr6 &= ~DR6_RESERVED;
 | |
| 
 | |
| 	/*
 | |
| 	 * If dr6 has no reason to give us about the origin of this trap,
 | |
| 	 * then it's very likely the result of an icebp/int01 trap.
 | |
| 	 * User wants a sigtrap for that.
 | |
| 	 */
 | |
| 	if (!dr6 && user_mode(regs))
 | |
| 		user_icebp = 1;
 | |
| 
 | |
| 	/* Catch kmemcheck conditions first of all! */
 | |
| 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
 | |
| 		goto exit;
 | |
| 
 | |
| 	/* DR6 may or may not be cleared by the CPU */
 | |
| 	set_debugreg(0, 6);
 | |
| 
 | |
| 	/*
 | |
| 	 * The processor cleared BTF, so don't mark that we need it set.
 | |
| 	 */
 | |
| 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
 | |
| 
 | |
| 	/* Store the virtualized DR6 value */
 | |
| 	tsk->thread.debugreg6 = dr6;
 | |
| 
 | |
| #ifdef CONFIG_KPROBES
 | |
| 	if (kprobe_debug_handler(regs))
 | |
| 		goto exit;
 | |
| #endif
 | |
| 
 | |
| 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
 | |
| 							SIGTRAP) == NOTIFY_STOP)
 | |
| 		goto exit;
 | |
| 
 | |
| 	/*
 | |
| 	 * Let others (NMI) know that the debug stack is in use
 | |
| 	 * as we may switch to the interrupt stack.
 | |
| 	 */
 | |
| 	debug_stack_usage_inc();
 | |
| 
 | |
| 	/* It's safe to allow irq's after DR6 has been saved */
 | |
| 	preempt_conditional_sti(regs);
 | |
| 
 | |
| 	if (regs->flags & X86_VM_MASK) {
 | |
| 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
 | |
| 					X86_TRAP_DB);
 | |
| 		preempt_conditional_cli(regs);
 | |
| 		debug_stack_usage_dec();
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Single-stepping through system calls: ignore any exceptions in
 | |
| 	 * kernel space, but re-enable TF when returning to user mode.
 | |
| 	 *
 | |
| 	 * We already checked v86 mode above, so we can check for kernel mode
 | |
| 	 * by just checking the CPL of CS.
 | |
| 	 */
 | |
| 	if ((dr6 & DR_STEP) && !user_mode(regs)) {
 | |
| 		tsk->thread.debugreg6 &= ~DR_STEP;
 | |
| 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
 | |
| 		regs->flags &= ~X86_EFLAGS_TF;
 | |
| 	}
 | |
| 	si_code = get_si_code(tsk->thread.debugreg6);
 | |
| 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
 | |
| 		send_sigtrap(tsk, regs, error_code, si_code);
 | |
| 	preempt_conditional_cli(regs);
 | |
| 	debug_stack_usage_dec();
 | |
| 
 | |
| exit:
 | |
| 	ist_exit(regs, prev_state);
 | |
| }
 | |
| NOKPROBE_SYMBOL(do_debug);
 | |
| 
 | |
| /*
 | |
|  * Note that we play around with the 'TS' bit in an attempt to get
 | |
|  * the correct behaviour even in the presence of the asynchronous
 | |
|  * IRQ13 behaviour
 | |
|  */
 | |
| static void math_error(struct pt_regs *regs, int error_code, int trapnr)
 | |
| {
 | |
| 	struct task_struct *task = current;
 | |
| 	siginfo_t info;
 | |
| 	unsigned short err;
 | |
| 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
 | |
| 						"simd exception";
 | |
| 
 | |
| 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 	conditional_sti(regs);
 | |
| 
 | |
| 	if (!user_mode_vm(regs))
 | |
| 	{
 | |
| 		if (!fixup_exception(regs)) {
 | |
| 			task->thread.error_code = error_code;
 | |
| 			task->thread.trap_nr = trapnr;
 | |
| 			die(str, regs, error_code);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Save the info for the exception handler and clear the error.
 | |
| 	 */
 | |
| 	save_init_fpu(task);
 | |
| 	task->thread.trap_nr = trapnr;
 | |
| 	task->thread.error_code = error_code;
 | |
| 	info.si_signo = SIGFPE;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
 | |
| 	if (trapnr == X86_TRAP_MF) {
 | |
| 		unsigned short cwd, swd;
 | |
| 		/*
 | |
| 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
 | |
| 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
 | |
| 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
 | |
| 		 * fault bit.  We should only be taking one exception at a time,
 | |
| 		 * so if this combination doesn't produce any single exception,
 | |
| 		 * then we have a bad program that isn't synchronizing its FPU usage
 | |
| 		 * and it will suffer the consequences since we won't be able to
 | |
| 		 * fully reproduce the context of the exception
 | |
| 		 */
 | |
| 		cwd = get_fpu_cwd(task);
 | |
| 		swd = get_fpu_swd(task);
 | |
| 
 | |
| 		err = swd & ~cwd;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The SIMD FPU exceptions are handled a little differently, as there
 | |
| 		 * is only a single status/control register.  Thus, to determine which
 | |
| 		 * unmasked exception was caught we must mask the exception mask bits
 | |
| 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
 | |
| 		 */
 | |
| 		unsigned short mxcsr = get_fpu_mxcsr(task);
 | |
| 		err = ~(mxcsr >> 7) & mxcsr;
 | |
| 	}
 | |
| 
 | |
| 	if (err & 0x001) {	/* Invalid op */
 | |
| 		/*
 | |
| 		 * swd & 0x240 == 0x040: Stack Underflow
 | |
| 		 * swd & 0x240 == 0x240: Stack Overflow
 | |
| 		 * User must clear the SF bit (0x40) if set
 | |
| 		 */
 | |
| 		info.si_code = FPE_FLTINV;
 | |
| 	} else if (err & 0x004) { /* Divide by Zero */
 | |
| 		info.si_code = FPE_FLTDIV;
 | |
| 	} else if (err & 0x008) { /* Overflow */
 | |
| 		info.si_code = FPE_FLTOVF;
 | |
| 	} else if (err & 0x012) { /* Denormal, Underflow */
 | |
| 		info.si_code = FPE_FLTUND;
 | |
| 	} else if (err & 0x020) { /* Precision */
 | |
| 		info.si_code = FPE_FLTRES;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If we're using IRQ 13, or supposedly even some trap
 | |
| 		 * X86_TRAP_MF implementations, it's possible
 | |
| 		 * we get a spurious trap, which is not an error.
 | |
| 		 */
 | |
| 		return;
 | |
| 	}
 | |
| 	force_sig_info(SIGFPE, &info, task);
 | |
| }
 | |
| 
 | |
| dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	enum ctx_state prev_state;
 | |
| 
 | |
| 	prev_state = exception_enter();
 | |
| 	math_error(regs, error_code, X86_TRAP_MF);
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| 
 | |
| dotraplinkage void
 | |
| do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	enum ctx_state prev_state;
 | |
| 
 | |
| 	prev_state = exception_enter();
 | |
| 	math_error(regs, error_code, X86_TRAP_XF);
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| 
 | |
| dotraplinkage void
 | |
| do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	conditional_sti(regs);
 | |
| #if 0
 | |
| 	/* No need to warn about this any longer. */
 | |
| 	pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| asmlinkage __visible void __attribute__((weak)) smp_thermal_interrupt(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| asmlinkage __visible void __attribute__((weak)) smp_threshold_interrupt(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'math_state_restore()' saves the current math information in the
 | |
|  * old math state array, and gets the new ones from the current task
 | |
|  *
 | |
|  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
 | |
|  * Don't touch unless you *really* know how it works.
 | |
|  *
 | |
|  * Must be called with kernel preemption disabled (eg with local
 | |
|  * local interrupts as in the case of do_device_not_available).
 | |
|  */
 | |
| void math_state_restore(void)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	if (!tsk_used_math(tsk)) {
 | |
| 		local_irq_enable();
 | |
| 		/*
 | |
| 		 * does a slab alloc which can sleep
 | |
| 		 */
 | |
| 		if (init_fpu(tsk)) {
 | |
| 			/*
 | |
| 			 * ran out of memory!
 | |
| 			 */
 | |
| 			do_group_exit(SIGKILL);
 | |
| 			return;
 | |
| 		}
 | |
| 		local_irq_disable();
 | |
| 	}
 | |
| 
 | |
| 	/* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
 | |
| 	kernel_fpu_disable();
 | |
| 	__thread_fpu_begin(tsk);
 | |
| 	if (unlikely(restore_fpu_checking(tsk))) {
 | |
| 		drop_init_fpu(tsk);
 | |
| 		force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
 | |
| 	} else {
 | |
| 		tsk->thread.fpu_counter++;
 | |
| 	}
 | |
| 	kernel_fpu_enable();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(math_state_restore);
 | |
| 
 | |
| dotraplinkage void
 | |
| do_device_not_available(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	enum ctx_state prev_state;
 | |
| 
 | |
| 	prev_state = exception_enter();
 | |
| 	BUG_ON(use_eager_fpu());
 | |
| 
 | |
| #ifdef CONFIG_MATH_EMULATION
 | |
| 	if (read_cr0() & X86_CR0_EM) {
 | |
| 		struct math_emu_info info = { };
 | |
| 
 | |
| 		conditional_sti(regs);
 | |
| 
 | |
| 		info.regs = regs;
 | |
| 		math_emulate(&info);
 | |
| 		exception_exit(prev_state);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	math_state_restore(); /* interrupts still off */
 | |
| #ifdef CONFIG_X86_32
 | |
| 	conditional_sti(regs);
 | |
| #endif
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| NOKPROBE_SYMBOL(do_device_not_available);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 	enum ctx_state prev_state;
 | |
| 
 | |
| 	prev_state = exception_enter();
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	info.si_signo = SIGILL;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = ILL_BADSTK;
 | |
| 	info.si_addr = NULL;
 | |
| 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
 | |
| 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
 | |
| 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
 | |
| 			&info);
 | |
| 	}
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Set of traps needed for early debugging. */
 | |
| void __init early_trap_init(void)
 | |
| {
 | |
| 	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
 | |
| 	/* int3 can be called from all */
 | |
| 	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	set_intr_gate(X86_TRAP_PF, page_fault);
 | |
| #endif
 | |
| 	load_idt(&idt_descr);
 | |
| }
 | |
| 
 | |
| void __init early_trap_pf_init(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	set_intr_gate(X86_TRAP_PF, page_fault);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void __init trap_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| #ifdef CONFIG_EISA
 | |
| 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
 | |
| 
 | |
| 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
 | |
| 		EISA_bus = 1;
 | |
| 	early_iounmap(p, 4);
 | |
| #endif
 | |
| 
 | |
| 	set_intr_gate(X86_TRAP_DE, divide_error);
 | |
| 	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
 | |
| 	/* int4 can be called from all */
 | |
| 	set_system_intr_gate(X86_TRAP_OF, &overflow);
 | |
| 	set_intr_gate(X86_TRAP_BR, bounds);
 | |
| 	set_intr_gate(X86_TRAP_UD, invalid_op);
 | |
| 	set_intr_gate(X86_TRAP_NM, device_not_available);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
 | |
| #else
 | |
| 	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
 | |
| #endif
 | |
| 	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
 | |
| 	set_intr_gate(X86_TRAP_TS, invalid_TSS);
 | |
| 	set_intr_gate(X86_TRAP_NP, segment_not_present);
 | |
| 	set_intr_gate(X86_TRAP_SS, stack_segment);
 | |
| 	set_intr_gate(X86_TRAP_GP, general_protection);
 | |
| 	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
 | |
| 	set_intr_gate(X86_TRAP_MF, coprocessor_error);
 | |
| 	set_intr_gate(X86_TRAP_AC, alignment_check);
 | |
| #ifdef CONFIG_X86_MCE
 | |
| 	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
 | |
| #endif
 | |
| 	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
 | |
| 
 | |
| 	/* Reserve all the builtin and the syscall vector: */
 | |
| 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
 | |
| 		set_bit(i, used_vectors);
 | |
| 
 | |
| #ifdef CONFIG_IA32_EMULATION
 | |
| 	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
 | |
| 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
 | |
| 	set_bit(SYSCALL_VECTOR, used_vectors);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the IDT descriptor to a fixed read-only location, so that the
 | |
| 	 * "sidt" instruction will not leak the location of the kernel, and
 | |
| 	 * to defend the IDT against arbitrary memory write vulnerabilities.
 | |
| 	 * It will be reloaded in cpu_init() */
 | |
| 	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
 | |
| 	idt_descr.address = fix_to_virt(FIX_RO_IDT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Should be a barrier for any external CPU state:
 | |
| 	 */
 | |
| 	cpu_init();
 | |
| 
 | |
| 	x86_init.irqs.trap_init();
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
 | |
| 	set_nmi_gate(X86_TRAP_DB, &debug);
 | |
| 	set_nmi_gate(X86_TRAP_BP, &int3);
 | |
| #endif
 | |
| }
 |