Commit f44f7f96a2 ("RTC: Initialize kernel state from RTC") introduced a
potential infinite loop.  If an alarm time contains a wildcard month and
an invalid day (> 31), or a wildcard year and an invalid month (>= 12),
the loop searching for the next matching date will never terminate.  Treat
the invalid values as wildcards.
Fixes <http://bugs.debian.org/646429>, <http://bugs.debian.org/653331>
Reported-by: leo weppelman <leoweppelman@googlemail.com>
Reported-by: "P. van Gaans" <mailme667@yahoo.co.uk>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
Cc: Mark Brown <broonie@opensource.wolfsonmicro.com>
Cc: Marcelo Roberto Jimenez <mroberto@cpti.cetuc.puc-rio.br>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Acked-by: Alessandro Zummo <a.zummo@towertech.it>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			912 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			912 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * RTC subsystem, interface functions
 | 
						|
 *
 | 
						|
 * Copyright (C) 2005 Tower Technologies
 | 
						|
 * Author: Alessandro Zummo <a.zummo@towertech.it>
 | 
						|
 *
 | 
						|
 * based on arch/arm/common/rtctime.c
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License version 2 as
 | 
						|
 * published by the Free Software Foundation.
 | 
						|
*/
 | 
						|
 | 
						|
#include <linux/rtc.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/log2.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
 | 
						|
static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 | 
						|
static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 | 
						|
 | 
						|
static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	if (!rtc->ops)
 | 
						|
		err = -ENODEV;
 | 
						|
	else if (!rtc->ops->read_time)
 | 
						|
		err = -EINVAL;
 | 
						|
	else {
 | 
						|
		memset(tm, 0, sizeof(struct rtc_time));
 | 
						|
		err = rtc->ops->read_time(rtc->dev.parent, tm);
 | 
						|
	}
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = mutex_lock_interruptible(&rtc->ops_lock);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	err = __rtc_read_time(rtc, tm);
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_read_time);
 | 
						|
 | 
						|
int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = rtc_valid_tm(tm);
 | 
						|
	if (err != 0)
 | 
						|
		return err;
 | 
						|
 | 
						|
	err = mutex_lock_interruptible(&rtc->ops_lock);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	if (!rtc->ops)
 | 
						|
		err = -ENODEV;
 | 
						|
	else if (rtc->ops->set_time)
 | 
						|
		err = rtc->ops->set_time(rtc->dev.parent, tm);
 | 
						|
	else if (rtc->ops->set_mmss) {
 | 
						|
		unsigned long secs;
 | 
						|
		err = rtc_tm_to_time(tm, &secs);
 | 
						|
		if (err == 0)
 | 
						|
			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 | 
						|
	} else
 | 
						|
		err = -EINVAL;
 | 
						|
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_set_time);
 | 
						|
 | 
						|
int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = mutex_lock_interruptible(&rtc->ops_lock);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	if (!rtc->ops)
 | 
						|
		err = -ENODEV;
 | 
						|
	else if (rtc->ops->set_mmss)
 | 
						|
		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 | 
						|
	else if (rtc->ops->read_time && rtc->ops->set_time) {
 | 
						|
		struct rtc_time new, old;
 | 
						|
 | 
						|
		err = rtc->ops->read_time(rtc->dev.parent, &old);
 | 
						|
		if (err == 0) {
 | 
						|
			rtc_time_to_tm(secs, &new);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * avoid writing when we're going to change the day of
 | 
						|
			 * the month. We will retry in the next minute. This
 | 
						|
			 * basically means that if the RTC must not drift
 | 
						|
			 * by more than 1 minute in 11 minutes.
 | 
						|
			 */
 | 
						|
			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
 | 
						|
				(new.tm_hour == 23 && new.tm_min == 59)))
 | 
						|
				err = rtc->ops->set_time(rtc->dev.parent,
 | 
						|
						&new);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else
 | 
						|
		err = -EINVAL;
 | 
						|
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_set_mmss);
 | 
						|
 | 
						|
static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = mutex_lock_interruptible(&rtc->ops_lock);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	if (rtc->ops == NULL)
 | 
						|
		err = -ENODEV;
 | 
						|
	else if (!rtc->ops->read_alarm)
 | 
						|
		err = -EINVAL;
 | 
						|
	else {
 | 
						|
		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 | 
						|
		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	struct rtc_time before, now;
 | 
						|
	int first_time = 1;
 | 
						|
	unsigned long t_now, t_alm;
 | 
						|
	enum { none, day, month, year } missing = none;
 | 
						|
	unsigned days;
 | 
						|
 | 
						|
	/* The lower level RTC driver may return -1 in some fields,
 | 
						|
	 * creating invalid alarm->time values, for reasons like:
 | 
						|
	 *
 | 
						|
	 *   - The hardware may not be capable of filling them in;
 | 
						|
	 *     many alarms match only on time-of-day fields, not
 | 
						|
	 *     day/month/year calendar data.
 | 
						|
	 *
 | 
						|
	 *   - Some hardware uses illegal values as "wildcard" match
 | 
						|
	 *     values, which non-Linux firmware (like a BIOS) may try
 | 
						|
	 *     to set up as e.g. "alarm 15 minutes after each hour".
 | 
						|
	 *     Linux uses only oneshot alarms.
 | 
						|
	 *
 | 
						|
	 * When we see that here, we deal with it by using values from
 | 
						|
	 * a current RTC timestamp for any missing (-1) values.  The
 | 
						|
	 * RTC driver prevents "periodic alarm" modes.
 | 
						|
	 *
 | 
						|
	 * But this can be racey, because some fields of the RTC timestamp
 | 
						|
	 * may have wrapped in the interval since we read the RTC alarm,
 | 
						|
	 * which would lead to us inserting inconsistent values in place
 | 
						|
	 * of the -1 fields.
 | 
						|
	 *
 | 
						|
	 * Reading the alarm and timestamp in the reverse sequence
 | 
						|
	 * would have the same race condition, and not solve the issue.
 | 
						|
	 *
 | 
						|
	 * So, we must first read the RTC timestamp,
 | 
						|
	 * then read the RTC alarm value,
 | 
						|
	 * and then read a second RTC timestamp.
 | 
						|
	 *
 | 
						|
	 * If any fields of the second timestamp have changed
 | 
						|
	 * when compared with the first timestamp, then we know
 | 
						|
	 * our timestamp may be inconsistent with that used by
 | 
						|
	 * the low-level rtc_read_alarm_internal() function.
 | 
						|
	 *
 | 
						|
	 * So, when the two timestamps disagree, we just loop and do
 | 
						|
	 * the process again to get a fully consistent set of values.
 | 
						|
	 *
 | 
						|
	 * This could all instead be done in the lower level driver,
 | 
						|
	 * but since more than one lower level RTC implementation needs it,
 | 
						|
	 * then it's probably best best to do it here instead of there..
 | 
						|
	 */
 | 
						|
 | 
						|
	/* Get the "before" timestamp */
 | 
						|
	err = rtc_read_time(rtc, &before);
 | 
						|
	if (err < 0)
 | 
						|
		return err;
 | 
						|
	do {
 | 
						|
		if (!first_time)
 | 
						|
			memcpy(&before, &now, sizeof(struct rtc_time));
 | 
						|
		first_time = 0;
 | 
						|
 | 
						|
		/* get the RTC alarm values, which may be incomplete */
 | 
						|
		err = rtc_read_alarm_internal(rtc, alarm);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
 | 
						|
		/* full-function RTCs won't have such missing fields */
 | 
						|
		if (rtc_valid_tm(&alarm->time) == 0)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		/* get the "after" timestamp, to detect wrapped fields */
 | 
						|
		err = rtc_read_time(rtc, &now);
 | 
						|
		if (err < 0)
 | 
						|
			return err;
 | 
						|
 | 
						|
		/* note that tm_sec is a "don't care" value here: */
 | 
						|
	} while (   before.tm_min   != now.tm_min
 | 
						|
		 || before.tm_hour  != now.tm_hour
 | 
						|
		 || before.tm_mon   != now.tm_mon
 | 
						|
		 || before.tm_year  != now.tm_year);
 | 
						|
 | 
						|
	/* Fill in the missing alarm fields using the timestamp; we
 | 
						|
	 * know there's at least one since alarm->time is invalid.
 | 
						|
	 */
 | 
						|
	if (alarm->time.tm_sec == -1)
 | 
						|
		alarm->time.tm_sec = now.tm_sec;
 | 
						|
	if (alarm->time.tm_min == -1)
 | 
						|
		alarm->time.tm_min = now.tm_min;
 | 
						|
	if (alarm->time.tm_hour == -1)
 | 
						|
		alarm->time.tm_hour = now.tm_hour;
 | 
						|
 | 
						|
	/* For simplicity, only support date rollover for now */
 | 
						|
	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 | 
						|
		alarm->time.tm_mday = now.tm_mday;
 | 
						|
		missing = day;
 | 
						|
	}
 | 
						|
	if ((unsigned)alarm->time.tm_mon >= 12) {
 | 
						|
		alarm->time.tm_mon = now.tm_mon;
 | 
						|
		if (missing == none)
 | 
						|
			missing = month;
 | 
						|
	}
 | 
						|
	if (alarm->time.tm_year == -1) {
 | 
						|
		alarm->time.tm_year = now.tm_year;
 | 
						|
		if (missing == none)
 | 
						|
			missing = year;
 | 
						|
	}
 | 
						|
 | 
						|
	/* with luck, no rollover is needed */
 | 
						|
	rtc_tm_to_time(&now, &t_now);
 | 
						|
	rtc_tm_to_time(&alarm->time, &t_alm);
 | 
						|
	if (t_now < t_alm)
 | 
						|
		goto done;
 | 
						|
 | 
						|
	switch (missing) {
 | 
						|
 | 
						|
	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 | 
						|
	 * that will trigger at 5am will do so at 5am Tuesday, which
 | 
						|
	 * could also be in the next month or year.  This is a common
 | 
						|
	 * case, especially for PCs.
 | 
						|
	 */
 | 
						|
	case day:
 | 
						|
		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 | 
						|
		t_alm += 24 * 60 * 60;
 | 
						|
		rtc_time_to_tm(t_alm, &alarm->time);
 | 
						|
		break;
 | 
						|
 | 
						|
	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 | 
						|
	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 | 
						|
	 * may end up in the month after that!  Many newer PCs support
 | 
						|
	 * this type of alarm.
 | 
						|
	 */
 | 
						|
	case month:
 | 
						|
		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 | 
						|
		do {
 | 
						|
			if (alarm->time.tm_mon < 11)
 | 
						|
				alarm->time.tm_mon++;
 | 
						|
			else {
 | 
						|
				alarm->time.tm_mon = 0;
 | 
						|
				alarm->time.tm_year++;
 | 
						|
			}
 | 
						|
			days = rtc_month_days(alarm->time.tm_mon,
 | 
						|
					alarm->time.tm_year);
 | 
						|
		} while (days < alarm->time.tm_mday);
 | 
						|
		break;
 | 
						|
 | 
						|
	/* Year rollover ... easy except for leap years! */
 | 
						|
	case year:
 | 
						|
		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 | 
						|
		do {
 | 
						|
			alarm->time.tm_year++;
 | 
						|
		} while (rtc_valid_tm(&alarm->time) != 0);
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 | 
						|
	}
 | 
						|
 | 
						|
done:
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = mutex_lock_interruptible(&rtc->ops_lock);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	if (rtc->ops == NULL)
 | 
						|
		err = -ENODEV;
 | 
						|
	else if (!rtc->ops->read_alarm)
 | 
						|
		err = -EINVAL;
 | 
						|
	else {
 | 
						|
		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 | 
						|
		alarm->enabled = rtc->aie_timer.enabled;
 | 
						|
		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 | 
						|
	}
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_read_alarm);
 | 
						|
 | 
						|
static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | 
						|
{
 | 
						|
	struct rtc_time tm;
 | 
						|
	long now, scheduled;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = rtc_valid_tm(&alarm->time);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	rtc_tm_to_time(&alarm->time, &scheduled);
 | 
						|
 | 
						|
	/* Make sure we're not setting alarms in the past */
 | 
						|
	err = __rtc_read_time(rtc, &tm);
 | 
						|
	rtc_tm_to_time(&tm, &now);
 | 
						|
	if (scheduled <= now)
 | 
						|
		return -ETIME;
 | 
						|
	/*
 | 
						|
	 * XXX - We just checked to make sure the alarm time is not
 | 
						|
	 * in the past, but there is still a race window where if
 | 
						|
	 * the is alarm set for the next second and the second ticks
 | 
						|
	 * over right here, before we set the alarm.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (!rtc->ops)
 | 
						|
		err = -ENODEV;
 | 
						|
	else if (!rtc->ops->set_alarm)
 | 
						|
		err = -EINVAL;
 | 
						|
	else
 | 
						|
		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = rtc_valid_tm(&alarm->time);
 | 
						|
	if (err != 0)
 | 
						|
		return err;
 | 
						|
 | 
						|
	err = mutex_lock_interruptible(&rtc->ops_lock);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	if (rtc->aie_timer.enabled) {
 | 
						|
		rtc_timer_remove(rtc, &rtc->aie_timer);
 | 
						|
	}
 | 
						|
	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 | 
						|
	rtc->aie_timer.period = ktime_set(0, 0);
 | 
						|
	if (alarm->enabled) {
 | 
						|
		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 | 
						|
	}
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_set_alarm);
 | 
						|
 | 
						|
/* Called once per device from rtc_device_register */
 | 
						|
int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = rtc_valid_tm(&alarm->time);
 | 
						|
	if (err != 0)
 | 
						|
		return err;
 | 
						|
 | 
						|
	err = mutex_lock_interruptible(&rtc->ops_lock);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 | 
						|
	rtc->aie_timer.period = ktime_set(0, 0);
 | 
						|
	if (alarm->enabled) {
 | 
						|
		rtc->aie_timer.enabled = 1;
 | 
						|
		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 | 
						|
	}
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 | 
						|
 | 
						|
 | 
						|
 | 
						|
int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 | 
						|
{
 | 
						|
	int err = mutex_lock_interruptible(&rtc->ops_lock);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	if (rtc->aie_timer.enabled != enabled) {
 | 
						|
		if (enabled)
 | 
						|
			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 | 
						|
		else
 | 
						|
			rtc_timer_remove(rtc, &rtc->aie_timer);
 | 
						|
	}
 | 
						|
 | 
						|
	if (err)
 | 
						|
		/* nothing */;
 | 
						|
	else if (!rtc->ops)
 | 
						|
		err = -ENODEV;
 | 
						|
	else if (!rtc->ops->alarm_irq_enable)
 | 
						|
		err = -EINVAL;
 | 
						|
	else
 | 
						|
		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 | 
						|
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 | 
						|
 | 
						|
int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 | 
						|
{
 | 
						|
	int err = mutex_lock_interruptible(&rtc->ops_lock);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 | 
						|
	if (enabled == 0 && rtc->uie_irq_active) {
 | 
						|
		mutex_unlock(&rtc->ops_lock);
 | 
						|
		return rtc_dev_update_irq_enable_emul(rtc, 0);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	/* make sure we're changing state */
 | 
						|
	if (rtc->uie_rtctimer.enabled == enabled)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (enabled) {
 | 
						|
		struct rtc_time tm;
 | 
						|
		ktime_t now, onesec;
 | 
						|
 | 
						|
		__rtc_read_time(rtc, &tm);
 | 
						|
		onesec = ktime_set(1, 0);
 | 
						|
		now = rtc_tm_to_ktime(tm);
 | 
						|
		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 | 
						|
		rtc->uie_rtctimer.period = ktime_set(1, 0);
 | 
						|
		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 | 
						|
	} else
 | 
						|
		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 | 
						|
 | 
						|
out:
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 | 
						|
	/*
 | 
						|
	 * Enable emulation if the driver did not provide
 | 
						|
	 * the update_irq_enable function pointer or if returned
 | 
						|
	 * -EINVAL to signal that it has been configured without
 | 
						|
	 * interrupts or that are not available at the moment.
 | 
						|
	 */
 | 
						|
	if (err == -EINVAL)
 | 
						|
		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 | 
						|
#endif
 | 
						|
	return err;
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 | 
						|
 * @rtc: pointer to the rtc device
 | 
						|
 *
 | 
						|
 * This function is called when an AIE, UIE or PIE mode interrupt
 | 
						|
 * has occurred (or been emulated).
 | 
						|
 *
 | 
						|
 * Triggers the registered irq_task function callback.
 | 
						|
 */
 | 
						|
void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/* mark one irq of the appropriate mode */
 | 
						|
	spin_lock_irqsave(&rtc->irq_lock, flags);
 | 
						|
	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 | 
						|
	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 | 
						|
 | 
						|
	/* call the task func */
 | 
						|
	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 | 
						|
	if (rtc->irq_task)
 | 
						|
		rtc->irq_task->func(rtc->irq_task->private_data);
 | 
						|
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 | 
						|
 | 
						|
	wake_up_interruptible(&rtc->irq_queue);
 | 
						|
	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * rtc_aie_update_irq - AIE mode rtctimer hook
 | 
						|
 * @private: pointer to the rtc_device
 | 
						|
 *
 | 
						|
 * This functions is called when the aie_timer expires.
 | 
						|
 */
 | 
						|
void rtc_aie_update_irq(void *private)
 | 
						|
{
 | 
						|
	struct rtc_device *rtc = (struct rtc_device *)private;
 | 
						|
	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * rtc_uie_update_irq - UIE mode rtctimer hook
 | 
						|
 * @private: pointer to the rtc_device
 | 
						|
 *
 | 
						|
 * This functions is called when the uie_timer expires.
 | 
						|
 */
 | 
						|
void rtc_uie_update_irq(void *private)
 | 
						|
{
 | 
						|
	struct rtc_device *rtc = (struct rtc_device *)private;
 | 
						|
	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * rtc_pie_update_irq - PIE mode hrtimer hook
 | 
						|
 * @timer: pointer to the pie mode hrtimer
 | 
						|
 *
 | 
						|
 * This function is used to emulate PIE mode interrupts
 | 
						|
 * using an hrtimer. This function is called when the periodic
 | 
						|
 * hrtimer expires.
 | 
						|
 */
 | 
						|
enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	struct rtc_device *rtc;
 | 
						|
	ktime_t period;
 | 
						|
	int count;
 | 
						|
	rtc = container_of(timer, struct rtc_device, pie_timer);
 | 
						|
 | 
						|
	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
 | 
						|
	count = hrtimer_forward_now(timer, period);
 | 
						|
 | 
						|
	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 | 
						|
 | 
						|
	return HRTIMER_RESTART;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 | 
						|
 * @rtc: the rtc device
 | 
						|
 * @num: how many irqs are being reported (usually one)
 | 
						|
 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 | 
						|
 * Context: any
 | 
						|
 */
 | 
						|
void rtc_update_irq(struct rtc_device *rtc,
 | 
						|
		unsigned long num, unsigned long events)
 | 
						|
{
 | 
						|
	schedule_work(&rtc->irqwork);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_update_irq);
 | 
						|
 | 
						|
static int __rtc_match(struct device *dev, void *data)
 | 
						|
{
 | 
						|
	char *name = (char *)data;
 | 
						|
 | 
						|
	if (strcmp(dev_name(dev), name) == 0)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct rtc_device *rtc_class_open(char *name)
 | 
						|
{
 | 
						|
	struct device *dev;
 | 
						|
	struct rtc_device *rtc = NULL;
 | 
						|
 | 
						|
	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 | 
						|
	if (dev)
 | 
						|
		rtc = to_rtc_device(dev);
 | 
						|
 | 
						|
	if (rtc) {
 | 
						|
		if (!try_module_get(rtc->owner)) {
 | 
						|
			put_device(dev);
 | 
						|
			rtc = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return rtc;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_class_open);
 | 
						|
 | 
						|
void rtc_class_close(struct rtc_device *rtc)
 | 
						|
{
 | 
						|
	module_put(rtc->owner);
 | 
						|
	put_device(&rtc->dev);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_class_close);
 | 
						|
 | 
						|
int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 | 
						|
{
 | 
						|
	int retval = -EBUSY;
 | 
						|
 | 
						|
	if (task == NULL || task->func == NULL)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Cannot register while the char dev is in use */
 | 
						|
	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	spin_lock_irq(&rtc->irq_task_lock);
 | 
						|
	if (rtc->irq_task == NULL) {
 | 
						|
		rtc->irq_task = task;
 | 
						|
		retval = 0;
 | 
						|
	}
 | 
						|
	spin_unlock_irq(&rtc->irq_task_lock);
 | 
						|
 | 
						|
	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 | 
						|
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_irq_register);
 | 
						|
 | 
						|
void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 | 
						|
{
 | 
						|
	spin_lock_irq(&rtc->irq_task_lock);
 | 
						|
	if (rtc->irq_task == task)
 | 
						|
		rtc->irq_task = NULL;
 | 
						|
	spin_unlock_irq(&rtc->irq_task_lock);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 | 
						|
 | 
						|
static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We always cancel the timer here first, because otherwise
 | 
						|
	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 | 
						|
	 * when we manage to start the timer before the callback
 | 
						|
	 * returns HRTIMER_RESTART.
 | 
						|
	 *
 | 
						|
	 * We cannot use hrtimer_cancel() here as a running callback
 | 
						|
	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 | 
						|
	 * would spin forever.
 | 
						|
	 */
 | 
						|
	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	if (enabled) {
 | 
						|
		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
 | 
						|
 | 
						|
		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 | 
						|
 * @rtc: the rtc device
 | 
						|
 * @task: currently registered with rtc_irq_register()
 | 
						|
 * @enabled: true to enable periodic IRQs
 | 
						|
 * Context: any
 | 
						|
 *
 | 
						|
 * Note that rtc_irq_set_freq() should previously have been used to
 | 
						|
 * specify the desired frequency of periodic IRQ task->func() callbacks.
 | 
						|
 */
 | 
						|
int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
retry:
 | 
						|
	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 | 
						|
	if (rtc->irq_task != NULL && task == NULL)
 | 
						|
		err = -EBUSY;
 | 
						|
	if (rtc->irq_task != task)
 | 
						|
		err = -EACCES;
 | 
						|
	if (!err) {
 | 
						|
		if (rtc_update_hrtimer(rtc, enabled) < 0) {
 | 
						|
			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 | 
						|
			cpu_relax();
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
		rtc->pie_enabled = enabled;
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 | 
						|
 | 
						|
/**
 | 
						|
 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 | 
						|
 * @rtc: the rtc device
 | 
						|
 * @task: currently registered with rtc_irq_register()
 | 
						|
 * @freq: positive frequency with which task->func() will be called
 | 
						|
 * Context: any
 | 
						|
 *
 | 
						|
 * Note that rtc_irq_set_state() is used to enable or disable the
 | 
						|
 * periodic IRQs.
 | 
						|
 */
 | 
						|
int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (freq <= 0 || freq > RTC_MAX_FREQ)
 | 
						|
		return -EINVAL;
 | 
						|
retry:
 | 
						|
	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 | 
						|
	if (rtc->irq_task != NULL && task == NULL)
 | 
						|
		err = -EBUSY;
 | 
						|
	if (rtc->irq_task != task)
 | 
						|
		err = -EACCES;
 | 
						|
	if (!err) {
 | 
						|
		rtc->irq_freq = freq;
 | 
						|
		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 | 
						|
			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 | 
						|
			cpu_relax();
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 | 
						|
 | 
						|
/**
 | 
						|
 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 | 
						|
 * @rtc rtc device
 | 
						|
 * @timer timer being added.
 | 
						|
 *
 | 
						|
 * Enqueues a timer onto the rtc devices timerqueue and sets
 | 
						|
 * the next alarm event appropriately.
 | 
						|
 *
 | 
						|
 * Sets the enabled bit on the added timer.
 | 
						|
 *
 | 
						|
 * Must hold ops_lock for proper serialization of timerqueue
 | 
						|
 */
 | 
						|
static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 | 
						|
{
 | 
						|
	timer->enabled = 1;
 | 
						|
	timerqueue_add(&rtc->timerqueue, &timer->node);
 | 
						|
	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
 | 
						|
		struct rtc_wkalrm alarm;
 | 
						|
		int err;
 | 
						|
		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 | 
						|
		alarm.enabled = 1;
 | 
						|
		err = __rtc_set_alarm(rtc, &alarm);
 | 
						|
		if (err == -ETIME)
 | 
						|
			schedule_work(&rtc->irqwork);
 | 
						|
		else if (err) {
 | 
						|
			timerqueue_del(&rtc->timerqueue, &timer->node);
 | 
						|
			timer->enabled = 0;
 | 
						|
			return err;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 | 
						|
 * @rtc rtc device
 | 
						|
 * @timer timer being removed.
 | 
						|
 *
 | 
						|
 * Removes a timer onto the rtc devices timerqueue and sets
 | 
						|
 * the next alarm event appropriately.
 | 
						|
 *
 | 
						|
 * Clears the enabled bit on the removed timer.
 | 
						|
 *
 | 
						|
 * Must hold ops_lock for proper serialization of timerqueue
 | 
						|
 */
 | 
						|
static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 | 
						|
{
 | 
						|
	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 | 
						|
	timerqueue_del(&rtc->timerqueue, &timer->node);
 | 
						|
	timer->enabled = 0;
 | 
						|
	if (next == &timer->node) {
 | 
						|
		struct rtc_wkalrm alarm;
 | 
						|
		int err;
 | 
						|
		next = timerqueue_getnext(&rtc->timerqueue);
 | 
						|
		if (!next)
 | 
						|
			return;
 | 
						|
		alarm.time = rtc_ktime_to_tm(next->expires);
 | 
						|
		alarm.enabled = 1;
 | 
						|
		err = __rtc_set_alarm(rtc, &alarm);
 | 
						|
		if (err == -ETIME)
 | 
						|
			schedule_work(&rtc->irqwork);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rtc_timer_do_work - Expires rtc timers
 | 
						|
 * @rtc rtc device
 | 
						|
 * @timer timer being removed.
 | 
						|
 *
 | 
						|
 * Expires rtc timers. Reprograms next alarm event if needed.
 | 
						|
 * Called via worktask.
 | 
						|
 *
 | 
						|
 * Serializes access to timerqueue via ops_lock mutex
 | 
						|
 */
 | 
						|
void rtc_timer_do_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct rtc_timer *timer;
 | 
						|
	struct timerqueue_node *next;
 | 
						|
	ktime_t now;
 | 
						|
	struct rtc_time tm;
 | 
						|
 | 
						|
	struct rtc_device *rtc =
 | 
						|
		container_of(work, struct rtc_device, irqwork);
 | 
						|
 | 
						|
	mutex_lock(&rtc->ops_lock);
 | 
						|
again:
 | 
						|
	__rtc_read_time(rtc, &tm);
 | 
						|
	now = rtc_tm_to_ktime(tm);
 | 
						|
	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 | 
						|
		if (next->expires.tv64 > now.tv64)
 | 
						|
			break;
 | 
						|
 | 
						|
		/* expire timer */
 | 
						|
		timer = container_of(next, struct rtc_timer, node);
 | 
						|
		timerqueue_del(&rtc->timerqueue, &timer->node);
 | 
						|
		timer->enabled = 0;
 | 
						|
		if (timer->task.func)
 | 
						|
			timer->task.func(timer->task.private_data);
 | 
						|
 | 
						|
		/* Re-add/fwd periodic timers */
 | 
						|
		if (ktime_to_ns(timer->period)) {
 | 
						|
			timer->node.expires = ktime_add(timer->node.expires,
 | 
						|
							timer->period);
 | 
						|
			timer->enabled = 1;
 | 
						|
			timerqueue_add(&rtc->timerqueue, &timer->node);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set next alarm */
 | 
						|
	if (next) {
 | 
						|
		struct rtc_wkalrm alarm;
 | 
						|
		int err;
 | 
						|
		alarm.time = rtc_ktime_to_tm(next->expires);
 | 
						|
		alarm.enabled = 1;
 | 
						|
		err = __rtc_set_alarm(rtc, &alarm);
 | 
						|
		if (err == -ETIME)
 | 
						|
			goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* rtc_timer_init - Initializes an rtc_timer
 | 
						|
 * @timer: timer to be intiialized
 | 
						|
 * @f: function pointer to be called when timer fires
 | 
						|
 * @data: private data passed to function pointer
 | 
						|
 *
 | 
						|
 * Kernel interface to initializing an rtc_timer.
 | 
						|
 */
 | 
						|
void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
 | 
						|
{
 | 
						|
	timerqueue_init(&timer->node);
 | 
						|
	timer->enabled = 0;
 | 
						|
	timer->task.func = f;
 | 
						|
	timer->task.private_data = data;
 | 
						|
}
 | 
						|
 | 
						|
/* rtc_timer_start - Sets an rtc_timer to fire in the future
 | 
						|
 * @ rtc: rtc device to be used
 | 
						|
 * @ timer: timer being set
 | 
						|
 * @ expires: time at which to expire the timer
 | 
						|
 * @ period: period that the timer will recur
 | 
						|
 *
 | 
						|
 * Kernel interface to set an rtc_timer
 | 
						|
 */
 | 
						|
int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
 | 
						|
			ktime_t expires, ktime_t period)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	mutex_lock(&rtc->ops_lock);
 | 
						|
	if (timer->enabled)
 | 
						|
		rtc_timer_remove(rtc, timer);
 | 
						|
 | 
						|
	timer->node.expires = expires;
 | 
						|
	timer->period = period;
 | 
						|
 | 
						|
	ret = rtc_timer_enqueue(rtc, timer);
 | 
						|
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* rtc_timer_cancel - Stops an rtc_timer
 | 
						|
 * @ rtc: rtc device to be used
 | 
						|
 * @ timer: timer being set
 | 
						|
 *
 | 
						|
 * Kernel interface to cancel an rtc_timer
 | 
						|
 */
 | 
						|
int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	mutex_lock(&rtc->ops_lock);
 | 
						|
	if (timer->enabled)
 | 
						|
		rtc_timer_remove(rtc, timer);
 | 
						|
	mutex_unlock(&rtc->ops_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
 |