 6684b5729d
			
		
	
	
	6684b5729d
	
	
	
		
			
			That old mail address doesnt exist any more. This changes all occurences to my new address. Signed-off-by: Oskar Schirmer <oskar@scara.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
		
			
				
	
	
		
			64 lines
		
	
	
	
		
			1.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
	
		
			1.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * rational fractions
 | |
|  *
 | |
|  * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
 | |
|  *
 | |
|  * helper functions when coping with rational numbers
 | |
|  */
 | |
| 
 | |
| #include <linux/rational.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/export.h>
 | |
| 
 | |
| /*
 | |
|  * calculate best rational approximation for a given fraction
 | |
|  * taking into account restricted register size, e.g. to find
 | |
|  * appropriate values for a pll with 5 bit denominator and
 | |
|  * 8 bit numerator register fields, trying to set up with a
 | |
|  * frequency ratio of 3.1415, one would say:
 | |
|  *
 | |
|  * rational_best_approximation(31415, 10000,
 | |
|  *		(1 << 8) - 1, (1 << 5) - 1, &n, &d);
 | |
|  *
 | |
|  * you may look at given_numerator as a fixed point number,
 | |
|  * with the fractional part size described in given_denominator.
 | |
|  *
 | |
|  * for theoretical background, see:
 | |
|  * http://en.wikipedia.org/wiki/Continued_fraction
 | |
|  */
 | |
| 
 | |
| void rational_best_approximation(
 | |
| 	unsigned long given_numerator, unsigned long given_denominator,
 | |
| 	unsigned long max_numerator, unsigned long max_denominator,
 | |
| 	unsigned long *best_numerator, unsigned long *best_denominator)
 | |
| {
 | |
| 	unsigned long n, d, n0, d0, n1, d1;
 | |
| 	n = given_numerator;
 | |
| 	d = given_denominator;
 | |
| 	n0 = d1 = 0;
 | |
| 	n1 = d0 = 1;
 | |
| 	for (;;) {
 | |
| 		unsigned long t, a;
 | |
| 		if ((n1 > max_numerator) || (d1 > max_denominator)) {
 | |
| 			n1 = n0;
 | |
| 			d1 = d0;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (d == 0)
 | |
| 			break;
 | |
| 		t = d;
 | |
| 		a = n / d;
 | |
| 		d = n % d;
 | |
| 		n = t;
 | |
| 		t = n0 + a * n1;
 | |
| 		n0 = n1;
 | |
| 		n1 = t;
 | |
| 		t = d0 + a * d1;
 | |
| 		d0 = d1;
 | |
| 		d1 = t;
 | |
| 	}
 | |
| 	*best_numerator = n1;
 | |
| 	*best_denominator = d1;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(rational_best_approximation);
 |