 a4fbe6ab1e
			
		
	
	
	a4fbe6ab1e
	
	
	
		
			
			Currently the xfs_inode.h header has a dependency on the definition of the BMAP btree records as the inode fork includes an array of xfs_bmbt_rec_host_t objects in it's definition. Move all the btree format definitions from xfs_btree.h, xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to xfs_format.h to continue the process of centralising the on-disk format definitions. With this done, the xfs inode definitions are no longer dependent on btree header files. The enables a massive culling of unnecessary includes, with close to 200 #include directives removed from the XFS kernel code base. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
		
			
				
	
	
		
			1331 lines
		
	
	
	
		
			34 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1331 lines
		
	
	
	
		
			34 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_inum.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_icache.h"
 | |
| #include "xfs_bmap_util.h"
 | |
| 
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/freezer.h>
 | |
| 
 | |
| STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
 | |
| 				struct xfs_perag *pag, struct xfs_inode *ip);
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialise an xfs_inode.
 | |
|  */
 | |
| struct xfs_inode *
 | |
| xfs_inode_alloc(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	xfs_ino_t		ino)
 | |
| {
 | |
| 	struct xfs_inode	*ip;
 | |
| 
 | |
| 	/*
 | |
| 	 * if this didn't occur in transactions, we could use
 | |
| 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
 | |
| 	 * code up to do this anyway.
 | |
| 	 */
 | |
| 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
 | |
| 	if (!ip)
 | |
| 		return NULL;
 | |
| 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
 | |
| 		kmem_zone_free(xfs_inode_zone, ip);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(atomic_read(&ip->i_pincount) == 0);
 | |
| 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
 | |
| 	ASSERT(!xfs_isiflocked(ip));
 | |
| 	ASSERT(ip->i_ino == 0);
 | |
| 
 | |
| 	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
 | |
| 
 | |
| 	/* initialise the xfs inode */
 | |
| 	ip->i_ino = ino;
 | |
| 	ip->i_mount = mp;
 | |
| 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
 | |
| 	ip->i_afp = NULL;
 | |
| 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
 | |
| 	ip->i_flags = 0;
 | |
| 	ip->i_delayed_blks = 0;
 | |
| 	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
 | |
| 
 | |
| 	return ip;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_inode_free_callback(
 | |
| 	struct rcu_head		*head)
 | |
| {
 | |
| 	struct inode		*inode = container_of(head, struct inode, i_rcu);
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 
 | |
| 	kmem_zone_free(xfs_inode_zone, ip);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_inode_free(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	switch (ip->i_d.di_mode & S_IFMT) {
 | |
| 	case S_IFREG:
 | |
| 	case S_IFDIR:
 | |
| 	case S_IFLNK:
 | |
| 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (ip->i_afp)
 | |
| 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
 | |
| 
 | |
| 	if (ip->i_itemp) {
 | |
| 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
 | |
| 		xfs_inode_item_destroy(ip);
 | |
| 		ip->i_itemp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we use RCU freeing we need to ensure the inode always
 | |
| 	 * appears to be reclaimed with an invalid inode number when in the
 | |
| 	 * free state. The ip->i_flags_lock provides the barrier against lookup
 | |
| 	 * races.
 | |
| 	 */
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	ip->i_flags = XFS_IRECLAIM;
 | |
| 	ip->i_ino = 0;
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 	/* asserts to verify all state is correct here */
 | |
| 	ASSERT(atomic_read(&ip->i_pincount) == 0);
 | |
| 	ASSERT(!xfs_isiflocked(ip));
 | |
| 
 | |
| 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the validity of the inode we just found it the cache
 | |
|  */
 | |
| static int
 | |
| xfs_iget_cache_hit(
 | |
| 	struct xfs_perag	*pag,
 | |
| 	struct xfs_inode	*ip,
 | |
| 	xfs_ino_t		ino,
 | |
| 	int			flags,
 | |
| 	int			lock_flags) __releases(RCU)
 | |
| {
 | |
| 	struct inode		*inode = VFS_I(ip);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * check for re-use of an inode within an RCU grace period due to the
 | |
| 	 * radix tree nodes not being updated yet. We monitor for this by
 | |
| 	 * setting the inode number to zero before freeing the inode structure.
 | |
| 	 * If the inode has been reallocated and set up, then the inode number
 | |
| 	 * will not match, so check for that, too.
 | |
| 	 */
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	if (ip->i_ino != ino) {
 | |
| 		trace_xfs_iget_skip(ip);
 | |
| 		XFS_STATS_INC(xs_ig_frecycle);
 | |
| 		error = EAGAIN;
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are racing with another cache hit that is currently
 | |
| 	 * instantiating this inode or currently recycling it out of
 | |
| 	 * reclaimabe state, wait for the initialisation to complete
 | |
| 	 * before continuing.
 | |
| 	 *
 | |
| 	 * XXX(hch): eventually we should do something equivalent to
 | |
| 	 *	     wait_on_inode to wait for these flags to be cleared
 | |
| 	 *	     instead of polling for it.
 | |
| 	 */
 | |
| 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
 | |
| 		trace_xfs_iget_skip(ip);
 | |
| 		XFS_STATS_INC(xs_ig_frecycle);
 | |
| 		error = EAGAIN;
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If lookup is racing with unlink return an error immediately.
 | |
| 	 */
 | |
| 	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
 | |
| 		error = ENOENT;
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
 | |
| 	 * Need to carefully get it back into useable state.
 | |
| 	 */
 | |
| 	if (ip->i_flags & XFS_IRECLAIMABLE) {
 | |
| 		trace_xfs_iget_reclaim(ip);
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
 | |
| 		 * from stomping over us while we recycle the inode.  We can't
 | |
| 		 * clear the radix tree reclaimable tag yet as it requires
 | |
| 		 * pag_ici_lock to be held exclusive.
 | |
| 		 */
 | |
| 		ip->i_flags |= XFS_IRECLAIM;
 | |
| 
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		error = -inode_init_always(mp->m_super, inode);
 | |
| 		if (error) {
 | |
| 			/*
 | |
| 			 * Re-initializing the inode failed, and we are in deep
 | |
| 			 * trouble.  Try to re-add it to the reclaim list.
 | |
| 			 */
 | |
| 			rcu_read_lock();
 | |
| 			spin_lock(&ip->i_flags_lock);
 | |
| 
 | |
| 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 | |
| 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 | |
| 			trace_xfs_iget_reclaim_fail(ip);
 | |
| 			goto out_error;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&pag->pag_ici_lock);
 | |
| 		spin_lock(&ip->i_flags_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Clear the per-lifetime state in the inode as we are now
 | |
| 		 * effectively a new inode and need to return to the initial
 | |
| 		 * state before reuse occurs.
 | |
| 		 */
 | |
| 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 | |
| 		ip->i_flags |= XFS_INEW;
 | |
| 		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
 | |
| 		inode->i_state = I_NEW;
 | |
| 
 | |
| 		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
 | |
| 		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
 | |
| 
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 		spin_unlock(&pag->pag_ici_lock);
 | |
| 	} else {
 | |
| 		/* If the VFS inode is being torn down, pause and try again. */
 | |
| 		if (!igrab(inode)) {
 | |
| 			trace_xfs_iget_skip(ip);
 | |
| 			error = EAGAIN;
 | |
| 			goto out_error;
 | |
| 		}
 | |
| 
 | |
| 		/* We've got a live one. */
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 		rcu_read_unlock();
 | |
| 		trace_xfs_iget_hit(ip);
 | |
| 	}
 | |
| 
 | |
| 	if (lock_flags != 0)
 | |
| 		xfs_ilock(ip, lock_flags);
 | |
| 
 | |
| 	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
 | |
| 	XFS_STATS_INC(xs_ig_found);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_error:
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	rcu_read_unlock();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| xfs_iget_cache_miss(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_perag	*pag,
 | |
| 	xfs_trans_t		*tp,
 | |
| 	xfs_ino_t		ino,
 | |
| 	struct xfs_inode	**ipp,
 | |
| 	int			flags,
 | |
| 	int			lock_flags)
 | |
| {
 | |
| 	struct xfs_inode	*ip;
 | |
| 	int			error;
 | |
| 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 | |
| 	int			iflags;
 | |
| 
 | |
| 	ip = xfs_inode_alloc(mp, ino);
 | |
| 	if (!ip)
 | |
| 		return ENOMEM;
 | |
| 
 | |
| 	error = xfs_iread(mp, tp, ip, flags);
 | |
| 	if (error)
 | |
| 		goto out_destroy;
 | |
| 
 | |
| 	trace_xfs_iget_miss(ip);
 | |
| 
 | |
| 	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
 | |
| 		error = ENOENT;
 | |
| 		goto out_destroy;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Preload the radix tree so we can insert safely under the
 | |
| 	 * write spinlock. Note that we cannot sleep inside the preload
 | |
| 	 * region. Since we can be called from transaction context, don't
 | |
| 	 * recurse into the file system.
 | |
| 	 */
 | |
| 	if (radix_tree_preload(GFP_NOFS)) {
 | |
| 		error = EAGAIN;
 | |
| 		goto out_destroy;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because the inode hasn't been added to the radix-tree yet it can't
 | |
| 	 * be found by another thread, so we can do the non-sleeping lock here.
 | |
| 	 */
 | |
| 	if (lock_flags) {
 | |
| 		if (!xfs_ilock_nowait(ip, lock_flags))
 | |
| 			BUG();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * These values must be set before inserting the inode into the radix
 | |
| 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
 | |
| 	 * RCU locking mechanism) can find it and that lookup must see that this
 | |
| 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
 | |
| 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 | |
| 	 * memory barrier that ensures this detection works correctly at lookup
 | |
| 	 * time.
 | |
| 	 */
 | |
| 	iflags = XFS_INEW;
 | |
| 	if (flags & XFS_IGET_DONTCACHE)
 | |
| 		iflags |= XFS_IDONTCACHE;
 | |
| 	ip->i_udquot = NULL;
 | |
| 	ip->i_gdquot = NULL;
 | |
| 	ip->i_pdquot = NULL;
 | |
| 	xfs_iflags_set(ip, iflags);
 | |
| 
 | |
| 	/* insert the new inode */
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 | |
| 	if (unlikely(error)) {
 | |
| 		WARN_ON(error != -EEXIST);
 | |
| 		XFS_STATS_INC(xs_ig_dup);
 | |
| 		error = EAGAIN;
 | |
| 		goto out_preload_end;
 | |
| 	}
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 	return 0;
 | |
| 
 | |
| out_preload_end:
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 	if (lock_flags)
 | |
| 		xfs_iunlock(ip, lock_flags);
 | |
| out_destroy:
 | |
| 	__destroy_inode(VFS_I(ip));
 | |
| 	xfs_inode_free(ip);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up an inode by number in the given file system.
 | |
|  * The inode is looked up in the cache held in each AG.
 | |
|  * If the inode is found in the cache, initialise the vfs inode
 | |
|  * if necessary.
 | |
|  *
 | |
|  * If it is not in core, read it in from the file system's device,
 | |
|  * add it to the cache and initialise the vfs inode.
 | |
|  *
 | |
|  * The inode is locked according to the value of the lock_flags parameter.
 | |
|  * This flag parameter indicates how and if the inode's IO lock and inode lock
 | |
|  * should be taken.
 | |
|  *
 | |
|  * mp -- the mount point structure for the current file system.  It points
 | |
|  *       to the inode hash table.
 | |
|  * tp -- a pointer to the current transaction if there is one.  This is
 | |
|  *       simply passed through to the xfs_iread() call.
 | |
|  * ino -- the number of the inode desired.  This is the unique identifier
 | |
|  *        within the file system for the inode being requested.
 | |
|  * lock_flags -- flags indicating how to lock the inode.  See the comment
 | |
|  *		 for xfs_ilock() for a list of valid values.
 | |
|  */
 | |
| int
 | |
| xfs_iget(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_ino_t	ino,
 | |
| 	uint		flags,
 | |
| 	uint		lock_flags,
 | |
| 	xfs_inode_t	**ipp)
 | |
| {
 | |
| 	xfs_inode_t	*ip;
 | |
| 	int		error;
 | |
| 	xfs_perag_t	*pag;
 | |
| 	xfs_agino_t	agino;
 | |
| 
 | |
| 	/*
 | |
| 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
 | |
| 	 * doesn't get freed while it's being referenced during a
 | |
| 	 * radix tree traversal here.  It assumes this function
 | |
| 	 * aqcuires only the ILOCK (and therefore it has no need to
 | |
| 	 * involve the IOLOCK in this synchronization).
 | |
| 	 */
 | |
| 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 | |
| 
 | |
| 	/* reject inode numbers outside existing AGs */
 | |
| 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
 | |
| 		return EINVAL;
 | |
| 
 | |
| 	/* get the perag structure and ensure that it's inode capable */
 | |
| 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 | |
| 	agino = XFS_INO_TO_AGINO(mp, ino);
 | |
| 
 | |
| again:
 | |
| 	error = 0;
 | |
| 	rcu_read_lock();
 | |
| 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 | |
| 
 | |
| 	if (ip) {
 | |
| 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 | |
| 		if (error)
 | |
| 			goto out_error_or_again;
 | |
| 	} else {
 | |
| 		rcu_read_unlock();
 | |
| 		XFS_STATS_INC(xs_ig_missed);
 | |
| 
 | |
| 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 | |
| 							flags, lock_flags);
 | |
| 		if (error)
 | |
| 			goto out_error_or_again;
 | |
| 	}
 | |
| 	xfs_perag_put(pag);
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
 | |
| 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
 | |
| 	 */
 | |
| 	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
 | |
| 		xfs_setup_inode(ip);
 | |
| 	return 0;
 | |
| 
 | |
| out_error_or_again:
 | |
| 	if (error == EAGAIN) {
 | |
| 		delay(1);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	xfs_perag_put(pag);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The inode lookup is done in batches to keep the amount of lock traffic and
 | |
|  * radix tree lookups to a minimum. The batch size is a trade off between
 | |
|  * lookup reduction and stack usage. This is in the reclaim path, so we can't
 | |
|  * be too greedy.
 | |
|  */
 | |
| #define XFS_LOOKUP_BATCH	32
 | |
| 
 | |
| STATIC int
 | |
| xfs_inode_ag_walk_grab(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	struct inode		*inode = VFS_I(ip);
 | |
| 
 | |
| 	ASSERT(rcu_read_lock_held());
 | |
| 
 | |
| 	/*
 | |
| 	 * check for stale RCU freed inode
 | |
| 	 *
 | |
| 	 * If the inode has been reallocated, it doesn't matter if it's not in
 | |
| 	 * the AG we are walking - we are walking for writeback, so if it
 | |
| 	 * passes all the "valid inode" checks and is dirty, then we'll write
 | |
| 	 * it back anyway.  If it has been reallocated and still being
 | |
| 	 * initialised, the XFS_INEW check below will catch it.
 | |
| 	 */
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	if (!ip->i_ino)
 | |
| 		goto out_unlock_noent;
 | |
| 
 | |
| 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
 | |
| 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
 | |
| 		goto out_unlock_noent;
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 	/* nothing to sync during shutdown */
 | |
| 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 | |
| 		return EFSCORRUPTED;
 | |
| 
 | |
| 	/* If we can't grab the inode, it must on it's way to reclaim. */
 | |
| 	if (!igrab(inode))
 | |
| 		return ENOENT;
 | |
| 
 | |
| 	/* inode is valid */
 | |
| 	return 0;
 | |
| 
 | |
| out_unlock_noent:
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	return ENOENT;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_inode_ag_walk(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_perag	*pag,
 | |
| 	int			(*execute)(struct xfs_inode *ip,
 | |
| 					   struct xfs_perag *pag, int flags,
 | |
| 					   void *args),
 | |
| 	int			flags,
 | |
| 	void			*args,
 | |
| 	int			tag)
 | |
| {
 | |
| 	uint32_t		first_index;
 | |
| 	int			last_error = 0;
 | |
| 	int			skipped;
 | |
| 	int			done;
 | |
| 	int			nr_found;
 | |
| 
 | |
| restart:
 | |
| 	done = 0;
 | |
| 	skipped = 0;
 | |
| 	first_index = 0;
 | |
| 	nr_found = 0;
 | |
| 	do {
 | |
| 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 | |
| 		int		error = 0;
 | |
| 		int		i;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 
 | |
| 		if (tag == -1)
 | |
| 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
 | |
| 					(void **)batch, first_index,
 | |
| 					XFS_LOOKUP_BATCH);
 | |
| 		else
 | |
| 			nr_found = radix_tree_gang_lookup_tag(
 | |
| 					&pag->pag_ici_root,
 | |
| 					(void **) batch, first_index,
 | |
| 					XFS_LOOKUP_BATCH, tag);
 | |
| 
 | |
| 		if (!nr_found) {
 | |
| 			rcu_read_unlock();
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Grab the inodes before we drop the lock. if we found
 | |
| 		 * nothing, nr == 0 and the loop will be skipped.
 | |
| 		 */
 | |
| 		for (i = 0; i < nr_found; i++) {
 | |
| 			struct xfs_inode *ip = batch[i];
 | |
| 
 | |
| 			if (done || xfs_inode_ag_walk_grab(ip))
 | |
| 				batch[i] = NULL;
 | |
| 
 | |
| 			/*
 | |
| 			 * Update the index for the next lookup. Catch
 | |
| 			 * overflows into the next AG range which can occur if
 | |
| 			 * we have inodes in the last block of the AG and we
 | |
| 			 * are currently pointing to the last inode.
 | |
| 			 *
 | |
| 			 * Because we may see inodes that are from the wrong AG
 | |
| 			 * due to RCU freeing and reallocation, only update the
 | |
| 			 * index if it lies in this AG. It was a race that lead
 | |
| 			 * us to see this inode, so another lookup from the
 | |
| 			 * same index will not find it again.
 | |
| 			 */
 | |
| 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
 | |
| 				continue;
 | |
| 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 | |
| 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 | |
| 				done = 1;
 | |
| 		}
 | |
| 
 | |
| 		/* unlock now we've grabbed the inodes. */
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		for (i = 0; i < nr_found; i++) {
 | |
| 			if (!batch[i])
 | |
| 				continue;
 | |
| 			error = execute(batch[i], pag, flags, args);
 | |
| 			IRELE(batch[i]);
 | |
| 			if (error == EAGAIN) {
 | |
| 				skipped++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (error && last_error != EFSCORRUPTED)
 | |
| 				last_error = error;
 | |
| 		}
 | |
| 
 | |
| 		/* bail out if the filesystem is corrupted.  */
 | |
| 		if (error == EFSCORRUPTED)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 	} while (nr_found && !done);
 | |
| 
 | |
| 	if (skipped) {
 | |
| 		delay(1);
 | |
| 		goto restart;
 | |
| 	}
 | |
| 	return last_error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Background scanning to trim post-EOF preallocated space. This is queued
 | |
|  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
 | |
|  */
 | |
| STATIC void
 | |
| xfs_queue_eofblocks(
 | |
| 	struct xfs_mount *mp)
 | |
| {
 | |
| 	rcu_read_lock();
 | |
| 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
 | |
| 		queue_delayed_work(mp->m_eofblocks_workqueue,
 | |
| 				   &mp->m_eofblocks_work,
 | |
| 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_eofblocks_worker(
 | |
| 	struct work_struct *work)
 | |
| {
 | |
| 	struct xfs_mount *mp = container_of(to_delayed_work(work),
 | |
| 				struct xfs_mount, m_eofblocks_work);
 | |
| 	xfs_icache_free_eofblocks(mp, NULL);
 | |
| 	xfs_queue_eofblocks(mp);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_inode_ag_iterator(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int			(*execute)(struct xfs_inode *ip,
 | |
| 					   struct xfs_perag *pag, int flags,
 | |
| 					   void *args),
 | |
| 	int			flags,
 | |
| 	void			*args)
 | |
| {
 | |
| 	struct xfs_perag	*pag;
 | |
| 	int			error = 0;
 | |
| 	int			last_error = 0;
 | |
| 	xfs_agnumber_t		ag;
 | |
| 
 | |
| 	ag = 0;
 | |
| 	while ((pag = xfs_perag_get(mp, ag))) {
 | |
| 		ag = pag->pag_agno + 1;
 | |
| 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
 | |
| 		xfs_perag_put(pag);
 | |
| 		if (error) {
 | |
| 			last_error = error;
 | |
| 			if (error == EFSCORRUPTED)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	return XFS_ERROR(last_error);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_inode_ag_iterator_tag(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int			(*execute)(struct xfs_inode *ip,
 | |
| 					   struct xfs_perag *pag, int flags,
 | |
| 					   void *args),
 | |
| 	int			flags,
 | |
| 	void			*args,
 | |
| 	int			tag)
 | |
| {
 | |
| 	struct xfs_perag	*pag;
 | |
| 	int			error = 0;
 | |
| 	int			last_error = 0;
 | |
| 	xfs_agnumber_t		ag;
 | |
| 
 | |
| 	ag = 0;
 | |
| 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
 | |
| 		ag = pag->pag_agno + 1;
 | |
| 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
 | |
| 		xfs_perag_put(pag);
 | |
| 		if (error) {
 | |
| 			last_error = error;
 | |
| 			if (error == EFSCORRUPTED)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	return XFS_ERROR(last_error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue a new inode reclaim pass if there are reclaimable inodes and there
 | |
|  * isn't a reclaim pass already in progress. By default it runs every 5s based
 | |
|  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 | |
|  * tunable, but that can be done if this method proves to be ineffective or too
 | |
|  * aggressive.
 | |
|  */
 | |
| static void
 | |
| xfs_reclaim_work_queue(
 | |
| 	struct xfs_mount        *mp)
 | |
| {
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 | |
| 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 | |
| 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a fast pass over the inode cache to try to get reclaim moving on as
 | |
|  * many inodes as possible in a short period of time. It kicks itself every few
 | |
|  * seconds, as well as being kicked by the inode cache shrinker when memory
 | |
|  * goes low. It scans as quickly as possible avoiding locked inodes or those
 | |
|  * already being flushed, and once done schedules a future pass.
 | |
|  */
 | |
| void
 | |
| xfs_reclaim_worker(
 | |
| 	struct work_struct *work)
 | |
| {
 | |
| 	struct xfs_mount *mp = container_of(to_delayed_work(work),
 | |
| 					struct xfs_mount, m_reclaim_work);
 | |
| 
 | |
| 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
 | |
| 	xfs_reclaim_work_queue(mp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __xfs_inode_set_reclaim_tag(
 | |
| 	struct xfs_perag	*pag,
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	radix_tree_tag_set(&pag->pag_ici_root,
 | |
| 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
 | |
| 			   XFS_ICI_RECLAIM_TAG);
 | |
| 
 | |
| 	if (!pag->pag_ici_reclaimable) {
 | |
| 		/* propagate the reclaim tag up into the perag radix tree */
 | |
| 		spin_lock(&ip->i_mount->m_perag_lock);
 | |
| 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
 | |
| 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 | |
| 				XFS_ICI_RECLAIM_TAG);
 | |
| 		spin_unlock(&ip->i_mount->m_perag_lock);
 | |
| 
 | |
| 		/* schedule periodic background inode reclaim */
 | |
| 		xfs_reclaim_work_queue(ip->i_mount);
 | |
| 
 | |
| 		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
 | |
| 							-1, _RET_IP_);
 | |
| 	}
 | |
| 	pag->pag_ici_reclaimable++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We set the inode flag atomically with the radix tree tag.
 | |
|  * Once we get tag lookups on the radix tree, this inode flag
 | |
|  * can go away.
 | |
|  */
 | |
| void
 | |
| xfs_inode_set_reclaim_tag(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	struct xfs_mount *mp = ip->i_mount;
 | |
| 	struct xfs_perag *pag;
 | |
| 
 | |
| 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	__xfs_inode_set_reclaim_tag(pag, ip);
 | |
| 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 	xfs_perag_put(pag);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| __xfs_inode_clear_reclaim(
 | |
| 	xfs_perag_t	*pag,
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	pag->pag_ici_reclaimable--;
 | |
| 	if (!pag->pag_ici_reclaimable) {
 | |
| 		/* clear the reclaim tag from the perag radix tree */
 | |
| 		spin_lock(&ip->i_mount->m_perag_lock);
 | |
| 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
 | |
| 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 | |
| 				XFS_ICI_RECLAIM_TAG);
 | |
| 		spin_unlock(&ip->i_mount->m_perag_lock);
 | |
| 		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
 | |
| 							-1, _RET_IP_);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| __xfs_inode_clear_reclaim_tag(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_perag_t	*pag,
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	radix_tree_tag_clear(&pag->pag_ici_root,
 | |
| 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
 | |
| 	__xfs_inode_clear_reclaim(pag, ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Grab the inode for reclaim exclusively.
 | |
|  * Return 0 if we grabbed it, non-zero otherwise.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_reclaim_inode_grab(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	int			flags)
 | |
| {
 | |
| 	ASSERT(rcu_read_lock_held());
 | |
| 
 | |
| 	/* quick check for stale RCU freed inode */
 | |
| 	if (!ip->i_ino)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are asked for non-blocking operation, do unlocked checks to
 | |
| 	 * see if the inode already is being flushed or in reclaim to avoid
 | |
| 	 * lock traffic.
 | |
| 	 */
 | |
| 	if ((flags & SYNC_TRYLOCK) &&
 | |
| 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The radix tree lock here protects a thread in xfs_iget from racing
 | |
| 	 * with us starting reclaim on the inode.  Once we have the
 | |
| 	 * XFS_IRECLAIM flag set it will not touch us.
 | |
| 	 *
 | |
| 	 * Due to RCU lookup, we may find inodes that have been freed and only
 | |
| 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
 | |
| 	 * aren't candidates for reclaim at all, so we must check the
 | |
| 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
 | |
| 	 */
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
 | |
| 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
 | |
| 		/* not a reclaim candidate. */
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	__xfs_iflags_set(ip, XFS_IRECLAIM);
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Inodes in different states need to be treated differently. The following
 | |
|  * table lists the inode states and the reclaim actions necessary:
 | |
|  *
 | |
|  *	inode state	     iflush ret		required action
 | |
|  *      ---------------      ----------         ---------------
 | |
|  *	bad			-		reclaim
 | |
|  *	shutdown		EIO		unpin and reclaim
 | |
|  *	clean, unpinned		0		reclaim
 | |
|  *	stale, unpinned		0		reclaim
 | |
|  *	clean, pinned(*)	0		requeue
 | |
|  *	stale, pinned		EAGAIN		requeue
 | |
|  *	dirty, async		-		requeue
 | |
|  *	dirty, sync		0		reclaim
 | |
|  *
 | |
|  * (*) dgc: I don't think the clean, pinned state is possible but it gets
 | |
|  * handled anyway given the order of checks implemented.
 | |
|  *
 | |
|  * Also, because we get the flush lock first, we know that any inode that has
 | |
|  * been flushed delwri has had the flush completed by the time we check that
 | |
|  * the inode is clean.
 | |
|  *
 | |
|  * Note that because the inode is flushed delayed write by AIL pushing, the
 | |
|  * flush lock may already be held here and waiting on it can result in very
 | |
|  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 | |
|  * the caller should push the AIL first before trying to reclaim inodes to
 | |
|  * minimise the amount of time spent waiting.  For background relaim, we only
 | |
|  * bother to reclaim clean inodes anyway.
 | |
|  *
 | |
|  * Hence the order of actions after gaining the locks should be:
 | |
|  *	bad		=> reclaim
 | |
|  *	shutdown	=> unpin and reclaim
 | |
|  *	pinned, async	=> requeue
 | |
|  *	pinned, sync	=> unpin
 | |
|  *	stale		=> reclaim
 | |
|  *	clean		=> reclaim
 | |
|  *	dirty, async	=> requeue
 | |
|  *	dirty, sync	=> flush, wait and reclaim
 | |
|  */
 | |
| STATIC int
 | |
| xfs_reclaim_inode(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_perag	*pag,
 | |
| 	int			sync_mode)
 | |
| {
 | |
| 	struct xfs_buf		*bp = NULL;
 | |
| 	int			error;
 | |
| 
 | |
| restart:
 | |
| 	error = 0;
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	if (!xfs_iflock_nowait(ip)) {
 | |
| 		if (!(sync_mode & SYNC_WAIT))
 | |
| 			goto out;
 | |
| 		xfs_iflock(ip);
 | |
| 	}
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 | |
| 		xfs_iunpin_wait(ip);
 | |
| 		xfs_iflush_abort(ip, false);
 | |
| 		goto reclaim;
 | |
| 	}
 | |
| 	if (xfs_ipincount(ip)) {
 | |
| 		if (!(sync_mode & SYNC_WAIT))
 | |
| 			goto out_ifunlock;
 | |
| 		xfs_iunpin_wait(ip);
 | |
| 	}
 | |
| 	if (xfs_iflags_test(ip, XFS_ISTALE))
 | |
| 		goto reclaim;
 | |
| 	if (xfs_inode_clean(ip))
 | |
| 		goto reclaim;
 | |
| 
 | |
| 	/*
 | |
| 	 * Never flush out dirty data during non-blocking reclaim, as it would
 | |
| 	 * just contend with AIL pushing trying to do the same job.
 | |
| 	 */
 | |
| 	if (!(sync_mode & SYNC_WAIT))
 | |
| 		goto out_ifunlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we have an inode that needs flushing.
 | |
| 	 *
 | |
| 	 * Note that xfs_iflush will never block on the inode buffer lock, as
 | |
| 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
 | |
| 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
 | |
| 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
 | |
| 	 * result in an ABBA deadlock with xfs_ifree_cluster().
 | |
| 	 *
 | |
| 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
 | |
| 	 * cache to mark them stale, if we hit this case we don't actually want
 | |
| 	 * to do IO here - we want the inode marked stale so we can simply
 | |
| 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
 | |
| 	 * inode, back off and try again.  Hopefully the next pass through will
 | |
| 	 * see the stale flag set on the inode.
 | |
| 	 */
 | |
| 	error = xfs_iflush(ip, &bp);
 | |
| 	if (error == EAGAIN) {
 | |
| 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 		/* backoff longer than in xfs_ifree_cluster */
 | |
| 		delay(2);
 | |
| 		goto restart;
 | |
| 	}
 | |
| 
 | |
| 	if (!error) {
 | |
| 		error = xfs_bwrite(bp);
 | |
| 		xfs_buf_relse(bp);
 | |
| 	}
 | |
| 
 | |
| 	xfs_iflock(ip);
 | |
| reclaim:
 | |
| 	xfs_ifunlock(ip);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	XFS_STATS_INC(xs_ig_reclaims);
 | |
| 	/*
 | |
| 	 * Remove the inode from the per-AG radix tree.
 | |
| 	 *
 | |
| 	 * Because radix_tree_delete won't complain even if the item was never
 | |
| 	 * added to the tree assert that it's been there before to catch
 | |
| 	 * problems with the inode life time early on.
 | |
| 	 */
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 	if (!radix_tree_delete(&pag->pag_ici_root,
 | |
| 				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
 | |
| 		ASSERT(0);
 | |
| 	__xfs_inode_clear_reclaim(pag, ip);
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we do an (almost) spurious inode lock in order to coordinate
 | |
| 	 * with inode cache radix tree lookups.  This is because the lookup
 | |
| 	 * can reference the inodes in the cache without taking references.
 | |
| 	 *
 | |
| 	 * We make that OK here by ensuring that we wait until the inode is
 | |
| 	 * unlocked after the lookup before we go ahead and free it.
 | |
| 	 */
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	xfs_qm_dqdetach(ip);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	xfs_inode_free(ip);
 | |
| 	return error;
 | |
| 
 | |
| out_ifunlock:
 | |
| 	xfs_ifunlock(ip);
 | |
| out:
 | |
| 	xfs_iflags_clear(ip, XFS_IRECLAIM);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 	/*
 | |
| 	 * We could return EAGAIN here to make reclaim rescan the inode tree in
 | |
| 	 * a short while. However, this just burns CPU time scanning the tree
 | |
| 	 * waiting for IO to complete and the reclaim work never goes back to
 | |
| 	 * the idle state. Instead, return 0 to let the next scheduled
 | |
| 	 * background reclaim attempt to reclaim the inode again.
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 | |
|  * corrupted, we still want to try to reclaim all the inodes. If we don't,
 | |
|  * then a shut down during filesystem unmount reclaim walk leak all the
 | |
|  * unreclaimed inodes.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_reclaim_inodes_ag(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int			flags,
 | |
| 	int			*nr_to_scan)
 | |
| {
 | |
| 	struct xfs_perag	*pag;
 | |
| 	int			error = 0;
 | |
| 	int			last_error = 0;
 | |
| 	xfs_agnumber_t		ag;
 | |
| 	int			trylock = flags & SYNC_TRYLOCK;
 | |
| 	int			skipped;
 | |
| 
 | |
| restart:
 | |
| 	ag = 0;
 | |
| 	skipped = 0;
 | |
| 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
 | |
| 		unsigned long	first_index = 0;
 | |
| 		int		done = 0;
 | |
| 		int		nr_found = 0;
 | |
| 
 | |
| 		ag = pag->pag_agno + 1;
 | |
| 
 | |
| 		if (trylock) {
 | |
| 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
 | |
| 				skipped++;
 | |
| 				xfs_perag_put(pag);
 | |
| 				continue;
 | |
| 			}
 | |
| 			first_index = pag->pag_ici_reclaim_cursor;
 | |
| 		} else
 | |
| 			mutex_lock(&pag->pag_ici_reclaim_lock);
 | |
| 
 | |
| 		do {
 | |
| 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 | |
| 			int	i;
 | |
| 
 | |
| 			rcu_read_lock();
 | |
| 			nr_found = radix_tree_gang_lookup_tag(
 | |
| 					&pag->pag_ici_root,
 | |
| 					(void **)batch, first_index,
 | |
| 					XFS_LOOKUP_BATCH,
 | |
| 					XFS_ICI_RECLAIM_TAG);
 | |
| 			if (!nr_found) {
 | |
| 				done = 1;
 | |
| 				rcu_read_unlock();
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Grab the inodes before we drop the lock. if we found
 | |
| 			 * nothing, nr == 0 and the loop will be skipped.
 | |
| 			 */
 | |
| 			for (i = 0; i < nr_found; i++) {
 | |
| 				struct xfs_inode *ip = batch[i];
 | |
| 
 | |
| 				if (done || xfs_reclaim_inode_grab(ip, flags))
 | |
| 					batch[i] = NULL;
 | |
| 
 | |
| 				/*
 | |
| 				 * Update the index for the next lookup. Catch
 | |
| 				 * overflows into the next AG range which can
 | |
| 				 * occur if we have inodes in the last block of
 | |
| 				 * the AG and we are currently pointing to the
 | |
| 				 * last inode.
 | |
| 				 *
 | |
| 				 * Because we may see inodes that are from the
 | |
| 				 * wrong AG due to RCU freeing and
 | |
| 				 * reallocation, only update the index if it
 | |
| 				 * lies in this AG. It was a race that lead us
 | |
| 				 * to see this inode, so another lookup from
 | |
| 				 * the same index will not find it again.
 | |
| 				 */
 | |
| 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
 | |
| 								pag->pag_agno)
 | |
| 					continue;
 | |
| 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 | |
| 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 | |
| 					done = 1;
 | |
| 			}
 | |
| 
 | |
| 			/* unlock now we've grabbed the inodes. */
 | |
| 			rcu_read_unlock();
 | |
| 
 | |
| 			for (i = 0; i < nr_found; i++) {
 | |
| 				if (!batch[i])
 | |
| 					continue;
 | |
| 				error = xfs_reclaim_inode(batch[i], pag, flags);
 | |
| 				if (error && last_error != EFSCORRUPTED)
 | |
| 					last_error = error;
 | |
| 			}
 | |
| 
 | |
| 			*nr_to_scan -= XFS_LOOKUP_BATCH;
 | |
| 
 | |
| 			cond_resched();
 | |
| 
 | |
| 		} while (nr_found && !done && *nr_to_scan > 0);
 | |
| 
 | |
| 		if (trylock && !done)
 | |
| 			pag->pag_ici_reclaim_cursor = first_index;
 | |
| 		else
 | |
| 			pag->pag_ici_reclaim_cursor = 0;
 | |
| 		mutex_unlock(&pag->pag_ici_reclaim_lock);
 | |
| 		xfs_perag_put(pag);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if we skipped any AG, and we still have scan count remaining, do
 | |
| 	 * another pass this time using blocking reclaim semantics (i.e
 | |
| 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
 | |
| 	 * ensure that when we get more reclaimers than AGs we block rather
 | |
| 	 * than spin trying to execute reclaim.
 | |
| 	 */
 | |
| 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
 | |
| 		trylock = 0;
 | |
| 		goto restart;
 | |
| 	}
 | |
| 	return XFS_ERROR(last_error);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_reclaim_inodes(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	int		mode)
 | |
| {
 | |
| 	int		nr_to_scan = INT_MAX;
 | |
| 
 | |
| 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan a certain number of inodes for reclaim.
 | |
|  *
 | |
|  * When called we make sure that there is a background (fast) inode reclaim in
 | |
|  * progress, while we will throttle the speed of reclaim via doing synchronous
 | |
|  * reclaim of inodes. That means if we come across dirty inodes, we wait for
 | |
|  * them to be cleaned, which we hope will not be very long due to the
 | |
|  * background walker having already kicked the IO off on those dirty inodes.
 | |
|  */
 | |
| long
 | |
| xfs_reclaim_inodes_nr(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int			nr_to_scan)
 | |
| {
 | |
| 	/* kick background reclaimer and push the AIL */
 | |
| 	xfs_reclaim_work_queue(mp);
 | |
| 	xfs_ail_push_all(mp->m_ail);
 | |
| 
 | |
| 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of reclaimable inodes in the filesystem for
 | |
|  * the shrinker to determine how much to reclaim.
 | |
|  */
 | |
| int
 | |
| xfs_reclaim_inodes_count(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_perag	*pag;
 | |
| 	xfs_agnumber_t		ag = 0;
 | |
| 	int			reclaimable = 0;
 | |
| 
 | |
| 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
 | |
| 		ag = pag->pag_agno + 1;
 | |
| 		reclaimable += pag->pag_ici_reclaimable;
 | |
| 		xfs_perag_put(pag);
 | |
| 	}
 | |
| 	return reclaimable;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_inode_match_id(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_eofblocks	*eofb)
 | |
| {
 | |
| 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
 | |
| 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
 | |
| 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
 | |
| 	    xfs_get_projid(ip) != eofb->eof_prid)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_inode_free_eofblocks(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_perag	*pag,
 | |
| 	int			flags,
 | |
| 	void			*args)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct xfs_eofblocks *eofb = args;
 | |
| 
 | |
| 	if (!xfs_can_free_eofblocks(ip, false)) {
 | |
| 		/* inode could be preallocated or append-only */
 | |
| 		trace_xfs_inode_free_eofblocks_invalid(ip);
 | |
| 		xfs_inode_clear_eofblocks_tag(ip);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the mapping is dirty the operation can block and wait for some
 | |
| 	 * time. Unless we are waiting, skip it.
 | |
| 	 */
 | |
| 	if (!(flags & SYNC_WAIT) &&
 | |
| 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (eofb) {
 | |
| 		if (!xfs_inode_match_id(ip, eofb))
 | |
| 			return 0;
 | |
| 
 | |
| 		/* skip the inode if the file size is too small */
 | |
| 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
 | |
| 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = xfs_free_eofblocks(ip->i_mount, ip, true);
 | |
| 
 | |
| 	/* don't revisit the inode if we're not waiting */
 | |
| 	if (ret == EAGAIN && !(flags & SYNC_WAIT))
 | |
| 		ret = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_icache_free_eofblocks(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_eofblocks	*eofb)
 | |
| {
 | |
| 	int flags = SYNC_TRYLOCK;
 | |
| 
 | |
| 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
 | |
| 		flags = SYNC_WAIT;
 | |
| 
 | |
| 	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
 | |
| 					 eofb, XFS_ICI_EOFBLOCKS_TAG);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_inode_set_eofblocks_tag(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	struct xfs_mount *mp = ip->i_mount;
 | |
| 	struct xfs_perag *pag;
 | |
| 	int tagged;
 | |
| 
 | |
| 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 	trace_xfs_inode_set_eofblocks_tag(ip);
 | |
| 
 | |
| 	tagged = radix_tree_tagged(&pag->pag_ici_root,
 | |
| 				   XFS_ICI_EOFBLOCKS_TAG);
 | |
| 	radix_tree_tag_set(&pag->pag_ici_root,
 | |
| 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
 | |
| 			   XFS_ICI_EOFBLOCKS_TAG);
 | |
| 	if (!tagged) {
 | |
| 		/* propagate the eofblocks tag up into the perag radix tree */
 | |
| 		spin_lock(&ip->i_mount->m_perag_lock);
 | |
| 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
 | |
| 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 | |
| 				   XFS_ICI_EOFBLOCKS_TAG);
 | |
| 		spin_unlock(&ip->i_mount->m_perag_lock);
 | |
| 
 | |
| 		/* kick off background trimming */
 | |
| 		xfs_queue_eofblocks(ip->i_mount);
 | |
| 
 | |
| 		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
 | |
| 					      -1, _RET_IP_);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 	xfs_perag_put(pag);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_inode_clear_eofblocks_tag(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	struct xfs_mount *mp = ip->i_mount;
 | |
| 	struct xfs_perag *pag;
 | |
| 
 | |
| 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 	trace_xfs_inode_clear_eofblocks_tag(ip);
 | |
| 
 | |
| 	radix_tree_tag_clear(&pag->pag_ici_root,
 | |
| 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
 | |
| 			     XFS_ICI_EOFBLOCKS_TAG);
 | |
| 	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
 | |
| 		/* clear the eofblocks tag from the perag radix tree */
 | |
| 		spin_lock(&ip->i_mount->m_perag_lock);
 | |
| 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
 | |
| 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 | |
| 				     XFS_ICI_EOFBLOCKS_TAG);
 | |
| 		spin_unlock(&ip->i_mount->m_perag_lock);
 | |
| 		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
 | |
| 					       -1, _RET_IP_);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 	xfs_perag_put(pag);
 | |
| }
 | |
| 
 |