 92b29b86fe
			
		
	
	
	92b29b86fe
	
	
	
		
			
			* 'tracing-v28-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (131 commits) tracing/fastboot: improve help text tracing/stacktrace: improve help text tracing/fastboot: fix initcalls disposition in bootgraph.pl tracing/fastboot: fix bootgraph.pl initcall name regexp tracing/fastboot: fix issues and improve output of bootgraph.pl tracepoints: synchronize unregister static inline tracepoints: tracepoint_synchronize_unregister() ftrace: make ftrace_test_p6nop disassembler-friendly markers: fix synchronize marker unregister static inline tracing/fastboot: add better resolution to initcall debug/tracing trace: add build-time check to avoid overrunning hex buffer ftrace: fix hex output mode of ftrace tracing/fastboot: fix initcalls disposition in bootgraph.pl tracing/fastboot: fix printk format typo in boot tracer ftrace: return an error when setting a nonexistent tracer ftrace: make some tracers reentrant ring-buffer: make reentrant ring-buffer: move page indexes into page headers tracing/fastboot: only trace non-module initcalls ftrace: move pc counter in irqtrace ... Manually fix conflicts: - init/main.c: initcall tracing - kernel/module.c: verbose level vs tracepoints - scripts/bootgraph.pl: fallout from cherry-picking commits.
		
			
				
	
	
		
			1844 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1844 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/exit.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/mnt_namespace.h>
 | |
| #include <linux/iocontext.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/acct.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/taskstats_kern.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/cn_proc.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/futex.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/pipe_fs_i.h>
 | |
| #include <linux/audit.h> /* for audit_free() */
 | |
| #include <linux/resource.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| #include <linux/tracehook.h>
 | |
| #include <trace/sched.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/unistd.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/mmu_context.h>
 | |
| 
 | |
| static void exit_mm(struct task_struct * tsk);
 | |
| 
 | |
| static inline int task_detached(struct task_struct *p)
 | |
| {
 | |
| 	return p->exit_signal == -1;
 | |
| }
 | |
| 
 | |
| static void __unhash_process(struct task_struct *p)
 | |
| {
 | |
| 	nr_threads--;
 | |
| 	detach_pid(p, PIDTYPE_PID);
 | |
| 	if (thread_group_leader(p)) {
 | |
| 		detach_pid(p, PIDTYPE_PGID);
 | |
| 		detach_pid(p, PIDTYPE_SID);
 | |
| 
 | |
| 		list_del_rcu(&p->tasks);
 | |
| 		__get_cpu_var(process_counts)--;
 | |
| 	}
 | |
| 	list_del_rcu(&p->thread_group);
 | |
| 	list_del_init(&p->sibling);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function expects the tasklist_lock write-locked.
 | |
|  */
 | |
| static void __exit_signal(struct task_struct *tsk)
 | |
| {
 | |
| 	struct signal_struct *sig = tsk->signal;
 | |
| 	struct sighand_struct *sighand;
 | |
| 
 | |
| 	BUG_ON(!sig);
 | |
| 	BUG_ON(!atomic_read(&sig->count));
 | |
| 
 | |
| 	sighand = rcu_dereference(tsk->sighand);
 | |
| 	spin_lock(&sighand->siglock);
 | |
| 
 | |
| 	posix_cpu_timers_exit(tsk);
 | |
| 	if (atomic_dec_and_test(&sig->count))
 | |
| 		posix_cpu_timers_exit_group(tsk);
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * If there is any task waiting for the group exit
 | |
| 		 * then notify it:
 | |
| 		 */
 | |
| 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
 | |
| 			wake_up_process(sig->group_exit_task);
 | |
| 
 | |
| 		if (tsk == sig->curr_target)
 | |
| 			sig->curr_target = next_thread(tsk);
 | |
| 		/*
 | |
| 		 * Accumulate here the counters for all threads but the
 | |
| 		 * group leader as they die, so they can be added into
 | |
| 		 * the process-wide totals when those are taken.
 | |
| 		 * The group leader stays around as a zombie as long
 | |
| 		 * as there are other threads.  When it gets reaped,
 | |
| 		 * the exit.c code will add its counts into these totals.
 | |
| 		 * We won't ever get here for the group leader, since it
 | |
| 		 * will have been the last reference on the signal_struct.
 | |
| 		 */
 | |
| 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
 | |
| 		sig->min_flt += tsk->min_flt;
 | |
| 		sig->maj_flt += tsk->maj_flt;
 | |
| 		sig->nvcsw += tsk->nvcsw;
 | |
| 		sig->nivcsw += tsk->nivcsw;
 | |
| 		sig->inblock += task_io_get_inblock(tsk);
 | |
| 		sig->oublock += task_io_get_oublock(tsk);
 | |
| 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
 | |
| 		sig = NULL; /* Marker for below. */
 | |
| 	}
 | |
| 
 | |
| 	__unhash_process(tsk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do this under ->siglock, we can race with another thread
 | |
| 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 | |
| 	 */
 | |
| 	flush_sigqueue(&tsk->pending);
 | |
| 
 | |
| 	tsk->signal = NULL;
 | |
| 	tsk->sighand = NULL;
 | |
| 	spin_unlock(&sighand->siglock);
 | |
| 
 | |
| 	__cleanup_sighand(sighand);
 | |
| 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
 | |
| 	if (sig) {
 | |
| 		flush_sigqueue(&sig->shared_pending);
 | |
| 		taskstats_tgid_free(sig);
 | |
| 		__cleanup_signal(sig);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void delayed_put_task_struct(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 | |
| 
 | |
| 	trace_sched_process_free(tsk);
 | |
| 	put_task_struct(tsk);
 | |
| }
 | |
| 
 | |
| 
 | |
| void release_task(struct task_struct * p)
 | |
| {
 | |
| 	struct task_struct *leader;
 | |
| 	int zap_leader;
 | |
| repeat:
 | |
| 	tracehook_prepare_release_task(p);
 | |
| 	atomic_dec(&p->user->processes);
 | |
| 	proc_flush_task(p);
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 	tracehook_finish_release_task(p);
 | |
| 	__exit_signal(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are the last non-leader member of the thread
 | |
| 	 * group, and the leader is zombie, then notify the
 | |
| 	 * group leader's parent process. (if it wants notification.)
 | |
| 	 */
 | |
| 	zap_leader = 0;
 | |
| 	leader = p->group_leader;
 | |
| 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
 | |
| 		BUG_ON(task_detached(leader));
 | |
| 		do_notify_parent(leader, leader->exit_signal);
 | |
| 		/*
 | |
| 		 * If we were the last child thread and the leader has
 | |
| 		 * exited already, and the leader's parent ignores SIGCHLD,
 | |
| 		 * then we are the one who should release the leader.
 | |
| 		 *
 | |
| 		 * do_notify_parent() will have marked it self-reaping in
 | |
| 		 * that case.
 | |
| 		 */
 | |
| 		zap_leader = task_detached(leader);
 | |
| 
 | |
| 		/*
 | |
| 		 * This maintains the invariant that release_task()
 | |
| 		 * only runs on a task in EXIT_DEAD, just for sanity.
 | |
| 		 */
 | |
| 		if (zap_leader)
 | |
| 			leader->exit_state = EXIT_DEAD;
 | |
| 	}
 | |
| 
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 	release_thread(p);
 | |
| 	call_rcu(&p->rcu, delayed_put_task_struct);
 | |
| 
 | |
| 	p = leader;
 | |
| 	if (unlikely(zap_leader))
 | |
| 		goto repeat;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This checks not only the pgrp, but falls back on the pid if no
 | |
|  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
 | |
|  * without this...
 | |
|  *
 | |
|  * The caller must hold rcu lock or the tasklist lock.
 | |
|  */
 | |
| struct pid *session_of_pgrp(struct pid *pgrp)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	struct pid *sid = NULL;
 | |
| 
 | |
| 	p = pid_task(pgrp, PIDTYPE_PGID);
 | |
| 	if (p == NULL)
 | |
| 		p = pid_task(pgrp, PIDTYPE_PID);
 | |
| 	if (p != NULL)
 | |
| 		sid = task_session(p);
 | |
| 
 | |
| 	return sid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if a process group is "orphaned", according to the POSIX
 | |
|  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 | |
|  * by terminal-generated stop signals.  Newly orphaned process groups are
 | |
|  * to receive a SIGHUP and a SIGCONT.
 | |
|  *
 | |
|  * "I ask you, have you ever known what it is to be an orphan?"
 | |
|  */
 | |
| static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | |
| 		if ((p == ignored_task) ||
 | |
| 		    (p->exit_state && thread_group_empty(p)) ||
 | |
| 		    is_global_init(p->real_parent))
 | |
| 			continue;
 | |
| 
 | |
| 		if (task_pgrp(p->real_parent) != pgrp &&
 | |
| 		    task_session(p->real_parent) == task_session(p))
 | |
| 			return 0;
 | |
| 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int is_current_pgrp_orphaned(void)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int has_stopped_jobs(struct pid *pgrp)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | |
| 		if (!task_is_stopped(p))
 | |
| 			continue;
 | |
| 		retval = 1;
 | |
| 		break;
 | |
| 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if any process groups have become orphaned as
 | |
|  * a result of our exiting, and if they have any stopped jobs,
 | |
|  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 | |
|  */
 | |
| static void
 | |
| kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 | |
| {
 | |
| 	struct pid *pgrp = task_pgrp(tsk);
 | |
| 	struct task_struct *ignored_task = tsk;
 | |
| 
 | |
| 	if (!parent)
 | |
| 		 /* exit: our father is in a different pgrp than
 | |
| 		  * we are and we were the only connection outside.
 | |
| 		  */
 | |
| 		parent = tsk->real_parent;
 | |
| 	else
 | |
| 		/* reparent: our child is in a different pgrp than
 | |
| 		 * we are, and it was the only connection outside.
 | |
| 		 */
 | |
| 		ignored_task = NULL;
 | |
| 
 | |
| 	if (task_pgrp(parent) != pgrp &&
 | |
| 	    task_session(parent) == task_session(tsk) &&
 | |
| 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 | |
| 	    has_stopped_jobs(pgrp)) {
 | |
| 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 | |
| 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
 | |
|  *
 | |
|  * If a kernel thread is launched as a result of a system call, or if
 | |
|  * it ever exits, it should generally reparent itself to kthreadd so it
 | |
|  * isn't in the way of other processes and is correctly cleaned up on exit.
 | |
|  *
 | |
|  * The various task state such as scheduling policy and priority may have
 | |
|  * been inherited from a user process, so we reset them to sane values here.
 | |
|  *
 | |
|  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
 | |
|  */
 | |
| static void reparent_to_kthreadd(void)
 | |
| {
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 
 | |
| 	ptrace_unlink(current);
 | |
| 	/* Reparent to init */
 | |
| 	current->real_parent = current->parent = kthreadd_task;
 | |
| 	list_move_tail(¤t->sibling, ¤t->real_parent->children);
 | |
| 
 | |
| 	/* Set the exit signal to SIGCHLD so we signal init on exit */
 | |
| 	current->exit_signal = SIGCHLD;
 | |
| 
 | |
| 	if (task_nice(current) < 0)
 | |
| 		set_user_nice(current, 0);
 | |
| 	/* cpus_allowed? */
 | |
| 	/* rt_priority? */
 | |
| 	/* signals? */
 | |
| 	security_task_reparent_to_init(current);
 | |
| 	memcpy(current->signal->rlim, init_task.signal->rlim,
 | |
| 	       sizeof(current->signal->rlim));
 | |
| 	atomic_inc(&(INIT_USER->__count));
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 	switch_uid(INIT_USER);
 | |
| }
 | |
| 
 | |
| void __set_special_pids(struct pid *pid)
 | |
| {
 | |
| 	struct task_struct *curr = current->group_leader;
 | |
| 	pid_t nr = pid_nr(pid);
 | |
| 
 | |
| 	if (task_session(curr) != pid) {
 | |
| 		change_pid(curr, PIDTYPE_SID, pid);
 | |
| 		set_task_session(curr, nr);
 | |
| 	}
 | |
| 	if (task_pgrp(curr) != pid) {
 | |
| 		change_pid(curr, PIDTYPE_PGID, pid);
 | |
| 		set_task_pgrp(curr, nr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_special_pids(struct pid *pid)
 | |
| {
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 	__set_special_pids(pid);
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Let kernel threads use this to say that they
 | |
|  * allow a certain signal (since daemonize() will
 | |
|  * have disabled all of them by default).
 | |
|  */
 | |
| int allow_signal(int sig)
 | |
| {
 | |
| 	if (!valid_signal(sig) || sig < 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	sigdelset(¤t->blocked, sig);
 | |
| 	if (!current->mm) {
 | |
| 		/* Kernel threads handle their own signals.
 | |
| 		   Let the signal code know it'll be handled, so
 | |
| 		   that they don't get converted to SIGKILL or
 | |
| 		   just silently dropped */
 | |
| 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
 | |
| 	}
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(allow_signal);
 | |
| 
 | |
| int disallow_signal(int sig)
 | |
| {
 | |
| 	if (!valid_signal(sig) || sig < 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(disallow_signal);
 | |
| 
 | |
| /*
 | |
|  *	Put all the gunge required to become a kernel thread without
 | |
|  *	attached user resources in one place where it belongs.
 | |
|  */
 | |
| 
 | |
| void daemonize(const char *name, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	struct fs_struct *fs;
 | |
| 	sigset_t blocked;
 | |
| 
 | |
| 	va_start(args, name);
 | |
| 	vsnprintf(current->comm, sizeof(current->comm), name, args);
 | |
| 	va_end(args);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we were started as result of loading a module, close all of the
 | |
| 	 * user space pages.  We don't need them, and if we didn't close them
 | |
| 	 * they would be locked into memory.
 | |
| 	 */
 | |
| 	exit_mm(current);
 | |
| 	/*
 | |
| 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
 | |
| 	 * or suspend transition begins right now.
 | |
| 	 */
 | |
| 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
 | |
| 
 | |
| 	if (current->nsproxy != &init_nsproxy) {
 | |
| 		get_nsproxy(&init_nsproxy);
 | |
| 		switch_task_namespaces(current, &init_nsproxy);
 | |
| 	}
 | |
| 	set_special_pids(&init_struct_pid);
 | |
| 	proc_clear_tty(current);
 | |
| 
 | |
| 	/* Block and flush all signals */
 | |
| 	sigfillset(&blocked);
 | |
| 	sigprocmask(SIG_BLOCK, &blocked, NULL);
 | |
| 	flush_signals(current);
 | |
| 
 | |
| 	/* Become as one with the init task */
 | |
| 
 | |
| 	exit_fs(current);	/* current->fs->count--; */
 | |
| 	fs = init_task.fs;
 | |
| 	current->fs = fs;
 | |
| 	atomic_inc(&fs->count);
 | |
| 
 | |
| 	exit_files(current);
 | |
| 	current->files = init_task.files;
 | |
| 	atomic_inc(¤t->files->count);
 | |
| 
 | |
| 	reparent_to_kthreadd();
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(daemonize);
 | |
| 
 | |
| static void close_files(struct files_struct * files)
 | |
| {
 | |
| 	int i, j;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	j = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * It is safe to dereference the fd table without RCU or
 | |
| 	 * ->file_lock because this is the last reference to the
 | |
| 	 * files structure.
 | |
| 	 */
 | |
| 	fdt = files_fdtable(files);
 | |
| 	for (;;) {
 | |
| 		unsigned long set;
 | |
| 		i = j * __NFDBITS;
 | |
| 		if (i >= fdt->max_fds)
 | |
| 			break;
 | |
| 		set = fdt->open_fds->fds_bits[j++];
 | |
| 		while (set) {
 | |
| 			if (set & 1) {
 | |
| 				struct file * file = xchg(&fdt->fd[i], NULL);
 | |
| 				if (file) {
 | |
| 					filp_close(file, files);
 | |
| 					cond_resched();
 | |
| 				}
 | |
| 			}
 | |
| 			i++;
 | |
| 			set >>= 1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct files_struct *get_files_struct(struct task_struct *task)
 | |
| {
 | |
| 	struct files_struct *files;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	files = task->files;
 | |
| 	if (files)
 | |
| 		atomic_inc(&files->count);
 | |
| 	task_unlock(task);
 | |
| 
 | |
| 	return files;
 | |
| }
 | |
| 
 | |
| void put_files_struct(struct files_struct *files)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	if (atomic_dec_and_test(&files->count)) {
 | |
| 		close_files(files);
 | |
| 		/*
 | |
| 		 * Free the fd and fdset arrays if we expanded them.
 | |
| 		 * If the fdtable was embedded, pass files for freeing
 | |
| 		 * at the end of the RCU grace period. Otherwise,
 | |
| 		 * you can free files immediately.
 | |
| 		 */
 | |
| 		fdt = files_fdtable(files);
 | |
| 		if (fdt != &files->fdtab)
 | |
| 			kmem_cache_free(files_cachep, files);
 | |
| 		free_fdtable(fdt);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void reset_files_struct(struct files_struct *files)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct files_struct *old;
 | |
| 
 | |
| 	old = tsk->files;
 | |
| 	task_lock(tsk);
 | |
| 	tsk->files = files;
 | |
| 	task_unlock(tsk);
 | |
| 	put_files_struct(old);
 | |
| }
 | |
| 
 | |
| void exit_files(struct task_struct *tsk)
 | |
| {
 | |
| 	struct files_struct * files = tsk->files;
 | |
| 
 | |
| 	if (files) {
 | |
| 		task_lock(tsk);
 | |
| 		tsk->files = NULL;
 | |
| 		task_unlock(tsk);
 | |
| 		put_files_struct(files);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void put_fs_struct(struct fs_struct *fs)
 | |
| {
 | |
| 	/* No need to hold fs->lock if we are killing it */
 | |
| 	if (atomic_dec_and_test(&fs->count)) {
 | |
| 		path_put(&fs->root);
 | |
| 		path_put(&fs->pwd);
 | |
| 		kmem_cache_free(fs_cachep, fs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void exit_fs(struct task_struct *tsk)
 | |
| {
 | |
| 	struct fs_struct * fs = tsk->fs;
 | |
| 
 | |
| 	if (fs) {
 | |
| 		task_lock(tsk);
 | |
| 		tsk->fs = NULL;
 | |
| 		task_unlock(tsk);
 | |
| 		put_fs_struct(fs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(exit_fs);
 | |
| 
 | |
| #ifdef CONFIG_MM_OWNER
 | |
| /*
 | |
|  * Task p is exiting and it owned mm, lets find a new owner for it
 | |
|  */
 | |
| static inline int
 | |
| mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * If there are other users of the mm and the owner (us) is exiting
 | |
| 	 * we need to find a new owner to take on the responsibility.
 | |
| 	 */
 | |
| 	if (atomic_read(&mm->mm_users) <= 1)
 | |
| 		return 0;
 | |
| 	if (mm->owner != p)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void mm_update_next_owner(struct mm_struct *mm)
 | |
| {
 | |
| 	struct task_struct *c, *g, *p = current;
 | |
| 
 | |
| retry:
 | |
| 	if (!mm_need_new_owner(mm, p))
 | |
| 		return;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	/*
 | |
| 	 * Search in the children
 | |
| 	 */
 | |
| 	list_for_each_entry(c, &p->children, sibling) {
 | |
| 		if (c->mm == mm)
 | |
| 			goto assign_new_owner;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search in the siblings
 | |
| 	 */
 | |
| 	list_for_each_entry(c, &p->parent->children, sibling) {
 | |
| 		if (c->mm == mm)
 | |
| 			goto assign_new_owner;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search through everything else. We should not get
 | |
| 	 * here often
 | |
| 	 */
 | |
| 	do_each_thread(g, c) {
 | |
| 		if (c->mm == mm)
 | |
| 			goto assign_new_owner;
 | |
| 	} while_each_thread(g, c);
 | |
| 
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	/*
 | |
| 	 * We found no owner yet mm_users > 1: this implies that we are
 | |
| 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 | |
| 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL,
 | |
| 	 * so that subsystems can understand the callback and take action.
 | |
| 	 */
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	cgroup_mm_owner_callbacks(mm->owner, NULL);
 | |
| 	mm->owner = NULL;
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	return;
 | |
| 
 | |
| assign_new_owner:
 | |
| 	BUG_ON(c == p);
 | |
| 	get_task_struct(c);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	/*
 | |
| 	 * The task_lock protects c->mm from changing.
 | |
| 	 * We always want mm->owner->mm == mm
 | |
| 	 */
 | |
| 	task_lock(c);
 | |
| 	if (c->mm != mm) {
 | |
| 		task_unlock(c);
 | |
| 		up_write(&mm->mmap_sem);
 | |
| 		put_task_struct(c);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	cgroup_mm_owner_callbacks(mm->owner, c);
 | |
| 	mm->owner = c;
 | |
| 	task_unlock(c);
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	put_task_struct(c);
 | |
| }
 | |
| #endif /* CONFIG_MM_OWNER */
 | |
| 
 | |
| /*
 | |
|  * Turn us into a lazy TLB process if we
 | |
|  * aren't already..
 | |
|  */
 | |
| static void exit_mm(struct task_struct * tsk)
 | |
| {
 | |
| 	struct mm_struct *mm = tsk->mm;
 | |
| 	struct core_state *core_state;
 | |
| 
 | |
| 	mm_release(tsk, mm);
 | |
| 	if (!mm)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Serialize with any possible pending coredump.
 | |
| 	 * We must hold mmap_sem around checking core_state
 | |
| 	 * and clearing tsk->mm.  The core-inducing thread
 | |
| 	 * will increment ->nr_threads for each thread in the
 | |
| 	 * group with ->mm != NULL.
 | |
| 	 */
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	core_state = mm->core_state;
 | |
| 	if (core_state) {
 | |
| 		struct core_thread self;
 | |
| 		up_read(&mm->mmap_sem);
 | |
| 
 | |
| 		self.task = tsk;
 | |
| 		self.next = xchg(&core_state->dumper.next, &self);
 | |
| 		/*
 | |
| 		 * Implies mb(), the result of xchg() must be visible
 | |
| 		 * to core_state->dumper.
 | |
| 		 */
 | |
| 		if (atomic_dec_and_test(&core_state->nr_threads))
 | |
| 			complete(&core_state->startup);
 | |
| 
 | |
| 		for (;;) {
 | |
| 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 | |
| 			if (!self.task) /* see coredump_finish() */
 | |
| 				break;
 | |
| 			schedule();
 | |
| 		}
 | |
| 		__set_task_state(tsk, TASK_RUNNING);
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 	}
 | |
| 	atomic_inc(&mm->mm_count);
 | |
| 	BUG_ON(mm != tsk->active_mm);
 | |
| 	/* more a memory barrier than a real lock */
 | |
| 	task_lock(tsk);
 | |
| 	tsk->mm = NULL;
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	enter_lazy_tlb(mm, current);
 | |
| 	/* We don't want this task to be frozen prematurely */
 | |
| 	clear_freeze_flag(tsk);
 | |
| 	task_unlock(tsk);
 | |
| 	mm_update_next_owner(mm);
 | |
| 	mmput(mm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return nonzero if @parent's children should reap themselves.
 | |
|  *
 | |
|  * Called with write_lock_irq(&tasklist_lock) held.
 | |
|  */
 | |
| static int ignoring_children(struct task_struct *parent)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct sighand_struct *psig = parent->sighand;
 | |
| 	unsigned long flags;
 | |
| 	spin_lock_irqsave(&psig->siglock, flags);
 | |
| 	ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
 | |
| 	       (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
 | |
| 	spin_unlock_irqrestore(&psig->siglock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Detach all tasks we were using ptrace on.
 | |
|  * Any that need to be release_task'd are put on the @dead list.
 | |
|  *
 | |
|  * Called with write_lock(&tasklist_lock) held.
 | |
|  */
 | |
| static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
 | |
| {
 | |
| 	struct task_struct *p, *n;
 | |
| 	int ign = -1;
 | |
| 
 | |
| 	list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
 | |
| 		__ptrace_unlink(p);
 | |
| 
 | |
| 		if (p->exit_state != EXIT_ZOMBIE)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If it's a zombie, our attachedness prevented normal
 | |
| 		 * parent notification or self-reaping.  Do notification
 | |
| 		 * now if it would have happened earlier.  If it should
 | |
| 		 * reap itself, add it to the @dead list.  We can't call
 | |
| 		 * release_task() here because we already hold tasklist_lock.
 | |
| 		 *
 | |
| 		 * If it's our own child, there is no notification to do.
 | |
| 		 * But if our normal children self-reap, then this child
 | |
| 		 * was prevented by ptrace and we must reap it now.
 | |
| 		 */
 | |
| 		if (!task_detached(p) && thread_group_empty(p)) {
 | |
| 			if (!same_thread_group(p->real_parent, parent))
 | |
| 				do_notify_parent(p, p->exit_signal);
 | |
| 			else {
 | |
| 				if (ign < 0)
 | |
| 					ign = ignoring_children(parent);
 | |
| 				if (ign)
 | |
| 					p->exit_signal = -1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (task_detached(p)) {
 | |
| 			/*
 | |
| 			 * Mark it as in the process of being reaped.
 | |
| 			 */
 | |
| 			p->exit_state = EXIT_DEAD;
 | |
| 			list_add(&p->ptrace_entry, dead);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finish up exit-time ptrace cleanup.
 | |
|  *
 | |
|  * Called without locks.
 | |
|  */
 | |
| static void ptrace_exit_finish(struct task_struct *parent,
 | |
| 			       struct list_head *dead)
 | |
| {
 | |
| 	struct task_struct *p, *n;
 | |
| 
 | |
| 	BUG_ON(!list_empty(&parent->ptraced));
 | |
| 
 | |
| 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
 | |
| 		list_del_init(&p->ptrace_entry);
 | |
| 		release_task(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void reparent_thread(struct task_struct *p, struct task_struct *father)
 | |
| {
 | |
| 	if (p->pdeath_signal)
 | |
| 		/* We already hold the tasklist_lock here.  */
 | |
| 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
 | |
| 
 | |
| 	list_move_tail(&p->sibling, &p->real_parent->children);
 | |
| 
 | |
| 	/* If this is a threaded reparent there is no need to
 | |
| 	 * notify anyone anything has happened.
 | |
| 	 */
 | |
| 	if (same_thread_group(p->real_parent, father))
 | |
| 		return;
 | |
| 
 | |
| 	/* We don't want people slaying init.  */
 | |
| 	if (!task_detached(p))
 | |
| 		p->exit_signal = SIGCHLD;
 | |
| 
 | |
| 	/* If we'd notified the old parent about this child's death,
 | |
| 	 * also notify the new parent.
 | |
| 	 */
 | |
| 	if (!ptrace_reparented(p) &&
 | |
| 	    p->exit_state == EXIT_ZOMBIE &&
 | |
| 	    !task_detached(p) && thread_group_empty(p))
 | |
| 		do_notify_parent(p, p->exit_signal);
 | |
| 
 | |
| 	kill_orphaned_pgrp(p, father);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we die, we re-parent all our children.
 | |
|  * Try to give them to another thread in our thread
 | |
|  * group, and if no such member exists, give it to
 | |
|  * the child reaper process (ie "init") in our pid
 | |
|  * space.
 | |
|  */
 | |
| static struct task_struct *find_new_reaper(struct task_struct *father)
 | |
| {
 | |
| 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 | |
| 	struct task_struct *thread;
 | |
| 
 | |
| 	thread = father;
 | |
| 	while_each_thread(father, thread) {
 | |
| 		if (thread->flags & PF_EXITING)
 | |
| 			continue;
 | |
| 		if (unlikely(pid_ns->child_reaper == father))
 | |
| 			pid_ns->child_reaper = thread;
 | |
| 		return thread;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(pid_ns->child_reaper == father)) {
 | |
| 		write_unlock_irq(&tasklist_lock);
 | |
| 		if (unlikely(pid_ns == &init_pid_ns))
 | |
| 			panic("Attempted to kill init!");
 | |
| 
 | |
| 		zap_pid_ns_processes(pid_ns);
 | |
| 		write_lock_irq(&tasklist_lock);
 | |
| 		/*
 | |
| 		 * We can not clear ->child_reaper or leave it alone.
 | |
| 		 * There may by stealth EXIT_DEAD tasks on ->children,
 | |
| 		 * forget_original_parent() must move them somewhere.
 | |
| 		 */
 | |
| 		pid_ns->child_reaper = init_pid_ns.child_reaper;
 | |
| 	}
 | |
| 
 | |
| 	return pid_ns->child_reaper;
 | |
| }
 | |
| 
 | |
| static void forget_original_parent(struct task_struct *father)
 | |
| {
 | |
| 	struct task_struct *p, *n, *reaper;
 | |
| 	LIST_HEAD(ptrace_dead);
 | |
| 
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 	reaper = find_new_reaper(father);
 | |
| 	/*
 | |
| 	 * First clean up ptrace if we were using it.
 | |
| 	 */
 | |
| 	ptrace_exit(father, &ptrace_dead);
 | |
| 
 | |
| 	list_for_each_entry_safe(p, n, &father->children, sibling) {
 | |
| 		p->real_parent = reaper;
 | |
| 		if (p->parent == father) {
 | |
| 			BUG_ON(p->ptrace);
 | |
| 			p->parent = p->real_parent;
 | |
| 		}
 | |
| 		reparent_thread(p, father);
 | |
| 	}
 | |
| 
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 	BUG_ON(!list_empty(&father->children));
 | |
| 
 | |
| 	ptrace_exit_finish(father, &ptrace_dead);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send signals to all our closest relatives so that they know
 | |
|  * to properly mourn us..
 | |
|  */
 | |
| static void exit_notify(struct task_struct *tsk, int group_dead)
 | |
| {
 | |
| 	int signal;
 | |
| 	void *cookie;
 | |
| 
 | |
| 	/*
 | |
| 	 * This does two things:
 | |
| 	 *
 | |
|   	 * A.  Make init inherit all the child processes
 | |
| 	 * B.  Check to see if any process groups have become orphaned
 | |
| 	 *	as a result of our exiting, and if they have any stopped
 | |
| 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 | |
| 	 */
 | |
| 	forget_original_parent(tsk);
 | |
| 	exit_task_namespaces(tsk);
 | |
| 
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 	if (group_dead)
 | |
| 		kill_orphaned_pgrp(tsk->group_leader, NULL);
 | |
| 
 | |
| 	/* Let father know we died
 | |
| 	 *
 | |
| 	 * Thread signals are configurable, but you aren't going to use
 | |
| 	 * that to send signals to arbitary processes.
 | |
| 	 * That stops right now.
 | |
| 	 *
 | |
| 	 * If the parent exec id doesn't match the exec id we saved
 | |
| 	 * when we started then we know the parent has changed security
 | |
| 	 * domain.
 | |
| 	 *
 | |
| 	 * If our self_exec id doesn't match our parent_exec_id then
 | |
| 	 * we have changed execution domain as these two values started
 | |
| 	 * the same after a fork.
 | |
| 	 */
 | |
| 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
 | |
| 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
 | |
| 	     tsk->self_exec_id != tsk->parent_exec_id) &&
 | |
| 	    !capable(CAP_KILL))
 | |
| 		tsk->exit_signal = SIGCHLD;
 | |
| 
 | |
| 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
 | |
| 	if (signal >= 0)
 | |
| 		signal = do_notify_parent(tsk, signal);
 | |
| 
 | |
| 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
 | |
| 
 | |
| 	/* mt-exec, de_thread() is waiting for us */
 | |
| 	if (thread_group_leader(tsk) &&
 | |
| 	    tsk->signal->group_exit_task &&
 | |
| 	    tsk->signal->notify_count < 0)
 | |
| 		wake_up_process(tsk->signal->group_exit_task);
 | |
| 
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 
 | |
| 	tracehook_report_death(tsk, signal, cookie, group_dead);
 | |
| 
 | |
| 	/* If the process is dead, release it - nobody will wait for it */
 | |
| 	if (signal == DEATH_REAP)
 | |
| 		release_task(tsk);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_STACK_USAGE
 | |
| static void check_stack_usage(void)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(low_water_lock);
 | |
| 	static int lowest_to_date = THREAD_SIZE;
 | |
| 	unsigned long *n = end_of_stack(current);
 | |
| 	unsigned long free;
 | |
| 
 | |
| 	while (*n == 0)
 | |
| 		n++;
 | |
| 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
 | |
| 
 | |
| 	if (free >= lowest_to_date)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&low_water_lock);
 | |
| 	if (free < lowest_to_date) {
 | |
| 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
 | |
| 				"left\n",
 | |
| 				current->comm, free);
 | |
| 		lowest_to_date = free;
 | |
| 	}
 | |
| 	spin_unlock(&low_water_lock);
 | |
| }
 | |
| #else
 | |
| static inline void check_stack_usage(void) {}
 | |
| #endif
 | |
| 
 | |
| NORET_TYPE void do_exit(long code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	int group_dead;
 | |
| 
 | |
| 	profile_task_exit(tsk);
 | |
| 
 | |
| 	WARN_ON(atomic_read(&tsk->fs_excl));
 | |
| 
 | |
| 	if (unlikely(in_interrupt()))
 | |
| 		panic("Aiee, killing interrupt handler!");
 | |
| 	if (unlikely(!tsk->pid))
 | |
| 		panic("Attempted to kill the idle task!");
 | |
| 
 | |
| 	tracehook_report_exit(&code);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're taking recursive faults here in do_exit. Safest is to just
 | |
| 	 * leave this task alone and wait for reboot.
 | |
| 	 */
 | |
| 	if (unlikely(tsk->flags & PF_EXITING)) {
 | |
| 		printk(KERN_ALERT
 | |
| 			"Fixing recursive fault but reboot is needed!\n");
 | |
| 		/*
 | |
| 		 * We can do this unlocked here. The futex code uses
 | |
| 		 * this flag just to verify whether the pi state
 | |
| 		 * cleanup has been done or not. In the worst case it
 | |
| 		 * loops once more. We pretend that the cleanup was
 | |
| 		 * done as there is no way to return. Either the
 | |
| 		 * OWNER_DIED bit is set by now or we push the blocked
 | |
| 		 * task into the wait for ever nirwana as well.
 | |
| 		 */
 | |
| 		tsk->flags |= PF_EXITPIDONE;
 | |
| 		if (tsk->io_context)
 | |
| 			exit_io_context();
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		schedule();
 | |
| 	}
 | |
| 
 | |
| 	exit_signals(tsk);  /* sets PF_EXITING */
 | |
| 	/*
 | |
| 	 * tsk->flags are checked in the futex code to protect against
 | |
| 	 * an exiting task cleaning up the robust pi futexes.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	spin_unlock_wait(&tsk->pi_lock);
 | |
| 
 | |
| 	if (unlikely(in_atomic()))
 | |
| 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
 | |
| 				current->comm, task_pid_nr(current),
 | |
| 				preempt_count());
 | |
| 
 | |
| 	acct_update_integrals(tsk);
 | |
| 	if (tsk->mm) {
 | |
| 		update_hiwater_rss(tsk->mm);
 | |
| 		update_hiwater_vm(tsk->mm);
 | |
| 	}
 | |
| 	group_dead = atomic_dec_and_test(&tsk->signal->live);
 | |
| 	if (group_dead) {
 | |
| 		hrtimer_cancel(&tsk->signal->real_timer);
 | |
| 		exit_itimers(tsk->signal);
 | |
| 	}
 | |
| 	acct_collect(code, group_dead);
 | |
| #ifdef CONFIG_FUTEX
 | |
| 	if (unlikely(tsk->robust_list))
 | |
| 		exit_robust_list(tsk);
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	if (unlikely(tsk->compat_robust_list))
 | |
| 		compat_exit_robust_list(tsk);
 | |
| #endif
 | |
| #endif
 | |
| 	if (group_dead)
 | |
| 		tty_audit_exit();
 | |
| 	if (unlikely(tsk->audit_context))
 | |
| 		audit_free(tsk);
 | |
| 
 | |
| 	tsk->exit_code = code;
 | |
| 	taskstats_exit(tsk, group_dead);
 | |
| 
 | |
| 	exit_mm(tsk);
 | |
| 
 | |
| 	if (group_dead)
 | |
| 		acct_process();
 | |
| 	trace_sched_process_exit(tsk);
 | |
| 
 | |
| 	exit_sem(tsk);
 | |
| 	exit_files(tsk);
 | |
| 	exit_fs(tsk);
 | |
| 	check_stack_usage();
 | |
| 	exit_thread();
 | |
| 	cgroup_exit(tsk, 1);
 | |
| 	exit_keys(tsk);
 | |
| 
 | |
| 	if (group_dead && tsk->signal->leader)
 | |
| 		disassociate_ctty(1);
 | |
| 
 | |
| 	module_put(task_thread_info(tsk)->exec_domain->module);
 | |
| 	if (tsk->binfmt)
 | |
| 		module_put(tsk->binfmt->module);
 | |
| 
 | |
| 	proc_exit_connector(tsk);
 | |
| 	exit_notify(tsk, group_dead);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	mpol_put(tsk->mempolicy);
 | |
| 	tsk->mempolicy = NULL;
 | |
| #endif
 | |
| #ifdef CONFIG_FUTEX
 | |
| 	/*
 | |
| 	 * This must happen late, after the PID is not
 | |
| 	 * hashed anymore:
 | |
| 	 */
 | |
| 	if (unlikely(!list_empty(&tsk->pi_state_list)))
 | |
| 		exit_pi_state_list(tsk);
 | |
| 	if (unlikely(current->pi_state_cache))
 | |
| 		kfree(current->pi_state_cache);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Make sure we are holding no locks:
 | |
| 	 */
 | |
| 	debug_check_no_locks_held(tsk);
 | |
| 	/*
 | |
| 	 * We can do this unlocked here. The futex code uses this flag
 | |
| 	 * just to verify whether the pi state cleanup has been done
 | |
| 	 * or not. In the worst case it loops once more.
 | |
| 	 */
 | |
| 	tsk->flags |= PF_EXITPIDONE;
 | |
| 
 | |
| 	if (tsk->io_context)
 | |
| 		exit_io_context();
 | |
| 
 | |
| 	if (tsk->splice_pipe)
 | |
| 		__free_pipe_info(tsk->splice_pipe);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	/* causes final put_task_struct in finish_task_switch(). */
 | |
| 	tsk->state = TASK_DEAD;
 | |
| 
 | |
| 	schedule();
 | |
| 	BUG();
 | |
| 	/* Avoid "noreturn function does return".  */
 | |
| 	for (;;)
 | |
| 		cpu_relax();	/* For when BUG is null */
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(do_exit);
 | |
| 
 | |
| NORET_TYPE void complete_and_exit(struct completion *comp, long code)
 | |
| {
 | |
| 	if (comp)
 | |
| 		complete(comp);
 | |
| 
 | |
| 	do_exit(code);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(complete_and_exit);
 | |
| 
 | |
| asmlinkage long sys_exit(int error_code)
 | |
| {
 | |
| 	do_exit((error_code&0xff)<<8);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take down every thread in the group.  This is called by fatal signals
 | |
|  * as well as by sys_exit_group (below).
 | |
|  */
 | |
| NORET_TYPE void
 | |
| do_group_exit(int exit_code)
 | |
| {
 | |
| 	struct signal_struct *sig = current->signal;
 | |
| 
 | |
| 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 | |
| 
 | |
| 	if (signal_group_exit(sig))
 | |
| 		exit_code = sig->group_exit_code;
 | |
| 	else if (!thread_group_empty(current)) {
 | |
| 		struct sighand_struct *const sighand = current->sighand;
 | |
| 		spin_lock_irq(&sighand->siglock);
 | |
| 		if (signal_group_exit(sig))
 | |
| 			/* Another thread got here before we took the lock.  */
 | |
| 			exit_code = sig->group_exit_code;
 | |
| 		else {
 | |
| 			sig->group_exit_code = exit_code;
 | |
| 			sig->flags = SIGNAL_GROUP_EXIT;
 | |
| 			zap_other_threads(current);
 | |
| 		}
 | |
| 		spin_unlock_irq(&sighand->siglock);
 | |
| 	}
 | |
| 
 | |
| 	do_exit(exit_code);
 | |
| 	/* NOTREACHED */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this kills every thread in the thread group. Note that any externally
 | |
|  * wait4()-ing process will get the correct exit code - even if this
 | |
|  * thread is not the thread group leader.
 | |
|  */
 | |
| asmlinkage void sys_exit_group(int error_code)
 | |
| {
 | |
| 	do_group_exit((error_code & 0xff) << 8);
 | |
| }
 | |
| 
 | |
| static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	struct pid *pid = NULL;
 | |
| 	if (type == PIDTYPE_PID)
 | |
| 		pid = task->pids[type].pid;
 | |
| 	else if (type < PIDTYPE_MAX)
 | |
| 		pid = task->group_leader->pids[type].pid;
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| static int eligible_child(enum pid_type type, struct pid *pid, int options,
 | |
| 			  struct task_struct *p)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (type < PIDTYPE_MAX) {
 | |
| 		if (task_pid_type(p, type) != pid)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for all children (clone and not) if __WALL is set;
 | |
| 	 * otherwise, wait for clone children *only* if __WCLONE is
 | |
| 	 * set; otherwise, wait for non-clone children *only*.  (Note:
 | |
| 	 * A "clone" child here is one that reports to its parent
 | |
| 	 * using a signal other than SIGCHLD.) */
 | |
| 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
 | |
| 	    && !(options & __WALL))
 | |
| 		return 0;
 | |
| 
 | |
| 	err = security_task_wait(p);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
 | |
| 			       int why, int status,
 | |
| 			       struct siginfo __user *infop,
 | |
| 			       struct rusage __user *rusagep)
 | |
| {
 | |
| 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
 | |
| 
 | |
| 	put_task_struct(p);
 | |
| 	if (!retval)
 | |
| 		retval = put_user(SIGCHLD, &infop->si_signo);
 | |
| 	if (!retval)
 | |
| 		retval = put_user(0, &infop->si_errno);
 | |
| 	if (!retval)
 | |
| 		retval = put_user((short)why, &infop->si_code);
 | |
| 	if (!retval)
 | |
| 		retval = put_user(pid, &infop->si_pid);
 | |
| 	if (!retval)
 | |
| 		retval = put_user(uid, &infop->si_uid);
 | |
| 	if (!retval)
 | |
| 		retval = put_user(status, &infop->si_status);
 | |
| 	if (!retval)
 | |
| 		retval = pid;
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 | |
|  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 | |
|  * the lock and this task is uninteresting.  If we return nonzero, we have
 | |
|  * released the lock and the system call should return.
 | |
|  */
 | |
| static int wait_task_zombie(struct task_struct *p, int options,
 | |
| 			    struct siginfo __user *infop,
 | |
| 			    int __user *stat_addr, struct rusage __user *ru)
 | |
| {
 | |
| 	unsigned long state;
 | |
| 	int retval, status, traced;
 | |
| 	pid_t pid = task_pid_vnr(p);
 | |
| 
 | |
| 	if (!likely(options & WEXITED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(options & WNOWAIT)) {
 | |
| 		uid_t uid = p->uid;
 | |
| 		int exit_code = p->exit_code;
 | |
| 		int why, status;
 | |
| 
 | |
| 		get_task_struct(p);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		if ((exit_code & 0x7f) == 0) {
 | |
| 			why = CLD_EXITED;
 | |
| 			status = exit_code >> 8;
 | |
| 		} else {
 | |
| 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
 | |
| 			status = exit_code & 0x7f;
 | |
| 		}
 | |
| 		return wait_noreap_copyout(p, pid, uid, why,
 | |
| 					   status, infop, ru);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to move the task's state to DEAD
 | |
| 	 * only one thread is allowed to do this:
 | |
| 	 */
 | |
| 	state = xchg(&p->exit_state, EXIT_DEAD);
 | |
| 	if (state != EXIT_ZOMBIE) {
 | |
| 		BUG_ON(state != EXIT_DEAD);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	traced = ptrace_reparented(p);
 | |
| 
 | |
| 	if (likely(!traced)) {
 | |
| 		struct signal_struct *psig;
 | |
| 		struct signal_struct *sig;
 | |
| 		struct task_cputime cputime;
 | |
| 
 | |
| 		/*
 | |
| 		 * The resource counters for the group leader are in its
 | |
| 		 * own task_struct.  Those for dead threads in the group
 | |
| 		 * are in its signal_struct, as are those for the child
 | |
| 		 * processes it has previously reaped.  All these
 | |
| 		 * accumulate in the parent's signal_struct c* fields.
 | |
| 		 *
 | |
| 		 * We don't bother to take a lock here to protect these
 | |
| 		 * p->signal fields, because they are only touched by
 | |
| 		 * __exit_signal, which runs with tasklist_lock
 | |
| 		 * write-locked anyway, and so is excluded here.  We do
 | |
| 		 * need to protect the access to p->parent->signal fields,
 | |
| 		 * as other threads in the parent group can be right
 | |
| 		 * here reaping other children at the same time.
 | |
| 		 *
 | |
| 		 * We use thread_group_cputime() to get times for the thread
 | |
| 		 * group, which consolidates times for all threads in the
 | |
| 		 * group including the group leader.
 | |
| 		 */
 | |
| 		spin_lock_irq(&p->parent->sighand->siglock);
 | |
| 		psig = p->parent->signal;
 | |
| 		sig = p->signal;
 | |
| 		thread_group_cputime(p, &cputime);
 | |
| 		psig->cutime =
 | |
| 			cputime_add(psig->cutime,
 | |
| 			cputime_add(cputime.utime,
 | |
| 				    sig->cutime));
 | |
| 		psig->cstime =
 | |
| 			cputime_add(psig->cstime,
 | |
| 			cputime_add(cputime.stime,
 | |
| 				    sig->cstime));
 | |
| 		psig->cgtime =
 | |
| 			cputime_add(psig->cgtime,
 | |
| 			cputime_add(p->gtime,
 | |
| 			cputime_add(sig->gtime,
 | |
| 				    sig->cgtime)));
 | |
| 		psig->cmin_flt +=
 | |
| 			p->min_flt + sig->min_flt + sig->cmin_flt;
 | |
| 		psig->cmaj_flt +=
 | |
| 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
 | |
| 		psig->cnvcsw +=
 | |
| 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
 | |
| 		psig->cnivcsw +=
 | |
| 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
 | |
| 		psig->cinblock +=
 | |
| 			task_io_get_inblock(p) +
 | |
| 			sig->inblock + sig->cinblock;
 | |
| 		psig->coublock +=
 | |
| 			task_io_get_oublock(p) +
 | |
| 			sig->oublock + sig->coublock;
 | |
| 		task_io_accounting_add(&psig->ioac, &p->ioac);
 | |
| 		task_io_accounting_add(&psig->ioac, &sig->ioac);
 | |
| 		spin_unlock_irq(&p->parent->sighand->siglock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are sure this task is interesting, and no other
 | |
| 	 * thread can reap it because we set its state to EXIT_DEAD.
 | |
| 	 */
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
 | |
| 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
 | |
| 		? p->signal->group_exit_code : p->exit_code;
 | |
| 	if (!retval && stat_addr)
 | |
| 		retval = put_user(status, stat_addr);
 | |
| 	if (!retval && infop)
 | |
| 		retval = put_user(SIGCHLD, &infop->si_signo);
 | |
| 	if (!retval && infop)
 | |
| 		retval = put_user(0, &infop->si_errno);
 | |
| 	if (!retval && infop) {
 | |
| 		int why;
 | |
| 
 | |
| 		if ((status & 0x7f) == 0) {
 | |
| 			why = CLD_EXITED;
 | |
| 			status >>= 8;
 | |
| 		} else {
 | |
| 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
 | |
| 			status &= 0x7f;
 | |
| 		}
 | |
| 		retval = put_user((short)why, &infop->si_code);
 | |
| 		if (!retval)
 | |
| 			retval = put_user(status, &infop->si_status);
 | |
| 	}
 | |
| 	if (!retval && infop)
 | |
| 		retval = put_user(pid, &infop->si_pid);
 | |
| 	if (!retval && infop)
 | |
| 		retval = put_user(p->uid, &infop->si_uid);
 | |
| 	if (!retval)
 | |
| 		retval = pid;
 | |
| 
 | |
| 	if (traced) {
 | |
| 		write_lock_irq(&tasklist_lock);
 | |
| 		/* We dropped tasklist, ptracer could die and untrace */
 | |
| 		ptrace_unlink(p);
 | |
| 		/*
 | |
| 		 * If this is not a detached task, notify the parent.
 | |
| 		 * If it's still not detached after that, don't release
 | |
| 		 * it now.
 | |
| 		 */
 | |
| 		if (!task_detached(p)) {
 | |
| 			do_notify_parent(p, p->exit_signal);
 | |
| 			if (!task_detached(p)) {
 | |
| 				p->exit_state = EXIT_ZOMBIE;
 | |
| 				p = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		write_unlock_irq(&tasklist_lock);
 | |
| 	}
 | |
| 	if (p != NULL)
 | |
| 		release_task(p);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
 | |
|  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 | |
|  * the lock and this task is uninteresting.  If we return nonzero, we have
 | |
|  * released the lock and the system call should return.
 | |
|  */
 | |
| static int wait_task_stopped(int ptrace, struct task_struct *p,
 | |
| 			     int options, struct siginfo __user *infop,
 | |
| 			     int __user *stat_addr, struct rusage __user *ru)
 | |
| {
 | |
| 	int retval, exit_code, why;
 | |
| 	uid_t uid = 0; /* unneeded, required by compiler */
 | |
| 	pid_t pid;
 | |
| 
 | |
| 	if (!(options & WUNTRACED))
 | |
| 		return 0;
 | |
| 
 | |
| 	exit_code = 0;
 | |
| 	spin_lock_irq(&p->sighand->siglock);
 | |
| 
 | |
| 	if (unlikely(!task_is_stopped_or_traced(p)))
 | |
| 		goto unlock_sig;
 | |
| 
 | |
| 	if (!ptrace && p->signal->group_stop_count > 0)
 | |
| 		/*
 | |
| 		 * A group stop is in progress and this is the group leader.
 | |
| 		 * We won't report until all threads have stopped.
 | |
| 		 */
 | |
| 		goto unlock_sig;
 | |
| 
 | |
| 	exit_code = p->exit_code;
 | |
| 	if (!exit_code)
 | |
| 		goto unlock_sig;
 | |
| 
 | |
| 	if (!unlikely(options & WNOWAIT))
 | |
| 		p->exit_code = 0;
 | |
| 
 | |
| 	uid = p->uid;
 | |
| unlock_sig:
 | |
| 	spin_unlock_irq(&p->sighand->siglock);
 | |
| 	if (!exit_code)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are pretty sure this task is interesting.
 | |
| 	 * Make sure it doesn't get reaped out from under us while we
 | |
| 	 * give up the lock and then examine it below.  We don't want to
 | |
| 	 * keep holding onto the tasklist_lock while we call getrusage and
 | |
| 	 * possibly take page faults for user memory.
 | |
| 	 */
 | |
| 	get_task_struct(p);
 | |
| 	pid = task_pid_vnr(p);
 | |
| 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	if (unlikely(options & WNOWAIT))
 | |
| 		return wait_noreap_copyout(p, pid, uid,
 | |
| 					   why, exit_code,
 | |
| 					   infop, ru);
 | |
| 
 | |
| 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
 | |
| 	if (!retval && stat_addr)
 | |
| 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
 | |
| 	if (!retval && infop)
 | |
| 		retval = put_user(SIGCHLD, &infop->si_signo);
 | |
| 	if (!retval && infop)
 | |
| 		retval = put_user(0, &infop->si_errno);
 | |
| 	if (!retval && infop)
 | |
| 		retval = put_user((short)why, &infop->si_code);
 | |
| 	if (!retval && infop)
 | |
| 		retval = put_user(exit_code, &infop->si_status);
 | |
| 	if (!retval && infop)
 | |
| 		retval = put_user(pid, &infop->si_pid);
 | |
| 	if (!retval && infop)
 | |
| 		retval = put_user(uid, &infop->si_uid);
 | |
| 	if (!retval)
 | |
| 		retval = pid;
 | |
| 	put_task_struct(p);
 | |
| 
 | |
| 	BUG_ON(!retval);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle do_wait work for one task in a live, non-stopped state.
 | |
|  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 | |
|  * the lock and this task is uninteresting.  If we return nonzero, we have
 | |
|  * released the lock and the system call should return.
 | |
|  */
 | |
| static int wait_task_continued(struct task_struct *p, int options,
 | |
| 			       struct siginfo __user *infop,
 | |
| 			       int __user *stat_addr, struct rusage __user *ru)
 | |
| {
 | |
| 	int retval;
 | |
| 	pid_t pid;
 | |
| 	uid_t uid;
 | |
| 
 | |
| 	if (!unlikely(options & WCONTINUED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock_irq(&p->sighand->siglock);
 | |
| 	/* Re-check with the lock held.  */
 | |
| 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
 | |
| 		spin_unlock_irq(&p->sighand->siglock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!unlikely(options & WNOWAIT))
 | |
| 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
 | |
| 	spin_unlock_irq(&p->sighand->siglock);
 | |
| 
 | |
| 	pid = task_pid_vnr(p);
 | |
| 	uid = p->uid;
 | |
| 	get_task_struct(p);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	if (!infop) {
 | |
| 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
 | |
| 		put_task_struct(p);
 | |
| 		if (!retval && stat_addr)
 | |
| 			retval = put_user(0xffff, stat_addr);
 | |
| 		if (!retval)
 | |
| 			retval = pid;
 | |
| 	} else {
 | |
| 		retval = wait_noreap_copyout(p, pid, uid,
 | |
| 					     CLD_CONTINUED, SIGCONT,
 | |
| 					     infop, ru);
 | |
| 		BUG_ON(retval == 0);
 | |
| 	}
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Consider @p for a wait by @parent.
 | |
|  *
 | |
|  * -ECHILD should be in *@notask_error before the first call.
 | |
|  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
 | |
|  * Returns zero if the search for a child should continue;
 | |
|  * then *@notask_error is 0 if @p is an eligible child,
 | |
|  * or another error from security_task_wait(), or still -ECHILD.
 | |
|  */
 | |
| static int wait_consider_task(struct task_struct *parent, int ptrace,
 | |
| 			      struct task_struct *p, int *notask_error,
 | |
| 			      enum pid_type type, struct pid *pid, int options,
 | |
| 			      struct siginfo __user *infop,
 | |
| 			      int __user *stat_addr, struct rusage __user *ru)
 | |
| {
 | |
| 	int ret = eligible_child(type, pid, options, p);
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (unlikely(ret < 0)) {
 | |
| 		/*
 | |
| 		 * If we have not yet seen any eligible child,
 | |
| 		 * then let this error code replace -ECHILD.
 | |
| 		 * A permission error will give the user a clue
 | |
| 		 * to look for security policy problems, rather
 | |
| 		 * than for mysterious wait bugs.
 | |
| 		 */
 | |
| 		if (*notask_error)
 | |
| 			*notask_error = ret;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!ptrace) && unlikely(p->ptrace)) {
 | |
| 		/*
 | |
| 		 * This child is hidden by ptrace.
 | |
| 		 * We aren't allowed to see it now, but eventually we will.
 | |
| 		 */
 | |
| 		*notask_error = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (p->exit_state == EXIT_DEAD)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't reap group leaders with subthreads.
 | |
| 	 */
 | |
| 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
 | |
| 		return wait_task_zombie(p, options, infop, stat_addr, ru);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's stopped or running now, so it might
 | |
| 	 * later continue, exit, or stop again.
 | |
| 	 */
 | |
| 	*notask_error = 0;
 | |
| 
 | |
| 	if (task_is_stopped_or_traced(p))
 | |
| 		return wait_task_stopped(ptrace, p, options,
 | |
| 					 infop, stat_addr, ru);
 | |
| 
 | |
| 	return wait_task_continued(p, options, infop, stat_addr, ru);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the work of do_wait() for one thread in the group, @tsk.
 | |
|  *
 | |
|  * -ECHILD should be in *@notask_error before the first call.
 | |
|  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
 | |
|  * Returns zero if the search for a child should continue; then
 | |
|  * *@notask_error is 0 if there were any eligible children,
 | |
|  * or another error from security_task_wait(), or still -ECHILD.
 | |
|  */
 | |
| static int do_wait_thread(struct task_struct *tsk, int *notask_error,
 | |
| 			  enum pid_type type, struct pid *pid, int options,
 | |
| 			  struct siginfo __user *infop, int __user *stat_addr,
 | |
| 			  struct rusage __user *ru)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	list_for_each_entry(p, &tsk->children, sibling) {
 | |
| 		/*
 | |
| 		 * Do not consider detached threads.
 | |
| 		 */
 | |
| 		if (!task_detached(p)) {
 | |
| 			int ret = wait_consider_task(tsk, 0, p, notask_error,
 | |
| 						     type, pid, options,
 | |
| 						     infop, stat_addr, ru);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
 | |
| 			  enum pid_type type, struct pid *pid, int options,
 | |
| 			  struct siginfo __user *infop, int __user *stat_addr,
 | |
| 			  struct rusage __user *ru)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	/*
 | |
| 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
 | |
| 	 */
 | |
| 	options |= WUNTRACED;
 | |
| 
 | |
| 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
 | |
| 		int ret = wait_consider_task(tsk, 1, p, notask_error,
 | |
| 					     type, pid, options,
 | |
| 					     infop, stat_addr, ru);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long do_wait(enum pid_type type, struct pid *pid, int options,
 | |
| 		    struct siginfo __user *infop, int __user *stat_addr,
 | |
| 		    struct rusage __user *ru)
 | |
| {
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 	struct task_struct *tsk;
 | |
| 	int retval;
 | |
| 
 | |
| 	trace_sched_process_wait(pid);
 | |
| 
 | |
| 	add_wait_queue(¤t->signal->wait_chldexit,&wait);
 | |
| repeat:
 | |
| 	/*
 | |
| 	 * If there is nothing that can match our critiera just get out.
 | |
| 	 * We will clear @retval to zero if we see any child that might later
 | |
| 	 * match our criteria, even if we are not able to reap it yet.
 | |
| 	 */
 | |
| 	retval = -ECHILD;
 | |
| 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
 | |
| 		goto end;
 | |
| 
 | |
| 	current->state = TASK_INTERRUPTIBLE;
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	tsk = current;
 | |
| 	do {
 | |
| 		int tsk_result = do_wait_thread(tsk, &retval,
 | |
| 						type, pid, options,
 | |
| 						infop, stat_addr, ru);
 | |
| 		if (!tsk_result)
 | |
| 			tsk_result = ptrace_do_wait(tsk, &retval,
 | |
| 						    type, pid, options,
 | |
| 						    infop, stat_addr, ru);
 | |
| 		if (tsk_result) {
 | |
| 			/*
 | |
| 			 * tasklist_lock is unlocked and we have a final result.
 | |
| 			 */
 | |
| 			retval = tsk_result;
 | |
| 			goto end;
 | |
| 		}
 | |
| 
 | |
| 		if (options & __WNOTHREAD)
 | |
| 			break;
 | |
| 		tsk = next_thread(tsk);
 | |
| 		BUG_ON(tsk->signal != current->signal);
 | |
| 	} while (tsk != current);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	if (!retval && !(options & WNOHANG)) {
 | |
| 		retval = -ERESTARTSYS;
 | |
| 		if (!signal_pending(current)) {
 | |
| 			schedule();
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| end:
 | |
| 	current->state = TASK_RUNNING;
 | |
| 	remove_wait_queue(¤t->signal->wait_chldexit,&wait);
 | |
| 	if (infop) {
 | |
| 		if (retval > 0)
 | |
| 			retval = 0;
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * For a WNOHANG return, clear out all the fields
 | |
| 			 * we would set so the user can easily tell the
 | |
| 			 * difference.
 | |
| 			 */
 | |
| 			if (!retval)
 | |
| 				retval = put_user(0, &infop->si_signo);
 | |
| 			if (!retval)
 | |
| 				retval = put_user(0, &infop->si_errno);
 | |
| 			if (!retval)
 | |
| 				retval = put_user(0, &infop->si_code);
 | |
| 			if (!retval)
 | |
| 				retval = put_user(0, &infop->si_pid);
 | |
| 			if (!retval)
 | |
| 				retval = put_user(0, &infop->si_uid);
 | |
| 			if (!retval)
 | |
| 				retval = put_user(0, &infop->si_status);
 | |
| 		}
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| asmlinkage long sys_waitid(int which, pid_t upid,
 | |
| 			   struct siginfo __user *infop, int options,
 | |
| 			   struct rusage __user *ru)
 | |
| {
 | |
| 	struct pid *pid = NULL;
 | |
| 	enum pid_type type;
 | |
| 	long ret;
 | |
| 
 | |
| 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
 | |
| 		return -EINVAL;
 | |
| 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (which) {
 | |
| 	case P_ALL:
 | |
| 		type = PIDTYPE_MAX;
 | |
| 		break;
 | |
| 	case P_PID:
 | |
| 		type = PIDTYPE_PID;
 | |
| 		if (upid <= 0)
 | |
| 			return -EINVAL;
 | |
| 		break;
 | |
| 	case P_PGID:
 | |
| 		type = PIDTYPE_PGID;
 | |
| 		if (upid <= 0)
 | |
| 			return -EINVAL;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (type < PIDTYPE_MAX)
 | |
| 		pid = find_get_pid(upid);
 | |
| 	ret = do_wait(type, pid, options, infop, NULL, ru);
 | |
| 	put_pid(pid);
 | |
| 
 | |
| 	/* avoid REGPARM breakage on x86: */
 | |
| 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
 | |
| 			  int options, struct rusage __user *ru)
 | |
| {
 | |
| 	struct pid *pid = NULL;
 | |
| 	enum pid_type type;
 | |
| 	long ret;
 | |
| 
 | |
| 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
 | |
| 			__WNOTHREAD|__WCLONE|__WALL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (upid == -1)
 | |
| 		type = PIDTYPE_MAX;
 | |
| 	else if (upid < 0) {
 | |
| 		type = PIDTYPE_PGID;
 | |
| 		pid = find_get_pid(-upid);
 | |
| 	} else if (upid == 0) {
 | |
| 		type = PIDTYPE_PGID;
 | |
| 		pid = get_pid(task_pgrp(current));
 | |
| 	} else /* upid > 0 */ {
 | |
| 		type = PIDTYPE_PID;
 | |
| 		pid = find_get_pid(upid);
 | |
| 	}
 | |
| 
 | |
| 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
 | |
| 	put_pid(pid);
 | |
| 
 | |
| 	/* avoid REGPARM breakage on x86: */
 | |
| 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_WAITPID
 | |
| 
 | |
| /*
 | |
|  * sys_waitpid() remains for compatibility. waitpid() should be
 | |
|  * implemented by calling sys_wait4() from libc.a.
 | |
|  */
 | |
| asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
 | |
| {
 | |
| 	return sys_wait4(pid, stat_addr, options, NULL);
 | |
| }
 | |
| 
 | |
| #endif
 |