 0e55a7cca4
			
		
	
	
	0e55a7cca4
	
	
	
		
			
			Daemons that need to be launched while the rootfs is read-only can now poll /proc/mounts to be notified when their O_RDWR requests may no longer end in EROFS. Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
		
			
				
	
	
		
			2351 lines
		
	
	
	
		
			58 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2351 lines
		
	
	
	
		
			58 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/fs/namespace.c
 | |
|  *
 | |
|  * (C) Copyright Al Viro 2000, 2001
 | |
|  *	Released under GPL v2.
 | |
|  *
 | |
|  * Based on code from fs/super.c, copyright Linus Torvalds and others.
 | |
|  * Heavily rewritten.
 | |
|  */
 | |
| 
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/smp_lock.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/acct.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/mnt_namespace.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/ramfs.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/idr.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/unistd.h>
 | |
| #include "pnode.h"
 | |
| #include "internal.h"
 | |
| 
 | |
| #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
 | |
| #define HASH_SIZE (1UL << HASH_SHIFT)
 | |
| 
 | |
| /* spinlock for vfsmount related operations, inplace of dcache_lock */
 | |
| __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
 | |
| 
 | |
| static int event;
 | |
| static DEFINE_IDA(mnt_id_ida);
 | |
| static DEFINE_IDA(mnt_group_ida);
 | |
| 
 | |
| static struct list_head *mount_hashtable __read_mostly;
 | |
| static struct kmem_cache *mnt_cache __read_mostly;
 | |
| static struct rw_semaphore namespace_sem;
 | |
| 
 | |
| /* /sys/fs */
 | |
| struct kobject *fs_kobj;
 | |
| EXPORT_SYMBOL_GPL(fs_kobj);
 | |
| 
 | |
| static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
 | |
| {
 | |
| 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
 | |
| 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
 | |
| 	tmp = tmp + (tmp >> HASH_SHIFT);
 | |
| 	return tmp & (HASH_SIZE - 1);
 | |
| }
 | |
| 
 | |
| #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
 | |
| 
 | |
| /* allocation is serialized by namespace_sem */
 | |
| static int mnt_alloc_id(struct vfsmount *mnt)
 | |
| {
 | |
| 	int res;
 | |
| 
 | |
| retry:
 | |
| 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	if (res == -EAGAIN)
 | |
| 		goto retry;
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static void mnt_free_id(struct vfsmount *mnt)
 | |
| {
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	ida_remove(&mnt_id_ida, mnt->mnt_id);
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new peer group ID
 | |
|  *
 | |
|  * mnt_group_ida is protected by namespace_sem
 | |
|  */
 | |
| static int mnt_alloc_group_id(struct vfsmount *mnt)
 | |
| {
 | |
| 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release a peer group ID
 | |
|  */
 | |
| void mnt_release_group_id(struct vfsmount *mnt)
 | |
| {
 | |
| 	ida_remove(&mnt_group_ida, mnt->mnt_group_id);
 | |
| 	mnt->mnt_group_id = 0;
 | |
| }
 | |
| 
 | |
| struct vfsmount *alloc_vfsmnt(const char *name)
 | |
| {
 | |
| 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 | |
| 	if (mnt) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = mnt_alloc_id(mnt);
 | |
| 		if (err)
 | |
| 			goto out_free_cache;
 | |
| 
 | |
| 		if (name) {
 | |
| 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
 | |
| 			if (!mnt->mnt_devname)
 | |
| 				goto out_free_id;
 | |
| 		}
 | |
| 
 | |
| 		atomic_set(&mnt->mnt_count, 1);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_hash);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_child);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_mounts);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_list);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_expire);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_share);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_slave);
 | |
| 		atomic_set(&mnt->__mnt_writers, 0);
 | |
| 	}
 | |
| 	return mnt;
 | |
| 
 | |
| out_free_id:
 | |
| 	mnt_free_id(mnt);
 | |
| out_free_cache:
 | |
| 	kmem_cache_free(mnt_cache, mnt);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Most r/o checks on a fs are for operations that take
 | |
|  * discrete amounts of time, like a write() or unlink().
 | |
|  * We must keep track of when those operations start
 | |
|  * (for permission checks) and when they end, so that
 | |
|  * we can determine when writes are able to occur to
 | |
|  * a filesystem.
 | |
|  */
 | |
| /*
 | |
|  * __mnt_is_readonly: check whether a mount is read-only
 | |
|  * @mnt: the mount to check for its write status
 | |
|  *
 | |
|  * This shouldn't be used directly ouside of the VFS.
 | |
|  * It does not guarantee that the filesystem will stay
 | |
|  * r/w, just that it is right *now*.  This can not and
 | |
|  * should not be used in place of IS_RDONLY(inode).
 | |
|  * mnt_want/drop_write() will _keep_ the filesystem
 | |
|  * r/w.
 | |
|  */
 | |
| int __mnt_is_readonly(struct vfsmount *mnt)
 | |
| {
 | |
| 	if (mnt->mnt_flags & MNT_READONLY)
 | |
| 		return 1;
 | |
| 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 | |
| 
 | |
| struct mnt_writer {
 | |
| 	/*
 | |
| 	 * If holding multiple instances of this lock, they
 | |
| 	 * must be ordered by cpu number.
 | |
| 	 */
 | |
| 	spinlock_t lock;
 | |
| 	struct lock_class_key lock_class; /* compiles out with !lockdep */
 | |
| 	unsigned long count;
 | |
| 	struct vfsmount *mnt;
 | |
| } ____cacheline_aligned_in_smp;
 | |
| static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
 | |
| 
 | |
| static int __init init_mnt_writers(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
 | |
| 		spin_lock_init(&writer->lock);
 | |
| 		lockdep_set_class(&writer->lock, &writer->lock_class);
 | |
| 		writer->count = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| fs_initcall(init_mnt_writers);
 | |
| 
 | |
| static void unlock_mnt_writers(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct mnt_writer *cpu_writer;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		cpu_writer = &per_cpu(mnt_writers, cpu);
 | |
| 		spin_unlock(&cpu_writer->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
 | |
| {
 | |
| 	if (!cpu_writer->mnt)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * This is in case anyone ever leaves an invalid,
 | |
| 	 * old ->mnt and a count of 0.
 | |
| 	 */
 | |
| 	if (!cpu_writer->count)
 | |
| 		return;
 | |
| 	atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
 | |
| 	cpu_writer->count = 0;
 | |
| }
 | |
|  /*
 | |
|  * must hold cpu_writer->lock
 | |
|  */
 | |
| static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
 | |
| 					  struct vfsmount *mnt)
 | |
| {
 | |
| 	if (cpu_writer->mnt == mnt)
 | |
| 		return;
 | |
| 	__clear_mnt_count(cpu_writer);
 | |
| 	cpu_writer->mnt = mnt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Most r/o checks on a fs are for operations that take
 | |
|  * discrete amounts of time, like a write() or unlink().
 | |
|  * We must keep track of when those operations start
 | |
|  * (for permission checks) and when they end, so that
 | |
|  * we can determine when writes are able to occur to
 | |
|  * a filesystem.
 | |
|  */
 | |
| /**
 | |
|  * mnt_want_write - get write access to a mount
 | |
|  * @mnt: the mount on which to take a write
 | |
|  *
 | |
|  * This tells the low-level filesystem that a write is
 | |
|  * about to be performed to it, and makes sure that
 | |
|  * writes are allowed before returning success.  When
 | |
|  * the write operation is finished, mnt_drop_write()
 | |
|  * must be called.  This is effectively a refcount.
 | |
|  */
 | |
| int mnt_want_write(struct vfsmount *mnt)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct mnt_writer *cpu_writer;
 | |
| 
 | |
| 	cpu_writer = &get_cpu_var(mnt_writers);
 | |
| 	spin_lock(&cpu_writer->lock);
 | |
| 	if (__mnt_is_readonly(mnt)) {
 | |
| 		ret = -EROFS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	use_cpu_writer_for_mount(cpu_writer, mnt);
 | |
| 	cpu_writer->count++;
 | |
| out:
 | |
| 	spin_unlock(&cpu_writer->lock);
 | |
| 	put_cpu_var(mnt_writers);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mnt_want_write);
 | |
| 
 | |
| static void lock_mnt_writers(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct mnt_writer *cpu_writer;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		cpu_writer = &per_cpu(mnt_writers, cpu);
 | |
| 		spin_lock(&cpu_writer->lock);
 | |
| 		__clear_mnt_count(cpu_writer);
 | |
| 		cpu_writer->mnt = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These per-cpu write counts are not guaranteed to have
 | |
|  * matched increments and decrements on any given cpu.
 | |
|  * A file open()ed for write on one cpu and close()d on
 | |
|  * another cpu will imbalance this count.  Make sure it
 | |
|  * does not get too far out of whack.
 | |
|  */
 | |
| static void handle_write_count_underflow(struct vfsmount *mnt)
 | |
| {
 | |
| 	if (atomic_read(&mnt->__mnt_writers) >=
 | |
| 	    MNT_WRITER_UNDERFLOW_LIMIT)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * It isn't necessary to hold all of the locks
 | |
| 	 * at the same time, but doing it this way makes
 | |
| 	 * us share a lot more code.
 | |
| 	 */
 | |
| 	lock_mnt_writers();
 | |
| 	/*
 | |
| 	 * vfsmount_lock is for mnt_flags.
 | |
| 	 */
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	/*
 | |
| 	 * If coalescing the per-cpu writer counts did not
 | |
| 	 * get us back to a positive writer count, we have
 | |
| 	 * a bug.
 | |
| 	 */
 | |
| 	if ((atomic_read(&mnt->__mnt_writers) < 0) &&
 | |
| 	    !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
 | |
| 		WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
 | |
| 				"count: %d\n",
 | |
| 			mnt, atomic_read(&mnt->__mnt_writers));
 | |
| 		/* use the flag to keep the dmesg spam down */
 | |
| 		mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
 | |
| 	}
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	unlock_mnt_writers();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mnt_drop_write - give up write access to a mount
 | |
|  * @mnt: the mount on which to give up write access
 | |
|  *
 | |
|  * Tells the low-level filesystem that we are done
 | |
|  * performing writes to it.  Must be matched with
 | |
|  * mnt_want_write() call above.
 | |
|  */
 | |
| void mnt_drop_write(struct vfsmount *mnt)
 | |
| {
 | |
| 	int must_check_underflow = 0;
 | |
| 	struct mnt_writer *cpu_writer;
 | |
| 
 | |
| 	cpu_writer = &get_cpu_var(mnt_writers);
 | |
| 	spin_lock(&cpu_writer->lock);
 | |
| 
 | |
| 	use_cpu_writer_for_mount(cpu_writer, mnt);
 | |
| 	if (cpu_writer->count > 0) {
 | |
| 		cpu_writer->count--;
 | |
| 	} else {
 | |
| 		must_check_underflow = 1;
 | |
| 		atomic_dec(&mnt->__mnt_writers);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&cpu_writer->lock);
 | |
| 	/*
 | |
| 	 * Logically, we could call this each time,
 | |
| 	 * but the __mnt_writers cacheline tends to
 | |
| 	 * be cold, and makes this expensive.
 | |
| 	 */
 | |
| 	if (must_check_underflow)
 | |
| 		handle_write_count_underflow(mnt);
 | |
| 	/*
 | |
| 	 * This could be done right after the spinlock
 | |
| 	 * is taken because the spinlock keeps us on
 | |
| 	 * the cpu, and disables preemption.  However,
 | |
| 	 * putting it here bounds the amount that
 | |
| 	 * __mnt_writers can underflow.  Without it,
 | |
| 	 * we could theoretically wrap __mnt_writers.
 | |
| 	 */
 | |
| 	put_cpu_var(mnt_writers);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mnt_drop_write);
 | |
| 
 | |
| static int mnt_make_readonly(struct vfsmount *mnt)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	lock_mnt_writers();
 | |
| 	/*
 | |
| 	 * With all the locks held, this value is stable
 | |
| 	 */
 | |
| 	if (atomic_read(&mnt->__mnt_writers) > 0) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * nobody can do a successful mnt_want_write() with all
 | |
| 	 * of the counts in MNT_DENIED_WRITE and the locks held.
 | |
| 	 */
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	if (!ret)
 | |
| 		mnt->mnt_flags |= MNT_READONLY;
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| out:
 | |
| 	unlock_mnt_writers();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __mnt_unmake_readonly(struct vfsmount *mnt)
 | |
| {
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	mnt->mnt_flags &= ~MNT_READONLY;
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| }
 | |
| 
 | |
| int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
 | |
| {
 | |
| 	mnt->mnt_sb = sb;
 | |
| 	mnt->mnt_root = dget(sb->s_root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(simple_set_mnt);
 | |
| 
 | |
| void free_vfsmnt(struct vfsmount *mnt)
 | |
| {
 | |
| 	kfree(mnt->mnt_devname);
 | |
| 	mnt_free_id(mnt);
 | |
| 	kmem_cache_free(mnt_cache, mnt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find the first or last mount at @dentry on vfsmount @mnt depending on
 | |
|  * @dir. If @dir is set return the first mount else return the last mount.
 | |
|  */
 | |
| struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
 | |
| 			      int dir)
 | |
| {
 | |
| 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
 | |
| 	struct list_head *tmp = head;
 | |
| 	struct vfsmount *p, *found = NULL;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		tmp = dir ? tmp->next : tmp->prev;
 | |
| 		p = NULL;
 | |
| 		if (tmp == head)
 | |
| 			break;
 | |
| 		p = list_entry(tmp, struct vfsmount, mnt_hash);
 | |
| 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
 | |
| 			found = p;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lookup_mnt increments the ref count before returning
 | |
|  * the vfsmount struct.
 | |
|  */
 | |
| struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 | |
| {
 | |
| 	struct vfsmount *child_mnt;
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
 | |
| 		mntget(child_mnt);
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	return child_mnt;
 | |
| }
 | |
| 
 | |
| static inline int check_mnt(struct vfsmount *mnt)
 | |
| {
 | |
| 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
 | |
| }
 | |
| 
 | |
| static void touch_mnt_namespace(struct mnt_namespace *ns)
 | |
| {
 | |
| 	if (ns) {
 | |
| 		ns->event = ++event;
 | |
| 		wake_up_interruptible(&ns->poll);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __touch_mnt_namespace(struct mnt_namespace *ns)
 | |
| {
 | |
| 	if (ns && ns->event != event) {
 | |
| 		ns->event = event;
 | |
| 		wake_up_interruptible(&ns->poll);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
 | |
| {
 | |
| 	old_path->dentry = mnt->mnt_mountpoint;
 | |
| 	old_path->mnt = mnt->mnt_parent;
 | |
| 	mnt->mnt_parent = mnt;
 | |
| 	mnt->mnt_mountpoint = mnt->mnt_root;
 | |
| 	list_del_init(&mnt->mnt_child);
 | |
| 	list_del_init(&mnt->mnt_hash);
 | |
| 	old_path->dentry->d_mounted--;
 | |
| }
 | |
| 
 | |
| void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
 | |
| 			struct vfsmount *child_mnt)
 | |
| {
 | |
| 	child_mnt->mnt_parent = mntget(mnt);
 | |
| 	child_mnt->mnt_mountpoint = dget(dentry);
 | |
| 	dentry->d_mounted++;
 | |
| }
 | |
| 
 | |
| static void attach_mnt(struct vfsmount *mnt, struct path *path)
 | |
| {
 | |
| 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
 | |
| 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
 | |
| 			hash(path->mnt, path->dentry));
 | |
| 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the caller must hold vfsmount_lock
 | |
|  */
 | |
| static void commit_tree(struct vfsmount *mnt)
 | |
| {
 | |
| 	struct vfsmount *parent = mnt->mnt_parent;
 | |
| 	struct vfsmount *m;
 | |
| 	LIST_HEAD(head);
 | |
| 	struct mnt_namespace *n = parent->mnt_ns;
 | |
| 
 | |
| 	BUG_ON(parent == mnt);
 | |
| 
 | |
| 	list_add_tail(&head, &mnt->mnt_list);
 | |
| 	list_for_each_entry(m, &head, mnt_list)
 | |
| 		m->mnt_ns = n;
 | |
| 	list_splice(&head, n->list.prev);
 | |
| 
 | |
| 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
 | |
| 				hash(parent, mnt->mnt_mountpoint));
 | |
| 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 | |
| 	touch_mnt_namespace(n);
 | |
| }
 | |
| 
 | |
| static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
 | |
| {
 | |
| 	struct list_head *next = p->mnt_mounts.next;
 | |
| 	if (next == &p->mnt_mounts) {
 | |
| 		while (1) {
 | |
| 			if (p == root)
 | |
| 				return NULL;
 | |
| 			next = p->mnt_child.next;
 | |
| 			if (next != &p->mnt_parent->mnt_mounts)
 | |
| 				break;
 | |
| 			p = p->mnt_parent;
 | |
| 		}
 | |
| 	}
 | |
| 	return list_entry(next, struct vfsmount, mnt_child);
 | |
| }
 | |
| 
 | |
| static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
 | |
| {
 | |
| 	struct list_head *prev = p->mnt_mounts.prev;
 | |
| 	while (prev != &p->mnt_mounts) {
 | |
| 		p = list_entry(prev, struct vfsmount, mnt_child);
 | |
| 		prev = p->mnt_mounts.prev;
 | |
| 	}
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
 | |
| 					int flag)
 | |
| {
 | |
| 	struct super_block *sb = old->mnt_sb;
 | |
| 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
 | |
| 
 | |
| 	if (mnt) {
 | |
| 		if (flag & (CL_SLAVE | CL_PRIVATE))
 | |
| 			mnt->mnt_group_id = 0; /* not a peer of original */
 | |
| 		else
 | |
| 			mnt->mnt_group_id = old->mnt_group_id;
 | |
| 
 | |
| 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
 | |
| 			int err = mnt_alloc_group_id(mnt);
 | |
| 			if (err)
 | |
| 				goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		mnt->mnt_flags = old->mnt_flags;
 | |
| 		atomic_inc(&sb->s_active);
 | |
| 		mnt->mnt_sb = sb;
 | |
| 		mnt->mnt_root = dget(root);
 | |
| 		mnt->mnt_mountpoint = mnt->mnt_root;
 | |
| 		mnt->mnt_parent = mnt;
 | |
| 
 | |
| 		if (flag & CL_SLAVE) {
 | |
| 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
 | |
| 			mnt->mnt_master = old;
 | |
| 			CLEAR_MNT_SHARED(mnt);
 | |
| 		} else if (!(flag & CL_PRIVATE)) {
 | |
| 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
 | |
| 				list_add(&mnt->mnt_share, &old->mnt_share);
 | |
| 			if (IS_MNT_SLAVE(old))
 | |
| 				list_add(&mnt->mnt_slave, &old->mnt_slave);
 | |
| 			mnt->mnt_master = old->mnt_master;
 | |
| 		}
 | |
| 		if (flag & CL_MAKE_SHARED)
 | |
| 			set_mnt_shared(mnt);
 | |
| 
 | |
| 		/* stick the duplicate mount on the same expiry list
 | |
| 		 * as the original if that was on one */
 | |
| 		if (flag & CL_EXPIRE) {
 | |
| 			if (!list_empty(&old->mnt_expire))
 | |
| 				list_add(&mnt->mnt_expire, &old->mnt_expire);
 | |
| 		}
 | |
| 	}
 | |
| 	return mnt;
 | |
| 
 | |
|  out_free:
 | |
| 	free_vfsmnt(mnt);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void __mntput(struct vfsmount *mnt)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct super_block *sb = mnt->mnt_sb;
 | |
| 	/*
 | |
| 	 * We don't have to hold all of the locks at the
 | |
| 	 * same time here because we know that we're the
 | |
| 	 * last reference to mnt and that no new writers
 | |
| 	 * can come in.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
 | |
| 		if (cpu_writer->mnt != mnt)
 | |
| 			continue;
 | |
| 		spin_lock(&cpu_writer->lock);
 | |
| 		atomic_add(cpu_writer->count, &mnt->__mnt_writers);
 | |
| 		cpu_writer->count = 0;
 | |
| 		/*
 | |
| 		 * Might as well do this so that no one
 | |
| 		 * ever sees the pointer and expects
 | |
| 		 * it to be valid.
 | |
| 		 */
 | |
| 		cpu_writer->mnt = NULL;
 | |
| 		spin_unlock(&cpu_writer->lock);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * This probably indicates that somebody messed
 | |
| 	 * up a mnt_want/drop_write() pair.  If this
 | |
| 	 * happens, the filesystem was probably unable
 | |
| 	 * to make r/w->r/o transitions.
 | |
| 	 */
 | |
| 	WARN_ON(atomic_read(&mnt->__mnt_writers));
 | |
| 	dput(mnt->mnt_root);
 | |
| 	free_vfsmnt(mnt);
 | |
| 	deactivate_super(sb);
 | |
| }
 | |
| 
 | |
| void mntput_no_expire(struct vfsmount *mnt)
 | |
| {
 | |
| repeat:
 | |
| 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
 | |
| 		if (likely(!mnt->mnt_pinned)) {
 | |
| 			spin_unlock(&vfsmount_lock);
 | |
| 			__mntput(mnt);
 | |
| 			return;
 | |
| 		}
 | |
| 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
 | |
| 		mnt->mnt_pinned = 0;
 | |
| 		spin_unlock(&vfsmount_lock);
 | |
| 		acct_auto_close_mnt(mnt);
 | |
| 		security_sb_umount_close(mnt);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(mntput_no_expire);
 | |
| 
 | |
| void mnt_pin(struct vfsmount *mnt)
 | |
| {
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	mnt->mnt_pinned++;
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(mnt_pin);
 | |
| 
 | |
| void mnt_unpin(struct vfsmount *mnt)
 | |
| {
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	if (mnt->mnt_pinned) {
 | |
| 		atomic_inc(&mnt->mnt_count);
 | |
| 		mnt->mnt_pinned--;
 | |
| 	}
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(mnt_unpin);
 | |
| 
 | |
| static inline void mangle(struct seq_file *m, const char *s)
 | |
| {
 | |
| 	seq_escape(m, s, " \t\n\\");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Simple .show_options callback for filesystems which don't want to
 | |
|  * implement more complex mount option showing.
 | |
|  *
 | |
|  * See also save_mount_options().
 | |
|  */
 | |
| int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
 | |
| {
 | |
| 	const char *options = mnt->mnt_sb->s_options;
 | |
| 
 | |
| 	if (options != NULL && options[0]) {
 | |
| 		seq_putc(m, ',');
 | |
| 		mangle(m, options);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_show_options);
 | |
| 
 | |
| /*
 | |
|  * If filesystem uses generic_show_options(), this function should be
 | |
|  * called from the fill_super() callback.
 | |
|  *
 | |
|  * The .remount_fs callback usually needs to be handled in a special
 | |
|  * way, to make sure, that previous options are not overwritten if the
 | |
|  * remount fails.
 | |
|  *
 | |
|  * Also note, that if the filesystem's .remount_fs function doesn't
 | |
|  * reset all options to their default value, but changes only newly
 | |
|  * given options, then the displayed options will not reflect reality
 | |
|  * any more.
 | |
|  */
 | |
| void save_mount_options(struct super_block *sb, char *options)
 | |
| {
 | |
| 	kfree(sb->s_options);
 | |
| 	sb->s_options = kstrdup(options, GFP_KERNEL);
 | |
| }
 | |
| EXPORT_SYMBOL(save_mount_options);
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| /* iterator */
 | |
| static void *m_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	struct proc_mounts *p = m->private;
 | |
| 
 | |
| 	down_read(&namespace_sem);
 | |
| 	return seq_list_start(&p->ns->list, *pos);
 | |
| }
 | |
| 
 | |
| static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct proc_mounts *p = m->private;
 | |
| 
 | |
| 	return seq_list_next(v, &p->ns->list, pos);
 | |
| }
 | |
| 
 | |
| static void m_stop(struct seq_file *m, void *v)
 | |
| {
 | |
| 	up_read(&namespace_sem);
 | |
| }
 | |
| 
 | |
| struct proc_fs_info {
 | |
| 	int flag;
 | |
| 	const char *str;
 | |
| };
 | |
| 
 | |
| static int show_sb_opts(struct seq_file *m, struct super_block *sb)
 | |
| {
 | |
| 	static const struct proc_fs_info fs_info[] = {
 | |
| 		{ MS_SYNCHRONOUS, ",sync" },
 | |
| 		{ MS_DIRSYNC, ",dirsync" },
 | |
| 		{ MS_MANDLOCK, ",mand" },
 | |
| 		{ 0, NULL }
 | |
| 	};
 | |
| 	const struct proc_fs_info *fs_infop;
 | |
| 
 | |
| 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
 | |
| 		if (sb->s_flags & fs_infop->flag)
 | |
| 			seq_puts(m, fs_infop->str);
 | |
| 	}
 | |
| 
 | |
| 	return security_sb_show_options(m, sb);
 | |
| }
 | |
| 
 | |
| static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
 | |
| {
 | |
| 	static const struct proc_fs_info mnt_info[] = {
 | |
| 		{ MNT_NOSUID, ",nosuid" },
 | |
| 		{ MNT_NODEV, ",nodev" },
 | |
| 		{ MNT_NOEXEC, ",noexec" },
 | |
| 		{ MNT_NOATIME, ",noatime" },
 | |
| 		{ MNT_NODIRATIME, ",nodiratime" },
 | |
| 		{ MNT_RELATIME, ",relatime" },
 | |
| 		{ 0, NULL }
 | |
| 	};
 | |
| 	const struct proc_fs_info *fs_infop;
 | |
| 
 | |
| 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
 | |
| 		if (mnt->mnt_flags & fs_infop->flag)
 | |
| 			seq_puts(m, fs_infop->str);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void show_type(struct seq_file *m, struct super_block *sb)
 | |
| {
 | |
| 	mangle(m, sb->s_type->name);
 | |
| 	if (sb->s_subtype && sb->s_subtype[0]) {
 | |
| 		seq_putc(m, '.');
 | |
| 		mangle(m, sb->s_subtype);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int show_vfsmnt(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
 | |
| 	int err = 0;
 | |
| 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
 | |
| 
 | |
| 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
 | |
| 	seq_putc(m, ' ');
 | |
| 	seq_path(m, &mnt_path, " \t\n\\");
 | |
| 	seq_putc(m, ' ');
 | |
| 	show_type(m, mnt->mnt_sb);
 | |
| 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
 | |
| 	err = show_sb_opts(m, mnt->mnt_sb);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	show_mnt_opts(m, mnt);
 | |
| 	if (mnt->mnt_sb->s_op->show_options)
 | |
| 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
 | |
| 	seq_puts(m, " 0 0\n");
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| const struct seq_operations mounts_op = {
 | |
| 	.start	= m_start,
 | |
| 	.next	= m_next,
 | |
| 	.stop	= m_stop,
 | |
| 	.show	= show_vfsmnt
 | |
| };
 | |
| 
 | |
| static int show_mountinfo(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct proc_mounts *p = m->private;
 | |
| 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
 | |
| 	struct super_block *sb = mnt->mnt_sb;
 | |
| 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
 | |
| 	struct path root = p->root;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
 | |
| 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
 | |
| 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
 | |
| 	seq_putc(m, ' ');
 | |
| 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
 | |
| 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
 | |
| 		/*
 | |
| 		 * Mountpoint is outside root, discard that one.  Ugly,
 | |
| 		 * but less so than trying to do that in iterator in a
 | |
| 		 * race-free way (due to renames).
 | |
| 		 */
 | |
| 		return SEQ_SKIP;
 | |
| 	}
 | |
| 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
 | |
| 	show_mnt_opts(m, mnt);
 | |
| 
 | |
| 	/* Tagged fields ("foo:X" or "bar") */
 | |
| 	if (IS_MNT_SHARED(mnt))
 | |
| 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
 | |
| 	if (IS_MNT_SLAVE(mnt)) {
 | |
| 		int master = mnt->mnt_master->mnt_group_id;
 | |
| 		int dom = get_dominating_id(mnt, &p->root);
 | |
| 		seq_printf(m, " master:%i", master);
 | |
| 		if (dom && dom != master)
 | |
| 			seq_printf(m, " propagate_from:%i", dom);
 | |
| 	}
 | |
| 	if (IS_MNT_UNBINDABLE(mnt))
 | |
| 		seq_puts(m, " unbindable");
 | |
| 
 | |
| 	/* Filesystem specific data */
 | |
| 	seq_puts(m, " - ");
 | |
| 	show_type(m, sb);
 | |
| 	seq_putc(m, ' ');
 | |
| 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
 | |
| 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
 | |
| 	err = show_sb_opts(m, sb);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	if (sb->s_op->show_options)
 | |
| 		err = sb->s_op->show_options(m, mnt);
 | |
| 	seq_putc(m, '\n');
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| const struct seq_operations mountinfo_op = {
 | |
| 	.start	= m_start,
 | |
| 	.next	= m_next,
 | |
| 	.stop	= m_stop,
 | |
| 	.show	= show_mountinfo,
 | |
| };
 | |
| 
 | |
| static int show_vfsstat(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
 | |
| 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/* device */
 | |
| 	if (mnt->mnt_devname) {
 | |
| 		seq_puts(m, "device ");
 | |
| 		mangle(m, mnt->mnt_devname);
 | |
| 	} else
 | |
| 		seq_puts(m, "no device");
 | |
| 
 | |
| 	/* mount point */
 | |
| 	seq_puts(m, " mounted on ");
 | |
| 	seq_path(m, &mnt_path, " \t\n\\");
 | |
| 	seq_putc(m, ' ');
 | |
| 
 | |
| 	/* file system type */
 | |
| 	seq_puts(m, "with fstype ");
 | |
| 	show_type(m, mnt->mnt_sb);
 | |
| 
 | |
| 	/* optional statistics */
 | |
| 	if (mnt->mnt_sb->s_op->show_stats) {
 | |
| 		seq_putc(m, ' ');
 | |
| 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
 | |
| 	}
 | |
| 
 | |
| 	seq_putc(m, '\n');
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| const struct seq_operations mountstats_op = {
 | |
| 	.start	= m_start,
 | |
| 	.next	= m_next,
 | |
| 	.stop	= m_stop,
 | |
| 	.show	= show_vfsstat,
 | |
| };
 | |
| #endif  /* CONFIG_PROC_FS */
 | |
| 
 | |
| /**
 | |
|  * may_umount_tree - check if a mount tree is busy
 | |
|  * @mnt: root of mount tree
 | |
|  *
 | |
|  * This is called to check if a tree of mounts has any
 | |
|  * open files, pwds, chroots or sub mounts that are
 | |
|  * busy.
 | |
|  */
 | |
| int may_umount_tree(struct vfsmount *mnt)
 | |
| {
 | |
| 	int actual_refs = 0;
 | |
| 	int minimum_refs = 0;
 | |
| 	struct vfsmount *p;
 | |
| 
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	for (p = mnt; p; p = next_mnt(p, mnt)) {
 | |
| 		actual_refs += atomic_read(&p->mnt_count);
 | |
| 		minimum_refs += 2;
 | |
| 	}
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 
 | |
| 	if (actual_refs > minimum_refs)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(may_umount_tree);
 | |
| 
 | |
| /**
 | |
|  * may_umount - check if a mount point is busy
 | |
|  * @mnt: root of mount
 | |
|  *
 | |
|  * This is called to check if a mount point has any
 | |
|  * open files, pwds, chroots or sub mounts. If the
 | |
|  * mount has sub mounts this will return busy
 | |
|  * regardless of whether the sub mounts are busy.
 | |
|  *
 | |
|  * Doesn't take quota and stuff into account. IOW, in some cases it will
 | |
|  * give false negatives. The main reason why it's here is that we need
 | |
|  * a non-destructive way to look for easily umountable filesystems.
 | |
|  */
 | |
| int may_umount(struct vfsmount *mnt)
 | |
| {
 | |
| 	int ret = 1;
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	if (propagate_mount_busy(mnt, 2))
 | |
| 		ret = 0;
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(may_umount);
 | |
| 
 | |
| void release_mounts(struct list_head *head)
 | |
| {
 | |
| 	struct vfsmount *mnt;
 | |
| 	while (!list_empty(head)) {
 | |
| 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
 | |
| 		list_del_init(&mnt->mnt_hash);
 | |
| 		if (mnt->mnt_parent != mnt) {
 | |
| 			struct dentry *dentry;
 | |
| 			struct vfsmount *m;
 | |
| 			spin_lock(&vfsmount_lock);
 | |
| 			dentry = mnt->mnt_mountpoint;
 | |
| 			m = mnt->mnt_parent;
 | |
| 			mnt->mnt_mountpoint = mnt->mnt_root;
 | |
| 			mnt->mnt_parent = mnt;
 | |
| 			m->mnt_ghosts--;
 | |
| 			spin_unlock(&vfsmount_lock);
 | |
| 			dput(dentry);
 | |
| 			mntput(m);
 | |
| 		}
 | |
| 		mntput(mnt);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
 | |
| {
 | |
| 	struct vfsmount *p;
 | |
| 
 | |
| 	for (p = mnt; p; p = next_mnt(p, mnt))
 | |
| 		list_move(&p->mnt_hash, kill);
 | |
| 
 | |
| 	if (propagate)
 | |
| 		propagate_umount(kill);
 | |
| 
 | |
| 	list_for_each_entry(p, kill, mnt_hash) {
 | |
| 		list_del_init(&p->mnt_expire);
 | |
| 		list_del_init(&p->mnt_list);
 | |
| 		__touch_mnt_namespace(p->mnt_ns);
 | |
| 		p->mnt_ns = NULL;
 | |
| 		list_del_init(&p->mnt_child);
 | |
| 		if (p->mnt_parent != p) {
 | |
| 			p->mnt_parent->mnt_ghosts++;
 | |
| 			p->mnt_mountpoint->d_mounted--;
 | |
| 		}
 | |
| 		change_mnt_propagation(p, MS_PRIVATE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
 | |
| 
 | |
| static int do_umount(struct vfsmount *mnt, int flags)
 | |
| {
 | |
| 	struct super_block *sb = mnt->mnt_sb;
 | |
| 	int retval;
 | |
| 	LIST_HEAD(umount_list);
 | |
| 
 | |
| 	retval = security_sb_umount(mnt, flags);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow userspace to request a mountpoint be expired rather than
 | |
| 	 * unmounting unconditionally. Unmount only happens if:
 | |
| 	 *  (1) the mark is already set (the mark is cleared by mntput())
 | |
| 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
 | |
| 	 */
 | |
| 	if (flags & MNT_EXPIRE) {
 | |
| 		if (mnt == current->fs->root.mnt ||
 | |
| 		    flags & (MNT_FORCE | MNT_DETACH))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (atomic_read(&mnt->mnt_count) != 2)
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		if (!xchg(&mnt->mnt_expiry_mark, 1))
 | |
| 			return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we may have to abort operations to get out of this
 | |
| 	 * mount, and they will themselves hold resources we must
 | |
| 	 * allow the fs to do things. In the Unix tradition of
 | |
| 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
 | |
| 	 * might fail to complete on the first run through as other tasks
 | |
| 	 * must return, and the like. Thats for the mount program to worry
 | |
| 	 * about for the moment.
 | |
| 	 */
 | |
| 
 | |
| 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
 | |
| 		lock_kernel();
 | |
| 		sb->s_op->umount_begin(sb);
 | |
| 		unlock_kernel();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No sense to grab the lock for this test, but test itself looks
 | |
| 	 * somewhat bogus. Suggestions for better replacement?
 | |
| 	 * Ho-hum... In principle, we might treat that as umount + switch
 | |
| 	 * to rootfs. GC would eventually take care of the old vfsmount.
 | |
| 	 * Actually it makes sense, especially if rootfs would contain a
 | |
| 	 * /reboot - static binary that would close all descriptors and
 | |
| 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
 | |
| 	 */
 | |
| 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
 | |
| 		/*
 | |
| 		 * Special case for "unmounting" root ...
 | |
| 		 * we just try to remount it readonly.
 | |
| 		 */
 | |
| 		down_write(&sb->s_umount);
 | |
| 		if (!(sb->s_flags & MS_RDONLY)) {
 | |
| 			lock_kernel();
 | |
| 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
 | |
| 			unlock_kernel();
 | |
| 		}
 | |
| 		up_write(&sb->s_umount);
 | |
| 		return retval;
 | |
| 	}
 | |
| 
 | |
| 	down_write(&namespace_sem);
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	event++;
 | |
| 
 | |
| 	if (!(flags & MNT_DETACH))
 | |
| 		shrink_submounts(mnt, &umount_list);
 | |
| 
 | |
| 	retval = -EBUSY;
 | |
| 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
 | |
| 		if (!list_empty(&mnt->mnt_list))
 | |
| 			umount_tree(mnt, 1, &umount_list);
 | |
| 		retval = 0;
 | |
| 	}
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	if (retval)
 | |
| 		security_sb_umount_busy(mnt);
 | |
| 	up_write(&namespace_sem);
 | |
| 	release_mounts(&umount_list);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Now umount can handle mount points as well as block devices.
 | |
|  * This is important for filesystems which use unnamed block devices.
 | |
|  *
 | |
|  * We now support a flag for forced unmount like the other 'big iron'
 | |
|  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
 | |
|  */
 | |
| 
 | |
| asmlinkage long sys_umount(char __user * name, int flags)
 | |
| {
 | |
| 	struct path path;
 | |
| 	int retval;
 | |
| 
 | |
| 	retval = user_path(name, &path);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 	retval = -EINVAL;
 | |
| 	if (path.dentry != path.mnt->mnt_root)
 | |
| 		goto dput_and_out;
 | |
| 	if (!check_mnt(path.mnt))
 | |
| 		goto dput_and_out;
 | |
| 
 | |
| 	retval = -EPERM;
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		goto dput_and_out;
 | |
| 
 | |
| 	retval = do_umount(path.mnt, flags);
 | |
| dput_and_out:
 | |
| 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
 | |
| 	dput(path.dentry);
 | |
| 	mntput_no_expire(path.mnt);
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_OLDUMOUNT
 | |
| 
 | |
| /*
 | |
|  *	The 2.0 compatible umount. No flags.
 | |
|  */
 | |
| asmlinkage long sys_oldumount(char __user * name)
 | |
| {
 | |
| 	return sys_umount(name, 0);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int mount_is_safe(struct path *path)
 | |
| {
 | |
| 	if (capable(CAP_SYS_ADMIN))
 | |
| 		return 0;
 | |
| 	return -EPERM;
 | |
| #ifdef notyet
 | |
| 	if (S_ISLNK(path->dentry->d_inode->i_mode))
 | |
| 		return -EPERM;
 | |
| 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
 | |
| 		if (current->uid != path->dentry->d_inode->i_uid)
 | |
| 			return -EPERM;
 | |
| 	}
 | |
| 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
 | |
| 		return -EPERM;
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
 | |
| 					int flag)
 | |
| {
 | |
| 	struct vfsmount *res, *p, *q, *r, *s;
 | |
| 	struct path path;
 | |
| 
 | |
| 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
 | |
| 		return NULL;
 | |
| 
 | |
| 	res = q = clone_mnt(mnt, dentry, flag);
 | |
| 	if (!q)
 | |
| 		goto Enomem;
 | |
| 	q->mnt_mountpoint = mnt->mnt_mountpoint;
 | |
| 
 | |
| 	p = mnt;
 | |
| 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
 | |
| 		if (!is_subdir(r->mnt_mountpoint, dentry))
 | |
| 			continue;
 | |
| 
 | |
| 		for (s = r; s; s = next_mnt(s, r)) {
 | |
| 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
 | |
| 				s = skip_mnt_tree(s);
 | |
| 				continue;
 | |
| 			}
 | |
| 			while (p != s->mnt_parent) {
 | |
| 				p = p->mnt_parent;
 | |
| 				q = q->mnt_parent;
 | |
| 			}
 | |
| 			p = s;
 | |
| 			path.mnt = q;
 | |
| 			path.dentry = p->mnt_mountpoint;
 | |
| 			q = clone_mnt(p, p->mnt_root, flag);
 | |
| 			if (!q)
 | |
| 				goto Enomem;
 | |
| 			spin_lock(&vfsmount_lock);
 | |
| 			list_add_tail(&q->mnt_list, &res->mnt_list);
 | |
| 			attach_mnt(q, &path);
 | |
| 			spin_unlock(&vfsmount_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| Enomem:
 | |
| 	if (res) {
 | |
| 		LIST_HEAD(umount_list);
 | |
| 		spin_lock(&vfsmount_lock);
 | |
| 		umount_tree(res, 0, &umount_list);
 | |
| 		spin_unlock(&vfsmount_lock);
 | |
| 		release_mounts(&umount_list);
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
 | |
| {
 | |
| 	struct vfsmount *tree;
 | |
| 	down_write(&namespace_sem);
 | |
| 	tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
 | |
| 	up_write(&namespace_sem);
 | |
| 	return tree;
 | |
| }
 | |
| 
 | |
| void drop_collected_mounts(struct vfsmount *mnt)
 | |
| {
 | |
| 	LIST_HEAD(umount_list);
 | |
| 	down_write(&namespace_sem);
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	umount_tree(mnt, 0, &umount_list);
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	up_write(&namespace_sem);
 | |
| 	release_mounts(&umount_list);
 | |
| }
 | |
| 
 | |
| static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
 | |
| {
 | |
| 	struct vfsmount *p;
 | |
| 
 | |
| 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
 | |
| 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
 | |
| 			mnt_release_group_id(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int invent_group_ids(struct vfsmount *mnt, bool recurse)
 | |
| {
 | |
| 	struct vfsmount *p;
 | |
| 
 | |
| 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
 | |
| 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
 | |
| 			int err = mnt_alloc_group_id(p);
 | |
| 			if (err) {
 | |
| 				cleanup_group_ids(mnt, p);
 | |
| 				return err;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  @source_mnt : mount tree to be attached
 | |
|  *  @nd         : place the mount tree @source_mnt is attached
 | |
|  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
 | |
|  *  		   store the parent mount and mountpoint dentry.
 | |
|  *  		   (done when source_mnt is moved)
 | |
|  *
 | |
|  *  NOTE: in the table below explains the semantics when a source mount
 | |
|  *  of a given type is attached to a destination mount of a given type.
 | |
|  * ---------------------------------------------------------------------------
 | |
|  * |         BIND MOUNT OPERATION                                            |
 | |
|  * |**************************************************************************
 | |
|  * | source-->| shared        |       private  |       slave    | unbindable |
 | |
|  * | dest     |               |                |                |            |
 | |
|  * |   |      |               |                |                |            |
 | |
|  * |   v      |               |                |                |            |
 | |
|  * |**************************************************************************
 | |
|  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
 | |
|  * |          |               |                |                |            |
 | |
|  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
 | |
|  * ***************************************************************************
 | |
|  * A bind operation clones the source mount and mounts the clone on the
 | |
|  * destination mount.
 | |
|  *
 | |
|  * (++)  the cloned mount is propagated to all the mounts in the propagation
 | |
|  * 	 tree of the destination mount and the cloned mount is added to
 | |
|  * 	 the peer group of the source mount.
 | |
|  * (+)   the cloned mount is created under the destination mount and is marked
 | |
|  *       as shared. The cloned mount is added to the peer group of the source
 | |
|  *       mount.
 | |
|  * (+++) the mount is propagated to all the mounts in the propagation tree
 | |
|  *       of the destination mount and the cloned mount is made slave
 | |
|  *       of the same master as that of the source mount. The cloned mount
 | |
|  *       is marked as 'shared and slave'.
 | |
|  * (*)   the cloned mount is made a slave of the same master as that of the
 | |
|  * 	 source mount.
 | |
|  *
 | |
|  * ---------------------------------------------------------------------------
 | |
|  * |         		MOVE MOUNT OPERATION                                 |
 | |
|  * |**************************************************************************
 | |
|  * | source-->| shared        |       private  |       slave    | unbindable |
 | |
|  * | dest     |               |                |                |            |
 | |
|  * |   |      |               |                |                |            |
 | |
|  * |   v      |               |                |                |            |
 | |
|  * |**************************************************************************
 | |
|  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
 | |
|  * |          |               |                |                |            |
 | |
|  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
 | |
|  * ***************************************************************************
 | |
|  *
 | |
|  * (+)  the mount is moved to the destination. And is then propagated to
 | |
|  * 	all the mounts in the propagation tree of the destination mount.
 | |
|  * (+*)  the mount is moved to the destination.
 | |
|  * (+++)  the mount is moved to the destination and is then propagated to
 | |
|  * 	all the mounts belonging to the destination mount's propagation tree.
 | |
|  * 	the mount is marked as 'shared and slave'.
 | |
|  * (*)	the mount continues to be a slave at the new location.
 | |
|  *
 | |
|  * if the source mount is a tree, the operations explained above is
 | |
|  * applied to each mount in the tree.
 | |
|  * Must be called without spinlocks held, since this function can sleep
 | |
|  * in allocations.
 | |
|  */
 | |
| static int attach_recursive_mnt(struct vfsmount *source_mnt,
 | |
| 			struct path *path, struct path *parent_path)
 | |
| {
 | |
| 	LIST_HEAD(tree_list);
 | |
| 	struct vfsmount *dest_mnt = path->mnt;
 | |
| 	struct dentry *dest_dentry = path->dentry;
 | |
| 	struct vfsmount *child, *p;
 | |
| 	int err;
 | |
| 
 | |
| 	if (IS_MNT_SHARED(dest_mnt)) {
 | |
| 		err = invent_group_ids(source_mnt, true);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
 | |
| 	if (err)
 | |
| 		goto out_cleanup_ids;
 | |
| 
 | |
| 	if (IS_MNT_SHARED(dest_mnt)) {
 | |
| 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
 | |
| 			set_mnt_shared(p);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	if (parent_path) {
 | |
| 		detach_mnt(source_mnt, parent_path);
 | |
| 		attach_mnt(source_mnt, path);
 | |
| 		touch_mnt_namespace(current->nsproxy->mnt_ns);
 | |
| 	} else {
 | |
| 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
 | |
| 		commit_tree(source_mnt);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
 | |
| 		list_del_init(&child->mnt_hash);
 | |
| 		commit_tree(child);
 | |
| 	}
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	return 0;
 | |
| 
 | |
|  out_cleanup_ids:
 | |
| 	if (IS_MNT_SHARED(dest_mnt))
 | |
| 		cleanup_group_ids(source_mnt, NULL);
 | |
|  out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int graft_tree(struct vfsmount *mnt, struct path *path)
 | |
| {
 | |
| 	int err;
 | |
| 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
 | |
| 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
 | |
| 		return -ENOTDIR;
 | |
| 
 | |
| 	err = -ENOENT;
 | |
| 	mutex_lock(&path->dentry->d_inode->i_mutex);
 | |
| 	if (IS_DEADDIR(path->dentry->d_inode))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	err = security_sb_check_sb(mnt, path);
 | |
| 	if (err)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	err = -ENOENT;
 | |
| 	if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
 | |
| 		err = attach_recursive_mnt(mnt, path, NULL);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&path->dentry->d_inode->i_mutex);
 | |
| 	if (!err)
 | |
| 		security_sb_post_addmount(mnt, path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * recursively change the type of the mountpoint.
 | |
|  */
 | |
| static int do_change_type(struct path *path, int flag)
 | |
| {
 | |
| 	struct vfsmount *m, *mnt = path->mnt;
 | |
| 	int recurse = flag & MS_REC;
 | |
| 	int type = flag & ~MS_REC;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (path->dentry != path->mnt->mnt_root)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	down_write(&namespace_sem);
 | |
| 	if (type == MS_SHARED) {
 | |
| 		err = invent_group_ids(mnt, recurse);
 | |
| 		if (err)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
 | |
| 		change_mnt_propagation(m, type);
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 
 | |
|  out_unlock:
 | |
| 	up_write(&namespace_sem);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * do loopback mount.
 | |
|  */
 | |
| static int do_loopback(struct path *path, char *old_name,
 | |
| 				int recurse)
 | |
| {
 | |
| 	struct path old_path;
 | |
| 	struct vfsmount *mnt = NULL;
 | |
| 	int err = mount_is_safe(path);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (!old_name || !*old_name)
 | |
| 		return -EINVAL;
 | |
| 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	down_write(&namespace_sem);
 | |
| 	err = -EINVAL;
 | |
| 	if (IS_MNT_UNBINDABLE(old_path.mnt))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	if (recurse)
 | |
| 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
 | |
| 	else
 | |
| 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
 | |
| 
 | |
| 	if (!mnt)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = graft_tree(mnt, path);
 | |
| 	if (err) {
 | |
| 		LIST_HEAD(umount_list);
 | |
| 		spin_lock(&vfsmount_lock);
 | |
| 		umount_tree(mnt, 0, &umount_list);
 | |
| 		spin_unlock(&vfsmount_lock);
 | |
| 		release_mounts(&umount_list);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	up_write(&namespace_sem);
 | |
| 	path_put(&old_path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
 | |
| {
 | |
| 	int error = 0;
 | |
| 	int readonly_request = 0;
 | |
| 
 | |
| 	if (ms_flags & MS_RDONLY)
 | |
| 		readonly_request = 1;
 | |
| 	if (readonly_request == __mnt_is_readonly(mnt))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (readonly_request)
 | |
| 		error = mnt_make_readonly(mnt);
 | |
| 	else
 | |
| 		__mnt_unmake_readonly(mnt);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * change filesystem flags. dir should be a physical root of filesystem.
 | |
|  * If you've mounted a non-root directory somewhere and want to do remount
 | |
|  * on it - tough luck.
 | |
|  */
 | |
| static int do_remount(struct path *path, int flags, int mnt_flags,
 | |
| 		      void *data)
 | |
| {
 | |
| 	int err;
 | |
| 	struct super_block *sb = path->mnt->mnt_sb;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (!check_mnt(path->mnt))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (path->dentry != path->mnt->mnt_root)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	down_write(&sb->s_umount);
 | |
| 	if (flags & MS_BIND)
 | |
| 		err = change_mount_flags(path->mnt, flags);
 | |
| 	else
 | |
| 		err = do_remount_sb(sb, flags, data, 0);
 | |
| 	if (!err)
 | |
| 		path->mnt->mnt_flags = mnt_flags;
 | |
| 	up_write(&sb->s_umount);
 | |
| 	if (!err) {
 | |
| 		security_sb_post_remount(path->mnt, flags, data);
 | |
| 
 | |
| 		spin_lock(&vfsmount_lock);
 | |
| 		touch_mnt_namespace(path->mnt->mnt_ns);
 | |
| 		spin_unlock(&vfsmount_lock);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static inline int tree_contains_unbindable(struct vfsmount *mnt)
 | |
| {
 | |
| 	struct vfsmount *p;
 | |
| 	for (p = mnt; p; p = next_mnt(p, mnt)) {
 | |
| 		if (IS_MNT_UNBINDABLE(p))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_move_mount(struct path *path, char *old_name)
 | |
| {
 | |
| 	struct path old_path, parent_path;
 | |
| 	struct vfsmount *p;
 | |
| 	int err = 0;
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 	if (!old_name || !*old_name)
 | |
| 		return -EINVAL;
 | |
| 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	down_write(&namespace_sem);
 | |
| 	while (d_mountpoint(path->dentry) &&
 | |
| 	       follow_down(&path->mnt, &path->dentry))
 | |
| 		;
 | |
| 	err = -EINVAL;
 | |
| 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -ENOENT;
 | |
| 	mutex_lock(&path->dentry->d_inode->i_mutex);
 | |
| 	if (IS_DEADDIR(path->dentry->d_inode))
 | |
| 		goto out1;
 | |
| 
 | |
| 	if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
 | |
| 		goto out1;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (old_path.dentry != old_path.mnt->mnt_root)
 | |
| 		goto out1;
 | |
| 
 | |
| 	if (old_path.mnt == old_path.mnt->mnt_parent)
 | |
| 		goto out1;
 | |
| 
 | |
| 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
 | |
| 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
 | |
| 		goto out1;
 | |
| 	/*
 | |
| 	 * Don't move a mount residing in a shared parent.
 | |
| 	 */
 | |
| 	if (old_path.mnt->mnt_parent &&
 | |
| 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
 | |
| 		goto out1;
 | |
| 	/*
 | |
| 	 * Don't move a mount tree containing unbindable mounts to a destination
 | |
| 	 * mount which is shared.
 | |
| 	 */
 | |
| 	if (IS_MNT_SHARED(path->mnt) &&
 | |
| 	    tree_contains_unbindable(old_path.mnt))
 | |
| 		goto out1;
 | |
| 	err = -ELOOP;
 | |
| 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
 | |
| 		if (p == old_path.mnt)
 | |
| 			goto out1;
 | |
| 
 | |
| 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
 | |
| 	if (err)
 | |
| 		goto out1;
 | |
| 
 | |
| 	/* if the mount is moved, it should no longer be expire
 | |
| 	 * automatically */
 | |
| 	list_del_init(&old_path.mnt->mnt_expire);
 | |
| out1:
 | |
| 	mutex_unlock(&path->dentry->d_inode->i_mutex);
 | |
| out:
 | |
| 	up_write(&namespace_sem);
 | |
| 	if (!err)
 | |
| 		path_put(&parent_path);
 | |
| 	path_put(&old_path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * create a new mount for userspace and request it to be added into the
 | |
|  * namespace's tree
 | |
|  */
 | |
| static int do_new_mount(struct path *path, char *type, int flags,
 | |
| 			int mnt_flags, char *name, void *data)
 | |
| {
 | |
| 	struct vfsmount *mnt;
 | |
| 
 | |
| 	if (!type || !memchr(type, 0, PAGE_SIZE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* we need capabilities... */
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	mnt = do_kern_mount(type, flags, name, data);
 | |
| 	if (IS_ERR(mnt))
 | |
| 		return PTR_ERR(mnt);
 | |
| 
 | |
| 	return do_add_mount(mnt, path, mnt_flags, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add a mount into a namespace's mount tree
 | |
|  * - provide the option of adding the new mount to an expiration list
 | |
|  */
 | |
| int do_add_mount(struct vfsmount *newmnt, struct path *path,
 | |
| 		 int mnt_flags, struct list_head *fslist)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	down_write(&namespace_sem);
 | |
| 	/* Something was mounted here while we slept */
 | |
| 	while (d_mountpoint(path->dentry) &&
 | |
| 	       follow_down(&path->mnt, &path->dentry))
 | |
| 		;
 | |
| 	err = -EINVAL;
 | |
| 	if (!check_mnt(path->mnt))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/* Refuse the same filesystem on the same mount point */
 | |
| 	err = -EBUSY;
 | |
| 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
 | |
| 	    path->mnt->mnt_root == path->dentry)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	newmnt->mnt_flags = mnt_flags;
 | |
| 	if ((err = graft_tree(newmnt, path)))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (fslist) /* add to the specified expiration list */
 | |
| 		list_add_tail(&newmnt->mnt_expire, fslist);
 | |
| 
 | |
| 	up_write(&namespace_sem);
 | |
| 	return 0;
 | |
| 
 | |
| unlock:
 | |
| 	up_write(&namespace_sem);
 | |
| 	mntput(newmnt);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(do_add_mount);
 | |
| 
 | |
| /*
 | |
|  * process a list of expirable mountpoints with the intent of discarding any
 | |
|  * mountpoints that aren't in use and haven't been touched since last we came
 | |
|  * here
 | |
|  */
 | |
| void mark_mounts_for_expiry(struct list_head *mounts)
 | |
| {
 | |
| 	struct vfsmount *mnt, *next;
 | |
| 	LIST_HEAD(graveyard);
 | |
| 	LIST_HEAD(umounts);
 | |
| 
 | |
| 	if (list_empty(mounts))
 | |
| 		return;
 | |
| 
 | |
| 	down_write(&namespace_sem);
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 
 | |
| 	/* extract from the expiration list every vfsmount that matches the
 | |
| 	 * following criteria:
 | |
| 	 * - only referenced by its parent vfsmount
 | |
| 	 * - still marked for expiry (marked on the last call here; marks are
 | |
| 	 *   cleared by mntput())
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
 | |
| 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
 | |
| 			propagate_mount_busy(mnt, 1))
 | |
| 			continue;
 | |
| 		list_move(&mnt->mnt_expire, &graveyard);
 | |
| 	}
 | |
| 	while (!list_empty(&graveyard)) {
 | |
| 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
 | |
| 		touch_mnt_namespace(mnt->mnt_ns);
 | |
| 		umount_tree(mnt, 1, &umounts);
 | |
| 	}
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	up_write(&namespace_sem);
 | |
| 
 | |
| 	release_mounts(&umounts);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
 | |
| 
 | |
| /*
 | |
|  * Ripoff of 'select_parent()'
 | |
|  *
 | |
|  * search the list of submounts for a given mountpoint, and move any
 | |
|  * shrinkable submounts to the 'graveyard' list.
 | |
|  */
 | |
| static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
 | |
| {
 | |
| 	struct vfsmount *this_parent = parent;
 | |
| 	struct list_head *next;
 | |
| 	int found = 0;
 | |
| 
 | |
| repeat:
 | |
| 	next = this_parent->mnt_mounts.next;
 | |
| resume:
 | |
| 	while (next != &this_parent->mnt_mounts) {
 | |
| 		struct list_head *tmp = next;
 | |
| 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
 | |
| 
 | |
| 		next = tmp->next;
 | |
| 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Descend a level if the d_mounts list is non-empty.
 | |
| 		 */
 | |
| 		if (!list_empty(&mnt->mnt_mounts)) {
 | |
| 			this_parent = mnt;
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 
 | |
| 		if (!propagate_mount_busy(mnt, 1)) {
 | |
| 			list_move_tail(&mnt->mnt_expire, graveyard);
 | |
| 			found++;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * All done at this level ... ascend and resume the search
 | |
| 	 */
 | |
| 	if (this_parent != parent) {
 | |
| 		next = this_parent->mnt_child.next;
 | |
| 		this_parent = this_parent->mnt_parent;
 | |
| 		goto resume;
 | |
| 	}
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * process a list of expirable mountpoints with the intent of discarding any
 | |
|  * submounts of a specific parent mountpoint
 | |
|  */
 | |
| static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
 | |
| {
 | |
| 	LIST_HEAD(graveyard);
 | |
| 	struct vfsmount *m;
 | |
| 
 | |
| 	/* extract submounts of 'mountpoint' from the expiration list */
 | |
| 	while (select_submounts(mnt, &graveyard)) {
 | |
| 		while (!list_empty(&graveyard)) {
 | |
| 			m = list_first_entry(&graveyard, struct vfsmount,
 | |
| 						mnt_expire);
 | |
| 			touch_mnt_namespace(mnt->mnt_ns);
 | |
| 			umount_tree(mnt, 1, umounts);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some copy_from_user() implementations do not return the exact number of
 | |
|  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
 | |
|  * Note that this function differs from copy_from_user() in that it will oops
 | |
|  * on bad values of `to', rather than returning a short copy.
 | |
|  */
 | |
| static long exact_copy_from_user(void *to, const void __user * from,
 | |
| 				 unsigned long n)
 | |
| {
 | |
| 	char *t = to;
 | |
| 	const char __user *f = from;
 | |
| 	char c;
 | |
| 
 | |
| 	if (!access_ok(VERIFY_READ, from, n))
 | |
| 		return n;
 | |
| 
 | |
| 	while (n) {
 | |
| 		if (__get_user(c, f)) {
 | |
| 			memset(t, 0, n);
 | |
| 			break;
 | |
| 		}
 | |
| 		*t++ = c;
 | |
| 		f++;
 | |
| 		n--;
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| int copy_mount_options(const void __user * data, unsigned long *where)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long page;
 | |
| 	unsigned long size;
 | |
| 
 | |
| 	*where = 0;
 | |
| 	if (!data)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!(page = __get_free_page(GFP_KERNEL)))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* We only care that *some* data at the address the user
 | |
| 	 * gave us is valid.  Just in case, we'll zero
 | |
| 	 * the remainder of the page.
 | |
| 	 */
 | |
| 	/* copy_from_user cannot cross TASK_SIZE ! */
 | |
| 	size = TASK_SIZE - (unsigned long)data;
 | |
| 	if (size > PAGE_SIZE)
 | |
| 		size = PAGE_SIZE;
 | |
| 
 | |
| 	i = size - exact_copy_from_user((void *)page, data, size);
 | |
| 	if (!i) {
 | |
| 		free_page(page);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	if (i != PAGE_SIZE)
 | |
| 		memset((char *)page + i, 0, PAGE_SIZE - i);
 | |
| 	*where = page;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
 | |
|  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
 | |
|  *
 | |
|  * data is a (void *) that can point to any structure up to
 | |
|  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
 | |
|  * information (or be NULL).
 | |
|  *
 | |
|  * Pre-0.97 versions of mount() didn't have a flags word.
 | |
|  * When the flags word was introduced its top half was required
 | |
|  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
 | |
|  * Therefore, if this magic number is present, it carries no information
 | |
|  * and must be discarded.
 | |
|  */
 | |
| long do_mount(char *dev_name, char *dir_name, char *type_page,
 | |
| 		  unsigned long flags, void *data_page)
 | |
| {
 | |
| 	struct path path;
 | |
| 	int retval = 0;
 | |
| 	int mnt_flags = 0;
 | |
| 
 | |
| 	/* Discard magic */
 | |
| 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
 | |
| 		flags &= ~MS_MGC_MSK;
 | |
| 
 | |
| 	/* Basic sanity checks */
 | |
| 
 | |
| 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
 | |
| 		return -EINVAL;
 | |
| 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (data_page)
 | |
| 		((char *)data_page)[PAGE_SIZE - 1] = 0;
 | |
| 
 | |
| 	/* Separate the per-mountpoint flags */
 | |
| 	if (flags & MS_NOSUID)
 | |
| 		mnt_flags |= MNT_NOSUID;
 | |
| 	if (flags & MS_NODEV)
 | |
| 		mnt_flags |= MNT_NODEV;
 | |
| 	if (flags & MS_NOEXEC)
 | |
| 		mnt_flags |= MNT_NOEXEC;
 | |
| 	if (flags & MS_NOATIME)
 | |
| 		mnt_flags |= MNT_NOATIME;
 | |
| 	if (flags & MS_NODIRATIME)
 | |
| 		mnt_flags |= MNT_NODIRATIME;
 | |
| 	if (flags & MS_RELATIME)
 | |
| 		mnt_flags |= MNT_RELATIME;
 | |
| 	if (flags & MS_RDONLY)
 | |
| 		mnt_flags |= MNT_READONLY;
 | |
| 
 | |
| 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
 | |
| 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
 | |
| 
 | |
| 	/* ... and get the mountpoint */
 | |
| 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	retval = security_sb_mount(dev_name, &path,
 | |
| 				   type_page, flags, data_page);
 | |
| 	if (retval)
 | |
| 		goto dput_out;
 | |
| 
 | |
| 	if (flags & MS_REMOUNT)
 | |
| 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
 | |
| 				    data_page);
 | |
| 	else if (flags & MS_BIND)
 | |
| 		retval = do_loopback(&path, dev_name, flags & MS_REC);
 | |
| 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
 | |
| 		retval = do_change_type(&path, flags);
 | |
| 	else if (flags & MS_MOVE)
 | |
| 		retval = do_move_mount(&path, dev_name);
 | |
| 	else
 | |
| 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
 | |
| 				      dev_name, data_page);
 | |
| dput_out:
 | |
| 	path_put(&path);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new namespace structure and populate it with contents
 | |
|  * copied from the namespace of the passed in task structure.
 | |
|  */
 | |
| static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
 | |
| 		struct fs_struct *fs)
 | |
| {
 | |
| 	struct mnt_namespace *new_ns;
 | |
| 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
 | |
| 	struct vfsmount *p, *q;
 | |
| 
 | |
| 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
 | |
| 	if (!new_ns)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	atomic_set(&new_ns->count, 1);
 | |
| 	INIT_LIST_HEAD(&new_ns->list);
 | |
| 	init_waitqueue_head(&new_ns->poll);
 | |
| 	new_ns->event = 0;
 | |
| 
 | |
| 	down_write(&namespace_sem);
 | |
| 	/* First pass: copy the tree topology */
 | |
| 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
 | |
| 					CL_COPY_ALL | CL_EXPIRE);
 | |
| 	if (!new_ns->root) {
 | |
| 		up_write(&namespace_sem);
 | |
| 		kfree(new_ns);
 | |
| 		return ERR_PTR(-ENOMEM);;
 | |
| 	}
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
 | |
| 	 * as belonging to new namespace.  We have already acquired a private
 | |
| 	 * fs_struct, so tsk->fs->lock is not needed.
 | |
| 	 */
 | |
| 	p = mnt_ns->root;
 | |
| 	q = new_ns->root;
 | |
| 	while (p) {
 | |
| 		q->mnt_ns = new_ns;
 | |
| 		if (fs) {
 | |
| 			if (p == fs->root.mnt) {
 | |
| 				rootmnt = p;
 | |
| 				fs->root.mnt = mntget(q);
 | |
| 			}
 | |
| 			if (p == fs->pwd.mnt) {
 | |
| 				pwdmnt = p;
 | |
| 				fs->pwd.mnt = mntget(q);
 | |
| 			}
 | |
| 		}
 | |
| 		p = next_mnt(p, mnt_ns->root);
 | |
| 		q = next_mnt(q, new_ns->root);
 | |
| 	}
 | |
| 	up_write(&namespace_sem);
 | |
| 
 | |
| 	if (rootmnt)
 | |
| 		mntput(rootmnt);
 | |
| 	if (pwdmnt)
 | |
| 		mntput(pwdmnt);
 | |
| 
 | |
| 	return new_ns;
 | |
| }
 | |
| 
 | |
| struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
 | |
| 		struct fs_struct *new_fs)
 | |
| {
 | |
| 	struct mnt_namespace *new_ns;
 | |
| 
 | |
| 	BUG_ON(!ns);
 | |
| 	get_mnt_ns(ns);
 | |
| 
 | |
| 	if (!(flags & CLONE_NEWNS))
 | |
| 		return ns;
 | |
| 
 | |
| 	new_ns = dup_mnt_ns(ns, new_fs);
 | |
| 
 | |
| 	put_mnt_ns(ns);
 | |
| 	return new_ns;
 | |
| }
 | |
| 
 | |
| asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
 | |
| 			  char __user * type, unsigned long flags,
 | |
| 			  void __user * data)
 | |
| {
 | |
| 	int retval;
 | |
| 	unsigned long data_page;
 | |
| 	unsigned long type_page;
 | |
| 	unsigned long dev_page;
 | |
| 	char *dir_page;
 | |
| 
 | |
| 	retval = copy_mount_options(type, &type_page);
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	dir_page = getname(dir_name);
 | |
| 	retval = PTR_ERR(dir_page);
 | |
| 	if (IS_ERR(dir_page))
 | |
| 		goto out1;
 | |
| 
 | |
| 	retval = copy_mount_options(dev_name, &dev_page);
 | |
| 	if (retval < 0)
 | |
| 		goto out2;
 | |
| 
 | |
| 	retval = copy_mount_options(data, &data_page);
 | |
| 	if (retval < 0)
 | |
| 		goto out3;
 | |
| 
 | |
| 	lock_kernel();
 | |
| 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
 | |
| 			  flags, (void *)data_page);
 | |
| 	unlock_kernel();
 | |
| 	free_page(data_page);
 | |
| 
 | |
| out3:
 | |
| 	free_page(dev_page);
 | |
| out2:
 | |
| 	putname(dir_page);
 | |
| out1:
 | |
| 	free_page(type_page);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
 | |
|  * It can block. Requires the big lock held.
 | |
|  */
 | |
| void set_fs_root(struct fs_struct *fs, struct path *path)
 | |
| {
 | |
| 	struct path old_root;
 | |
| 
 | |
| 	write_lock(&fs->lock);
 | |
| 	old_root = fs->root;
 | |
| 	fs->root = *path;
 | |
| 	path_get(path);
 | |
| 	write_unlock(&fs->lock);
 | |
| 	if (old_root.dentry)
 | |
| 		path_put(&old_root);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
 | |
|  * It can block. Requires the big lock held.
 | |
|  */
 | |
| void set_fs_pwd(struct fs_struct *fs, struct path *path)
 | |
| {
 | |
| 	struct path old_pwd;
 | |
| 
 | |
| 	write_lock(&fs->lock);
 | |
| 	old_pwd = fs->pwd;
 | |
| 	fs->pwd = *path;
 | |
| 	path_get(path);
 | |
| 	write_unlock(&fs->lock);
 | |
| 
 | |
| 	if (old_pwd.dentry)
 | |
| 		path_put(&old_pwd);
 | |
| }
 | |
| 
 | |
| static void chroot_fs_refs(struct path *old_root, struct path *new_root)
 | |
| {
 | |
| 	struct task_struct *g, *p;
 | |
| 	struct fs_struct *fs;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	do_each_thread(g, p) {
 | |
| 		task_lock(p);
 | |
| 		fs = p->fs;
 | |
| 		if (fs) {
 | |
| 			atomic_inc(&fs->count);
 | |
| 			task_unlock(p);
 | |
| 			if (fs->root.dentry == old_root->dentry
 | |
| 			    && fs->root.mnt == old_root->mnt)
 | |
| 				set_fs_root(fs, new_root);
 | |
| 			if (fs->pwd.dentry == old_root->dentry
 | |
| 			    && fs->pwd.mnt == old_root->mnt)
 | |
| 				set_fs_pwd(fs, new_root);
 | |
| 			put_fs_struct(fs);
 | |
| 		} else
 | |
| 			task_unlock(p);
 | |
| 	} while_each_thread(g, p);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pivot_root Semantics:
 | |
|  * Moves the root file system of the current process to the directory put_old,
 | |
|  * makes new_root as the new root file system of the current process, and sets
 | |
|  * root/cwd of all processes which had them on the current root to new_root.
 | |
|  *
 | |
|  * Restrictions:
 | |
|  * The new_root and put_old must be directories, and  must not be on the
 | |
|  * same file  system as the current process root. The put_old  must  be
 | |
|  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
 | |
|  * pointed to by put_old must yield the same directory as new_root. No other
 | |
|  * file system may be mounted on put_old. After all, new_root is a mountpoint.
 | |
|  *
 | |
|  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
 | |
|  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
 | |
|  * in this situation.
 | |
|  *
 | |
|  * Notes:
 | |
|  *  - we don't move root/cwd if they are not at the root (reason: if something
 | |
|  *    cared enough to change them, it's probably wrong to force them elsewhere)
 | |
|  *  - it's okay to pick a root that isn't the root of a file system, e.g.
 | |
|  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
 | |
|  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
 | |
|  *    first.
 | |
|  */
 | |
| asmlinkage long sys_pivot_root(const char __user * new_root,
 | |
| 			       const char __user * put_old)
 | |
| {
 | |
| 	struct vfsmount *tmp;
 | |
| 	struct path new, old, parent_path, root_parent, root;
 | |
| 	int error;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	error = user_path_dir(new_root, &new);
 | |
| 	if (error)
 | |
| 		goto out0;
 | |
| 	error = -EINVAL;
 | |
| 	if (!check_mnt(new.mnt))
 | |
| 		goto out1;
 | |
| 
 | |
| 	error = user_path_dir(put_old, &old);
 | |
| 	if (error)
 | |
| 		goto out1;
 | |
| 
 | |
| 	error = security_sb_pivotroot(&old, &new);
 | |
| 	if (error) {
 | |
| 		path_put(&old);
 | |
| 		goto out1;
 | |
| 	}
 | |
| 
 | |
| 	read_lock(¤t->fs->lock);
 | |
| 	root = current->fs->root;
 | |
| 	path_get(¤t->fs->root);
 | |
| 	read_unlock(¤t->fs->lock);
 | |
| 	down_write(&namespace_sem);
 | |
| 	mutex_lock(&old.dentry->d_inode->i_mutex);
 | |
| 	error = -EINVAL;
 | |
| 	if (IS_MNT_SHARED(old.mnt) ||
 | |
| 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
 | |
| 		IS_MNT_SHARED(root.mnt->mnt_parent))
 | |
| 		goto out2;
 | |
| 	if (!check_mnt(root.mnt))
 | |
| 		goto out2;
 | |
| 	error = -ENOENT;
 | |
| 	if (IS_DEADDIR(new.dentry->d_inode))
 | |
| 		goto out2;
 | |
| 	if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
 | |
| 		goto out2;
 | |
| 	if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
 | |
| 		goto out2;
 | |
| 	error = -EBUSY;
 | |
| 	if (new.mnt == root.mnt ||
 | |
| 	    old.mnt == root.mnt)
 | |
| 		goto out2; /* loop, on the same file system  */
 | |
| 	error = -EINVAL;
 | |
| 	if (root.mnt->mnt_root != root.dentry)
 | |
| 		goto out2; /* not a mountpoint */
 | |
| 	if (root.mnt->mnt_parent == root.mnt)
 | |
| 		goto out2; /* not attached */
 | |
| 	if (new.mnt->mnt_root != new.dentry)
 | |
| 		goto out2; /* not a mountpoint */
 | |
| 	if (new.mnt->mnt_parent == new.mnt)
 | |
| 		goto out2; /* not attached */
 | |
| 	/* make sure we can reach put_old from new_root */
 | |
| 	tmp = old.mnt;
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	if (tmp != new.mnt) {
 | |
| 		for (;;) {
 | |
| 			if (tmp->mnt_parent == tmp)
 | |
| 				goto out3; /* already mounted on put_old */
 | |
| 			if (tmp->mnt_parent == new.mnt)
 | |
| 				break;
 | |
| 			tmp = tmp->mnt_parent;
 | |
| 		}
 | |
| 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
 | |
| 			goto out3;
 | |
| 	} else if (!is_subdir(old.dentry, new.dentry))
 | |
| 		goto out3;
 | |
| 	detach_mnt(new.mnt, &parent_path);
 | |
| 	detach_mnt(root.mnt, &root_parent);
 | |
| 	/* mount old root on put_old */
 | |
| 	attach_mnt(root.mnt, &old);
 | |
| 	/* mount new_root on / */
 | |
| 	attach_mnt(new.mnt, &root_parent);
 | |
| 	touch_mnt_namespace(current->nsproxy->mnt_ns);
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	chroot_fs_refs(&root, &new);
 | |
| 	security_sb_post_pivotroot(&root, &new);
 | |
| 	error = 0;
 | |
| 	path_put(&root_parent);
 | |
| 	path_put(&parent_path);
 | |
| out2:
 | |
| 	mutex_unlock(&old.dentry->d_inode->i_mutex);
 | |
| 	up_write(&namespace_sem);
 | |
| 	path_put(&root);
 | |
| 	path_put(&old);
 | |
| out1:
 | |
| 	path_put(&new);
 | |
| out0:
 | |
| 	return error;
 | |
| out3:
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	goto out2;
 | |
| }
 | |
| 
 | |
| static void __init init_mount_tree(void)
 | |
| {
 | |
| 	struct vfsmount *mnt;
 | |
| 	struct mnt_namespace *ns;
 | |
| 	struct path root;
 | |
| 
 | |
| 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
 | |
| 	if (IS_ERR(mnt))
 | |
| 		panic("Can't create rootfs");
 | |
| 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
 | |
| 	if (!ns)
 | |
| 		panic("Can't allocate initial namespace");
 | |
| 	atomic_set(&ns->count, 1);
 | |
| 	INIT_LIST_HEAD(&ns->list);
 | |
| 	init_waitqueue_head(&ns->poll);
 | |
| 	ns->event = 0;
 | |
| 	list_add(&mnt->mnt_list, &ns->list);
 | |
| 	ns->root = mnt;
 | |
| 	mnt->mnt_ns = ns;
 | |
| 
 | |
| 	init_task.nsproxy->mnt_ns = ns;
 | |
| 	get_mnt_ns(ns);
 | |
| 
 | |
| 	root.mnt = ns->root;
 | |
| 	root.dentry = ns->root->mnt_root;
 | |
| 
 | |
| 	set_fs_pwd(current->fs, &root);
 | |
| 	set_fs_root(current->fs, &root);
 | |
| }
 | |
| 
 | |
| void __init mnt_init(void)
 | |
| {
 | |
| 	unsigned u;
 | |
| 	int err;
 | |
| 
 | |
| 	init_rwsem(&namespace_sem);
 | |
| 
 | |
| 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
 | |
| 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
 | |
| 
 | |
| 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
 | |
| 
 | |
| 	if (!mount_hashtable)
 | |
| 		panic("Failed to allocate mount hash table\n");
 | |
| 
 | |
| 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
 | |
| 
 | |
| 	for (u = 0; u < HASH_SIZE; u++)
 | |
| 		INIT_LIST_HEAD(&mount_hashtable[u]);
 | |
| 
 | |
| 	err = sysfs_init();
 | |
| 	if (err)
 | |
| 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
 | |
| 			__func__, err);
 | |
| 	fs_kobj = kobject_create_and_add("fs", NULL);
 | |
| 	if (!fs_kobj)
 | |
| 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
 | |
| 	init_rootfs();
 | |
| 	init_mount_tree();
 | |
| }
 | |
| 
 | |
| void __put_mnt_ns(struct mnt_namespace *ns)
 | |
| {
 | |
| 	struct vfsmount *root = ns->root;
 | |
| 	LIST_HEAD(umount_list);
 | |
| 	ns->root = NULL;
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	down_write(&namespace_sem);
 | |
| 	spin_lock(&vfsmount_lock);
 | |
| 	umount_tree(root, 0, &umount_list);
 | |
| 	spin_unlock(&vfsmount_lock);
 | |
| 	up_write(&namespace_sem);
 | |
| 	release_mounts(&umount_list);
 | |
| 	kfree(ns);
 | |
| }
 |