 4e75db2e8f
			
		
	
	
	4e75db2e8f
	
	
	
		
			
			After commit 7b46ac4e77 (inetpeer: Don't disable BH for initial
fast RCU lookup.), we should use call_rcu() to wait proper RCU grace
period.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			623 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			623 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *		INETPEER - A storage for permanent information about peers
 | |
|  *
 | |
|  *  This source is covered by the GNU GPL, the same as all kernel sources.
 | |
|  *
 | |
|  *  Authors:	Andrey V. Savochkin <saw@msu.ru>
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/net.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/inetpeer.h>
 | |
| 
 | |
| /*
 | |
|  *  Theory of operations.
 | |
|  *  We keep one entry for each peer IP address.  The nodes contains long-living
 | |
|  *  information about the peer which doesn't depend on routes.
 | |
|  *  At this moment this information consists only of ID field for the next
 | |
|  *  outgoing IP packet.  This field is incremented with each packet as encoded
 | |
|  *  in inet_getid() function (include/net/inetpeer.h).
 | |
|  *  At the moment of writing this notes identifier of IP packets is generated
 | |
|  *  to be unpredictable using this code only for packets subjected
 | |
|  *  (actually or potentially) to defragmentation.  I.e. DF packets less than
 | |
|  *  PMTU in size uses a constant ID and do not use this code (see
 | |
|  *  ip_select_ident() in include/net/ip.h).
 | |
|  *
 | |
|  *  Route cache entries hold references to our nodes.
 | |
|  *  New cache entries get references via lookup by destination IP address in
 | |
|  *  the avl tree.  The reference is grabbed only when it's needed i.e. only
 | |
|  *  when we try to output IP packet which needs an unpredictable ID (see
 | |
|  *  __ip_select_ident() in net/ipv4/route.c).
 | |
|  *  Nodes are removed only when reference counter goes to 0.
 | |
|  *  When it's happened the node may be removed when a sufficient amount of
 | |
|  *  time has been passed since its last use.  The less-recently-used entry can
 | |
|  *  also be removed if the pool is overloaded i.e. if the total amount of
 | |
|  *  entries is greater-or-equal than the threshold.
 | |
|  *
 | |
|  *  Node pool is organised as an AVL tree.
 | |
|  *  Such an implementation has been chosen not just for fun.  It's a way to
 | |
|  *  prevent easy and efficient DoS attacks by creating hash collisions.  A huge
 | |
|  *  amount of long living nodes in a single hash slot would significantly delay
 | |
|  *  lookups performed with disabled BHs.
 | |
|  *
 | |
|  *  Serialisation issues.
 | |
|  *  1.  Nodes may appear in the tree only with the pool lock held.
 | |
|  *  2.  Nodes may disappear from the tree only with the pool lock held
 | |
|  *      AND reference count being 0.
 | |
|  *  3.  Nodes appears and disappears from unused node list only under
 | |
|  *      "inet_peer_unused_lock".
 | |
|  *  4.  Global variable peer_total is modified under the pool lock.
 | |
|  *  5.  struct inet_peer fields modification:
 | |
|  *		avl_left, avl_right, avl_parent, avl_height: pool lock
 | |
|  *		unused: unused node list lock
 | |
|  *		refcnt: atomically against modifications on other CPU;
 | |
|  *		   usually under some other lock to prevent node disappearing
 | |
|  *		dtime: unused node list lock
 | |
|  *		daddr: unchangeable
 | |
|  *		ip_id_count: atomic value (no lock needed)
 | |
|  */
 | |
| 
 | |
| static struct kmem_cache *peer_cachep __read_mostly;
 | |
| 
 | |
| #define node_height(x) x->avl_height
 | |
| 
 | |
| #define peer_avl_empty ((struct inet_peer *)&peer_fake_node)
 | |
| #define peer_avl_empty_rcu ((struct inet_peer __rcu __force *)&peer_fake_node)
 | |
| static const struct inet_peer peer_fake_node = {
 | |
| 	.avl_left	= peer_avl_empty_rcu,
 | |
| 	.avl_right	= peer_avl_empty_rcu,
 | |
| 	.avl_height	= 0
 | |
| };
 | |
| 
 | |
| struct inet_peer_base {
 | |
| 	struct inet_peer __rcu *root;
 | |
| 	seqlock_t	lock;
 | |
| 	int		total;
 | |
| };
 | |
| 
 | |
| static struct inet_peer_base v4_peers = {
 | |
| 	.root		= peer_avl_empty_rcu,
 | |
| 	.lock		= __SEQLOCK_UNLOCKED(v4_peers.lock),
 | |
| 	.total		= 0,
 | |
| };
 | |
| 
 | |
| static struct inet_peer_base v6_peers = {
 | |
| 	.root		= peer_avl_empty_rcu,
 | |
| 	.lock		= __SEQLOCK_UNLOCKED(v6_peers.lock),
 | |
| 	.total		= 0,
 | |
| };
 | |
| 
 | |
| #define PEER_MAXDEPTH 40 /* sufficient for about 2^27 nodes */
 | |
| 
 | |
| /* Exported for sysctl_net_ipv4.  */
 | |
| int inet_peer_threshold __read_mostly = 65536 + 128;	/* start to throw entries more
 | |
| 					 * aggressively at this stage */
 | |
| int inet_peer_minttl __read_mostly = 120 * HZ;	/* TTL under high load: 120 sec */
 | |
| int inet_peer_maxttl __read_mostly = 10 * 60 * HZ;	/* usual time to live: 10 min */
 | |
| int inet_peer_gc_mintime __read_mostly = 10 * HZ;
 | |
| int inet_peer_gc_maxtime __read_mostly = 120 * HZ;
 | |
| 
 | |
| static struct {
 | |
| 	struct list_head	list;
 | |
| 	spinlock_t		lock;
 | |
| } unused_peers = {
 | |
| 	.list			= LIST_HEAD_INIT(unused_peers.list),
 | |
| 	.lock			= __SPIN_LOCK_UNLOCKED(unused_peers.lock),
 | |
| };
 | |
| 
 | |
| static void peer_check_expire(unsigned long dummy);
 | |
| static DEFINE_TIMER(peer_periodic_timer, peer_check_expire, 0, 0);
 | |
| 
 | |
| 
 | |
| /* Called from ip_output.c:ip_init  */
 | |
| void __init inet_initpeers(void)
 | |
| {
 | |
| 	struct sysinfo si;
 | |
| 
 | |
| 	/* Use the straight interface to information about memory. */
 | |
| 	si_meminfo(&si);
 | |
| 	/* The values below were suggested by Alexey Kuznetsov
 | |
| 	 * <kuznet@ms2.inr.ac.ru>.  I don't have any opinion about the values
 | |
| 	 * myself.  --SAW
 | |
| 	 */
 | |
| 	if (si.totalram <= (32768*1024)/PAGE_SIZE)
 | |
| 		inet_peer_threshold >>= 1; /* max pool size about 1MB on IA32 */
 | |
| 	if (si.totalram <= (16384*1024)/PAGE_SIZE)
 | |
| 		inet_peer_threshold >>= 1; /* about 512KB */
 | |
| 	if (si.totalram <= (8192*1024)/PAGE_SIZE)
 | |
| 		inet_peer_threshold >>= 2; /* about 128KB */
 | |
| 
 | |
| 	peer_cachep = kmem_cache_create("inet_peer_cache",
 | |
| 			sizeof(struct inet_peer),
 | |
| 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
 | |
| 			NULL);
 | |
| 
 | |
| 	/* All the timers, started at system startup tend
 | |
| 	   to synchronize. Perturb it a bit.
 | |
| 	 */
 | |
| 	peer_periodic_timer.expires = jiffies
 | |
| 		+ net_random() % inet_peer_gc_maxtime
 | |
| 		+ inet_peer_gc_maxtime;
 | |
| 	add_timer(&peer_periodic_timer);
 | |
| }
 | |
| 
 | |
| /* Called with or without local BH being disabled. */
 | |
| static void unlink_from_unused(struct inet_peer *p)
 | |
| {
 | |
| 	if (!list_empty(&p->unused)) {
 | |
| 		spin_lock_bh(&unused_peers.lock);
 | |
| 		list_del_init(&p->unused);
 | |
| 		spin_unlock_bh(&unused_peers.lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int addr_compare(const struct inetpeer_addr *a,
 | |
| 			const struct inetpeer_addr *b)
 | |
| {
 | |
| 	int i, n = (a->family == AF_INET ? 1 : 4);
 | |
| 
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		if (a->addr.a6[i] == b->addr.a6[i])
 | |
| 			continue;
 | |
| 		if (a->addr.a6[i] < b->addr.a6[i])
 | |
| 			return -1;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define rcu_deref_locked(X, BASE)				\
 | |
| 	rcu_dereference_protected(X, lockdep_is_held(&(BASE)->lock.lock))
 | |
| 
 | |
| /*
 | |
|  * Called with local BH disabled and the pool lock held.
 | |
|  */
 | |
| #define lookup(_daddr, _stack, _base)				\
 | |
| ({								\
 | |
| 	struct inet_peer *u;					\
 | |
| 	struct inet_peer __rcu **v;				\
 | |
| 								\
 | |
| 	stackptr = _stack;					\
 | |
| 	*stackptr++ = &_base->root;				\
 | |
| 	for (u = rcu_deref_locked(_base->root, _base);		\
 | |
| 	     u != peer_avl_empty; ) {				\
 | |
| 		int cmp = addr_compare(_daddr, &u->daddr);	\
 | |
| 		if (cmp == 0)					\
 | |
| 			break;					\
 | |
| 		if (cmp == -1)					\
 | |
| 			v = &u->avl_left;			\
 | |
| 		else						\
 | |
| 			v = &u->avl_right;			\
 | |
| 		*stackptr++ = v;				\
 | |
| 		u = rcu_deref_locked(*v, _base);		\
 | |
| 	}							\
 | |
| 	u;							\
 | |
| })
 | |
| 
 | |
| /*
 | |
|  * Called with rcu_read_lock()
 | |
|  * Because we hold no lock against a writer, its quite possible we fall
 | |
|  * in an endless loop.
 | |
|  * But every pointer we follow is guaranteed to be valid thanks to RCU.
 | |
|  * We exit from this function if number of links exceeds PEER_MAXDEPTH
 | |
|  */
 | |
| static struct inet_peer *lookup_rcu(const struct inetpeer_addr *daddr,
 | |
| 				    struct inet_peer_base *base)
 | |
| {
 | |
| 	struct inet_peer *u = rcu_dereference(base->root);
 | |
| 	int count = 0;
 | |
| 
 | |
| 	while (u != peer_avl_empty) {
 | |
| 		int cmp = addr_compare(daddr, &u->daddr);
 | |
| 		if (cmp == 0) {
 | |
| 			/* Before taking a reference, check if this entry was
 | |
| 			 * deleted, unlink_from_pool() sets refcnt=-1 to make
 | |
| 			 * distinction between an unused entry (refcnt=0) and
 | |
| 			 * a freed one.
 | |
| 			 */
 | |
| 			if (unlikely(!atomic_add_unless(&u->refcnt, 1, -1)))
 | |
| 				u = NULL;
 | |
| 			return u;
 | |
| 		}
 | |
| 		if (cmp == -1)
 | |
| 			u = rcu_dereference(u->avl_left);
 | |
| 		else
 | |
| 			u = rcu_dereference(u->avl_right);
 | |
| 		if (unlikely(++count == PEER_MAXDEPTH))
 | |
| 			break;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Called with local BH disabled and the pool lock held. */
 | |
| #define lookup_rightempty(start, base)				\
 | |
| ({								\
 | |
| 	struct inet_peer *u;					\
 | |
| 	struct inet_peer __rcu **v;				\
 | |
| 	*stackptr++ = &start->avl_left;				\
 | |
| 	v = &start->avl_left;					\
 | |
| 	for (u = rcu_deref_locked(*v, base);			\
 | |
| 	     u->avl_right != peer_avl_empty_rcu; ) {		\
 | |
| 		v = &u->avl_right;				\
 | |
| 		*stackptr++ = v;				\
 | |
| 		u = rcu_deref_locked(*v, base);			\
 | |
| 	}							\
 | |
| 	u;							\
 | |
| })
 | |
| 
 | |
| /* Called with local BH disabled and the pool lock held.
 | |
|  * Variable names are the proof of operation correctness.
 | |
|  * Look into mm/map_avl.c for more detail description of the ideas.
 | |
|  */
 | |
| static void peer_avl_rebalance(struct inet_peer __rcu **stack[],
 | |
| 			       struct inet_peer __rcu ***stackend,
 | |
| 			       struct inet_peer_base *base)
 | |
| {
 | |
| 	struct inet_peer __rcu **nodep;
 | |
| 	struct inet_peer *node, *l, *r;
 | |
| 	int lh, rh;
 | |
| 
 | |
| 	while (stackend > stack) {
 | |
| 		nodep = *--stackend;
 | |
| 		node = rcu_deref_locked(*nodep, base);
 | |
| 		l = rcu_deref_locked(node->avl_left, base);
 | |
| 		r = rcu_deref_locked(node->avl_right, base);
 | |
| 		lh = node_height(l);
 | |
| 		rh = node_height(r);
 | |
| 		if (lh > rh + 1) { /* l: RH+2 */
 | |
| 			struct inet_peer *ll, *lr, *lrl, *lrr;
 | |
| 			int lrh;
 | |
| 			ll = rcu_deref_locked(l->avl_left, base);
 | |
| 			lr = rcu_deref_locked(l->avl_right, base);
 | |
| 			lrh = node_height(lr);
 | |
| 			if (lrh <= node_height(ll)) {	/* ll: RH+1 */
 | |
| 				RCU_INIT_POINTER(node->avl_left, lr);	/* lr: RH or RH+1 */
 | |
| 				RCU_INIT_POINTER(node->avl_right, r);	/* r: RH */
 | |
| 				node->avl_height = lrh + 1; /* RH+1 or RH+2 */
 | |
| 				RCU_INIT_POINTER(l->avl_left, ll);       /* ll: RH+1 */
 | |
| 				RCU_INIT_POINTER(l->avl_right, node);	/* node: RH+1 or RH+2 */
 | |
| 				l->avl_height = node->avl_height + 1;
 | |
| 				RCU_INIT_POINTER(*nodep, l);
 | |
| 			} else { /* ll: RH, lr: RH+1 */
 | |
| 				lrl = rcu_deref_locked(lr->avl_left, base);/* lrl: RH or RH-1 */
 | |
| 				lrr = rcu_deref_locked(lr->avl_right, base);/* lrr: RH or RH-1 */
 | |
| 				RCU_INIT_POINTER(node->avl_left, lrr);	/* lrr: RH or RH-1 */
 | |
| 				RCU_INIT_POINTER(node->avl_right, r);	/* r: RH */
 | |
| 				node->avl_height = rh + 1; /* node: RH+1 */
 | |
| 				RCU_INIT_POINTER(l->avl_left, ll);	/* ll: RH */
 | |
| 				RCU_INIT_POINTER(l->avl_right, lrl);	/* lrl: RH or RH-1 */
 | |
| 				l->avl_height = rh + 1;	/* l: RH+1 */
 | |
| 				RCU_INIT_POINTER(lr->avl_left, l);	/* l: RH+1 */
 | |
| 				RCU_INIT_POINTER(lr->avl_right, node);	/* node: RH+1 */
 | |
| 				lr->avl_height = rh + 2;
 | |
| 				RCU_INIT_POINTER(*nodep, lr);
 | |
| 			}
 | |
| 		} else if (rh > lh + 1) { /* r: LH+2 */
 | |
| 			struct inet_peer *rr, *rl, *rlr, *rll;
 | |
| 			int rlh;
 | |
| 			rr = rcu_deref_locked(r->avl_right, base);
 | |
| 			rl = rcu_deref_locked(r->avl_left, base);
 | |
| 			rlh = node_height(rl);
 | |
| 			if (rlh <= node_height(rr)) {	/* rr: LH+1 */
 | |
| 				RCU_INIT_POINTER(node->avl_right, rl);	/* rl: LH or LH+1 */
 | |
| 				RCU_INIT_POINTER(node->avl_left, l);	/* l: LH */
 | |
| 				node->avl_height = rlh + 1; /* LH+1 or LH+2 */
 | |
| 				RCU_INIT_POINTER(r->avl_right, rr);	/* rr: LH+1 */
 | |
| 				RCU_INIT_POINTER(r->avl_left, node);	/* node: LH+1 or LH+2 */
 | |
| 				r->avl_height = node->avl_height + 1;
 | |
| 				RCU_INIT_POINTER(*nodep, r);
 | |
| 			} else { /* rr: RH, rl: RH+1 */
 | |
| 				rlr = rcu_deref_locked(rl->avl_right, base);/* rlr: LH or LH-1 */
 | |
| 				rll = rcu_deref_locked(rl->avl_left, base);/* rll: LH or LH-1 */
 | |
| 				RCU_INIT_POINTER(node->avl_right, rll);	/* rll: LH or LH-1 */
 | |
| 				RCU_INIT_POINTER(node->avl_left, l);	/* l: LH */
 | |
| 				node->avl_height = lh + 1; /* node: LH+1 */
 | |
| 				RCU_INIT_POINTER(r->avl_right, rr);	/* rr: LH */
 | |
| 				RCU_INIT_POINTER(r->avl_left, rlr);	/* rlr: LH or LH-1 */
 | |
| 				r->avl_height = lh + 1;	/* r: LH+1 */
 | |
| 				RCU_INIT_POINTER(rl->avl_right, r);	/* r: LH+1 */
 | |
| 				RCU_INIT_POINTER(rl->avl_left, node);	/* node: LH+1 */
 | |
| 				rl->avl_height = lh + 2;
 | |
| 				RCU_INIT_POINTER(*nodep, rl);
 | |
| 			}
 | |
| 		} else {
 | |
| 			node->avl_height = (lh > rh ? lh : rh) + 1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Called with local BH disabled and the pool lock held. */
 | |
| #define link_to_pool(n, base)					\
 | |
| do {								\
 | |
| 	n->avl_height = 1;					\
 | |
| 	n->avl_left = peer_avl_empty_rcu;			\
 | |
| 	n->avl_right = peer_avl_empty_rcu;			\
 | |
| 	/* lockless readers can catch us now */			\
 | |
| 	rcu_assign_pointer(**--stackptr, n);			\
 | |
| 	peer_avl_rebalance(stack, stackptr, base);		\
 | |
| } while (0)
 | |
| 
 | |
| static void inetpeer_free_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	kmem_cache_free(peer_cachep, container_of(head, struct inet_peer, rcu));
 | |
| }
 | |
| 
 | |
| /* May be called with local BH enabled. */
 | |
| static void unlink_from_pool(struct inet_peer *p, struct inet_peer_base *base)
 | |
| {
 | |
| 	int do_free;
 | |
| 
 | |
| 	do_free = 0;
 | |
| 
 | |
| 	write_seqlock_bh(&base->lock);
 | |
| 	/* Check the reference counter.  It was artificially incremented by 1
 | |
| 	 * in cleanup() function to prevent sudden disappearing.  If we can
 | |
| 	 * atomically (because of lockless readers) take this last reference,
 | |
| 	 * it's safe to remove the node and free it later.
 | |
| 	 * We use refcnt=-1 to alert lockless readers this entry is deleted.
 | |
| 	 */
 | |
| 	if (atomic_cmpxchg(&p->refcnt, 1, -1) == 1) {
 | |
| 		struct inet_peer __rcu **stack[PEER_MAXDEPTH];
 | |
| 		struct inet_peer __rcu ***stackptr, ***delp;
 | |
| 		if (lookup(&p->daddr, stack, base) != p)
 | |
| 			BUG();
 | |
| 		delp = stackptr - 1; /* *delp[0] == p */
 | |
| 		if (p->avl_left == peer_avl_empty_rcu) {
 | |
| 			*delp[0] = p->avl_right;
 | |
| 			--stackptr;
 | |
| 		} else {
 | |
| 			/* look for a node to insert instead of p */
 | |
| 			struct inet_peer *t;
 | |
| 			t = lookup_rightempty(p, base);
 | |
| 			BUG_ON(rcu_deref_locked(*stackptr[-1], base) != t);
 | |
| 			**--stackptr = t->avl_left;
 | |
| 			/* t is removed, t->daddr > x->daddr for any
 | |
| 			 * x in p->avl_left subtree.
 | |
| 			 * Put t in the old place of p. */
 | |
| 			RCU_INIT_POINTER(*delp[0], t);
 | |
| 			t->avl_left = p->avl_left;
 | |
| 			t->avl_right = p->avl_right;
 | |
| 			t->avl_height = p->avl_height;
 | |
| 			BUG_ON(delp[1] != &p->avl_left);
 | |
| 			delp[1] = &t->avl_left; /* was &p->avl_left */
 | |
| 		}
 | |
| 		peer_avl_rebalance(stack, stackptr, base);
 | |
| 		base->total--;
 | |
| 		do_free = 1;
 | |
| 	}
 | |
| 	write_sequnlock_bh(&base->lock);
 | |
| 
 | |
| 	if (do_free)
 | |
| 		call_rcu(&p->rcu, inetpeer_free_rcu);
 | |
| 	else
 | |
| 		/* The node is used again.  Decrease the reference counter
 | |
| 		 * back.  The loop "cleanup -> unlink_from_unused
 | |
| 		 *   -> unlink_from_pool -> putpeer -> link_to_unused
 | |
| 		 *   -> cleanup (for the same node)"
 | |
| 		 * doesn't really exist because the entry will have a
 | |
| 		 * recent deletion time and will not be cleaned again soon.
 | |
| 		 */
 | |
| 		inet_putpeer(p);
 | |
| }
 | |
| 
 | |
| static struct inet_peer_base *family_to_base(int family)
 | |
| {
 | |
| 	return (family == AF_INET ? &v4_peers : &v6_peers);
 | |
| }
 | |
| 
 | |
| static struct inet_peer_base *peer_to_base(struct inet_peer *p)
 | |
| {
 | |
| 	return family_to_base(p->daddr.family);
 | |
| }
 | |
| 
 | |
| /* May be called with local BH enabled. */
 | |
| static int cleanup_once(unsigned long ttl)
 | |
| {
 | |
| 	struct inet_peer *p = NULL;
 | |
| 
 | |
| 	/* Remove the first entry from the list of unused nodes. */
 | |
| 	spin_lock_bh(&unused_peers.lock);
 | |
| 	if (!list_empty(&unused_peers.list)) {
 | |
| 		__u32 delta;
 | |
| 
 | |
| 		p = list_first_entry(&unused_peers.list, struct inet_peer, unused);
 | |
| 		delta = (__u32)jiffies - p->dtime;
 | |
| 
 | |
| 		if (delta < ttl) {
 | |
| 			/* Do not prune fresh entries. */
 | |
| 			spin_unlock_bh(&unused_peers.lock);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		list_del_init(&p->unused);
 | |
| 
 | |
| 		/* Grab an extra reference to prevent node disappearing
 | |
| 		 * before unlink_from_pool() call. */
 | |
| 		atomic_inc(&p->refcnt);
 | |
| 	}
 | |
| 	spin_unlock_bh(&unused_peers.lock);
 | |
| 
 | |
| 	if (p == NULL)
 | |
| 		/* It means that the total number of USED entries has
 | |
| 		 * grown over inet_peer_threshold.  It shouldn't really
 | |
| 		 * happen because of entry limits in route cache. */
 | |
| 		return -1;
 | |
| 
 | |
| 	unlink_from_pool(p, peer_to_base(p));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Called with or without local BH being disabled. */
 | |
| struct inet_peer *inet_getpeer(struct inetpeer_addr *daddr, int create)
 | |
| {
 | |
| 	struct inet_peer __rcu **stack[PEER_MAXDEPTH], ***stackptr;
 | |
| 	struct inet_peer_base *base = family_to_base(daddr->family);
 | |
| 	struct inet_peer *p;
 | |
| 	unsigned int sequence;
 | |
| 	int invalidated;
 | |
| 
 | |
| 	/* Look up for the address quickly, lockless.
 | |
| 	 * Because of a concurrent writer, we might not find an existing entry.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	sequence = read_seqbegin(&base->lock);
 | |
| 	p = lookup_rcu(daddr, base);
 | |
| 	invalidated = read_seqretry(&base->lock, sequence);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (p) {
 | |
| 		/* The existing node has been found.
 | |
| 		 * Remove the entry from unused list if it was there.
 | |
| 		 */
 | |
| 		unlink_from_unused(p);
 | |
| 		return p;
 | |
| 	}
 | |
| 
 | |
| 	/* If no writer did a change during our lookup, we can return early. */
 | |
| 	if (!create && !invalidated)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* retry an exact lookup, taking the lock before.
 | |
| 	 * At least, nodes should be hot in our cache.
 | |
| 	 */
 | |
| 	write_seqlock_bh(&base->lock);
 | |
| 	p = lookup(daddr, stack, base);
 | |
| 	if (p != peer_avl_empty) {
 | |
| 		atomic_inc(&p->refcnt);
 | |
| 		write_sequnlock_bh(&base->lock);
 | |
| 		/* Remove the entry from unused list if it was there. */
 | |
| 		unlink_from_unused(p);
 | |
| 		return p;
 | |
| 	}
 | |
| 	p = create ? kmem_cache_alloc(peer_cachep, GFP_ATOMIC) : NULL;
 | |
| 	if (p) {
 | |
| 		p->daddr = *daddr;
 | |
| 		atomic_set(&p->refcnt, 1);
 | |
| 		atomic_set(&p->rid, 0);
 | |
| 		atomic_set(&p->ip_id_count, secure_ip_id(daddr->addr.a4));
 | |
| 		p->tcp_ts_stamp = 0;
 | |
| 		p->metrics[RTAX_LOCK-1] = INETPEER_METRICS_NEW;
 | |
| 		p->rate_tokens = 0;
 | |
| 		p->rate_last = 0;
 | |
| 		p->pmtu_expires = 0;
 | |
| 		p->pmtu_orig = 0;
 | |
| 		memset(&p->redirect_learned, 0, sizeof(p->redirect_learned));
 | |
| 		INIT_LIST_HEAD(&p->unused);
 | |
| 
 | |
| 
 | |
| 		/* Link the node. */
 | |
| 		link_to_pool(p, base);
 | |
| 		base->total++;
 | |
| 	}
 | |
| 	write_sequnlock_bh(&base->lock);
 | |
| 
 | |
| 	if (base->total >= inet_peer_threshold)
 | |
| 		/* Remove one less-recently-used entry. */
 | |
| 		cleanup_once(0);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static int compute_total(void)
 | |
| {
 | |
| 	return v4_peers.total + v6_peers.total;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(inet_getpeer);
 | |
| 
 | |
| /* Called with local BH disabled. */
 | |
| static void peer_check_expire(unsigned long dummy)
 | |
| {
 | |
| 	unsigned long now = jiffies;
 | |
| 	int ttl, total;
 | |
| 
 | |
| 	total = compute_total();
 | |
| 	if (total >= inet_peer_threshold)
 | |
| 		ttl = inet_peer_minttl;
 | |
| 	else
 | |
| 		ttl = inet_peer_maxttl
 | |
| 				- (inet_peer_maxttl - inet_peer_minttl) / HZ *
 | |
| 					total / inet_peer_threshold * HZ;
 | |
| 	while (!cleanup_once(ttl)) {
 | |
| 		if (jiffies != now)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Trigger the timer after inet_peer_gc_mintime .. inet_peer_gc_maxtime
 | |
| 	 * interval depending on the total number of entries (more entries,
 | |
| 	 * less interval). */
 | |
| 	total = compute_total();
 | |
| 	if (total >= inet_peer_threshold)
 | |
| 		peer_periodic_timer.expires = jiffies + inet_peer_gc_mintime;
 | |
| 	else
 | |
| 		peer_periodic_timer.expires = jiffies
 | |
| 			+ inet_peer_gc_maxtime
 | |
| 			- (inet_peer_gc_maxtime - inet_peer_gc_mintime) / HZ *
 | |
| 				total / inet_peer_threshold * HZ;
 | |
| 	add_timer(&peer_periodic_timer);
 | |
| }
 | |
| 
 | |
| void inet_putpeer(struct inet_peer *p)
 | |
| {
 | |
| 	local_bh_disable();
 | |
| 
 | |
| 	if (atomic_dec_and_lock(&p->refcnt, &unused_peers.lock)) {
 | |
| 		list_add_tail(&p->unused, &unused_peers.list);
 | |
| 		p->dtime = (__u32)jiffies;
 | |
| 		spin_unlock(&unused_peers.lock);
 | |
| 	}
 | |
| 
 | |
| 	local_bh_enable();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(inet_putpeer);
 | |
| 
 | |
| /*
 | |
|  *	Check transmit rate limitation for given message.
 | |
|  *	The rate information is held in the inet_peer entries now.
 | |
|  *	This function is generic and could be used for other purposes
 | |
|  *	too. It uses a Token bucket filter as suggested by Alexey Kuznetsov.
 | |
|  *
 | |
|  *	Note that the same inet_peer fields are modified by functions in
 | |
|  *	route.c too, but these work for packet destinations while xrlim_allow
 | |
|  *	works for icmp destinations. This means the rate limiting information
 | |
|  *	for one "ip object" is shared - and these ICMPs are twice limited:
 | |
|  *	by source and by destination.
 | |
|  *
 | |
|  *	RFC 1812: 4.3.2.8 SHOULD be able to limit error message rate
 | |
|  *			  SHOULD allow setting of rate limits
 | |
|  *
 | |
|  * 	Shared between ICMPv4 and ICMPv6.
 | |
|  */
 | |
| #define XRLIM_BURST_FACTOR 6
 | |
| bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout)
 | |
| {
 | |
| 	unsigned long now, token;
 | |
| 	bool rc = false;
 | |
| 
 | |
| 	if (!peer)
 | |
| 		return true;
 | |
| 
 | |
| 	token = peer->rate_tokens;
 | |
| 	now = jiffies;
 | |
| 	token += now - peer->rate_last;
 | |
| 	peer->rate_last = now;
 | |
| 	if (token > XRLIM_BURST_FACTOR * timeout)
 | |
| 		token = XRLIM_BURST_FACTOR * timeout;
 | |
| 	if (token >= timeout) {
 | |
| 		token -= timeout;
 | |
| 		rc = true;
 | |
| 	}
 | |
| 	peer->rate_tokens = token;
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL(inet_peer_xrlim_allow);
 |