 033193275b
			
		
	
	
	033193275b
	
	
	
		
			
			Right now, if a mm_walk has either ->pte_entry or ->pmd_entry set, it will unconditionally split any transparent huge pages it runs in to. In practice, that means that anyone doing a cat /proc/$pid/smaps will unconditionally break down every huge page in the process and depend on khugepaged to re-collapse it later. This is fairly suboptimal. This patch changes that behavior. It teaches each ->pmd_entry handler (there are five) that they must break down the THPs themselves. Also, the _generic_ code will never break down a THP unless a ->pte_entry handler is actually set. This means that the ->pmd_entry handlers can now choose to deal with THPs without breaking them down. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Eric B Munson <emunson@mgebm.net> Tested-by: Eric B Munson <emunson@mgebm.net> Cc: Michael J Wolf <mjwolf@us.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			212 lines
		
	
	
	
		
			5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			212 lines
		
	
	
	
		
			5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/hugetlb.h>
 | |
| 
 | |
| static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 | |
| 			  struct mm_walk *walk)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	pte = pte_offset_map(pmd, addr);
 | |
| 	for (;;) {
 | |
| 		err = walk->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 | |
| 		if (err)
 | |
| 		       break;
 | |
| 		addr += PAGE_SIZE;
 | |
| 		if (addr == end)
 | |
| 			break;
 | |
| 		pte++;
 | |
| 	}
 | |
| 
 | |
| 	pte_unmap(pte);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 | |
| 			  struct mm_walk *walk)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| again:
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none(*pmd)) {
 | |
| 			if (walk->pte_hole)
 | |
| 				err = walk->pte_hole(addr, next, walk);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * This implies that each ->pmd_entry() handler
 | |
| 		 * needs to know about pmd_trans_huge() pmds
 | |
| 		 */
 | |
| 		if (walk->pmd_entry)
 | |
| 			err = walk->pmd_entry(pmd, addr, next, walk);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check this here so we only break down trans_huge
 | |
| 		 * pages when we _need_ to
 | |
| 		 */
 | |
| 		if (!walk->pte_entry)
 | |
| 			continue;
 | |
| 
 | |
| 		split_huge_page_pmd(walk->mm, pmd);
 | |
| 		if (pmd_none_or_clear_bad(pmd))
 | |
| 			goto again;
 | |
| 		err = walk_pte_range(pmd, addr, next, walk);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int walk_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 | |
| 			  struct mm_walk *walk)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(pud)) {
 | |
| 			if (walk->pte_hole)
 | |
| 				err = walk->pte_hole(addr, next, walk);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (walk->pud_entry)
 | |
| 			err = walk->pud_entry(pud, addr, next, walk);
 | |
| 		if (!err && (walk->pmd_entry || walk->pte_entry))
 | |
| 			err = walk_pmd_range(pud, addr, next, walk);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
 | |
| 				       unsigned long end)
 | |
| {
 | |
| 	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
 | |
| 	return boundary < end ? boundary : end;
 | |
| }
 | |
| 
 | |
| static int walk_hugetlb_range(struct vm_area_struct *vma,
 | |
| 			      unsigned long addr, unsigned long end,
 | |
| 			      struct mm_walk *walk)
 | |
| {
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	unsigned long next;
 | |
| 	unsigned long hmask = huge_page_mask(h);
 | |
| 	pte_t *pte;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	do {
 | |
| 		next = hugetlb_entry_end(h, addr, end);
 | |
| 		pte = huge_pte_offset(walk->mm, addr & hmask);
 | |
| 		if (pte && walk->hugetlb_entry)
 | |
| 			err = walk->hugetlb_entry(pte, hmask, addr, next, walk);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	} while (addr = next, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * walk_page_range - walk a memory map's page tables with a callback
 | |
|  * @mm: memory map to walk
 | |
|  * @addr: starting address
 | |
|  * @end: ending address
 | |
|  * @walk: set of callbacks to invoke for each level of the tree
 | |
|  *
 | |
|  * Recursively walk the page table for the memory area in a VMA,
 | |
|  * calling supplied callbacks. Callbacks are called in-order (first
 | |
|  * PGD, first PUD, first PMD, first PTE, second PTE... second PMD,
 | |
|  * etc.). If lower-level callbacks are omitted, walking depth is reduced.
 | |
|  *
 | |
|  * Each callback receives an entry pointer and the start and end of the
 | |
|  * associated range, and a copy of the original mm_walk for access to
 | |
|  * the ->private or ->mm fields.
 | |
|  *
 | |
|  * No locks are taken, but the bottom level iterator will map PTE
 | |
|  * directories from highmem if necessary.
 | |
|  *
 | |
|  * If any callback returns a non-zero value, the walk is aborted and
 | |
|  * the return value is propagated back to the caller. Otherwise 0 is returned.
 | |
|  */
 | |
| int walk_page_range(unsigned long addr, unsigned long end,
 | |
| 		    struct mm_walk *walk)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (addr >= end)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!walk->mm)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pgd = pgd_offset(walk->mm, addr);
 | |
| 	do {
 | |
| 		struct vm_area_struct *uninitialized_var(vma);
 | |
| 
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 		/*
 | |
| 		 * handle hugetlb vma individually because pagetable walk for
 | |
| 		 * the hugetlb page is dependent on the architecture and
 | |
| 		 * we can't handled it in the same manner as non-huge pages.
 | |
| 		 */
 | |
| 		vma = find_vma(walk->mm, addr);
 | |
| 		if (vma && is_vm_hugetlb_page(vma)) {
 | |
| 			if (vma->vm_end < next)
 | |
| 				next = vma->vm_end;
 | |
| 			/*
 | |
| 			 * Hugepage is very tightly coupled with vma, so
 | |
| 			 * walk through hugetlb entries within a given vma.
 | |
| 			 */
 | |
| 			err = walk_hugetlb_range(vma, addr, next, walk);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 			pgd = pgd_offset(walk->mm, next);
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 		if (pgd_none_or_clear_bad(pgd)) {
 | |
| 			if (walk->pte_hole)
 | |
| 				err = walk->pte_hole(addr, next, walk);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 			pgd++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (walk->pgd_entry)
 | |
| 			err = walk->pgd_entry(pgd, addr, next, walk);
 | |
| 		if (!err &&
 | |
| 		    (walk->pud_entry || walk->pmd_entry || walk->pte_entry))
 | |
| 			err = walk_pud_range(pgd, addr, next, walk);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 		pgd++;
 | |
| 	} while (addr = next, addr != end);
 | |
| 
 | |
| 	return err;
 | |
| }
 |