 c5850150d0
			
		
	
	
	c5850150d0
	
	
	
		
			
			* 'for-linus' of git://oss.sgi.com/xfs/xfs: xfs: stop using the page cache to back the buffer cache xfs: register the inode cache shrinker before quotachecks xfs: xfs_trans_read_buf() should return an error on failure xfs: introduce inode cluster buffer trylocks for xfs_iflush vmap: flush vmap aliases when mapping fails xfs: preallocation transactions do not need to be synchronous Fix up trivial conflicts in fs/xfs/linux-2.6/xfs_buf.c due to plug removal.
		
			
				
	
	
		
			1885 lines
		
	
	
	
		
			42 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1885 lines
		
	
	
	
		
			42 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/list_sort.h>
 | |
| 
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_inum.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_trace.h"
 | |
| 
 | |
| static kmem_zone_t *xfs_buf_zone;
 | |
| STATIC int xfsbufd(void *);
 | |
| STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
 | |
| 
 | |
| static struct workqueue_struct *xfslogd_workqueue;
 | |
| struct workqueue_struct *xfsdatad_workqueue;
 | |
| struct workqueue_struct *xfsconvertd_workqueue;
 | |
| 
 | |
| #ifdef XFS_BUF_LOCK_TRACKING
 | |
| # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
 | |
| # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
 | |
| # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
 | |
| #else
 | |
| # define XB_SET_OWNER(bp)	do { } while (0)
 | |
| # define XB_CLEAR_OWNER(bp)	do { } while (0)
 | |
| # define XB_GET_OWNER(bp)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define xb_to_gfp(flags) \
 | |
| 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
 | |
| 	  ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
 | |
| 
 | |
| #define xb_to_km(flags) \
 | |
| 	 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
 | |
| 
 | |
| #define xfs_buf_allocate(flags) \
 | |
| 	kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
 | |
| #define xfs_buf_deallocate(bp) \
 | |
| 	kmem_zone_free(xfs_buf_zone, (bp));
 | |
| 
 | |
| static inline int
 | |
| xfs_buf_is_vmapped(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Return true if the buffer is vmapped.
 | |
| 	 *
 | |
| 	 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
 | |
| 	 * code is clever enough to know it doesn't have to map a single page,
 | |
| 	 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
 | |
| 	 */
 | |
| 	return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| xfs_buf_vmap_len(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_buf_lru_add - add a buffer to the LRU.
 | |
|  *
 | |
|  * The LRU takes a new reference to the buffer so that it will only be freed
 | |
|  * once the shrinker takes the buffer off the LRU.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_buf_lru_add(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	struct xfs_buftarg *btp = bp->b_target;
 | |
| 
 | |
| 	spin_lock(&btp->bt_lru_lock);
 | |
| 	if (list_empty(&bp->b_lru)) {
 | |
| 		atomic_inc(&bp->b_hold);
 | |
| 		list_add_tail(&bp->b_lru, &btp->bt_lru);
 | |
| 		btp->bt_lru_nr++;
 | |
| 	}
 | |
| 	spin_unlock(&btp->bt_lru_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_buf_lru_del - remove a buffer from the LRU
 | |
|  *
 | |
|  * The unlocked check is safe here because it only occurs when there are not
 | |
|  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
 | |
|  * to optimise the shrinker removing the buffer from the LRU and calling
 | |
|  * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
 | |
|  * bt_lru_lock.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_buf_lru_del(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	struct xfs_buftarg *btp = bp->b_target;
 | |
| 
 | |
| 	if (list_empty(&bp->b_lru))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&btp->bt_lru_lock);
 | |
| 	if (!list_empty(&bp->b_lru)) {
 | |
| 		list_del_init(&bp->b_lru);
 | |
| 		btp->bt_lru_nr--;
 | |
| 	}
 | |
| 	spin_unlock(&btp->bt_lru_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 | |
|  * b_lru_ref count so that the buffer is freed immediately when the buffer
 | |
|  * reference count falls to zero. If the buffer is already on the LRU, we need
 | |
|  * to remove the reference that LRU holds on the buffer.
 | |
|  *
 | |
|  * This prevents build-up of stale buffers on the LRU.
 | |
|  */
 | |
| void
 | |
| xfs_buf_stale(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	bp->b_flags |= XBF_STALE;
 | |
| 	atomic_set(&(bp)->b_lru_ref, 0);
 | |
| 	if (!list_empty(&bp->b_lru)) {
 | |
| 		struct xfs_buftarg *btp = bp->b_target;
 | |
| 
 | |
| 		spin_lock(&btp->bt_lru_lock);
 | |
| 		if (!list_empty(&bp->b_lru)) {
 | |
| 			list_del_init(&bp->b_lru);
 | |
| 			btp->bt_lru_nr--;
 | |
| 			atomic_dec(&bp->b_hold);
 | |
| 		}
 | |
| 		spin_unlock(&btp->bt_lru_lock);
 | |
| 	}
 | |
| 	ASSERT(atomic_read(&bp->b_hold) >= 1);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| _xfs_buf_initialize(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	xfs_buftarg_t		*target,
 | |
| 	xfs_off_t		range_base,
 | |
| 	size_t			range_length,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * We don't want certain flags to appear in b_flags.
 | |
| 	 */
 | |
| 	flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
 | |
| 
 | |
| 	memset(bp, 0, sizeof(xfs_buf_t));
 | |
| 	atomic_set(&bp->b_hold, 1);
 | |
| 	atomic_set(&bp->b_lru_ref, 1);
 | |
| 	init_completion(&bp->b_iowait);
 | |
| 	INIT_LIST_HEAD(&bp->b_lru);
 | |
| 	INIT_LIST_HEAD(&bp->b_list);
 | |
| 	RB_CLEAR_NODE(&bp->b_rbnode);
 | |
| 	sema_init(&bp->b_sema, 0); /* held, no waiters */
 | |
| 	XB_SET_OWNER(bp);
 | |
| 	bp->b_target = target;
 | |
| 	bp->b_file_offset = range_base;
 | |
| 	/*
 | |
| 	 * Set buffer_length and count_desired to the same value initially.
 | |
| 	 * I/O routines should use count_desired, which will be the same in
 | |
| 	 * most cases but may be reset (e.g. XFS recovery).
 | |
| 	 */
 | |
| 	bp->b_buffer_length = bp->b_count_desired = range_length;
 | |
| 	bp->b_flags = flags;
 | |
| 	bp->b_bn = XFS_BUF_DADDR_NULL;
 | |
| 	atomic_set(&bp->b_pin_count, 0);
 | |
| 	init_waitqueue_head(&bp->b_waiters);
 | |
| 
 | |
| 	XFS_STATS_INC(xb_create);
 | |
| 
 | |
| 	trace_xfs_buf_init(bp, _RET_IP_);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Allocate a page array capable of holding a specified number
 | |
|  *	of pages, and point the page buf at it.
 | |
|  */
 | |
| STATIC int
 | |
| _xfs_buf_get_pages(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			page_count,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	/* Make sure that we have a page list */
 | |
| 	if (bp->b_pages == NULL) {
 | |
| 		bp->b_offset = xfs_buf_poff(bp->b_file_offset);
 | |
| 		bp->b_page_count = page_count;
 | |
| 		if (page_count <= XB_PAGES) {
 | |
| 			bp->b_pages = bp->b_page_array;
 | |
| 		} else {
 | |
| 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
 | |
| 					page_count, xb_to_km(flags));
 | |
| 			if (bp->b_pages == NULL)
 | |
| 				return -ENOMEM;
 | |
| 		}
 | |
| 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Frees b_pages if it was allocated.
 | |
|  */
 | |
| STATIC void
 | |
| _xfs_buf_free_pages(
 | |
| 	xfs_buf_t	*bp)
 | |
| {
 | |
| 	if (bp->b_pages != bp->b_page_array) {
 | |
| 		kmem_free(bp->b_pages);
 | |
| 		bp->b_pages = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Releases the specified buffer.
 | |
|  *
 | |
|  * 	The modification state of any associated pages is left unchanged.
 | |
|  * 	The buffer most not be on any hash - use xfs_buf_rele instead for
 | |
|  * 	hashed and refcounted buffers
 | |
|  */
 | |
| void
 | |
| xfs_buf_free(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	trace_xfs_buf_free(bp, _RET_IP_);
 | |
| 
 | |
| 	ASSERT(list_empty(&bp->b_lru));
 | |
| 
 | |
| 	if (bp->b_flags & _XBF_PAGES) {
 | |
| 		uint		i;
 | |
| 
 | |
| 		if (xfs_buf_is_vmapped(bp))
 | |
| 			vm_unmap_ram(bp->b_addr - bp->b_offset,
 | |
| 					bp->b_page_count);
 | |
| 
 | |
| 		for (i = 0; i < bp->b_page_count; i++) {
 | |
| 			struct page	*page = bp->b_pages[i];
 | |
| 
 | |
| 			__free_page(page);
 | |
| 		}
 | |
| 	} else if (bp->b_flags & _XBF_KMEM)
 | |
| 		kmem_free(bp->b_addr);
 | |
| 	_xfs_buf_free_pages(bp);
 | |
| 	xfs_buf_deallocate(bp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocates all the pages for buffer in question and builds it's page list.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_buf_allocate_memory(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	uint			flags)
 | |
| {
 | |
| 	size_t			size = bp->b_count_desired;
 | |
| 	size_t			nbytes, offset;
 | |
| 	gfp_t			gfp_mask = xb_to_gfp(flags);
 | |
| 	unsigned short		page_count, i;
 | |
| 	pgoff_t			first;
 | |
| 	xfs_off_t		end;
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * for buffers that are contained within a single page, just allocate
 | |
| 	 * the memory from the heap - there's no need for the complexity of
 | |
| 	 * page arrays to keep allocation down to order 0.
 | |
| 	 */
 | |
| 	if (bp->b_buffer_length < PAGE_SIZE) {
 | |
| 		bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
 | |
| 		if (!bp->b_addr) {
 | |
| 			/* low memory - use alloc_page loop instead */
 | |
| 			goto use_alloc_page;
 | |
| 		}
 | |
| 
 | |
| 		if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
 | |
| 								PAGE_MASK) !=
 | |
| 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 | |
| 			/* b_addr spans two pages - use alloc_page instead */
 | |
| 			kmem_free(bp->b_addr);
 | |
| 			bp->b_addr = NULL;
 | |
| 			goto use_alloc_page;
 | |
| 		}
 | |
| 		bp->b_offset = offset_in_page(bp->b_addr);
 | |
| 		bp->b_pages = bp->b_page_array;
 | |
| 		bp->b_pages[0] = virt_to_page(bp->b_addr);
 | |
| 		bp->b_page_count = 1;
 | |
| 		bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| use_alloc_page:
 | |
| 	end = bp->b_file_offset + bp->b_buffer_length;
 | |
| 	page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
 | |
| 	error = _xfs_buf_get_pages(bp, page_count, flags);
 | |
| 	if (unlikely(error))
 | |
| 		return error;
 | |
| 
 | |
| 	offset = bp->b_offset;
 | |
| 	first = bp->b_file_offset >> PAGE_SHIFT;
 | |
| 	bp->b_flags |= _XBF_PAGES;
 | |
| 
 | |
| 	for (i = 0; i < bp->b_page_count; i++) {
 | |
| 		struct page	*page;
 | |
| 		uint		retries = 0;
 | |
| retry:
 | |
| 		page = alloc_page(gfp_mask);
 | |
| 		if (unlikely(page == NULL)) {
 | |
| 			if (flags & XBF_READ_AHEAD) {
 | |
| 				bp->b_page_count = i;
 | |
| 				error = ENOMEM;
 | |
| 				goto out_free_pages;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * This could deadlock.
 | |
| 			 *
 | |
| 			 * But until all the XFS lowlevel code is revamped to
 | |
| 			 * handle buffer allocation failures we can't do much.
 | |
| 			 */
 | |
| 			if (!(++retries % 100))
 | |
| 				xfs_err(NULL,
 | |
| 		"possible memory allocation deadlock in %s (mode:0x%x)",
 | |
| 					__func__, gfp_mask);
 | |
| 
 | |
| 			XFS_STATS_INC(xb_page_retries);
 | |
| 			congestion_wait(BLK_RW_ASYNC, HZ/50);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		XFS_STATS_INC(xb_page_found);
 | |
| 
 | |
| 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 | |
| 		size -= nbytes;
 | |
| 		bp->b_pages[i] = page;
 | |
| 		offset = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| out_free_pages:
 | |
| 	for (i = 0; i < bp->b_page_count; i++)
 | |
| 		__free_page(bp->b_pages[i]);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Map buffer into kernel address-space if nessecary.
 | |
|  */
 | |
| STATIC int
 | |
| _xfs_buf_map_pages(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	uint			flags)
 | |
| {
 | |
| 	ASSERT(bp->b_flags & _XBF_PAGES);
 | |
| 	if (bp->b_page_count == 1) {
 | |
| 		/* A single page buffer is always mappable */
 | |
| 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 | |
| 		bp->b_flags |= XBF_MAPPED;
 | |
| 	} else if (flags & XBF_MAPPED) {
 | |
| 		int retried = 0;
 | |
| 
 | |
| 		do {
 | |
| 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 | |
| 						-1, PAGE_KERNEL);
 | |
| 			if (bp->b_addr)
 | |
| 				break;
 | |
| 			vm_unmap_aliases();
 | |
| 		} while (retried++ <= 1);
 | |
| 
 | |
| 		if (!bp->b_addr)
 | |
| 			return -ENOMEM;
 | |
| 		bp->b_addr += bp->b_offset;
 | |
| 		bp->b_flags |= XBF_MAPPED;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Finding and Reading Buffers
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *	Look up, and creates if absent, a lockable buffer for
 | |
|  *	a given range of an inode.  The buffer is returned
 | |
|  *	locked.	 If other overlapping buffers exist, they are
 | |
|  *	released before the new buffer is created and locked,
 | |
|  *	which may imply that this call will block until those buffers
 | |
|  *	are unlocked.  No I/O is implied by this call.
 | |
|  */
 | |
| xfs_buf_t *
 | |
| _xfs_buf_find(
 | |
| 	xfs_buftarg_t		*btp,	/* block device target		*/
 | |
| 	xfs_off_t		ioff,	/* starting offset of range	*/
 | |
| 	size_t			isize,	/* length of range		*/
 | |
| 	xfs_buf_flags_t		flags,
 | |
| 	xfs_buf_t		*new_bp)
 | |
| {
 | |
| 	xfs_off_t		range_base;
 | |
| 	size_t			range_length;
 | |
| 	struct xfs_perag	*pag;
 | |
| 	struct rb_node		**rbp;
 | |
| 	struct rb_node		*parent;
 | |
| 	xfs_buf_t		*bp;
 | |
| 
 | |
| 	range_base = (ioff << BBSHIFT);
 | |
| 	range_length = (isize << BBSHIFT);
 | |
| 
 | |
| 	/* Check for IOs smaller than the sector size / not sector aligned */
 | |
| 	ASSERT(!(range_length < (1 << btp->bt_sshift)));
 | |
| 	ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
 | |
| 
 | |
| 	/* get tree root */
 | |
| 	pag = xfs_perag_get(btp->bt_mount,
 | |
| 				xfs_daddr_to_agno(btp->bt_mount, ioff));
 | |
| 
 | |
| 	/* walk tree */
 | |
| 	spin_lock(&pag->pag_buf_lock);
 | |
| 	rbp = &pag->pag_buf_tree.rb_node;
 | |
| 	parent = NULL;
 | |
| 	bp = NULL;
 | |
| 	while (*rbp) {
 | |
| 		parent = *rbp;
 | |
| 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 | |
| 
 | |
| 		if (range_base < bp->b_file_offset)
 | |
| 			rbp = &(*rbp)->rb_left;
 | |
| 		else if (range_base > bp->b_file_offset)
 | |
| 			rbp = &(*rbp)->rb_right;
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * found a block offset match. If the range doesn't
 | |
| 			 * match, the only way this is allowed is if the buffer
 | |
| 			 * in the cache is stale and the transaction that made
 | |
| 			 * it stale has not yet committed. i.e. we are
 | |
| 			 * reallocating a busy extent. Skip this buffer and
 | |
| 			 * continue searching to the right for an exact match.
 | |
| 			 */
 | |
| 			if (bp->b_buffer_length != range_length) {
 | |
| 				ASSERT(bp->b_flags & XBF_STALE);
 | |
| 				rbp = &(*rbp)->rb_right;
 | |
| 				continue;
 | |
| 			}
 | |
| 			atomic_inc(&bp->b_hold);
 | |
| 			goto found;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* No match found */
 | |
| 	if (new_bp) {
 | |
| 		_xfs_buf_initialize(new_bp, btp, range_base,
 | |
| 				range_length, flags);
 | |
| 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
 | |
| 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 | |
| 		/* the buffer keeps the perag reference until it is freed */
 | |
| 		new_bp->b_pag = pag;
 | |
| 		spin_unlock(&pag->pag_buf_lock);
 | |
| 	} else {
 | |
| 		XFS_STATS_INC(xb_miss_locked);
 | |
| 		spin_unlock(&pag->pag_buf_lock);
 | |
| 		xfs_perag_put(pag);
 | |
| 	}
 | |
| 	return new_bp;
 | |
| 
 | |
| found:
 | |
| 	spin_unlock(&pag->pag_buf_lock);
 | |
| 	xfs_perag_put(pag);
 | |
| 
 | |
| 	if (xfs_buf_cond_lock(bp)) {
 | |
| 		/* failed, so wait for the lock if requested. */
 | |
| 		if (!(flags & XBF_TRYLOCK)) {
 | |
| 			xfs_buf_lock(bp);
 | |
| 			XFS_STATS_INC(xb_get_locked_waited);
 | |
| 		} else {
 | |
| 			xfs_buf_rele(bp);
 | |
| 			XFS_STATS_INC(xb_busy_locked);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if the buffer is stale, clear all the external state associated with
 | |
| 	 * it. We need to keep flags such as how we allocated the buffer memory
 | |
| 	 * intact here.
 | |
| 	 */
 | |
| 	if (bp->b_flags & XBF_STALE) {
 | |
| 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 | |
| 		bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_buf_find(bp, flags, _RET_IP_);
 | |
| 	XFS_STATS_INC(xb_get_locked);
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Assembles a buffer covering the specified range.
 | |
|  *	Storage in memory for all portions of the buffer will be allocated,
 | |
|  *	although backing storage may not be.
 | |
|  */
 | |
| xfs_buf_t *
 | |
| xfs_buf_get(
 | |
| 	xfs_buftarg_t		*target,/* target for buffer		*/
 | |
| 	xfs_off_t		ioff,	/* starting offset of range	*/
 | |
| 	size_t			isize,	/* length of range		*/
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	xfs_buf_t		*bp, *new_bp;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	new_bp = xfs_buf_allocate(flags);
 | |
| 	if (unlikely(!new_bp))
 | |
| 		return NULL;
 | |
| 
 | |
| 	bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
 | |
| 	if (bp == new_bp) {
 | |
| 		error = xfs_buf_allocate_memory(bp, flags);
 | |
| 		if (error)
 | |
| 			goto no_buffer;
 | |
| 	} else {
 | |
| 		xfs_buf_deallocate(new_bp);
 | |
| 		if (unlikely(bp == NULL))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!(bp->b_flags & XBF_MAPPED)) {
 | |
| 		error = _xfs_buf_map_pages(bp, flags);
 | |
| 		if (unlikely(error)) {
 | |
| 			xfs_warn(target->bt_mount,
 | |
| 				"%s: failed to map pages\n", __func__);
 | |
| 			goto no_buffer;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	XFS_STATS_INC(xb_get);
 | |
| 
 | |
| 	/*
 | |
| 	 * Always fill in the block number now, the mapped cases can do
 | |
| 	 * their own overlay of this later.
 | |
| 	 */
 | |
| 	bp->b_bn = ioff;
 | |
| 	bp->b_count_desired = bp->b_buffer_length;
 | |
| 
 | |
| 	trace_xfs_buf_get(bp, flags, _RET_IP_);
 | |
| 	return bp;
 | |
| 
 | |
|  no_buffer:
 | |
| 	if (flags & (XBF_LOCK | XBF_TRYLOCK))
 | |
| 		xfs_buf_unlock(bp);
 | |
| 	xfs_buf_rele(bp);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| _xfs_buf_read(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	int			status;
 | |
| 
 | |
| 	ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
 | |
| 	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
 | |
| 
 | |
| 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
 | |
| 			XBF_READ_AHEAD | _XBF_RUN_QUEUES);
 | |
| 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
 | |
| 			XBF_READ_AHEAD | _XBF_RUN_QUEUES);
 | |
| 
 | |
| 	status = xfs_buf_iorequest(bp);
 | |
| 	if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
 | |
| 		return status;
 | |
| 	return xfs_buf_iowait(bp);
 | |
| }
 | |
| 
 | |
| xfs_buf_t *
 | |
| xfs_buf_read(
 | |
| 	xfs_buftarg_t		*target,
 | |
| 	xfs_off_t		ioff,
 | |
| 	size_t			isize,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	xfs_buf_t		*bp;
 | |
| 
 | |
| 	flags |= XBF_READ;
 | |
| 
 | |
| 	bp = xfs_buf_get(target, ioff, isize, flags);
 | |
| 	if (bp) {
 | |
| 		trace_xfs_buf_read(bp, flags, _RET_IP_);
 | |
| 
 | |
| 		if (!XFS_BUF_ISDONE(bp)) {
 | |
| 			XFS_STATS_INC(xb_get_read);
 | |
| 			_xfs_buf_read(bp, flags);
 | |
| 		} else if (flags & XBF_ASYNC) {
 | |
| 			/*
 | |
| 			 * Read ahead call which is already satisfied,
 | |
| 			 * drop the buffer
 | |
| 			 */
 | |
| 			goto no_buffer;
 | |
| 		} else {
 | |
| 			/* We do not want read in the flags */
 | |
| 			bp->b_flags &= ~XBF_READ;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return bp;
 | |
| 
 | |
|  no_buffer:
 | |
| 	if (flags & (XBF_LOCK | XBF_TRYLOCK))
 | |
| 		xfs_buf_unlock(bp);
 | |
| 	xfs_buf_rele(bp);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	If we are not low on memory then do the readahead in a deadlock
 | |
|  *	safe manner.
 | |
|  */
 | |
| void
 | |
| xfs_buf_readahead(
 | |
| 	xfs_buftarg_t		*target,
 | |
| 	xfs_off_t		ioff,
 | |
| 	size_t			isize)
 | |
| {
 | |
| 	struct backing_dev_info *bdi;
 | |
| 
 | |
| 	if (bdi_read_congested(target->bt_bdi))
 | |
| 		return;
 | |
| 
 | |
| 	xfs_buf_read(target, ioff, isize,
 | |
| 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read an uncached buffer from disk. Allocates and returns a locked
 | |
|  * buffer containing the disk contents or nothing.
 | |
|  */
 | |
| struct xfs_buf *
 | |
| xfs_buf_read_uncached(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_buftarg	*target,
 | |
| 	xfs_daddr_t		daddr,
 | |
| 	size_t			length,
 | |
| 	int			flags)
 | |
| {
 | |
| 	xfs_buf_t		*bp;
 | |
| 	int			error;
 | |
| 
 | |
| 	bp = xfs_buf_get_uncached(target, length, flags);
 | |
| 	if (!bp)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* set up the buffer for a read IO */
 | |
| 	xfs_buf_lock(bp);
 | |
| 	XFS_BUF_SET_ADDR(bp, daddr);
 | |
| 	XFS_BUF_READ(bp);
 | |
| 	XFS_BUF_BUSY(bp);
 | |
| 
 | |
| 	xfsbdstrat(mp, bp);
 | |
| 	error = xfs_buf_iowait(bp);
 | |
| 	if (error || bp->b_error) {
 | |
| 		xfs_buf_relse(bp);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| xfs_buf_t *
 | |
| xfs_buf_get_empty(
 | |
| 	size_t			len,
 | |
| 	xfs_buftarg_t		*target)
 | |
| {
 | |
| 	xfs_buf_t		*bp;
 | |
| 
 | |
| 	bp = xfs_buf_allocate(0);
 | |
| 	if (bp)
 | |
| 		_xfs_buf_initialize(bp, target, 0, len, 0);
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| static inline struct page *
 | |
| mem_to_page(
 | |
| 	void			*addr)
 | |
| {
 | |
| 	if ((!is_vmalloc_addr(addr))) {
 | |
| 		return virt_to_page(addr);
 | |
| 	} else {
 | |
| 		return vmalloc_to_page(addr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_buf_associate_memory(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	void			*mem,
 | |
| 	size_t			len)
 | |
| {
 | |
| 	int			rval;
 | |
| 	int			i = 0;
 | |
| 	unsigned long		pageaddr;
 | |
| 	unsigned long		offset;
 | |
| 	size_t			buflen;
 | |
| 	int			page_count;
 | |
| 
 | |
| 	pageaddr = (unsigned long)mem & PAGE_MASK;
 | |
| 	offset = (unsigned long)mem - pageaddr;
 | |
| 	buflen = PAGE_ALIGN(len + offset);
 | |
| 	page_count = buflen >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* Free any previous set of page pointers */
 | |
| 	if (bp->b_pages)
 | |
| 		_xfs_buf_free_pages(bp);
 | |
| 
 | |
| 	bp->b_pages = NULL;
 | |
| 	bp->b_addr = mem;
 | |
| 
 | |
| 	rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 
 | |
| 	bp->b_offset = offset;
 | |
| 
 | |
| 	for (i = 0; i < bp->b_page_count; i++) {
 | |
| 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
 | |
| 		pageaddr += PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	bp->b_count_desired = len;
 | |
| 	bp->b_buffer_length = buflen;
 | |
| 	bp->b_flags |= XBF_MAPPED;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| xfs_buf_t *
 | |
| xfs_buf_get_uncached(
 | |
| 	struct xfs_buftarg	*target,
 | |
| 	size_t			len,
 | |
| 	int			flags)
 | |
| {
 | |
| 	unsigned long		page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
 | |
| 	int			error, i;
 | |
| 	xfs_buf_t		*bp;
 | |
| 
 | |
| 	bp = xfs_buf_allocate(0);
 | |
| 	if (unlikely(bp == NULL))
 | |
| 		goto fail;
 | |
| 	_xfs_buf_initialize(bp, target, 0, len, 0);
 | |
| 
 | |
| 	error = _xfs_buf_get_pages(bp, page_count, 0);
 | |
| 	if (error)
 | |
| 		goto fail_free_buf;
 | |
| 
 | |
| 	for (i = 0; i < page_count; i++) {
 | |
| 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 | |
| 		if (!bp->b_pages[i])
 | |
| 			goto fail_free_mem;
 | |
| 	}
 | |
| 	bp->b_flags |= _XBF_PAGES;
 | |
| 
 | |
| 	error = _xfs_buf_map_pages(bp, XBF_MAPPED);
 | |
| 	if (unlikely(error)) {
 | |
| 		xfs_warn(target->bt_mount,
 | |
| 			"%s: failed to map pages\n", __func__);
 | |
| 		goto fail_free_mem;
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_unlock(bp);
 | |
| 
 | |
| 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
 | |
| 	return bp;
 | |
| 
 | |
|  fail_free_mem:
 | |
| 	while (--i >= 0)
 | |
| 		__free_page(bp->b_pages[i]);
 | |
| 	_xfs_buf_free_pages(bp);
 | |
|  fail_free_buf:
 | |
| 	xfs_buf_deallocate(bp);
 | |
|  fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Increment reference count on buffer, to hold the buffer concurrently
 | |
|  *	with another thread which may release (free) the buffer asynchronously.
 | |
|  *	Must hold the buffer already to call this function.
 | |
|  */
 | |
| void
 | |
| xfs_buf_hold(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	trace_xfs_buf_hold(bp, _RET_IP_);
 | |
| 	atomic_inc(&bp->b_hold);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Releases a hold on the specified buffer.  If the
 | |
|  *	the hold count is 1, calls xfs_buf_free.
 | |
|  */
 | |
| void
 | |
| xfs_buf_rele(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	struct xfs_perag	*pag = bp->b_pag;
 | |
| 
 | |
| 	trace_xfs_buf_rele(bp, _RET_IP_);
 | |
| 
 | |
| 	if (!pag) {
 | |
| 		ASSERT(list_empty(&bp->b_lru));
 | |
| 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 | |
| 		if (atomic_dec_and_test(&bp->b_hold))
 | |
| 			xfs_buf_free(bp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 | |
| 
 | |
| 	ASSERT(atomic_read(&bp->b_hold) > 0);
 | |
| 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
 | |
| 		if (!(bp->b_flags & XBF_STALE) &&
 | |
| 			   atomic_read(&bp->b_lru_ref)) {
 | |
| 			xfs_buf_lru_add(bp);
 | |
| 			spin_unlock(&pag->pag_buf_lock);
 | |
| 		} else {
 | |
| 			xfs_buf_lru_del(bp);
 | |
| 			ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
 | |
| 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 | |
| 			spin_unlock(&pag->pag_buf_lock);
 | |
| 			xfs_perag_put(pag);
 | |
| 			xfs_buf_free(bp);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *	Lock a buffer object, if it is not already locked.
 | |
|  *
 | |
|  *	If we come across a stale, pinned, locked buffer, we know that we are
 | |
|  *	being asked to lock a buffer that has been reallocated. Because it is
 | |
|  *	pinned, we know that the log has not been pushed to disk and hence it
 | |
|  *	will still be locked.  Rather than continuing to have trylock attempts
 | |
|  *	fail until someone else pushes the log, push it ourselves before
 | |
|  *	returning.  This means that the xfsaild will not get stuck trying
 | |
|  *	to push on stale inode buffers.
 | |
|  */
 | |
| int
 | |
| xfs_buf_cond_lock(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	int			locked;
 | |
| 
 | |
| 	locked = down_trylock(&bp->b_sema) == 0;
 | |
| 	if (locked)
 | |
| 		XB_SET_OWNER(bp);
 | |
| 	else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 | |
| 		xfs_log_force(bp->b_target->bt_mount, 0);
 | |
| 
 | |
| 	trace_xfs_buf_cond_lock(bp, _RET_IP_);
 | |
| 	return locked ? 0 : -EBUSY;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_buf_lock_value(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	return bp->b_sema.count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Lock a buffer object.
 | |
|  *
 | |
|  *	If we come across a stale, pinned, locked buffer, we know that we
 | |
|  *	are being asked to lock a buffer that has been reallocated. Because
 | |
|  *	it is pinned, we know that the log has not been pushed to disk and
 | |
|  *	hence it will still be locked. Rather than sleeping until someone
 | |
|  *	else pushes the log, push it ourselves before trying to get the lock.
 | |
|  */
 | |
| void
 | |
| xfs_buf_lock(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	trace_xfs_buf_lock(bp, _RET_IP_);
 | |
| 
 | |
| 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 | |
| 		xfs_log_force(bp->b_target->bt_mount, 0);
 | |
| 	if (atomic_read(&bp->b_io_remaining))
 | |
| 		blk_flush_plug(current);
 | |
| 	down(&bp->b_sema);
 | |
| 	XB_SET_OWNER(bp);
 | |
| 
 | |
| 	trace_xfs_buf_lock_done(bp, _RET_IP_);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Releases the lock on the buffer object.
 | |
|  *	If the buffer is marked delwri but is not queued, do so before we
 | |
|  *	unlock the buffer as we need to set flags correctly.  We also need to
 | |
|  *	take a reference for the delwri queue because the unlocker is going to
 | |
|  *	drop their's and they don't know we just queued it.
 | |
|  */
 | |
| void
 | |
| xfs_buf_unlock(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
 | |
| 		atomic_inc(&bp->b_hold);
 | |
| 		bp->b_flags |= XBF_ASYNC;
 | |
| 		xfs_buf_delwri_queue(bp, 0);
 | |
| 	}
 | |
| 
 | |
| 	XB_CLEAR_OWNER(bp);
 | |
| 	up(&bp->b_sema);
 | |
| 
 | |
| 	trace_xfs_buf_unlock(bp, _RET_IP_);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_buf_wait_unpin(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	DECLARE_WAITQUEUE	(wait, current);
 | |
| 
 | |
| 	if (atomic_read(&bp->b_pin_count) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	add_wait_queue(&bp->b_waiters, &wait);
 | |
| 	for (;;) {
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		if (atomic_read(&bp->b_pin_count) == 0)
 | |
| 			break;
 | |
| 		io_schedule();
 | |
| 	}
 | |
| 	remove_wait_queue(&bp->b_waiters, &wait);
 | |
| 	set_current_state(TASK_RUNNING);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Buffer Utility Routines
 | |
|  */
 | |
| 
 | |
| STATIC void
 | |
| xfs_buf_iodone_work(
 | |
| 	struct work_struct	*work)
 | |
| {
 | |
| 	xfs_buf_t		*bp =
 | |
| 		container_of(work, xfs_buf_t, b_iodone_work);
 | |
| 
 | |
| 	if (bp->b_iodone)
 | |
| 		(*(bp->b_iodone))(bp);
 | |
| 	else if (bp->b_flags & XBF_ASYNC)
 | |
| 		xfs_buf_relse(bp);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_ioend(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			schedule)
 | |
| {
 | |
| 	trace_xfs_buf_iodone(bp, _RET_IP_);
 | |
| 
 | |
| 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
 | |
| 	if (bp->b_error == 0)
 | |
| 		bp->b_flags |= XBF_DONE;
 | |
| 
 | |
| 	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
 | |
| 		if (schedule) {
 | |
| 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
 | |
| 			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
 | |
| 		} else {
 | |
| 			xfs_buf_iodone_work(&bp->b_iodone_work);
 | |
| 		}
 | |
| 	} else {
 | |
| 		complete(&bp->b_iowait);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_ioerror(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			error)
 | |
| {
 | |
| 	ASSERT(error >= 0 && error <= 0xffff);
 | |
| 	bp->b_error = (unsigned short)error;
 | |
| 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_bwrite(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_buf		*bp)
 | |
| {
 | |
| 	int			error;
 | |
| 
 | |
| 	bp->b_flags |= XBF_WRITE;
 | |
| 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
 | |
| 
 | |
| 	xfs_buf_delwri_dequeue(bp);
 | |
| 	xfs_bdstrat_cb(bp);
 | |
| 
 | |
| 	error = xfs_buf_iowait(bp);
 | |
| 	if (error)
 | |
| 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
 | |
| 	xfs_buf_relse(bp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_bdwrite(
 | |
| 	void			*mp,
 | |
| 	struct xfs_buf		*bp)
 | |
| {
 | |
| 	trace_xfs_buf_bdwrite(bp, _RET_IP_);
 | |
| 
 | |
| 	bp->b_flags &= ~XBF_READ;
 | |
| 	bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
 | |
| 
 | |
| 	xfs_buf_delwri_queue(bp, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when we want to stop a buffer from getting written or read.
 | |
|  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
 | |
|  * so that the proper iodone callbacks get called.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_bioerror(
 | |
| 	xfs_buf_t *bp)
 | |
| {
 | |
| #ifdef XFSERRORDEBUG
 | |
| 	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to wait until the buffer is unpinned, we aren't flushing it.
 | |
| 	 */
 | |
| 	XFS_BUF_ERROR(bp, EIO);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
 | |
| 	 */
 | |
| 	XFS_BUF_UNREAD(bp);
 | |
| 	XFS_BUF_UNDELAYWRITE(bp);
 | |
| 	XFS_BUF_UNDONE(bp);
 | |
| 	XFS_BUF_STALE(bp);
 | |
| 
 | |
| 	xfs_buf_ioend(bp, 0);
 | |
| 
 | |
| 	return EIO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same as xfs_bioerror, except that we are releasing the buffer
 | |
|  * here ourselves, and avoiding the xfs_buf_ioend call.
 | |
|  * This is meant for userdata errors; metadata bufs come with
 | |
|  * iodone functions attached, so that we can track down errors.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_bioerror_relse(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	int64_t		fl = XFS_BUF_BFLAGS(bp);
 | |
| 	/*
 | |
| 	 * No need to wait until the buffer is unpinned.
 | |
| 	 * We aren't flushing it.
 | |
| 	 *
 | |
| 	 * chunkhold expects B_DONE to be set, whether
 | |
| 	 * we actually finish the I/O or not. We don't want to
 | |
| 	 * change that interface.
 | |
| 	 */
 | |
| 	XFS_BUF_UNREAD(bp);
 | |
| 	XFS_BUF_UNDELAYWRITE(bp);
 | |
| 	XFS_BUF_DONE(bp);
 | |
| 	XFS_BUF_STALE(bp);
 | |
| 	XFS_BUF_CLR_IODONE_FUNC(bp);
 | |
| 	if (!(fl & XBF_ASYNC)) {
 | |
| 		/*
 | |
| 		 * Mark b_error and B_ERROR _both_.
 | |
| 		 * Lot's of chunkcache code assumes that.
 | |
| 		 * There's no reason to mark error for
 | |
| 		 * ASYNC buffers.
 | |
| 		 */
 | |
| 		XFS_BUF_ERROR(bp, EIO);
 | |
| 		XFS_BUF_FINISH_IOWAIT(bp);
 | |
| 	} else {
 | |
| 		xfs_buf_relse(bp);
 | |
| 	}
 | |
| 
 | |
| 	return EIO;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * All xfs metadata buffers except log state machine buffers
 | |
|  * get this attached as their b_bdstrat callback function.
 | |
|  * This is so that we can catch a buffer
 | |
|  * after prematurely unpinning it to forcibly shutdown the filesystem.
 | |
|  */
 | |
| int
 | |
| xfs_bdstrat_cb(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
 | |
| 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
 | |
| 		/*
 | |
| 		 * Metadata write that didn't get logged but
 | |
| 		 * written delayed anyway. These aren't associated
 | |
| 		 * with a transaction, and can be ignored.
 | |
| 		 */
 | |
| 		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
 | |
| 			return xfs_bioerror_relse(bp);
 | |
| 		else
 | |
| 			return xfs_bioerror(bp);
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_iorequest(bp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper around bdstrat so that we can stop data from going to disk in case
 | |
|  * we are shutting down the filesystem.  Typically user data goes thru this
 | |
|  * path; one of the exceptions is the superblock.
 | |
|  */
 | |
| void
 | |
| xfsbdstrat(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_buf		*bp)
 | |
| {
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp)) {
 | |
| 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
 | |
| 		xfs_bioerror_relse(bp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_iorequest(bp);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| _xfs_buf_ioend(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			schedule)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
 | |
| 		xfs_buf_ioend(bp, schedule);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_buf_bio_end_io(
 | |
| 	struct bio		*bio,
 | |
| 	int			error)
 | |
| {
 | |
| 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
 | |
| 
 | |
| 	xfs_buf_ioerror(bp, -error);
 | |
| 
 | |
| 	if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
 | |
| 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
 | |
| 
 | |
| 	_xfs_buf_ioend(bp, 1);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| _xfs_buf_ioapply(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	int			rw, map_i, total_nr_pages, nr_pages;
 | |
| 	struct bio		*bio;
 | |
| 	int			offset = bp->b_offset;
 | |
| 	int			size = bp->b_count_desired;
 | |
| 	sector_t		sector = bp->b_bn;
 | |
| 
 | |
| 	total_nr_pages = bp->b_page_count;
 | |
| 	map_i = 0;
 | |
| 
 | |
| 	if (bp->b_flags & XBF_ORDERED) {
 | |
| 		ASSERT(!(bp->b_flags & XBF_READ));
 | |
| 		rw = WRITE_FLUSH_FUA;
 | |
| 	} else if (bp->b_flags & XBF_LOG_BUFFER) {
 | |
| 		ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
 | |
| 		bp->b_flags &= ~_XBF_RUN_QUEUES;
 | |
| 		rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
 | |
| 	} else if (bp->b_flags & _XBF_RUN_QUEUES) {
 | |
| 		ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
 | |
| 		bp->b_flags &= ~_XBF_RUN_QUEUES;
 | |
| 		rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
 | |
| 	} else {
 | |
| 		rw = (bp->b_flags & XBF_WRITE) ? WRITE :
 | |
| 		     (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| next_chunk:
 | |
| 	atomic_inc(&bp->b_io_remaining);
 | |
| 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
 | |
| 	if (nr_pages > total_nr_pages)
 | |
| 		nr_pages = total_nr_pages;
 | |
| 
 | |
| 	bio = bio_alloc(GFP_NOIO, nr_pages);
 | |
| 	bio->bi_bdev = bp->b_target->bt_bdev;
 | |
| 	bio->bi_sector = sector;
 | |
| 	bio->bi_end_io = xfs_buf_bio_end_io;
 | |
| 	bio->bi_private = bp;
 | |
| 
 | |
| 
 | |
| 	for (; size && nr_pages; nr_pages--, map_i++) {
 | |
| 		int	rbytes, nbytes = PAGE_SIZE - offset;
 | |
| 
 | |
| 		if (nbytes > size)
 | |
| 			nbytes = size;
 | |
| 
 | |
| 		rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
 | |
| 		if (rbytes < nbytes)
 | |
| 			break;
 | |
| 
 | |
| 		offset = 0;
 | |
| 		sector += nbytes >> BBSHIFT;
 | |
| 		size -= nbytes;
 | |
| 		total_nr_pages--;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(bio->bi_size)) {
 | |
| 		if (xfs_buf_is_vmapped(bp)) {
 | |
| 			flush_kernel_vmap_range(bp->b_addr,
 | |
| 						xfs_buf_vmap_len(bp));
 | |
| 		}
 | |
| 		submit_bio(rw, bio);
 | |
| 		if (size)
 | |
| 			goto next_chunk;
 | |
| 	} else {
 | |
| 		xfs_buf_ioerror(bp, EIO);
 | |
| 		bio_put(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_buf_iorequest(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	trace_xfs_buf_iorequest(bp, _RET_IP_);
 | |
| 
 | |
| 	if (bp->b_flags & XBF_DELWRI) {
 | |
| 		xfs_buf_delwri_queue(bp, 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->b_flags & XBF_WRITE) {
 | |
| 		xfs_buf_wait_unpin(bp);
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_hold(bp);
 | |
| 
 | |
| 	/* Set the count to 1 initially, this will stop an I/O
 | |
| 	 * completion callout which happens before we have started
 | |
| 	 * all the I/O from calling xfs_buf_ioend too early.
 | |
| 	 */
 | |
| 	atomic_set(&bp->b_io_remaining, 1);
 | |
| 	_xfs_buf_ioapply(bp);
 | |
| 	_xfs_buf_ioend(bp, 0);
 | |
| 
 | |
| 	xfs_buf_rele(bp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Waits for I/O to complete on the buffer supplied.
 | |
|  *	It returns immediately if no I/O is pending.
 | |
|  *	It returns the I/O error code, if any, or 0 if there was no error.
 | |
|  */
 | |
| int
 | |
| xfs_buf_iowait(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	trace_xfs_buf_iowait(bp, _RET_IP_);
 | |
| 
 | |
| 	if (atomic_read(&bp->b_io_remaining))
 | |
| 		blk_flush_plug(current);
 | |
| 	wait_for_completion(&bp->b_iowait);
 | |
| 
 | |
| 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
 | |
| 	return bp->b_error;
 | |
| }
 | |
| 
 | |
| xfs_caddr_t
 | |
| xfs_buf_offset(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	size_t			offset)
 | |
| {
 | |
| 	struct page		*page;
 | |
| 
 | |
| 	if (bp->b_flags & XBF_MAPPED)
 | |
| 		return XFS_BUF_PTR(bp) + offset;
 | |
| 
 | |
| 	offset += bp->b_offset;
 | |
| 	page = bp->b_pages[offset >> PAGE_SHIFT];
 | |
| 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Move data into or out of a buffer.
 | |
|  */
 | |
| void
 | |
| xfs_buf_iomove(
 | |
| 	xfs_buf_t		*bp,	/* buffer to process		*/
 | |
| 	size_t			boff,	/* starting buffer offset	*/
 | |
| 	size_t			bsize,	/* length to copy		*/
 | |
| 	void			*data,	/* data address			*/
 | |
| 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
 | |
| {
 | |
| 	size_t			bend, cpoff, csize;
 | |
| 	struct page		*page;
 | |
| 
 | |
| 	bend = boff + bsize;
 | |
| 	while (boff < bend) {
 | |
| 		page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
 | |
| 		cpoff = xfs_buf_poff(boff + bp->b_offset);
 | |
| 		csize = min_t(size_t,
 | |
| 			      PAGE_SIZE-cpoff, bp->b_count_desired-boff);
 | |
| 
 | |
| 		ASSERT(((csize + cpoff) <= PAGE_SIZE));
 | |
| 
 | |
| 		switch (mode) {
 | |
| 		case XBRW_ZERO:
 | |
| 			memset(page_address(page) + cpoff, 0, csize);
 | |
| 			break;
 | |
| 		case XBRW_READ:
 | |
| 			memcpy(data, page_address(page) + cpoff, csize);
 | |
| 			break;
 | |
| 		case XBRW_WRITE:
 | |
| 			memcpy(page_address(page) + cpoff, data, csize);
 | |
| 		}
 | |
| 
 | |
| 		boff += csize;
 | |
| 		data += csize;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Handling of buffer targets (buftargs).
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Wait for any bufs with callbacks that have been submitted but have not yet
 | |
|  * returned. These buffers will have an elevated hold count, so wait on those
 | |
|  * while freeing all the buffers only held by the LRU.
 | |
|  */
 | |
| void
 | |
| xfs_wait_buftarg(
 | |
| 	struct xfs_buftarg	*btp)
 | |
| {
 | |
| 	struct xfs_buf		*bp;
 | |
| 
 | |
| restart:
 | |
| 	spin_lock(&btp->bt_lru_lock);
 | |
| 	while (!list_empty(&btp->bt_lru)) {
 | |
| 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
 | |
| 		if (atomic_read(&bp->b_hold) > 1) {
 | |
| 			spin_unlock(&btp->bt_lru_lock);
 | |
| 			delay(100);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * clear the LRU reference count so the bufer doesn't get
 | |
| 		 * ignored in xfs_buf_rele().
 | |
| 		 */
 | |
| 		atomic_set(&bp->b_lru_ref, 0);
 | |
| 		spin_unlock(&btp->bt_lru_lock);
 | |
| 		xfs_buf_rele(bp);
 | |
| 		spin_lock(&btp->bt_lru_lock);
 | |
| 	}
 | |
| 	spin_unlock(&btp->bt_lru_lock);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_buftarg_shrink(
 | |
| 	struct shrinker		*shrink,
 | |
| 	int			nr_to_scan,
 | |
| 	gfp_t			mask)
 | |
| {
 | |
| 	struct xfs_buftarg	*btp = container_of(shrink,
 | |
| 					struct xfs_buftarg, bt_shrinker);
 | |
| 	struct xfs_buf		*bp;
 | |
| 	LIST_HEAD(dispose);
 | |
| 
 | |
| 	if (!nr_to_scan)
 | |
| 		return btp->bt_lru_nr;
 | |
| 
 | |
| 	spin_lock(&btp->bt_lru_lock);
 | |
| 	while (!list_empty(&btp->bt_lru)) {
 | |
| 		if (nr_to_scan-- <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
 | |
| 
 | |
| 		/*
 | |
| 		 * Decrement the b_lru_ref count unless the value is already
 | |
| 		 * zero. If the value is already zero, we need to reclaim the
 | |
| 		 * buffer, otherwise it gets another trip through the LRU.
 | |
| 		 */
 | |
| 		if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
 | |
| 			list_move_tail(&bp->b_lru, &btp->bt_lru);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * remove the buffer from the LRU now to avoid needing another
 | |
| 		 * lock round trip inside xfs_buf_rele().
 | |
| 		 */
 | |
| 		list_move(&bp->b_lru, &dispose);
 | |
| 		btp->bt_lru_nr--;
 | |
| 	}
 | |
| 	spin_unlock(&btp->bt_lru_lock);
 | |
| 
 | |
| 	while (!list_empty(&dispose)) {
 | |
| 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
 | |
| 		list_del_init(&bp->b_lru);
 | |
| 		xfs_buf_rele(bp);
 | |
| 	}
 | |
| 
 | |
| 	return btp->bt_lru_nr;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_free_buftarg(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_buftarg	*btp)
 | |
| {
 | |
| 	unregister_shrinker(&btp->bt_shrinker);
 | |
| 
 | |
| 	xfs_flush_buftarg(btp, 1);
 | |
| 	if (mp->m_flags & XFS_MOUNT_BARRIER)
 | |
| 		xfs_blkdev_issue_flush(btp);
 | |
| 
 | |
| 	kthread_stop(btp->bt_task);
 | |
| 	kmem_free(btp);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_setsize_buftarg_flags(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	unsigned int		blocksize,
 | |
| 	unsigned int		sectorsize,
 | |
| 	int			verbose)
 | |
| {
 | |
| 	btp->bt_bsize = blocksize;
 | |
| 	btp->bt_sshift = ffs(sectorsize) - 1;
 | |
| 	btp->bt_smask = sectorsize - 1;
 | |
| 
 | |
| 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
 | |
| 		xfs_warn(btp->bt_mount,
 | |
| 			"Cannot set_blocksize to %u on device %s\n",
 | |
| 			sectorsize, XFS_BUFTARG_NAME(btp));
 | |
| 		return EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	When allocating the initial buffer target we have not yet
 | |
|  *	read in the superblock, so don't know what sized sectors
 | |
|  *	are being used is at this early stage.  Play safe.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_setsize_buftarg_early(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	struct block_device	*bdev)
 | |
| {
 | |
| 	return xfs_setsize_buftarg_flags(btp,
 | |
| 			PAGE_SIZE, bdev_logical_block_size(bdev), 0);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_setsize_buftarg(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	unsigned int		blocksize,
 | |
| 	unsigned int		sectorsize)
 | |
| {
 | |
| 	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_alloc_delwrite_queue(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	const char		*fsname)
 | |
| {
 | |
| 	INIT_LIST_HEAD(&btp->bt_delwrite_queue);
 | |
| 	spin_lock_init(&btp->bt_delwrite_lock);
 | |
| 	btp->bt_flags = 0;
 | |
| 	btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
 | |
| 	if (IS_ERR(btp->bt_task))
 | |
| 		return PTR_ERR(btp->bt_task);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| xfs_buftarg_t *
 | |
| xfs_alloc_buftarg(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct block_device	*bdev,
 | |
| 	int			external,
 | |
| 	const char		*fsname)
 | |
| {
 | |
| 	xfs_buftarg_t		*btp;
 | |
| 
 | |
| 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
 | |
| 
 | |
| 	btp->bt_mount = mp;
 | |
| 	btp->bt_dev =  bdev->bd_dev;
 | |
| 	btp->bt_bdev = bdev;
 | |
| 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
 | |
| 	if (!btp->bt_bdi)
 | |
| 		goto error;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&btp->bt_lru);
 | |
| 	spin_lock_init(&btp->bt_lru_lock);
 | |
| 	if (xfs_setsize_buftarg_early(btp, bdev))
 | |
| 		goto error;
 | |
| 	if (xfs_alloc_delwrite_queue(btp, fsname))
 | |
| 		goto error;
 | |
| 	btp->bt_shrinker.shrink = xfs_buftarg_shrink;
 | |
| 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
 | |
| 	register_shrinker(&btp->bt_shrinker);
 | |
| 	return btp;
 | |
| 
 | |
| error:
 | |
| 	kmem_free(btp);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *	Delayed write buffer handling
 | |
|  */
 | |
| STATIC void
 | |
| xfs_buf_delwri_queue(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			unlock)
 | |
| {
 | |
| 	struct list_head	*dwq = &bp->b_target->bt_delwrite_queue;
 | |
| 	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
 | |
| 
 | |
| 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
 | |
| 
 | |
| 	ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
 | |
| 
 | |
| 	spin_lock(dwlk);
 | |
| 	/* If already in the queue, dequeue and place at tail */
 | |
| 	if (!list_empty(&bp->b_list)) {
 | |
| 		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
 | |
| 		if (unlock)
 | |
| 			atomic_dec(&bp->b_hold);
 | |
| 		list_del(&bp->b_list);
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(dwq)) {
 | |
| 		/* start xfsbufd as it is about to have something to do */
 | |
| 		wake_up_process(bp->b_target->bt_task);
 | |
| 	}
 | |
| 
 | |
| 	bp->b_flags |= _XBF_DELWRI_Q;
 | |
| 	list_add_tail(&bp->b_list, dwq);
 | |
| 	bp->b_queuetime = jiffies;
 | |
| 	spin_unlock(dwlk);
 | |
| 
 | |
| 	if (unlock)
 | |
| 		xfs_buf_unlock(bp);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_delwri_dequeue(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
 | |
| 	int			dequeued = 0;
 | |
| 
 | |
| 	spin_lock(dwlk);
 | |
| 	if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
 | |
| 		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
 | |
| 		list_del_init(&bp->b_list);
 | |
| 		dequeued = 1;
 | |
| 	}
 | |
| 	bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
 | |
| 	spin_unlock(dwlk);
 | |
| 
 | |
| 	if (dequeued)
 | |
| 		xfs_buf_rele(bp);
 | |
| 
 | |
| 	trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If a delwri buffer needs to be pushed before it has aged out, then promote
 | |
|  * it to the head of the delwri queue so that it will be flushed on the next
 | |
|  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
 | |
|  * than the age currently needed to flush the buffer. Hence the next time the
 | |
|  * xfsbufd sees it is guaranteed to be considered old enough to flush.
 | |
|  */
 | |
| void
 | |
| xfs_buf_delwri_promote(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	struct xfs_buftarg *btp = bp->b_target;
 | |
| 	long		age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
 | |
| 
 | |
| 	ASSERT(bp->b_flags & XBF_DELWRI);
 | |
| 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check the buffer age before locking the delayed write queue as we
 | |
| 	 * don't need to promote buffers that are already past the flush age.
 | |
| 	 */
 | |
| 	if (bp->b_queuetime < jiffies - age)
 | |
| 		return;
 | |
| 	bp->b_queuetime = jiffies - age;
 | |
| 	spin_lock(&btp->bt_delwrite_lock);
 | |
| 	list_move(&bp->b_list, &btp->bt_delwrite_queue);
 | |
| 	spin_unlock(&btp->bt_delwrite_lock);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_buf_runall_queues(
 | |
| 	struct workqueue_struct	*queue)
 | |
| {
 | |
| 	flush_workqueue(queue);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move as many buffers as specified to the supplied list
 | |
|  * idicating if we skipped any buffers to prevent deadlocks.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_buf_delwri_split(
 | |
| 	xfs_buftarg_t	*target,
 | |
| 	struct list_head *list,
 | |
| 	unsigned long	age)
 | |
| {
 | |
| 	xfs_buf_t	*bp, *n;
 | |
| 	struct list_head *dwq = &target->bt_delwrite_queue;
 | |
| 	spinlock_t	*dwlk = &target->bt_delwrite_lock;
 | |
| 	int		skipped = 0;
 | |
| 	int		force;
 | |
| 
 | |
| 	force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
 | |
| 	INIT_LIST_HEAD(list);
 | |
| 	spin_lock(dwlk);
 | |
| 	list_for_each_entry_safe(bp, n, dwq, b_list) {
 | |
| 		ASSERT(bp->b_flags & XBF_DELWRI);
 | |
| 
 | |
| 		if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
 | |
| 			if (!force &&
 | |
| 			    time_before(jiffies, bp->b_queuetime + age)) {
 | |
| 				xfs_buf_unlock(bp);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
 | |
| 					 _XBF_RUN_QUEUES);
 | |
| 			bp->b_flags |= XBF_WRITE;
 | |
| 			list_move_tail(&bp->b_list, list);
 | |
| 			trace_xfs_buf_delwri_split(bp, _RET_IP_);
 | |
| 		} else
 | |
| 			skipped++;
 | |
| 	}
 | |
| 	spin_unlock(dwlk);
 | |
| 
 | |
| 	return skipped;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare function is more complex than it needs to be because
 | |
|  * the return value is only 32 bits and we are doing comparisons
 | |
|  * on 64 bit values
 | |
|  */
 | |
| static int
 | |
| xfs_buf_cmp(
 | |
| 	void		*priv,
 | |
| 	struct list_head *a,
 | |
| 	struct list_head *b)
 | |
| {
 | |
| 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
 | |
| 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
 | |
| 	xfs_daddr_t		diff;
 | |
| 
 | |
| 	diff = ap->b_bn - bp->b_bn;
 | |
| 	if (diff < 0)
 | |
| 		return -1;
 | |
| 	if (diff > 0)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_delwri_sort(
 | |
| 	xfs_buftarg_t	*target,
 | |
| 	struct list_head *list)
 | |
| {
 | |
| 	list_sort(NULL, list, xfs_buf_cmp);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfsbufd(
 | |
| 	void		*data)
 | |
| {
 | |
| 	xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
 | |
| 
 | |
| 	current->flags |= PF_MEMALLOC;
 | |
| 
 | |
| 	set_freezable();
 | |
| 
 | |
| 	do {
 | |
| 		long	age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
 | |
| 		long	tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
 | |
| 		int	count = 0;
 | |
| 		struct list_head tmp;
 | |
| 
 | |
| 		if (unlikely(freezing(current))) {
 | |
| 			set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
 | |
| 			refrigerator();
 | |
| 		} else {
 | |
| 			clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
 | |
| 		}
 | |
| 
 | |
| 		/* sleep for a long time if there is nothing to do. */
 | |
| 		if (list_empty(&target->bt_delwrite_queue))
 | |
| 			tout = MAX_SCHEDULE_TIMEOUT;
 | |
| 		schedule_timeout_interruptible(tout);
 | |
| 
 | |
| 		xfs_buf_delwri_split(target, &tmp, age);
 | |
| 		list_sort(NULL, &tmp, xfs_buf_cmp);
 | |
| 		while (!list_empty(&tmp)) {
 | |
| 			struct xfs_buf *bp;
 | |
| 			bp = list_first_entry(&tmp, struct xfs_buf, b_list);
 | |
| 			list_del_init(&bp->b_list);
 | |
| 			xfs_bdstrat_cb(bp);
 | |
| 			count++;
 | |
| 		}
 | |
| 		if (count)
 | |
| 			blk_flush_plug(current);
 | |
| 
 | |
| 	} while (!kthread_should_stop());
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Go through all incore buffers, and release buffers if they belong to
 | |
|  *	the given device. This is used in filesystem error handling to
 | |
|  *	preserve the consistency of its metadata.
 | |
|  */
 | |
| int
 | |
| xfs_flush_buftarg(
 | |
| 	xfs_buftarg_t	*target,
 | |
| 	int		wait)
 | |
| {
 | |
| 	xfs_buf_t	*bp;
 | |
| 	int		pincount = 0;
 | |
| 	LIST_HEAD(tmp_list);
 | |
| 	LIST_HEAD(wait_list);
 | |
| 
 | |
| 	xfs_buf_runall_queues(xfsconvertd_workqueue);
 | |
| 	xfs_buf_runall_queues(xfsdatad_workqueue);
 | |
| 	xfs_buf_runall_queues(xfslogd_workqueue);
 | |
| 
 | |
| 	set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
 | |
| 	pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Dropped the delayed write list lock, now walk the temporary list.
 | |
| 	 * All I/O is issued async and then if we need to wait for completion
 | |
| 	 * we do that after issuing all the IO.
 | |
| 	 */
 | |
| 	list_sort(NULL, &tmp_list, xfs_buf_cmp);
 | |
| 	while (!list_empty(&tmp_list)) {
 | |
| 		bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
 | |
| 		ASSERT(target == bp->b_target);
 | |
| 		list_del_init(&bp->b_list);
 | |
| 		if (wait) {
 | |
| 			bp->b_flags &= ~XBF_ASYNC;
 | |
| 			list_add(&bp->b_list, &wait_list);
 | |
| 		}
 | |
| 		xfs_bdstrat_cb(bp);
 | |
| 	}
 | |
| 
 | |
| 	if (wait) {
 | |
| 		/* Expedite and wait for IO to complete. */
 | |
| 		blk_flush_plug(current);
 | |
| 		while (!list_empty(&wait_list)) {
 | |
| 			bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
 | |
| 
 | |
| 			list_del_init(&bp->b_list);
 | |
| 			xfs_buf_iowait(bp);
 | |
| 			xfs_buf_relse(bp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return pincount;
 | |
| }
 | |
| 
 | |
| int __init
 | |
| xfs_buf_init(void)
 | |
| {
 | |
| 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
 | |
| 						KM_ZONE_HWALIGN, NULL);
 | |
| 	if (!xfs_buf_zone)
 | |
| 		goto out;
 | |
| 
 | |
| 	xfslogd_workqueue = alloc_workqueue("xfslogd",
 | |
| 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
 | |
| 	if (!xfslogd_workqueue)
 | |
| 		goto out_free_buf_zone;
 | |
| 
 | |
| 	xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
 | |
| 	if (!xfsdatad_workqueue)
 | |
| 		goto out_destroy_xfslogd_workqueue;
 | |
| 
 | |
| 	xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
 | |
| 						WQ_MEM_RECLAIM, 1);
 | |
| 	if (!xfsconvertd_workqueue)
 | |
| 		goto out_destroy_xfsdatad_workqueue;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_destroy_xfsdatad_workqueue:
 | |
| 	destroy_workqueue(xfsdatad_workqueue);
 | |
|  out_destroy_xfslogd_workqueue:
 | |
| 	destroy_workqueue(xfslogd_workqueue);
 | |
|  out_free_buf_zone:
 | |
| 	kmem_zone_destroy(xfs_buf_zone);
 | |
|  out:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_terminate(void)
 | |
| {
 | |
| 	destroy_workqueue(xfsconvertd_workqueue);
 | |
| 	destroy_workqueue(xfsdatad_workqueue);
 | |
| 	destroy_workqueue(xfslogd_workqueue);
 | |
| 	kmem_zone_destroy(xfs_buf_zone);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KDB_MODULES
 | |
| struct list_head *
 | |
| xfs_get_buftarg_list(void)
 | |
| {
 | |
| 	return &xfs_buftarg_list;
 | |
| }
 | |
| #endif
 |