 b0a9ede228
			
		
	
	
	b0a9ede228
	
	
	
		
			
			By enabling buffered register write for ath9k_htc driver avoids unnecessary dissociation while rekeying phase under heavy traffic exchange. Signed-off-by: Rajkumar Manoharan <rmanoharan@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
		
			
				
	
	
		
			600 lines
		
	
	
	
		
			17 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			600 lines
		
	
	
	
		
			17 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2009 Atheros Communications Inc.
 | |
|  * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
 | |
|  *
 | |
|  * Permission to use, copy, modify, and/or distribute this software for any
 | |
|  * purpose with or without fee is hereby granted, provided that the above
 | |
|  * copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include <asm/unaligned.h>
 | |
| #include <net/mac80211.h>
 | |
| 
 | |
| #include "ath.h"
 | |
| #include "reg.h"
 | |
| 
 | |
| #define REG_READ			(common->ops->read)
 | |
| #define REG_WRITE(_ah, _reg, _val)	(common->ops->write)(_ah, _val, _reg)
 | |
| #define ENABLE_REGWRITE_BUFFER(_ah)			\
 | |
| 	if (common->ops->enable_write_buffer)		\
 | |
| 		common->ops->enable_write_buffer((_ah));
 | |
| 
 | |
| #define REGWRITE_BUFFER_FLUSH(_ah)			\
 | |
| 	if (common->ops->write_flush)			\
 | |
| 		common->ops->write_flush((_ah));
 | |
| 
 | |
| 
 | |
| #define IEEE80211_WEP_NKID      4       /* number of key ids */
 | |
| 
 | |
| /************************/
 | |
| /* Key Cache Management */
 | |
| /************************/
 | |
| 
 | |
| bool ath_hw_keyreset(struct ath_common *common, u16 entry)
 | |
| {
 | |
| 	u32 keyType;
 | |
| 	void *ah = common->ah;
 | |
| 
 | |
| 	if (entry >= common->keymax) {
 | |
| 		ath_err(common, "keycache entry %u out of range\n", entry);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
 | |
| 
 | |
| 	ENABLE_REGWRITE_BUFFER(ah);
 | |
| 
 | |
| 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
 | |
| 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
 | |
| 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
 | |
| 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
 | |
| 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
 | |
| 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
 | |
| 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
 | |
| 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
 | |
| 
 | |
| 	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
 | |
| 		u16 micentry = entry + 64;
 | |
| 
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
 | |
| 		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
 | |
| 				  AR_KEYTABLE_TYPE_CLR);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	REGWRITE_BUFFER_FLUSH(ah);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL(ath_hw_keyreset);
 | |
| 
 | |
| static bool ath_hw_keysetmac(struct ath_common *common,
 | |
| 			     u16 entry, const u8 *mac)
 | |
| {
 | |
| 	u32 macHi, macLo;
 | |
| 	u32 unicast_flag = AR_KEYTABLE_VALID;
 | |
| 	void *ah = common->ah;
 | |
| 
 | |
| 	if (entry >= common->keymax) {
 | |
| 		ath_err(common, "keycache entry %u out of range\n", entry);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (mac != NULL) {
 | |
| 		/*
 | |
| 		 * AR_KEYTABLE_VALID indicates that the address is a unicast
 | |
| 		 * address, which must match the transmitter address for
 | |
| 		 * decrypting frames.
 | |
| 		 * Not setting this bit allows the hardware to use the key
 | |
| 		 * for multicast frame decryption.
 | |
| 		 */
 | |
| 		if (mac[0] & 0x01)
 | |
| 			unicast_flag = 0;
 | |
| 
 | |
| 		macHi = (mac[5] << 8) | mac[4];
 | |
| 		macLo = (mac[3] << 24) |
 | |
| 			(mac[2] << 16) |
 | |
| 			(mac[1] << 8) |
 | |
| 			mac[0];
 | |
| 		macLo >>= 1;
 | |
| 		macLo |= (macHi & 1) << 31;
 | |
| 		macHi >>= 1;
 | |
| 	} else {
 | |
| 		macLo = macHi = 0;
 | |
| 	}
 | |
| 	ENABLE_REGWRITE_BUFFER(ah);
 | |
| 
 | |
| 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
 | |
| 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
 | |
| 
 | |
| 	REGWRITE_BUFFER_FLUSH(ah);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
 | |
| 				      const struct ath_keyval *k,
 | |
| 				      const u8 *mac)
 | |
| {
 | |
| 	void *ah = common->ah;
 | |
| 	u32 key0, key1, key2, key3, key4;
 | |
| 	u32 keyType;
 | |
| 
 | |
| 	if (entry >= common->keymax) {
 | |
| 		ath_err(common, "keycache entry %u out of range\n", entry);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	switch (k->kv_type) {
 | |
| 	case ATH_CIPHER_AES_OCB:
 | |
| 		keyType = AR_KEYTABLE_TYPE_AES;
 | |
| 		break;
 | |
| 	case ATH_CIPHER_AES_CCM:
 | |
| 		if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
 | |
| 			ath_dbg(common, ATH_DBG_ANY,
 | |
| 				"AES-CCM not supported by this mac rev\n");
 | |
| 			return false;
 | |
| 		}
 | |
| 		keyType = AR_KEYTABLE_TYPE_CCM;
 | |
| 		break;
 | |
| 	case ATH_CIPHER_TKIP:
 | |
| 		keyType = AR_KEYTABLE_TYPE_TKIP;
 | |
| 		if (entry + 64 >= common->keymax) {
 | |
| 			ath_dbg(common, ATH_DBG_ANY,
 | |
| 				"entry %u inappropriate for TKIP\n", entry);
 | |
| 			return false;
 | |
| 		}
 | |
| 		break;
 | |
| 	case ATH_CIPHER_WEP:
 | |
| 		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
 | |
| 			ath_dbg(common, ATH_DBG_ANY,
 | |
| 				"WEP key length %u too small\n", k->kv_len);
 | |
| 			return false;
 | |
| 		}
 | |
| 		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
 | |
| 			keyType = AR_KEYTABLE_TYPE_40;
 | |
| 		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
 | |
| 			keyType = AR_KEYTABLE_TYPE_104;
 | |
| 		else
 | |
| 			keyType = AR_KEYTABLE_TYPE_128;
 | |
| 		break;
 | |
| 	case ATH_CIPHER_CLR:
 | |
| 		keyType = AR_KEYTABLE_TYPE_CLR;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ath_err(common, "cipher %u not supported\n", k->kv_type);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	key0 = get_unaligned_le32(k->kv_val + 0);
 | |
| 	key1 = get_unaligned_le16(k->kv_val + 4);
 | |
| 	key2 = get_unaligned_le32(k->kv_val + 6);
 | |
| 	key3 = get_unaligned_le16(k->kv_val + 10);
 | |
| 	key4 = get_unaligned_le32(k->kv_val + 12);
 | |
| 	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
 | |
| 		key4 &= 0xff;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: Key cache registers access special memory area that requires
 | |
| 	 * two 32-bit writes to actually update the values in the internal
 | |
| 	 * memory. Consequently, the exact order and pairs used here must be
 | |
| 	 * maintained.
 | |
| 	 */
 | |
| 
 | |
| 	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
 | |
| 		u16 micentry = entry + 64;
 | |
| 
 | |
| 		/*
 | |
| 		 * Write inverted key[47:0] first to avoid Michael MIC errors
 | |
| 		 * on frames that could be sent or received at the same time.
 | |
| 		 * The correct key will be written in the end once everything
 | |
| 		 * else is ready.
 | |
| 		 */
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
 | |
| 
 | |
| 		/* Write key[95:48] */
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
 | |
| 
 | |
| 		/* Write key[127:96] and key type */
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
 | |
| 
 | |
| 		/* Write MAC address for the entry */
 | |
| 		(void) ath_hw_keysetmac(common, entry, mac);
 | |
| 
 | |
| 		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
 | |
| 			/*
 | |
| 			 * TKIP uses two key cache entries:
 | |
| 			 * Michael MIC TX/RX keys in the same key cache entry
 | |
| 			 * (idx = main index + 64):
 | |
| 			 * key0 [31:0] = RX key [31:0]
 | |
| 			 * key1 [15:0] = TX key [31:16]
 | |
| 			 * key1 [31:16] = reserved
 | |
| 			 * key2 [31:0] = RX key [63:32]
 | |
| 			 * key3 [15:0] = TX key [15:0]
 | |
| 			 * key3 [31:16] = reserved
 | |
| 			 * key4 [31:0] = TX key [63:32]
 | |
| 			 */
 | |
| 			u32 mic0, mic1, mic2, mic3, mic4;
 | |
| 
 | |
| 			mic0 = get_unaligned_le32(k->kv_mic + 0);
 | |
| 			mic2 = get_unaligned_le32(k->kv_mic + 4);
 | |
| 			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
 | |
| 			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
 | |
| 			mic4 = get_unaligned_le32(k->kv_txmic + 4);
 | |
| 
 | |
| 			ENABLE_REGWRITE_BUFFER(ah);
 | |
| 
 | |
| 			/* Write RX[31:0] and TX[31:16] */
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
 | |
| 
 | |
| 			/* Write RX[63:32] and TX[15:0] */
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
 | |
| 
 | |
| 			/* Write TX[63:32] and keyType(reserved) */
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
 | |
| 				  AR_KEYTABLE_TYPE_CLR);
 | |
| 
 | |
| 			REGWRITE_BUFFER_FLUSH(ah);
 | |
| 
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * TKIP uses four key cache entries (two for group
 | |
| 			 * keys):
 | |
| 			 * Michael MIC TX/RX keys are in different key cache
 | |
| 			 * entries (idx = main index + 64 for TX and
 | |
| 			 * main index + 32 + 96 for RX):
 | |
| 			 * key0 [31:0] = TX/RX MIC key [31:0]
 | |
| 			 * key1 [31:0] = reserved
 | |
| 			 * key2 [31:0] = TX/RX MIC key [63:32]
 | |
| 			 * key3 [31:0] = reserved
 | |
| 			 * key4 [31:0] = reserved
 | |
| 			 *
 | |
| 			 * Upper layer code will call this function separately
 | |
| 			 * for TX and RX keys when these registers offsets are
 | |
| 			 * used.
 | |
| 			 */
 | |
| 			u32 mic0, mic2;
 | |
| 
 | |
| 			mic0 = get_unaligned_le32(k->kv_mic + 0);
 | |
| 			mic2 = get_unaligned_le32(k->kv_mic + 4);
 | |
| 
 | |
| 			ENABLE_REGWRITE_BUFFER(ah);
 | |
| 
 | |
| 			/* Write MIC key[31:0] */
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
 | |
| 
 | |
| 			/* Write MIC key[63:32] */
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
 | |
| 
 | |
| 			/* Write TX[63:32] and keyType(reserved) */
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
 | |
| 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
 | |
| 				  AR_KEYTABLE_TYPE_CLR);
 | |
| 
 | |
| 			REGWRITE_BUFFER_FLUSH(ah);
 | |
| 		}
 | |
| 
 | |
| 		ENABLE_REGWRITE_BUFFER(ah);
 | |
| 
 | |
| 		/* MAC address registers are reserved for the MIC entry */
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * Write the correct (un-inverted) key[47:0] last to enable
 | |
| 		 * TKIP now that all other registers are set with correct
 | |
| 		 * values.
 | |
| 		 */
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
 | |
| 
 | |
| 		REGWRITE_BUFFER_FLUSH(ah);
 | |
| 	} else {
 | |
| 		ENABLE_REGWRITE_BUFFER(ah);
 | |
| 
 | |
| 		/* Write key[47:0] */
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
 | |
| 
 | |
| 		/* Write key[95:48] */
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
 | |
| 
 | |
| 		/* Write key[127:96] and key type */
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
 | |
| 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
 | |
| 
 | |
| 		REGWRITE_BUFFER_FLUSH(ah);
 | |
| 
 | |
| 		/* Write MAC address for the entry */
 | |
| 		(void) ath_hw_keysetmac(common, entry, mac);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
 | |
| 			   struct ath_keyval *hk, const u8 *addr,
 | |
| 			   bool authenticator)
 | |
| {
 | |
| 	const u8 *key_rxmic;
 | |
| 	const u8 *key_txmic;
 | |
| 
 | |
| 	key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
 | |
| 	key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
 | |
| 
 | |
| 	if (addr == NULL) {
 | |
| 		/*
 | |
| 		 * Group key installation - only two key cache entries are used
 | |
| 		 * regardless of splitmic capability since group key is only
 | |
| 		 * used either for TX or RX.
 | |
| 		 */
 | |
| 		if (authenticator) {
 | |
| 			memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
 | |
| 			memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
 | |
| 		} else {
 | |
| 			memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
 | |
| 			memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
 | |
| 		}
 | |
| 		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
 | |
| 	}
 | |
| 	if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
 | |
| 		/* TX and RX keys share the same key cache entry. */
 | |
| 		memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
 | |
| 		memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
 | |
| 		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
 | |
| 	}
 | |
| 
 | |
| 	/* Separate key cache entries for TX and RX */
 | |
| 
 | |
| 	/* TX key goes at first index, RX key at +32. */
 | |
| 	memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
 | |
| 	if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
 | |
| 		/* TX MIC entry failed. No need to proceed further */
 | |
| 		ath_err(common, "Setting TX MIC Key Failed\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
 | |
| 	/* XXX delete tx key on failure? */
 | |
| 	return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
 | |
| }
 | |
| 
 | |
| static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
 | |
| 		if (test_bit(i, common->keymap) ||
 | |
| 		    test_bit(i + 64, common->keymap))
 | |
| 			continue; /* At least one part of TKIP key allocated */
 | |
| 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
 | |
| 		    (test_bit(i + 32, common->keymap) ||
 | |
| 		     test_bit(i + 64 + 32, common->keymap)))
 | |
| 			continue; /* At least one part of TKIP key allocated */
 | |
| 
 | |
| 		/* Found a free slot for a TKIP key */
 | |
| 		return i;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int ath_reserve_key_cache_slot(struct ath_common *common,
 | |
| 				      u32 cipher)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (cipher == WLAN_CIPHER_SUITE_TKIP)
 | |
| 		return ath_reserve_key_cache_slot_tkip(common);
 | |
| 
 | |
| 	/* First, try to find slots that would not be available for TKIP. */
 | |
| 	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
 | |
| 		for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
 | |
| 			if (!test_bit(i, common->keymap) &&
 | |
| 			    (test_bit(i + 32, common->keymap) ||
 | |
| 			     test_bit(i + 64, common->keymap) ||
 | |
| 			     test_bit(i + 64 + 32, common->keymap)))
 | |
| 				return i;
 | |
| 			if (!test_bit(i + 32, common->keymap) &&
 | |
| 			    (test_bit(i, common->keymap) ||
 | |
| 			     test_bit(i + 64, common->keymap) ||
 | |
| 			     test_bit(i + 64 + 32, common->keymap)))
 | |
| 				return i + 32;
 | |
| 			if (!test_bit(i + 64, common->keymap) &&
 | |
| 			    (test_bit(i , common->keymap) ||
 | |
| 			     test_bit(i + 32, common->keymap) ||
 | |
| 			     test_bit(i + 64 + 32, common->keymap)))
 | |
| 				return i + 64;
 | |
| 			if (!test_bit(i + 64 + 32, common->keymap) &&
 | |
| 			    (test_bit(i, common->keymap) ||
 | |
| 			     test_bit(i + 32, common->keymap) ||
 | |
| 			     test_bit(i + 64, common->keymap)))
 | |
| 				return i + 64 + 32;
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
 | |
| 			if (!test_bit(i, common->keymap) &&
 | |
| 			    test_bit(i + 64, common->keymap))
 | |
| 				return i;
 | |
| 			if (test_bit(i, common->keymap) &&
 | |
| 			    !test_bit(i + 64, common->keymap))
 | |
| 				return i + 64;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* No partially used TKIP slots, pick any available slot */
 | |
| 	for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
 | |
| 		/* Do not allow slots that could be needed for TKIP group keys
 | |
| 		 * to be used. This limitation could be removed if we know that
 | |
| 		 * TKIP will not be used. */
 | |
| 		if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
 | |
| 			continue;
 | |
| 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
 | |
| 			if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
 | |
| 				continue;
 | |
| 			if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!test_bit(i, common->keymap))
 | |
| 			return i; /* Found a free slot for a key */
 | |
| 	}
 | |
| 
 | |
| 	/* No free slot found */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Configure encryption in the HW.
 | |
|  */
 | |
| int ath_key_config(struct ath_common *common,
 | |
| 			  struct ieee80211_vif *vif,
 | |
| 			  struct ieee80211_sta *sta,
 | |
| 			  struct ieee80211_key_conf *key)
 | |
| {
 | |
| 	struct ath_keyval hk;
 | |
| 	const u8 *mac = NULL;
 | |
| 	u8 gmac[ETH_ALEN];
 | |
| 	int ret = 0;
 | |
| 	int idx;
 | |
| 
 | |
| 	memset(&hk, 0, sizeof(hk));
 | |
| 
 | |
| 	switch (key->cipher) {
 | |
| 	case WLAN_CIPHER_SUITE_WEP40:
 | |
| 	case WLAN_CIPHER_SUITE_WEP104:
 | |
| 		hk.kv_type = ATH_CIPHER_WEP;
 | |
| 		break;
 | |
| 	case WLAN_CIPHER_SUITE_TKIP:
 | |
| 		hk.kv_type = ATH_CIPHER_TKIP;
 | |
| 		break;
 | |
| 	case WLAN_CIPHER_SUITE_CCMP:
 | |
| 		hk.kv_type = ATH_CIPHER_AES_CCM;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	hk.kv_len = key->keylen;
 | |
| 	memcpy(hk.kv_val, key->key, key->keylen);
 | |
| 
 | |
| 	if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
 | |
| 		switch (vif->type) {
 | |
| 		case NL80211_IFTYPE_AP:
 | |
| 			memcpy(gmac, vif->addr, ETH_ALEN);
 | |
| 			gmac[0] |= 0x01;
 | |
| 			mac = gmac;
 | |
| 			idx = ath_reserve_key_cache_slot(common, key->cipher);
 | |
| 			break;
 | |
| 		case NL80211_IFTYPE_ADHOC:
 | |
| 			if (!sta) {
 | |
| 				idx = key->keyidx;
 | |
| 				break;
 | |
| 			}
 | |
| 			memcpy(gmac, sta->addr, ETH_ALEN);
 | |
| 			gmac[0] |= 0x01;
 | |
| 			mac = gmac;
 | |
| 			idx = ath_reserve_key_cache_slot(common, key->cipher);
 | |
| 			break;
 | |
| 		default:
 | |
| 			idx = key->keyidx;
 | |
| 			break;
 | |
| 		}
 | |
| 	} else if (key->keyidx) {
 | |
| 		if (WARN_ON(!sta))
 | |
| 			return -EOPNOTSUPP;
 | |
| 		mac = sta->addr;
 | |
| 
 | |
| 		if (vif->type != NL80211_IFTYPE_AP) {
 | |
| 			/* Only keyidx 0 should be used with unicast key, but
 | |
| 			 * allow this for client mode for now. */
 | |
| 			idx = key->keyidx;
 | |
| 		} else
 | |
| 			return -EIO;
 | |
| 	} else {
 | |
| 		if (WARN_ON(!sta))
 | |
| 			return -EOPNOTSUPP;
 | |
| 		mac = sta->addr;
 | |
| 
 | |
| 		idx = ath_reserve_key_cache_slot(common, key->cipher);
 | |
| 	}
 | |
| 
 | |
| 	if (idx < 0)
 | |
| 		return -ENOSPC; /* no free key cache entries */
 | |
| 
 | |
| 	if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
 | |
| 		ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
 | |
| 				      vif->type == NL80211_IFTYPE_AP);
 | |
| 	else
 | |
| 		ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	set_bit(idx, common->keymap);
 | |
| 	if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
 | |
| 		set_bit(idx + 64, common->keymap);
 | |
| 		set_bit(idx, common->tkip_keymap);
 | |
| 		set_bit(idx + 64, common->tkip_keymap);
 | |
| 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
 | |
| 			set_bit(idx + 32, common->keymap);
 | |
| 			set_bit(idx + 64 + 32, common->keymap);
 | |
| 			set_bit(idx + 32, common->tkip_keymap);
 | |
| 			set_bit(idx + 64 + 32, common->tkip_keymap);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return idx;
 | |
| }
 | |
| EXPORT_SYMBOL(ath_key_config);
 | |
| 
 | |
| /*
 | |
|  * Delete Key.
 | |
|  */
 | |
| void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
 | |
| {
 | |
| 	ath_hw_keyreset(common, key->hw_key_idx);
 | |
| 	if (key->hw_key_idx < IEEE80211_WEP_NKID)
 | |
| 		return;
 | |
| 
 | |
| 	clear_bit(key->hw_key_idx, common->keymap);
 | |
| 	if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
 | |
| 		return;
 | |
| 
 | |
| 	clear_bit(key->hw_key_idx + 64, common->keymap);
 | |
| 
 | |
| 	clear_bit(key->hw_key_idx, common->tkip_keymap);
 | |
| 	clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
 | |
| 
 | |
| 	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
 | |
| 		ath_hw_keyreset(common, key->hw_key_idx + 32);
 | |
| 		clear_bit(key->hw_key_idx + 32, common->keymap);
 | |
| 		clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
 | |
| 
 | |
| 		clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
 | |
| 		clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(ath_key_delete);
 |