3445 lines
		
	
	
	
		
			90 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3445 lines
		
	
	
	
		
			90 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * PHY functions
 | |
|  *
 | |
|  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
 | |
|  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
 | |
|  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
 | |
|  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
 | |
|  *
 | |
|  * Permission to use, copy, modify, and distribute this software for any
 | |
|  * purpose with or without fee is hereby granted, provided that the above
 | |
|  * copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include "ath5k.h"
 | |
| #include "reg.h"
 | |
| #include "base.h"
 | |
| #include "rfbuffer.h"
 | |
| #include "rfgain.h"
 | |
| 
 | |
| 
 | |
| /******************\
 | |
| * Helper functions *
 | |
| \******************/
 | |
| 
 | |
| /*
 | |
|  * Get the PHY Chip revision
 | |
|  */
 | |
| u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u32 srev;
 | |
| 	u16 ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the radio chip access register
 | |
| 	 */
 | |
| 	switch (chan) {
 | |
| 	case CHANNEL_2GHZ:
 | |
| 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
 | |
| 		break;
 | |
| 	case CHANNEL_5GHZ:
 | |
| 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	mdelay(2);
 | |
| 
 | |
| 	/* ...wait until PHY is ready and read the selected radio revision */
 | |
| 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
 | |
| 
 | |
| 	if (ah->ah_version == AR5K_AR5210) {
 | |
| 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
 | |
| 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
 | |
| 	} else {
 | |
| 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
 | |
| 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
 | |
| 				((srev & 0x0f) << 4), 8);
 | |
| 	}
 | |
| 
 | |
| 	/* Reset to the 5GHz mode */
 | |
| 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if a channel is supported
 | |
|  */
 | |
| bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
 | |
| {
 | |
| 	/* Check if the channel is in our supported range */
 | |
| 	if (flags & CHANNEL_2GHZ) {
 | |
| 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
 | |
| 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
 | |
| 			return true;
 | |
| 	} else if (flags & CHANNEL_5GHZ)
 | |
| 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
 | |
| 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
 | |
| 			return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
 | |
| 				struct ieee80211_channel *channel)
 | |
| {
 | |
| 	u8 refclk_freq;
 | |
| 
 | |
| 	if ((ah->ah_radio == AR5K_RF5112) ||
 | |
| 	(ah->ah_radio == AR5K_RF5413) ||
 | |
| 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 | |
| 		refclk_freq = 40;
 | |
| 	else
 | |
| 		refclk_freq = 32;
 | |
| 
 | |
| 	if ((channel->center_freq % refclk_freq != 0) &&
 | |
| 	((channel->center_freq % refclk_freq < 10) ||
 | |
| 	(channel->center_freq % refclk_freq > 22)))
 | |
| 		return true;
 | |
| 	else
 | |
| 		return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
 | |
|  */
 | |
| static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
 | |
| 					const struct ath5k_rf_reg *rf_regs,
 | |
| 					u32 val, u8 reg_id, bool set)
 | |
| {
 | |
| 	const struct ath5k_rf_reg *rfreg = NULL;
 | |
| 	u8 offset, bank, num_bits, col, position;
 | |
| 	u16 entry;
 | |
| 	u32 mask, data, last_bit, bits_shifted, first_bit;
 | |
| 	u32 *rfb;
 | |
| 	s32 bits_left;
 | |
| 	int i;
 | |
| 
 | |
| 	data = 0;
 | |
| 	rfb = ah->ah_rf_banks;
 | |
| 
 | |
| 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
 | |
| 		if (rf_regs[i].index == reg_id) {
 | |
| 			rfreg = &rf_regs[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rfb == NULL || rfreg == NULL) {
 | |
| 		ATH5K_PRINTF("Rf register not found!\n");
 | |
| 		/* should not happen */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	bank = rfreg->bank;
 | |
| 	num_bits = rfreg->field.len;
 | |
| 	first_bit = rfreg->field.pos;
 | |
| 	col = rfreg->field.col;
 | |
| 
 | |
| 	/* first_bit is an offset from bank's
 | |
| 	 * start. Since we have all banks on
 | |
| 	 * the same array, we use this offset
 | |
| 	 * to mark each bank's start */
 | |
| 	offset = ah->ah_offset[bank];
 | |
| 
 | |
| 	/* Boundary check */
 | |
| 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
 | |
| 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	entry = ((first_bit - 1) / 8) + offset;
 | |
| 	position = (first_bit - 1) % 8;
 | |
| 
 | |
| 	if (set)
 | |
| 		data = ath5k_hw_bitswap(val, num_bits);
 | |
| 
 | |
| 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
 | |
| 	position = 0, entry++) {
 | |
| 
 | |
| 		last_bit = (position + bits_left > 8) ? 8 :
 | |
| 					position + bits_left;
 | |
| 
 | |
| 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
 | |
| 								(col * 8);
 | |
| 
 | |
| 		if (set) {
 | |
| 			rfb[entry] &= ~mask;
 | |
| 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
 | |
| 			data >>= (8 - position);
 | |
| 		} else {
 | |
| 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 | |
| 				<< bits_shifted;
 | |
| 			bits_shifted += last_bit - position;
 | |
| 		}
 | |
| 
 | |
| 		bits_left -= 8 - position;
 | |
| 	}
 | |
| 
 | |
| 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
 | |
|  *
 | |
|  * @ah: the &struct ath5k_hw
 | |
|  * @channel: the currently set channel upon reset
 | |
|  *
 | |
|  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 | |
|  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 | |
|  *
 | |
|  * Since delta slope is floating point we split it on its exponent and
 | |
|  * mantissa and provide these values on hw.
 | |
|  *
 | |
|  * For more infos i think this patent is related
 | |
|  * http://www.freepatentsonline.com/7184495.html
 | |
|  */
 | |
| static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
 | |
| 	struct ieee80211_channel *channel)
 | |
| {
 | |
| 	/* Get exponent and mantissa and set it */
 | |
| 	u32 coef_scaled, coef_exp, coef_man,
 | |
| 		ds_coef_exp, ds_coef_man, clock;
 | |
| 
 | |
| 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
 | |
| 		!(channel->hw_value & CHANNEL_OFDM));
 | |
| 
 | |
| 	/* Get coefficient
 | |
| 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
 | |
| 	 * we scale coef by shifting clock value by 24 for
 | |
| 	 * better precision since we use integers */
 | |
| 	switch (ah->ah_bwmode) {
 | |
| 	case AR5K_BWMODE_40MHZ:
 | |
| 		clock = 40 * 2;
 | |
| 		break;
 | |
| 	case AR5K_BWMODE_10MHZ:
 | |
| 		clock = 40 / 2;
 | |
| 		break;
 | |
| 	case AR5K_BWMODE_5MHZ:
 | |
| 		clock = 40 / 4;
 | |
| 		break;
 | |
| 	default:
 | |
| 		clock = 40;
 | |
| 		break;
 | |
| 	}
 | |
| 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
 | |
| 
 | |
| 	/* Get exponent
 | |
| 	 * ALGO: coef_exp = 14 - highest set bit position */
 | |
| 	coef_exp = ilog2(coef_scaled);
 | |
| 
 | |
| 	/* Doesn't make sense if it's zero*/
 | |
| 	if (!coef_scaled || !coef_exp)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Note: we've shifted coef_scaled by 24 */
 | |
| 	coef_exp = 14 - (coef_exp - 24);
 | |
| 
 | |
| 
 | |
| 	/* Get mantissa (significant digits)
 | |
| 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
 | |
| 	coef_man = coef_scaled +
 | |
| 		(1 << (24 - coef_exp - 1));
 | |
| 
 | |
| 	/* Calculate delta slope coefficient exponent
 | |
| 	 * and mantissa (remove scaling) and set them on hw */
 | |
| 	ds_coef_man = coef_man >> (24 - coef_exp);
 | |
| 	ds_coef_exp = coef_exp - 16;
 | |
| 
 | |
| 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 | |
| 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
 | |
| 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 | |
| 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ath5k_hw_phy_disable(struct ath5k_hw *ah)
 | |
| {
 | |
| 	/*Just a try M.F.*/
 | |
| 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for synth to settle
 | |
|  */
 | |
| static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
 | |
| 			struct ieee80211_channel *channel)
 | |
| {
 | |
| 	/*
 | |
| 	 * On 5211+ read activation -> rx delay
 | |
| 	 * and use it (100ns steps).
 | |
| 	 */
 | |
| 	if (ah->ah_version != AR5K_AR5210) {
 | |
| 		u32 delay;
 | |
| 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
 | |
| 			AR5K_PHY_RX_DELAY_M;
 | |
| 		delay = (channel->hw_value & CHANNEL_CCK) ?
 | |
| 			((delay << 2) / 22) : (delay / 10);
 | |
| 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
 | |
| 			delay = delay << 1;
 | |
| 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
 | |
| 			delay = delay << 2;
 | |
| 		/* XXX: /2 on turbo ? Let's be safe
 | |
| 		 * for now */
 | |
| 		udelay(100 + delay);
 | |
| 	} else {
 | |
| 		mdelay(1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /**********************\
 | |
| * RF Gain optimization *
 | |
| \**********************/
 | |
| 
 | |
| /*
 | |
|  * This code is used to optimize RF gain on different environments
 | |
|  * (temperature mostly) based on feedback from a power detector.
 | |
|  *
 | |
|  * It's only used on RF5111 and RF5112, later RF chips seem to have
 | |
|  * auto adjustment on hw -notice they have a much smaller BANK 7 and
 | |
|  * no gain optimization ladder-.
 | |
|  *
 | |
|  * For more infos check out this patent doc
 | |
|  * http://www.freepatentsonline.com/7400691.html
 | |
|  *
 | |
|  * This paper describes power drops as seen on the receiver due to
 | |
|  * probe packets
 | |
|  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 | |
|  * %20of%20Power%20Control.pdf
 | |
|  *
 | |
|  * And this is the MadWiFi bug entry related to the above
 | |
|  * http://madwifi-project.org/ticket/1659
 | |
|  * with various measurements and diagrams
 | |
|  *
 | |
|  * TODO: Deal with power drops due to probes by setting an apropriate
 | |
|  * tx power on the probe packets ! Make this part of the calibration process.
 | |
|  */
 | |
| 
 | |
| /* Initialize ah_gain durring attach */
 | |
| int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 | |
| {
 | |
| 	/* Initialize the gain optimization values */
 | |
| 	switch (ah->ah_radio) {
 | |
| 	case AR5K_RF5111:
 | |
| 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 | |
| 		ah->ah_gain.g_low = 20;
 | |
| 		ah->ah_gain.g_high = 35;
 | |
| 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 | |
| 		break;
 | |
| 	case AR5K_RF5112:
 | |
| 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 | |
| 		ah->ah_gain.g_low = 20;
 | |
| 		ah->ah_gain.g_high = 85;
 | |
| 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Schedule a gain probe check on the next transmited packet.
 | |
|  * That means our next packet is going to be sent with lower
 | |
|  * tx power and a Peak to Average Power Detector (PAPD) will try
 | |
|  * to measure the gain.
 | |
|  *
 | |
|  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
 | |
|  * just after we enable the probe so that we don't mess with
 | |
|  * standard traffic ? Maybe it's time to use sw interrupts and
 | |
|  * a probe tasklet !!!
 | |
|  */
 | |
| static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 | |
| {
 | |
| 
 | |
| 	/* Skip if gain calibration is inactive or
 | |
| 	 * we already handle a probe request */
 | |
| 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	/* Send the packet with 2dB below max power as
 | |
| 	 * patent doc suggest */
 | |
| 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 | |
| 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
 | |
| 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 | |
| 
 | |
| 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Calculate gain_F measurement correction
 | |
|  * based on the current step for RF5112 rev. 2 */
 | |
| static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 | |
| {
 | |
| 	u32 mix, step;
 | |
| 	u32 *rf;
 | |
| 	const struct ath5k_gain_opt *go;
 | |
| 	const struct ath5k_gain_opt_step *g_step;
 | |
| 	const struct ath5k_rf_reg *rf_regs;
 | |
| 
 | |
| 	/* Only RF5112 Rev. 2 supports it */
 | |
| 	if ((ah->ah_radio != AR5K_RF5112) ||
 | |
| 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 | |
| 		return 0;
 | |
| 
 | |
| 	go = &rfgain_opt_5112;
 | |
| 	rf_regs = rf_regs_5112a;
 | |
| 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 | |
| 
 | |
| 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 | |
| 
 | |
| 	if (ah->ah_rf_banks == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	rf = ah->ah_rf_banks;
 | |
| 	ah->ah_gain.g_f_corr = 0;
 | |
| 
 | |
| 	/* No VGA (Variable Gain Amplifier) override, skip */
 | |
| 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Mix gain stepping */
 | |
| 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 | |
| 
 | |
| 	/* Mix gain override */
 | |
| 	mix = g_step->gos_param[0];
 | |
| 
 | |
| 	switch (mix) {
 | |
| 	case 3:
 | |
| 		ah->ah_gain.g_f_corr = step * 2;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		ah->ah_gain.g_f_corr = (step - 5) * 2;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		ah->ah_gain.g_f_corr = step;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ah->ah_gain.g_f_corr = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ah->ah_gain.g_f_corr;
 | |
| }
 | |
| 
 | |
| /* Check if current gain_F measurement is in the range of our
 | |
|  * power detector windows. If we get a measurement outside range
 | |
|  * we know it's not accurate (detectors can't measure anything outside
 | |
|  * their detection window) so we must ignore it */
 | |
| static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 | |
| {
 | |
| 	const struct ath5k_rf_reg *rf_regs;
 | |
| 	u32 step, mix_ovr, level[4];
 | |
| 	u32 *rf;
 | |
| 
 | |
| 	if (ah->ah_rf_banks == NULL)
 | |
| 		return false;
 | |
| 
 | |
| 	rf = ah->ah_rf_banks;
 | |
| 
 | |
| 	if (ah->ah_radio == AR5K_RF5111) {
 | |
| 
 | |
| 		rf_regs = rf_regs_5111;
 | |
| 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 | |
| 
 | |
| 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 | |
| 			false);
 | |
| 
 | |
| 		level[0] = 0;
 | |
| 		level[1] = (step == 63) ? 50 : step + 4;
 | |
| 		level[2] = (step != 63) ? 64 : level[0];
 | |
| 		level[3] = level[2] + 50 ;
 | |
| 
 | |
| 		ah->ah_gain.g_high = level[3] -
 | |
| 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 | |
| 		ah->ah_gain.g_low = level[0] +
 | |
| 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 | |
| 	} else {
 | |
| 
 | |
| 		rf_regs = rf_regs_5112;
 | |
| 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 | |
| 
 | |
| 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 | |
| 			false);
 | |
| 
 | |
| 		level[0] = level[2] = 0;
 | |
| 
 | |
| 		if (mix_ovr == 1) {
 | |
| 			level[1] = level[3] = 83;
 | |
| 		} else {
 | |
| 			level[1] = level[3] = 107;
 | |
| 			ah->ah_gain.g_high = 55;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (ah->ah_gain.g_current >= level[0] &&
 | |
| 			ah->ah_gain.g_current <= level[1]) ||
 | |
| 		(ah->ah_gain.g_current >= level[2] &&
 | |
| 			ah->ah_gain.g_current <= level[3]);
 | |
| }
 | |
| 
 | |
| /* Perform gain_F adjustment by choosing the right set
 | |
|  * of parameters from RF gain optimization ladder */
 | |
| static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 | |
| {
 | |
| 	const struct ath5k_gain_opt *go;
 | |
| 	const struct ath5k_gain_opt_step *g_step;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (ah->ah_radio) {
 | |
| 	case AR5K_RF5111:
 | |
| 		go = &rfgain_opt_5111;
 | |
| 		break;
 | |
| 	case AR5K_RF5112:
 | |
| 		go = &rfgain_opt_5112;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 | |
| 
 | |
| 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 | |
| 
 | |
| 		/* Reached maximum */
 | |
| 		if (ah->ah_gain.g_step_idx == 0)
 | |
| 			return -1;
 | |
| 
 | |
| 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 | |
| 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 | |
| 				ah->ah_gain.g_step_idx > 0;
 | |
| 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 | |
| 			ah->ah_gain.g_target -= 2 *
 | |
| 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 | |
| 			    g_step->gos_gain);
 | |
| 
 | |
| 		ret = 1;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 | |
| 
 | |
| 		/* Reached minimum */
 | |
| 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 | |
| 			return -2;
 | |
| 
 | |
| 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 | |
| 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 | |
| 				ah->ah_gain.g_step_idx < go->go_steps_count-1;
 | |
| 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 | |
| 			ah->ah_gain.g_target -= 2 *
 | |
| 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 | |
| 			    g_step->gos_gain);
 | |
| 
 | |
| 		ret = 2;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
 | |
| 		"ret %d, gain step %u, current gain %u, target gain %u\n",
 | |
| 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 | |
| 		ah->ah_gain.g_target);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Main callback for thermal RF gain calibration engine
 | |
|  * Check for a new gain reading and schedule an adjustment
 | |
|  * if needed.
 | |
|  *
 | |
|  * TODO: Use sw interrupt to schedule reset if gain_F needs
 | |
|  * adjustment */
 | |
| enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 | |
| {
 | |
| 	u32 data, type;
 | |
| 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 | |
| 
 | |
| 	if (ah->ah_rf_banks == NULL ||
 | |
| 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 | |
| 		return AR5K_RFGAIN_INACTIVE;
 | |
| 
 | |
| 	/* No check requested, either engine is inactive
 | |
| 	 * or an adjustment is already requested */
 | |
| 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* Read the PAPD (Peak to Average Power Detector)
 | |
| 	 * register */
 | |
| 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 | |
| 
 | |
| 	/* No probe is scheduled, read gain_F measurement */
 | |
| 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 | |
| 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 | |
| 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 | |
| 
 | |
| 		/* If tx packet is CCK correct the gain_F measurement
 | |
| 		 * by cck ofdm gain delta */
 | |
| 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 | |
| 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 | |
| 				ah->ah_gain.g_current +=
 | |
| 					ee->ee_cck_ofdm_gain_delta;
 | |
| 			else
 | |
| 				ah->ah_gain.g_current +=
 | |
| 					AR5K_GAIN_CCK_PROBE_CORR;
 | |
| 		}
 | |
| 
 | |
| 		/* Further correct gain_F measurement for
 | |
| 		 * RF5112A radios */
 | |
| 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 | |
| 			ath5k_hw_rf_gainf_corr(ah);
 | |
| 			ah->ah_gain.g_current =
 | |
| 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 | |
| 				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
 | |
| 				0;
 | |
| 		}
 | |
| 
 | |
| 		/* Check if measurement is ok and if we need
 | |
| 		 * to adjust gain, schedule a gain adjustment,
 | |
| 		 * else switch back to the acive state */
 | |
| 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
 | |
| 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 | |
| 		ath5k_hw_rf_gainf_adjust(ah)) {
 | |
| 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 | |
| 		} else {
 | |
| 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	return ah->ah_gain.g_state;
 | |
| }
 | |
| 
 | |
| /* Write initial RF gain table to set the RF sensitivity
 | |
|  * this one works on all RF chips and has nothing to do
 | |
|  * with gain_F calibration */
 | |
| static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
 | |
| {
 | |
| 	const struct ath5k_ini_rfgain *ath5k_rfg;
 | |
| 	unsigned int i, size, index;
 | |
| 
 | |
| 	switch (ah->ah_radio) {
 | |
| 	case AR5K_RF5111:
 | |
| 		ath5k_rfg = rfgain_5111;
 | |
| 		size = ARRAY_SIZE(rfgain_5111);
 | |
| 		break;
 | |
| 	case AR5K_RF5112:
 | |
| 		ath5k_rfg = rfgain_5112;
 | |
| 		size = ARRAY_SIZE(rfgain_5112);
 | |
| 		break;
 | |
| 	case AR5K_RF2413:
 | |
| 		ath5k_rfg = rfgain_2413;
 | |
| 		size = ARRAY_SIZE(rfgain_2413);
 | |
| 		break;
 | |
| 	case AR5K_RF2316:
 | |
| 		ath5k_rfg = rfgain_2316;
 | |
| 		size = ARRAY_SIZE(rfgain_2316);
 | |
| 		break;
 | |
| 	case AR5K_RF5413:
 | |
| 		ath5k_rfg = rfgain_5413;
 | |
| 		size = ARRAY_SIZE(rfgain_5413);
 | |
| 		break;
 | |
| 	case AR5K_RF2317:
 | |
| 	case AR5K_RF2425:
 | |
| 		ath5k_rfg = rfgain_2425;
 | |
| 		size = ARRAY_SIZE(rfgain_2425);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		AR5K_REG_WAIT(i);
 | |
| 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
 | |
| 			(u32)ath5k_rfg[i].rfg_register);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /********************\
 | |
| * RF Registers setup *
 | |
| \********************/
 | |
| 
 | |
| /*
 | |
|  * Setup RF registers by writing RF buffer on hw
 | |
|  */
 | |
| static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
 | |
| 	struct ieee80211_channel *channel, unsigned int mode)
 | |
| {
 | |
| 	const struct ath5k_rf_reg *rf_regs;
 | |
| 	const struct ath5k_ini_rfbuffer *ini_rfb;
 | |
| 	const struct ath5k_gain_opt *go = NULL;
 | |
| 	const struct ath5k_gain_opt_step *g_step;
 | |
| 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 | |
| 	u8 ee_mode = 0;
 | |
| 	u32 *rfb;
 | |
| 	int i, obdb = -1, bank = -1;
 | |
| 
 | |
| 	switch (ah->ah_radio) {
 | |
| 	case AR5K_RF5111:
 | |
| 		rf_regs = rf_regs_5111;
 | |
| 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 | |
| 		ini_rfb = rfb_5111;
 | |
| 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 | |
| 		go = &rfgain_opt_5111;
 | |
| 		break;
 | |
| 	case AR5K_RF5112:
 | |
| 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 | |
| 			rf_regs = rf_regs_5112a;
 | |
| 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 | |
| 			ini_rfb = rfb_5112a;
 | |
| 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 | |
| 		} else {
 | |
| 			rf_regs = rf_regs_5112;
 | |
| 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 | |
| 			ini_rfb = rfb_5112;
 | |
| 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 | |
| 		}
 | |
| 		go = &rfgain_opt_5112;
 | |
| 		break;
 | |
| 	case AR5K_RF2413:
 | |
| 		rf_regs = rf_regs_2413;
 | |
| 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 | |
| 		ini_rfb = rfb_2413;
 | |
| 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 | |
| 		break;
 | |
| 	case AR5K_RF2316:
 | |
| 		rf_regs = rf_regs_2316;
 | |
| 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 | |
| 		ini_rfb = rfb_2316;
 | |
| 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 | |
| 		break;
 | |
| 	case AR5K_RF5413:
 | |
| 		rf_regs = rf_regs_5413;
 | |
| 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 | |
| 		ini_rfb = rfb_5413;
 | |
| 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 | |
| 		break;
 | |
| 	case AR5K_RF2317:
 | |
| 		rf_regs = rf_regs_2425;
 | |
| 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 | |
| 		ini_rfb = rfb_2317;
 | |
| 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 | |
| 		break;
 | |
| 	case AR5K_RF2425:
 | |
| 		rf_regs = rf_regs_2425;
 | |
| 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 | |
| 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 | |
| 			ini_rfb = rfb_2425;
 | |
| 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 | |
| 		} else {
 | |
| 			ini_rfb = rfb_2417;
 | |
| 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* If it's the first time we set RF buffer, allocate
 | |
| 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
 | |
| 	 * we set above */
 | |
| 	if (ah->ah_rf_banks == NULL) {
 | |
| 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
 | |
| 								GFP_KERNEL);
 | |
| 		if (ah->ah_rf_banks == NULL) {
 | |
| 			ATH5K_ERR(ah->ah_sc, "out of memory\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Copy values to modify them */
 | |
| 	rfb = ah->ah_rf_banks;
 | |
| 
 | |
| 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
 | |
| 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 | |
| 			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* Bank changed, write down the offset */
 | |
| 		if (bank != ini_rfb[i].rfb_bank) {
 | |
| 			bank = ini_rfb[i].rfb_bank;
 | |
| 			ah->ah_offset[bank] = i;
 | |
| 		}
 | |
| 
 | |
| 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 | |
| 	}
 | |
| 
 | |
| 	/* Set Output and Driver bias current (OB/DB) */
 | |
| 	if (channel->hw_value & CHANNEL_2GHZ) {
 | |
| 
 | |
| 		if (channel->hw_value & CHANNEL_CCK)
 | |
| 			ee_mode = AR5K_EEPROM_MODE_11B;
 | |
| 		else
 | |
| 			ee_mode = AR5K_EEPROM_MODE_11G;
 | |
| 
 | |
| 		/* For RF511X/RF211X combination we
 | |
| 		 * use b_OB and b_DB parameters stored
 | |
| 		 * in eeprom on ee->ee_ob[ee_mode][0]
 | |
| 		 *
 | |
| 		 * For all other chips we use OB/DB for 2Ghz
 | |
| 		 * stored in the b/g modal section just like
 | |
| 		 * 802.11a on ee->ee_ob[ee_mode][1] */
 | |
| 		if ((ah->ah_radio == AR5K_RF5111) ||
 | |
| 		(ah->ah_radio == AR5K_RF5112))
 | |
| 			obdb = 0;
 | |
| 		else
 | |
| 			obdb = 1;
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 | |
| 						AR5K_RF_OB_2GHZ, true);
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 | |
| 						AR5K_RF_DB_2GHZ, true);
 | |
| 
 | |
| 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 | |
| 	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
 | |
| 			(ah->ah_radio == AR5K_RF5111)) {
 | |
| 
 | |
| 		/* For 11a, Turbo and XR we need to choose
 | |
| 		 * OB/DB based on frequency range */
 | |
| 		ee_mode = AR5K_EEPROM_MODE_11A;
 | |
| 		obdb =	 channel->center_freq >= 5725 ? 3 :
 | |
| 			(channel->center_freq >= 5500 ? 2 :
 | |
| 			(channel->center_freq >= 5260 ? 1 :
 | |
| 			 (channel->center_freq > 4000 ? 0 : -1)));
 | |
| 
 | |
| 		if (obdb < 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 | |
| 						AR5K_RF_OB_5GHZ, true);
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 | |
| 						AR5K_RF_DB_5GHZ, true);
 | |
| 	}
 | |
| 
 | |
| 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 | |
| 
 | |
| 	/* Set turbo mode (N/A on RF5413) */
 | |
| 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 | |
| 	(ah->ah_radio != AR5K_RF5413))
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
 | |
| 
 | |
| 	/* Bank Modifications (chip-specific) */
 | |
| 	if (ah->ah_radio == AR5K_RF5111) {
 | |
| 
 | |
| 		/* Set gain_F settings according to current step */
 | |
| 		if (channel->hw_value & CHANNEL_OFDM) {
 | |
| 
 | |
| 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 | |
| 					AR5K_PHY_FRAME_CTL_TX_CLIP,
 | |
| 					g_step->gos_param[0]);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 | |
| 							AR5K_RF_PWD_90, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 | |
| 							AR5K_RF_PWD_84, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 | |
| 						AR5K_RF_RFGAIN_SEL, true);
 | |
| 
 | |
| 			/* We programmed gain_F parameters, switch back
 | |
| 			 * to active state */
 | |
| 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		/* Bank 6/7 setup */
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
 | |
| 						AR5K_RF_PWD_XPD, true);
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
 | |
| 						AR5K_RF_XPD_GAIN, true);
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
 | |
| 						AR5K_RF_GAIN_I, true);
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
 | |
| 						AR5K_RF_PLO_SEL, true);
 | |
| 
 | |
| 		/* Tweak power detectors for half/quarter rate support */
 | |
| 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
 | |
| 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
 | |
| 			u8 wait_i;
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
 | |
| 						AR5K_RF_WAIT_S, true);
 | |
| 
 | |
| 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
 | |
| 							0x1f : 0x10;
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
 | |
| 						AR5K_RF_WAIT_I, true);
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, 3,
 | |
| 						AR5K_RF_MAX_TIME, true);
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ah->ah_radio == AR5K_RF5112) {
 | |
| 
 | |
| 		/* Set gain_F settings according to current step */
 | |
| 		if (channel->hw_value & CHANNEL_OFDM) {
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
 | |
| 						AR5K_RF_MIXGAIN_OVR, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 | |
| 						AR5K_RF_PWD_138, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 | |
| 						AR5K_RF_PWD_137, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 | |
| 						AR5K_RF_PWD_136, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
 | |
| 						AR5K_RF_PWD_132, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
 | |
| 						AR5K_RF_PWD_131, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
 | |
| 						AR5K_RF_PWD_130, true);
 | |
| 
 | |
| 			/* We programmed gain_F parameters, switch back
 | |
| 			 * to active state */
 | |
| 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 | |
| 		}
 | |
| 
 | |
| 		/* Bank 6/7 setup */
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
 | |
| 						AR5K_RF_XPD_SEL, true);
 | |
| 
 | |
| 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
 | |
| 			/* Rev. 1 supports only one xpd */
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs,
 | |
| 						ee->ee_x_gain[ee_mode],
 | |
| 						AR5K_RF_XPD_GAIN, true);
 | |
| 
 | |
| 		} else {
 | |
| 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
 | |
| 			if (ee->ee_pd_gains[ee_mode] > 1) {
 | |
| 				ath5k_hw_rfb_op(ah, rf_regs,
 | |
| 						pdg_curve_to_idx[0],
 | |
| 						AR5K_RF_PD_GAIN_LO, true);
 | |
| 				ath5k_hw_rfb_op(ah, rf_regs,
 | |
| 						pdg_curve_to_idx[1],
 | |
| 						AR5K_RF_PD_GAIN_HI, true);
 | |
| 			} else {
 | |
| 				ath5k_hw_rfb_op(ah, rf_regs,
 | |
| 						pdg_curve_to_idx[0],
 | |
| 						AR5K_RF_PD_GAIN_LO, true);
 | |
| 				ath5k_hw_rfb_op(ah, rf_regs,
 | |
| 						pdg_curve_to_idx[0],
 | |
| 						AR5K_RF_PD_GAIN_HI, true);
 | |
| 			}
 | |
| 
 | |
| 			/* Lower synth voltage on Rev 2 */
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, 2,
 | |
| 					AR5K_RF_HIGH_VC_CP, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, 2,
 | |
| 					AR5K_RF_MID_VC_CP, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, 2,
 | |
| 					AR5K_RF_LOW_VC_CP, true);
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, 2,
 | |
| 					AR5K_RF_PUSH_UP, true);
 | |
| 
 | |
| 			/* Decrease power consumption on 5213+ BaseBand */
 | |
| 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
 | |
| 				ath5k_hw_rfb_op(ah, rf_regs, 1,
 | |
| 						AR5K_RF_PAD2GND, true);
 | |
| 
 | |
| 				ath5k_hw_rfb_op(ah, rf_regs, 1,
 | |
| 						AR5K_RF_XB2_LVL, true);
 | |
| 
 | |
| 				ath5k_hw_rfb_op(ah, rf_regs, 1,
 | |
| 						AR5K_RF_XB5_LVL, true);
 | |
| 
 | |
| 				ath5k_hw_rfb_op(ah, rf_regs, 1,
 | |
| 						AR5K_RF_PWD_167, true);
 | |
| 
 | |
| 				ath5k_hw_rfb_op(ah, rf_regs, 1,
 | |
| 						AR5K_RF_PWD_166, true);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
 | |
| 						AR5K_RF_GAIN_I, true);
 | |
| 
 | |
| 		/* Tweak power detector for half/quarter rates */
 | |
| 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
 | |
| 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
 | |
| 			u8 pd_delay;
 | |
| 
 | |
| 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
 | |
| 							0xf : 0x8;
 | |
| 
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
 | |
| 						AR5K_RF_PD_PERIOD_A, true);
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
 | |
| 						AR5K_RF_PD_DELAY_A, true);
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ah->ah_radio == AR5K_RF5413 &&
 | |
| 	channel->hw_value & CHANNEL_2GHZ) {
 | |
| 
 | |
| 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
 | |
| 									true);
 | |
| 
 | |
| 		/* Set optimum value for early revisions (on pci-e chips) */
 | |
| 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
 | |
| 		ah->ah_mac_srev < AR5K_SREV_AR5413)
 | |
| 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
 | |
| 						AR5K_RF_PWD_ICLOBUF_2G, true);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/* Write RF banks on hw */
 | |
| 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
 | |
| 		AR5K_REG_WAIT(i);
 | |
| 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**************************\
 | |
|   PHY/RF channel functions
 | |
| \**************************/
 | |
| 
 | |
| /*
 | |
|  * Convertion needed for RF5110
 | |
|  */
 | |
| static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
 | |
| {
 | |
| 	u32 athchan;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert IEEE channel/MHz to an internal channel value used
 | |
| 	 * by the AR5210 chipset. This has not been verified with
 | |
| 	 * newer chipsets like the AR5212A who have a completely
 | |
| 	 * different RF/PHY part.
 | |
| 	 */
 | |
| 	athchan = (ath5k_hw_bitswap(
 | |
| 			(ieee80211_frequency_to_channel(
 | |
| 				channel->center_freq) - 24) / 2, 5)
 | |
| 				<< 1) | (1 << 6) | 0x1;
 | |
| 	return athchan;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set channel on RF5110
 | |
|  */
 | |
| static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
 | |
| 		struct ieee80211_channel *channel)
 | |
| {
 | |
| 	u32 data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the channel and wait
 | |
| 	 */
 | |
| 	data = ath5k_hw_rf5110_chan2athchan(channel);
 | |
| 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
 | |
| 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
 | |
| 	mdelay(1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convertion needed for 5111
 | |
|  */
 | |
| static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
 | |
| 		struct ath5k_athchan_2ghz *athchan)
 | |
| {
 | |
| 	int channel;
 | |
| 
 | |
| 	/* Cast this value to catch negative channel numbers (>= -19) */
 | |
| 	channel = (int)ieee;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
 | |
| 	 */
 | |
| 	if (channel <= 13) {
 | |
| 		athchan->a2_athchan = 115 + channel;
 | |
| 		athchan->a2_flags = 0x46;
 | |
| 	} else if (channel == 14) {
 | |
| 		athchan->a2_athchan = 124;
 | |
| 		athchan->a2_flags = 0x44;
 | |
| 	} else if (channel >= 15 && channel <= 26) {
 | |
| 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
 | |
| 		athchan->a2_flags = 0x46;
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set channel on 5111
 | |
|  */
 | |
| static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
 | |
| 		struct ieee80211_channel *channel)
 | |
| {
 | |
| 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
 | |
| 	unsigned int ath5k_channel =
 | |
| 		ieee80211_frequency_to_channel(channel->center_freq);
 | |
| 	u32 data0, data1, clock;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the channel on the RF5111 radio
 | |
| 	 */
 | |
| 	data0 = data1 = 0;
 | |
| 
 | |
| 	if (channel->hw_value & CHANNEL_2GHZ) {
 | |
| 		/* Map 2GHz channel to 5GHz Atheros channel ID */
 | |
| 		ret = ath5k_hw_rf5111_chan2athchan(
 | |
| 			ieee80211_frequency_to_channel(channel->center_freq),
 | |
| 			&ath5k_channel_2ghz);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
 | |
| 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
 | |
| 		    << 5) | (1 << 4);
 | |
| 	}
 | |
| 
 | |
| 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
 | |
| 		clock = 1;
 | |
| 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
 | |
| 			(clock << 1) | (1 << 10) | 1;
 | |
| 	} else {
 | |
| 		clock = 0;
 | |
| 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
 | |
| 			<< 2) | (clock << 1) | (1 << 10) | 1;
 | |
| 	}
 | |
| 
 | |
| 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
 | |
| 			AR5K_RF_BUFFER);
 | |
| 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
 | |
| 			AR5K_RF_BUFFER_CONTROL_3);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set channel on 5112 and newer
 | |
|  */
 | |
| static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
 | |
| 		struct ieee80211_channel *channel)
 | |
| {
 | |
| 	u32 data, data0, data1, data2;
 | |
| 	u16 c;
 | |
| 
 | |
| 	data = data0 = data1 = data2 = 0;
 | |
| 	c = channel->center_freq;
 | |
| 
 | |
| 	if (c < 4800) {
 | |
| 		if (!((c - 2224) % 5)) {
 | |
| 			data0 = ((2 * (c - 704)) - 3040) / 10;
 | |
| 			data1 = 1;
 | |
| 		} else if (!((c - 2192) % 5)) {
 | |
| 			data0 = ((2 * (c - 672)) - 3040) / 10;
 | |
| 			data1 = 0;
 | |
| 		} else
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
 | |
| 	} else if ((c % 5) != 2 || c > 5435) {
 | |
| 		if (!(c % 20) && c >= 5120) {
 | |
| 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
 | |
| 			data2 = ath5k_hw_bitswap(3, 2);
 | |
| 		} else if (!(c % 10)) {
 | |
| 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
 | |
| 			data2 = ath5k_hw_bitswap(2, 2);
 | |
| 		} else if (!(c % 5)) {
 | |
| 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
 | |
| 			data2 = ath5k_hw_bitswap(1, 2);
 | |
| 		} else
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
 | |
| 		data2 = ath5k_hw_bitswap(0, 2);
 | |
| 	}
 | |
| 
 | |
| 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
 | |
| 
 | |
| 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
 | |
| 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the channel on the RF2425
 | |
|  */
 | |
| static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
 | |
| 		struct ieee80211_channel *channel)
 | |
| {
 | |
| 	u32 data, data0, data2;
 | |
| 	u16 c;
 | |
| 
 | |
| 	data = data0 = data2 = 0;
 | |
| 	c = channel->center_freq;
 | |
| 
 | |
| 	if (c < 4800) {
 | |
| 		data0 = ath5k_hw_bitswap((c - 2272), 8);
 | |
| 		data2 = 0;
 | |
| 	/* ? 5GHz ? */
 | |
| 	} else if ((c % 5) != 2 || c > 5435) {
 | |
| 		if (!(c % 20) && c < 5120)
 | |
| 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
 | |
| 		else if (!(c % 10))
 | |
| 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
 | |
| 		else if (!(c % 5))
 | |
| 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
 | |
| 		else
 | |
| 			return -EINVAL;
 | |
| 		data2 = ath5k_hw_bitswap(1, 2);
 | |
| 	} else {
 | |
| 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
 | |
| 		data2 = ath5k_hw_bitswap(0, 2);
 | |
| 	}
 | |
| 
 | |
| 	data = (data0 << 4) | data2 << 2 | 0x1001;
 | |
| 
 | |
| 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
 | |
| 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a channel on the radio chip
 | |
|  */
 | |
| static int ath5k_hw_channel(struct ath5k_hw *ah,
 | |
| 		struct ieee80211_channel *channel)
 | |
| {
 | |
| 	int ret;
 | |
| 	/*
 | |
| 	 * Check bounds supported by the PHY (we don't care about regultory
 | |
| 	 * restrictions at this point). Note: hw_value already has the band
 | |
| 	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
 | |
| 	 * of the band by that */
 | |
| 	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
 | |
| 		ATH5K_ERR(ah->ah_sc,
 | |
| 			"channel frequency (%u MHz) out of supported "
 | |
| 			"band range\n",
 | |
| 			channel->center_freq);
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the channel and wait
 | |
| 	 */
 | |
| 	switch (ah->ah_radio) {
 | |
| 	case AR5K_RF5110:
 | |
| 		ret = ath5k_hw_rf5110_channel(ah, channel);
 | |
| 		break;
 | |
| 	case AR5K_RF5111:
 | |
| 		ret = ath5k_hw_rf5111_channel(ah, channel);
 | |
| 		break;
 | |
| 	case AR5K_RF2317:
 | |
| 	case AR5K_RF2425:
 | |
| 		ret = ath5k_hw_rf2425_channel(ah, channel);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = ath5k_hw_rf5112_channel(ah, channel);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Set JAPAN setting for channel 14 */
 | |
| 	if (channel->center_freq == 2484) {
 | |
| 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
 | |
| 				AR5K_PHY_CCKTXCTL_JAPAN);
 | |
| 	} else {
 | |
| 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
 | |
| 				AR5K_PHY_CCKTXCTL_WORLD);
 | |
| 	}
 | |
| 
 | |
| 	ah->ah_current_channel = channel;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*****************\
 | |
|   PHY calibration
 | |
| \*****************/
 | |
| 
 | |
| static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
 | |
| {
 | |
| 	s32 val;
 | |
| 
 | |
| 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
 | |
| 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
 | |
| }
 | |
| 
 | |
| void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	ah->ah_nfcal_hist.index = 0;
 | |
| 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
 | |
| 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
 | |
| }
 | |
| 
 | |
| static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
 | |
| {
 | |
| 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
 | |
| 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
 | |
| 	hist->nfval[hist->index] = noise_floor;
 | |
| }
 | |
| 
 | |
| static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
 | |
| {
 | |
| 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
 | |
| 	s16 tmp;
 | |
| 	int i, j;
 | |
| 
 | |
| 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
 | |
| 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
 | |
| 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
 | |
| 			if (sort[j] > sort[j-1]) {
 | |
| 				tmp = sort[j];
 | |
| 				sort[j] = sort[j-1];
 | |
| 				sort[j-1] = tmp;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
 | |
| 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
 | |
| 			"cal %d:%d\n", i, sort[i]);
 | |
| 	}
 | |
| 	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we tell the hardware to perform a noise floor calibration
 | |
|  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
 | |
|  * sample-and-hold the minimum noise level seen at the antennas.
 | |
|  * This value is then stored in a ring buffer of recently measured
 | |
|  * noise floor values so we have a moving window of the last few
 | |
|  * samples.
 | |
|  *
 | |
|  * The median of the values in the history is then loaded into the
 | |
|  * hardware for its own use for RSSI and CCA measurements.
 | |
|  */
 | |
| void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
 | |
| {
 | |
| 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 | |
| 	u32 val;
 | |
| 	s16 nf, threshold;
 | |
| 	u8 ee_mode;
 | |
| 
 | |
| 	/* keep last value if calibration hasn't completed */
 | |
| 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
 | |
| 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
 | |
| 			"NF did not complete in calibration window\n");
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
 | |
| 
 | |
| 	/* completed NF calibration, test threshold */
 | |
| 	nf = ath5k_hw_read_measured_noise_floor(ah);
 | |
| 	threshold = ee->ee_noise_floor_thr[ee_mode];
 | |
| 
 | |
| 	if (nf > threshold) {
 | |
| 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
 | |
| 			"noise floor failure detected; "
 | |
| 			"read %d, threshold %d\n",
 | |
| 			nf, threshold);
 | |
| 
 | |
| 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
 | |
| 	}
 | |
| 
 | |
| 	ath5k_hw_update_nfcal_hist(ah, nf);
 | |
| 	nf = ath5k_hw_get_median_noise_floor(ah);
 | |
| 
 | |
| 	/* load noise floor (in .5 dBm) so the hardware will use it */
 | |
| 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
 | |
| 	val |= (nf * 2) & AR5K_PHY_NF_M;
 | |
| 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
 | |
| 
 | |
| 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
 | |
| 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
 | |
| 
 | |
| 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
 | |
| 		0, false);
 | |
| 
 | |
| 	/*
 | |
| 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
 | |
| 	 * so that we're not capped by the median we just loaded.
 | |
| 	 * This will be used as the initial value for the next noise
 | |
| 	 * floor calibration.
 | |
| 	 */
 | |
| 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
 | |
| 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
 | |
| 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
 | |
| 		AR5K_PHY_AGCCTL_NF_EN |
 | |
| 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
 | |
| 		AR5K_PHY_AGCCTL_NF);
 | |
| 
 | |
| 	ah->ah_noise_floor = nf;
 | |
| 
 | |
| 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
 | |
| 		"noise floor calibrated: %d\n", nf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform a PHY calibration on RF5110
 | |
|  * -Fix BPSK/QAM Constellation (I/Q correction)
 | |
|  */
 | |
| static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
 | |
| 		struct ieee80211_channel *channel)
 | |
| {
 | |
| 	u32 phy_sig, phy_agc, phy_sat, beacon;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable beacons and RX/TX queues, wait
 | |
| 	 */
 | |
| 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
 | |
| 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
 | |
| 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
 | |
| 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
 | |
| 
 | |
| 	mdelay(2);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the channel (with AGC turned off)
 | |
| 	 */
 | |
| 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
 | |
| 	udelay(10);
 | |
| 	ret = ath5k_hw_channel(ah, channel);
 | |
| 
 | |
| 	/*
 | |
| 	 * Activate PHY and wait
 | |
| 	 */
 | |
| 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
 | |
| 	mdelay(1);
 | |
| 
 | |
| 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calibrate the radio chip
 | |
| 	 */
 | |
| 
 | |
| 	/* Remember normal state */
 | |
| 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
 | |
| 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
 | |
| 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
 | |
| 
 | |
| 	/* Update radio registers */
 | |
| 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
 | |
| 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
 | |
| 
 | |
| 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
 | |
| 			AR5K_PHY_AGCCOARSE_LO)) |
 | |
| 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
 | |
| 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
 | |
| 
 | |
| 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
 | |
| 			AR5K_PHY_ADCSAT_THR)) |
 | |
| 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
 | |
| 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
 | |
| 
 | |
| 	udelay(20);
 | |
| 
 | |
| 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
 | |
| 	udelay(10);
 | |
| 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
 | |
| 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
 | |
| 
 | |
| 	mdelay(1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable calibration and wait until completion
 | |
| 	 */
 | |
| 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
 | |
| 
 | |
| 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
 | |
| 			AR5K_PHY_AGCCTL_CAL, 0, false);
 | |
| 
 | |
| 	/* Reset to normal state */
 | |
| 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
 | |
| 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
 | |
| 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
 | |
| 				channel->center_freq);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Re-enable RX/TX and beacons
 | |
| 	 */
 | |
| 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
 | |
| 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
 | |
| 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform I/Q calibration on RF5111/5112 and newer chips
 | |
|  */
 | |
| static int
 | |
| ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
 | |
| {
 | |
| 	u32 i_pwr, q_pwr;
 | |
| 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!ah->ah_calibration ||
 | |
| 		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Calibration has finished, get the results and re-run */
 | |
| 	/* work around empty results which can apparently happen on 5212 */
 | |
| 	for (i = 0; i <= 10; i++) {
 | |
| 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
 | |
| 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
 | |
| 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
 | |
| 		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
 | |
| 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
 | |
| 		if (i_pwr && q_pwr)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
 | |
| 
 | |
| 	if (ah->ah_version == AR5K_AR5211)
 | |
| 		q_coffd = q_pwr >> 6;
 | |
| 	else
 | |
| 		q_coffd = q_pwr >> 7;
 | |
| 
 | |
| 	/* protect against divide by 0 and loss of sign bits */
 | |
| 	if (i_coffd == 0 || q_coffd < 2)
 | |
| 		return 0;
 | |
| 
 | |
| 	i_coff = (-iq_corr) / i_coffd;
 | |
| 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
 | |
| 
 | |
| 	if (ah->ah_version == AR5K_AR5211)
 | |
| 		q_coff = (i_pwr / q_coffd) - 64;
 | |
| 	else
 | |
| 		q_coff = (i_pwr / q_coffd) - 128;
 | |
| 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
 | |
| 
 | |
| 	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
 | |
| 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
 | |
| 			i_coff, q_coff, i_coffd, q_coffd);
 | |
| 
 | |
| 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
 | |
| 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
 | |
| 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
 | |
| 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
 | |
| 
 | |
| 	/* Re-enable calibration -if we don't we'll commit
 | |
| 	 * the same values again and again */
 | |
| 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
 | |
| 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
 | |
| 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform a PHY calibration
 | |
|  */
 | |
| int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
 | |
| 		struct ieee80211_channel *channel)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (ah->ah_radio == AR5K_RF5110)
 | |
| 		ret = ath5k_hw_rf5110_calibrate(ah, channel);
 | |
| 	else {
 | |
| 		ret = ath5k_hw_rf511x_iq_calibrate(ah);
 | |
| 		ath5k_hw_request_rfgain_probe(ah);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /***************************\
 | |
| * Spur mitigation functions *
 | |
| \***************************/
 | |
| 
 | |
| static void
 | |
| ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
 | |
| 				struct ieee80211_channel *channel)
 | |
| {
 | |
| 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 | |
| 	u32 mag_mask[4] = {0, 0, 0, 0};
 | |
| 	u32 pilot_mask[2] = {0, 0};
 | |
| 	/* Note: fbin values are scaled up by 2 */
 | |
| 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
 | |
| 	s32 spur_delta_phase, spur_freq_sigma_delta;
 | |
| 	s32 spur_offset, num_symbols_x16;
 | |
| 	u8 num_symbol_offsets, i, freq_band;
 | |
| 
 | |
| 	/* Convert current frequency to fbin value (the same way channels
 | |
| 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
 | |
| 	 * up by 2 so we can compare it later */
 | |
| 	if (channel->hw_value & CHANNEL_2GHZ) {
 | |
| 		chan_fbin = (channel->center_freq - 2300) * 10;
 | |
| 		freq_band = AR5K_EEPROM_BAND_2GHZ;
 | |
| 	} else {
 | |
| 		chan_fbin = (channel->center_freq - 4900) * 10;
 | |
| 		freq_band = AR5K_EEPROM_BAND_5GHZ;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if any spur_chan_fbin from EEPROM is
 | |
| 	 * within our current channel's spur detection range */
 | |
| 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
 | |
| 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
 | |
| 	/* XXX: Half/Quarter channels ?*/
 | |
| 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
 | |
| 		spur_detection_window *= 2;
 | |
| 
 | |
| 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
 | |
| 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
 | |
| 
 | |
| 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
 | |
| 		 * so it's zero if we got nothing from EEPROM */
 | |
| 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
 | |
| 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if ((chan_fbin - spur_detection_window <=
 | |
| 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
 | |
| 		(chan_fbin + spur_detection_window >=
 | |
| 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
 | |
| 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We need to enable spur filter for this channel */
 | |
| 	if (spur_chan_fbin) {
 | |
| 		spur_offset = spur_chan_fbin - chan_fbin;
 | |
| 		/*
 | |
| 		 * Calculate deltas:
 | |
| 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
 | |
| 		 * spur_delta_phase -> spur_offset / chip_freq << 11
 | |
| 		 * Note: Both values have 100Hz resolution
 | |
| 		 */
 | |
| 		switch (ah->ah_bwmode) {
 | |
| 		case AR5K_BWMODE_40MHZ:
 | |
| 			/* Both sample_freq and chip_freq are 80MHz */
 | |
| 			spur_delta_phase = (spur_offset << 16) / 25;
 | |
| 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
 | |
| 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
 | |
| 			break;
 | |
| 		case AR5K_BWMODE_10MHZ:
 | |
| 			/* Both sample_freq and chip_freq are 20MHz (?) */
 | |
| 			spur_delta_phase = (spur_offset << 18) / 25;
 | |
| 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
 | |
| 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
 | |
| 		case AR5K_BWMODE_5MHZ:
 | |
| 			/* Both sample_freq and chip_freq are 10MHz (?) */
 | |
| 			spur_delta_phase = (spur_offset << 19) / 25;
 | |
| 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
 | |
| 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
 | |
| 		default:
 | |
| 			if (channel->hw_value == CHANNEL_A) {
 | |
| 				/* Both sample_freq and chip_freq are 40MHz */
 | |
| 				spur_delta_phase = (spur_offset << 17) / 25;
 | |
| 				spur_freq_sigma_delta =
 | |
| 						(spur_delta_phase >> 10);
 | |
| 				symbol_width =
 | |
| 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
 | |
| 			} else {
 | |
| 				/* sample_freq -> 40MHz chip_freq -> 44MHz
 | |
| 				 * (for b compatibility) */
 | |
| 				spur_delta_phase = (spur_offset << 17) / 25;
 | |
| 				spur_freq_sigma_delta =
 | |
| 						(spur_offset << 8) / 55;
 | |
| 				symbol_width =
 | |
| 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Calculate pilot and magnitude masks */
 | |
| 
 | |
| 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
 | |
| 		 * and divide by symbol_width to find how many symbols we have
 | |
| 		 * Note: number of symbols is scaled up by 16 */
 | |
| 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
 | |
| 
 | |
| 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
 | |
| 		if (!(num_symbols_x16 & 0xF))
 | |
| 			/* _X_ */
 | |
| 			num_symbol_offsets = 3;
 | |
| 		else
 | |
| 			/* _xx_ */
 | |
| 			num_symbol_offsets = 4;
 | |
| 
 | |
| 		for (i = 0; i < num_symbol_offsets; i++) {
 | |
| 
 | |
| 			/* Calculate pilot mask */
 | |
| 			s32 curr_sym_off =
 | |
| 				(num_symbols_x16 / 16) + i + 25;
 | |
| 
 | |
| 			/* Pilot magnitude mask seems to be a way to
 | |
| 			 * declare the boundaries for our detection
 | |
| 			 * window or something, it's 2 for the middle
 | |
| 			 * value(s) where the symbol is expected to be
 | |
| 			 * and 1 on the boundary values */
 | |
| 			u8 plt_mag_map =
 | |
| 				(i == 0 || i == (num_symbol_offsets - 1))
 | |
| 								? 1 : 2;
 | |
| 
 | |
| 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
 | |
| 				if (curr_sym_off <= 25)
 | |
| 					pilot_mask[0] |= 1 << curr_sym_off;
 | |
| 				else if (curr_sym_off >= 27)
 | |
| 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
 | |
| 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
 | |
| 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
 | |
| 
 | |
| 			/* Calculate magnitude mask (for viterbi decoder) */
 | |
| 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
 | |
| 				mag_mask[0] |=
 | |
| 					plt_mag_map << (curr_sym_off + 1) * 2;
 | |
| 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
 | |
| 				mag_mask[1] |=
 | |
| 					plt_mag_map << (curr_sym_off - 15) * 2;
 | |
| 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
 | |
| 				mag_mask[2] |=
 | |
| 					plt_mag_map << (curr_sym_off - 31) * 2;
 | |
| 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
 | |
| 				mag_mask[3] |=
 | |
| 					plt_mag_map << (curr_sym_off - 47) * 2;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		/* Write settings on hw to enable spur filter */
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
 | |
| 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
 | |
| 		/* XXX: Self correlator also ? */
 | |
| 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
 | |
| 					AR5K_PHY_IQ_PILOT_MASK_EN |
 | |
| 					AR5K_PHY_IQ_CHAN_MASK_EN |
 | |
| 					AR5K_PHY_IQ_SPUR_FILT_EN);
 | |
| 
 | |
| 		/* Set delta phase and freq sigma delta */
 | |
| 		ath5k_hw_reg_write(ah,
 | |
| 				AR5K_REG_SM(spur_delta_phase,
 | |
| 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
 | |
| 				AR5K_REG_SM(spur_freq_sigma_delta,
 | |
| 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
 | |
| 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
 | |
| 				AR5K_PHY_TIMING_11);
 | |
| 
 | |
| 		/* Write pilot masks */
 | |
| 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
 | |
| 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
 | |
| 					pilot_mask[1]);
 | |
| 
 | |
| 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
 | |
| 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
 | |
| 					pilot_mask[1]);
 | |
| 
 | |
| 		/* Write magnitude masks */
 | |
| 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
 | |
| 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
 | |
| 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
 | |
| 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
 | |
| 					mag_mask[3]);
 | |
| 
 | |
| 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
 | |
| 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
 | |
| 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
 | |
| 					AR5K_PHY_BIN_MASK2_4_MASK_4,
 | |
| 					mag_mask[3]);
 | |
| 
 | |
| 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
 | |
| 	AR5K_PHY_IQ_SPUR_FILT_EN) {
 | |
| 		/* Clean up spur mitigation settings and disable fliter */
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
 | |
| 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
 | |
| 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
 | |
| 					AR5K_PHY_IQ_PILOT_MASK_EN |
 | |
| 					AR5K_PHY_IQ_CHAN_MASK_EN |
 | |
| 					AR5K_PHY_IQ_SPUR_FILT_EN);
 | |
| 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
 | |
| 
 | |
| 		/* Clear pilot masks */
 | |
| 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
 | |
| 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
 | |
| 					0);
 | |
| 
 | |
| 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
 | |
| 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
 | |
| 					0);
 | |
| 
 | |
| 		/* Clear magnitude masks */
 | |
| 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
 | |
| 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
 | |
| 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
 | |
| 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
 | |
| 					0);
 | |
| 
 | |
| 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
 | |
| 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
 | |
| 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
 | |
| 					AR5K_PHY_BIN_MASK2_4_MASK_4,
 | |
| 					0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************\
 | |
| * Antenna control *
 | |
| \*****************/
 | |
| 
 | |
| static void /*TODO:Boundary check*/
 | |
| ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
 | |
| {
 | |
| 	if (ah->ah_version != AR5K_AR5210)
 | |
| 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable/disable fast rx antenna diversity
 | |
|  */
 | |
| static void
 | |
| ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
 | |
| {
 | |
| 	switch (ee_mode) {
 | |
| 	case AR5K_EEPROM_MODE_11G:
 | |
| 		/* XXX: This is set to
 | |
| 		 * disabled on initvals !!! */
 | |
| 	case AR5K_EEPROM_MODE_11A:
 | |
| 		if (enable)
 | |
| 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
 | |
| 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
 | |
| 		else
 | |
| 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
 | |
| 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
 | |
| 		break;
 | |
| 	case AR5K_EEPROM_MODE_11B:
 | |
| 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
 | |
| 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (enable) {
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
 | |
| 				AR5K_PHY_RESTART_DIV_GC, 4);
 | |
| 
 | |
| 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
 | |
| 					AR5K_PHY_FAST_ANT_DIV_EN);
 | |
| 	} else {
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
 | |
| 				AR5K_PHY_RESTART_DIV_GC, 0);
 | |
| 
 | |
| 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
 | |
| 					AR5K_PHY_FAST_ANT_DIV_EN);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
 | |
| {
 | |
| 	u8 ant0, ant1;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case a fixed antenna was set as default
 | |
| 	 * use the same switch table twice.
 | |
| 	 */
 | |
| 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
 | |
| 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
 | |
| 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
 | |
| 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
 | |
| 	else {
 | |
| 		ant0 = AR5K_ANT_SWTABLE_A;
 | |
| 		ant1 = AR5K_ANT_SWTABLE_B;
 | |
| 	}
 | |
| 
 | |
| 	/* Set antenna idle switch table */
 | |
| 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
 | |
| 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
 | |
| 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
 | |
| 			AR5K_PHY_ANT_CTL_TXRX_EN));
 | |
| 
 | |
| 	/* Set antenna switch tables */
 | |
| 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
 | |
| 		AR5K_PHY_ANT_SWITCH_TABLE_0);
 | |
| 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
 | |
| 		AR5K_PHY_ANT_SWITCH_TABLE_1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set antenna operating mode
 | |
|  */
 | |
| void
 | |
| ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
 | |
| {
 | |
| 	struct ieee80211_channel *channel = ah->ah_current_channel;
 | |
| 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
 | |
| 	bool use_def_for_sg;
 | |
| 	int ee_mode;
 | |
| 	u8 def_ant, tx_ant;
 | |
| 	u32 sta_id1 = 0;
 | |
| 
 | |
| 	/* if channel is not initialized yet we can't set the antennas
 | |
| 	 * so just store the mode. it will be set on the next reset */
 | |
| 	if (channel == NULL) {
 | |
| 		ah->ah_ant_mode = ant_mode;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	def_ant = ah->ah_def_ant;
 | |
| 
 | |
| 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
 | |
| 	if (ee_mode < 0) {
 | |
| 		ATH5K_ERR(ah->ah_sc,
 | |
| 			"invalid channel: %d\n", channel->center_freq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (ant_mode) {
 | |
| 	case AR5K_ANTMODE_DEFAULT:
 | |
| 		tx_ant = 0;
 | |
| 		use_def_for_tx = false;
 | |
| 		update_def_on_tx = false;
 | |
| 		use_def_for_rts = false;
 | |
| 		use_def_for_sg = false;
 | |
| 		fast_div = true;
 | |
| 		break;
 | |
| 	case AR5K_ANTMODE_FIXED_A:
 | |
| 		def_ant = 1;
 | |
| 		tx_ant = 1;
 | |
| 		use_def_for_tx = true;
 | |
| 		update_def_on_tx = false;
 | |
| 		use_def_for_rts = true;
 | |
| 		use_def_for_sg = true;
 | |
| 		fast_div = false;
 | |
| 		break;
 | |
| 	case AR5K_ANTMODE_FIXED_B:
 | |
| 		def_ant = 2;
 | |
| 		tx_ant = 2;
 | |
| 		use_def_for_tx = true;
 | |
| 		update_def_on_tx = false;
 | |
| 		use_def_for_rts = true;
 | |
| 		use_def_for_sg = true;
 | |
| 		fast_div = false;
 | |
| 		break;
 | |
| 	case AR5K_ANTMODE_SINGLE_AP:
 | |
| 		def_ant = 1;	/* updated on tx */
 | |
| 		tx_ant = 0;
 | |
| 		use_def_for_tx = true;
 | |
| 		update_def_on_tx = true;
 | |
| 		use_def_for_rts = true;
 | |
| 		use_def_for_sg = true;
 | |
| 		fast_div = true;
 | |
| 		break;
 | |
| 	case AR5K_ANTMODE_SECTOR_AP:
 | |
| 		tx_ant = 1;	/* variable */
 | |
| 		use_def_for_tx = false;
 | |
| 		update_def_on_tx = false;
 | |
| 		use_def_for_rts = true;
 | |
| 		use_def_for_sg = false;
 | |
| 		fast_div = false;
 | |
| 		break;
 | |
| 	case AR5K_ANTMODE_SECTOR_STA:
 | |
| 		tx_ant = 1;	/* variable */
 | |
| 		use_def_for_tx = true;
 | |
| 		update_def_on_tx = false;
 | |
| 		use_def_for_rts = true;
 | |
| 		use_def_for_sg = false;
 | |
| 		fast_div = true;
 | |
| 		break;
 | |
| 	case AR5K_ANTMODE_DEBUG:
 | |
| 		def_ant = 1;
 | |
| 		tx_ant = 2;
 | |
| 		use_def_for_tx = false;
 | |
| 		update_def_on_tx = false;
 | |
| 		use_def_for_rts = false;
 | |
| 		use_def_for_sg = false;
 | |
| 		fast_div = false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ah->ah_tx_ant = tx_ant;
 | |
| 	ah->ah_ant_mode = ant_mode;
 | |
| 	ah->ah_def_ant = def_ant;
 | |
| 
 | |
| 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
 | |
| 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
 | |
| 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
 | |
| 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
 | |
| 
 | |
| 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
 | |
| 
 | |
| 	if (sta_id1)
 | |
| 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
 | |
| 
 | |
| 	ath5k_hw_set_antenna_switch(ah, ee_mode);
 | |
| 	/* Note: set diversity before default antenna
 | |
| 	 * because it won't work correctly */
 | |
| 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
 | |
| 	ath5k_hw_set_def_antenna(ah, def_ant);
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************\
 | |
| * TX power setup *
 | |
| \****************/
 | |
| 
 | |
| /*
 | |
|  * Helper functions
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Do linear interpolation between two given (x, y) points
 | |
|  */
 | |
| static s16
 | |
| ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
 | |
| 					s16 y_left, s16 y_right)
 | |
| {
 | |
| 	s16 ratio, result;
 | |
| 
 | |
| 	/* Avoid divide by zero and skip interpolation
 | |
| 	 * if we have the same point */
 | |
| 	if ((x_left == x_right) || (y_left == y_right))
 | |
| 		return y_left;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we use ints and not fps, we need to scale up in
 | |
| 	 * order to get a sane ratio value (or else we 'll eg. get
 | |
| 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
 | |
| 	 * to have some accuracy both for 0.5 and 0.25 steps.
 | |
| 	 */
 | |
| 	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
 | |
| 
 | |
| 	/* Now scale down to be in range */
 | |
| 	result = y_left + (ratio * (target - x_left) / 100);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find vertical boundary (min pwr) for the linear PCDAC curve.
 | |
|  *
 | |
|  * Since we have the top of the curve and we draw the line below
 | |
|  * until we reach 1 (1 pcdac step) we need to know which point
 | |
|  * (x value) that is so that we don't go below y axis and have negative
 | |
|  * pcdac values when creating the curve, or fill the table with zeroes.
 | |
|  */
 | |
| static s16
 | |
| ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
 | |
| 				const s16 *pwrL, const s16 *pwrR)
 | |
| {
 | |
| 	s8 tmp;
 | |
| 	s16 min_pwrL, min_pwrR;
 | |
| 	s16 pwr_i;
 | |
| 
 | |
| 	/* Some vendors write the same pcdac value twice !!! */
 | |
| 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
 | |
| 		return max(pwrL[0], pwrR[0]);
 | |
| 
 | |
| 	if (pwrL[0] == pwrL[1])
 | |
| 		min_pwrL = pwrL[0];
 | |
| 	else {
 | |
| 		pwr_i = pwrL[0];
 | |
| 		do {
 | |
| 			pwr_i--;
 | |
| 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
 | |
| 							pwrL[0], pwrL[1],
 | |
| 							stepL[0], stepL[1]);
 | |
| 		} while (tmp > 1);
 | |
| 
 | |
| 		min_pwrL = pwr_i;
 | |
| 	}
 | |
| 
 | |
| 	if (pwrR[0] == pwrR[1])
 | |
| 		min_pwrR = pwrR[0];
 | |
| 	else {
 | |
| 		pwr_i = pwrR[0];
 | |
| 		do {
 | |
| 			pwr_i--;
 | |
| 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
 | |
| 							pwrR[0], pwrR[1],
 | |
| 							stepR[0], stepR[1]);
 | |
| 		} while (tmp > 1);
 | |
| 
 | |
| 		min_pwrR = pwr_i;
 | |
| 	}
 | |
| 
 | |
| 	/* Keep the right boundary so that it works for both curves */
 | |
| 	return max(min_pwrL, min_pwrR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
 | |
|  * Power to PCDAC curve.
 | |
|  *
 | |
|  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
 | |
|  * steps (offsets) on y axis. Power can go up to 31.5dB and max
 | |
|  * PCDAC/PDADC step for each curve is 64 but we can write more than
 | |
|  * one curves on hw so we can go up to 128 (which is the max step we
 | |
|  * can write on the final table).
 | |
|  *
 | |
|  * We write y values (PCDAC/PDADC steps) on hw.
 | |
|  */
 | |
| static void
 | |
| ath5k_create_power_curve(s16 pmin, s16 pmax,
 | |
| 			const s16 *pwr, const u8 *vpd,
 | |
| 			u8 num_points,
 | |
| 			u8 *vpd_table, u8 type)
 | |
| {
 | |
| 	u8 idx[2] = { 0, 1 };
 | |
| 	s16 pwr_i = 2*pmin;
 | |
| 	int i;
 | |
| 
 | |
| 	if (num_points < 2)
 | |
| 		return;
 | |
| 
 | |
| 	/* We want the whole line, so adjust boundaries
 | |
| 	 * to cover the entire power range. Note that
 | |
| 	 * power values are already 0.25dB so no need
 | |
| 	 * to multiply pwr_i by 2 */
 | |
| 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
 | |
| 		pwr_i = pmin;
 | |
| 		pmin = 0;
 | |
| 		pmax = 63;
 | |
| 	}
 | |
| 
 | |
| 	/* Find surrounding turning points (TPs)
 | |
| 	 * and interpolate between them */
 | |
| 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
 | |
| 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
 | |
| 
 | |
| 		/* We passed the right TP, move to the next set of TPs
 | |
| 		 * if we pass the last TP, extrapolate above using the last
 | |
| 		 * two TPs for ratio */
 | |
| 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
 | |
| 			idx[0]++;
 | |
| 			idx[1]++;
 | |
| 		}
 | |
| 
 | |
| 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
 | |
| 						pwr[idx[0]], pwr[idx[1]],
 | |
| 						vpd[idx[0]], vpd[idx[1]]);
 | |
| 
 | |
| 		/* Increase by 0.5dB
 | |
| 		 * (0.25 dB units) */
 | |
| 		pwr_i += 2;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the surrounding per-channel power calibration piers
 | |
|  * for a given frequency so that we can interpolate between
 | |
|  * them and come up with an apropriate dataset for our current
 | |
|  * channel.
 | |
|  */
 | |
| static void
 | |
| ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
 | |
| 			struct ieee80211_channel *channel,
 | |
| 			struct ath5k_chan_pcal_info **pcinfo_l,
 | |
| 			struct ath5k_chan_pcal_info **pcinfo_r)
 | |
| {
 | |
| 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 | |
| 	struct ath5k_chan_pcal_info *pcinfo;
 | |
| 	u8 idx_l, idx_r;
 | |
| 	u8 mode, max, i;
 | |
| 	u32 target = channel->center_freq;
 | |
| 
 | |
| 	idx_l = 0;
 | |
| 	idx_r = 0;
 | |
| 
 | |
| 	if (!(channel->hw_value & CHANNEL_OFDM)) {
 | |
| 		pcinfo = ee->ee_pwr_cal_b;
 | |
| 		mode = AR5K_EEPROM_MODE_11B;
 | |
| 	} else if (channel->hw_value & CHANNEL_2GHZ) {
 | |
| 		pcinfo = ee->ee_pwr_cal_g;
 | |
| 		mode = AR5K_EEPROM_MODE_11G;
 | |
| 	} else {
 | |
| 		pcinfo = ee->ee_pwr_cal_a;
 | |
| 		mode = AR5K_EEPROM_MODE_11A;
 | |
| 	}
 | |
| 	max = ee->ee_n_piers[mode] - 1;
 | |
| 
 | |
| 	/* Frequency is below our calibrated
 | |
| 	 * range. Use the lowest power curve
 | |
| 	 * we have */
 | |
| 	if (target < pcinfo[0].freq) {
 | |
| 		idx_l = idx_r = 0;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Frequency is above our calibrated
 | |
| 	 * range. Use the highest power curve
 | |
| 	 * we have */
 | |
| 	if (target > pcinfo[max].freq) {
 | |
| 		idx_l = idx_r = max;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Frequency is inside our calibrated
 | |
| 	 * channel range. Pick the surrounding
 | |
| 	 * calibration piers so that we can
 | |
| 	 * interpolate */
 | |
| 	for (i = 0; i <= max; i++) {
 | |
| 
 | |
| 		/* Frequency matches one of our calibration
 | |
| 		 * piers, no need to interpolate, just use
 | |
| 		 * that calibration pier */
 | |
| 		if (pcinfo[i].freq == target) {
 | |
| 			idx_l = idx_r = i;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		/* We found a calibration pier that's above
 | |
| 		 * frequency, use this pier and the previous
 | |
| 		 * one to interpolate */
 | |
| 		if (target < pcinfo[i].freq) {
 | |
| 			idx_r = i;
 | |
| 			idx_l = idx_r - 1;
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	*pcinfo_l = &pcinfo[idx_l];
 | |
| 	*pcinfo_r = &pcinfo[idx_r];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the surrounding per-rate power calibration data
 | |
|  * for a given frequency and interpolate between power
 | |
|  * values to set max target power supported by hw for
 | |
|  * each rate.
 | |
|  */
 | |
| static void
 | |
| ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
 | |
| 			struct ieee80211_channel *channel,
 | |
| 			struct ath5k_rate_pcal_info *rates)
 | |
| {
 | |
| 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 | |
| 	struct ath5k_rate_pcal_info *rpinfo;
 | |
| 	u8 idx_l, idx_r;
 | |
| 	u8 mode, max, i;
 | |
| 	u32 target = channel->center_freq;
 | |
| 
 | |
| 	idx_l = 0;
 | |
| 	idx_r = 0;
 | |
| 
 | |
| 	if (!(channel->hw_value & CHANNEL_OFDM)) {
 | |
| 		rpinfo = ee->ee_rate_tpwr_b;
 | |
| 		mode = AR5K_EEPROM_MODE_11B;
 | |
| 	} else if (channel->hw_value & CHANNEL_2GHZ) {
 | |
| 		rpinfo = ee->ee_rate_tpwr_g;
 | |
| 		mode = AR5K_EEPROM_MODE_11G;
 | |
| 	} else {
 | |
| 		rpinfo = ee->ee_rate_tpwr_a;
 | |
| 		mode = AR5K_EEPROM_MODE_11A;
 | |
| 	}
 | |
| 	max = ee->ee_rate_target_pwr_num[mode] - 1;
 | |
| 
 | |
| 	/* Get the surrounding calibration
 | |
| 	 * piers - same as above */
 | |
| 	if (target < rpinfo[0].freq) {
 | |
| 		idx_l = idx_r = 0;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (target > rpinfo[max].freq) {
 | |
| 		idx_l = idx_r = max;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i <= max; i++) {
 | |
| 
 | |
| 		if (rpinfo[i].freq == target) {
 | |
| 			idx_l = idx_r = i;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		if (target < rpinfo[i].freq) {
 | |
| 			idx_r = i;
 | |
| 			idx_l = idx_r - 1;
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	/* Now interpolate power value, based on the frequency */
 | |
| 	rates->freq = target;
 | |
| 
 | |
| 	rates->target_power_6to24 =
 | |
| 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
 | |
| 					rpinfo[idx_r].freq,
 | |
| 					rpinfo[idx_l].target_power_6to24,
 | |
| 					rpinfo[idx_r].target_power_6to24);
 | |
| 
 | |
| 	rates->target_power_36 =
 | |
| 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
 | |
| 					rpinfo[idx_r].freq,
 | |
| 					rpinfo[idx_l].target_power_36,
 | |
| 					rpinfo[idx_r].target_power_36);
 | |
| 
 | |
| 	rates->target_power_48 =
 | |
| 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
 | |
| 					rpinfo[idx_r].freq,
 | |
| 					rpinfo[idx_l].target_power_48,
 | |
| 					rpinfo[idx_r].target_power_48);
 | |
| 
 | |
| 	rates->target_power_54 =
 | |
| 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
 | |
| 					rpinfo[idx_r].freq,
 | |
| 					rpinfo[idx_l].target_power_54,
 | |
| 					rpinfo[idx_r].target_power_54);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the max edge power for this channel if
 | |
|  * we have such data from EEPROM's Conformance Test
 | |
|  * Limits (CTL), and limit max power if needed.
 | |
|  */
 | |
| static void
 | |
| ath5k_get_max_ctl_power(struct ath5k_hw *ah,
 | |
| 			struct ieee80211_channel *channel)
 | |
| {
 | |
| 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
 | |
| 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 | |
| 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
 | |
| 	u8 *ctl_val = ee->ee_ctl;
 | |
| 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
 | |
| 	s16 edge_pwr = 0;
 | |
| 	u8 rep_idx;
 | |
| 	u8 i, ctl_mode;
 | |
| 	u8 ctl_idx = 0xFF;
 | |
| 	u32 target = channel->center_freq;
 | |
| 
 | |
| 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
 | |
| 
 | |
| 	switch (channel->hw_value & CHANNEL_MODES) {
 | |
| 	case CHANNEL_A:
 | |
| 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
 | |
| 			ctl_mode |= AR5K_CTL_TURBO;
 | |
| 		else
 | |
| 			ctl_mode |= AR5K_CTL_11A;
 | |
| 		break;
 | |
| 	case CHANNEL_G:
 | |
| 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
 | |
| 			ctl_mode |= AR5K_CTL_TURBOG;
 | |
| 		else
 | |
| 			ctl_mode |= AR5K_CTL_11G;
 | |
| 		break;
 | |
| 	case CHANNEL_B:
 | |
| 		ctl_mode |= AR5K_CTL_11B;
 | |
| 		break;
 | |
| 	case CHANNEL_XR:
 | |
| 		/* Fall through */
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ee->ee_ctls; i++) {
 | |
| 		if (ctl_val[i] == ctl_mode) {
 | |
| 			ctl_idx = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If we have a CTL dataset available grab it and find the
 | |
| 	 * edge power for our frequency */
 | |
| 	if (ctl_idx == 0xFF)
 | |
| 		return;
 | |
| 
 | |
| 	/* Edge powers are sorted by frequency from lower
 | |
| 	 * to higher. Each CTL corresponds to 8 edge power
 | |
| 	 * measurements. */
 | |
| 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
 | |
| 
 | |
| 	/* Don't do boundaries check because we
 | |
| 	 * might have more that one bands defined
 | |
| 	 * for this mode */
 | |
| 
 | |
| 	/* Get the edge power that's closer to our
 | |
| 	 * frequency */
 | |
| 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
 | |
| 		rep_idx += i;
 | |
| 		if (target <= rep[rep_idx].freq)
 | |
| 			edge_pwr = (s16) rep[rep_idx].edge;
 | |
| 	}
 | |
| 
 | |
| 	if (edge_pwr)
 | |
| 		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Power to PCDAC table functions
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Fill Power to PCDAC table on RF5111
 | |
|  *
 | |
|  * No further processing is needed for RF5111, the only thing we have to
 | |
|  * do is fill the values below and above calibration range since eeprom data
 | |
|  * may not cover the entire PCDAC table.
 | |
|  */
 | |
| static void
 | |
| ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
 | |
| 							s16 *table_max)
 | |
| {
 | |
| 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
 | |
| 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
 | |
| 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
 | |
| 	s16	min_pwr, max_pwr;
 | |
| 
 | |
| 	/* Get table boundaries */
 | |
| 	min_pwr = table_min[0];
 | |
| 	pcdac_0 = pcdac_tmp[0];
 | |
| 
 | |
| 	max_pwr = table_max[0];
 | |
| 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
 | |
| 
 | |
| 	/* Extrapolate below minimum using pcdac_0 */
 | |
| 	pcdac_i = 0;
 | |
| 	for (i = 0; i < min_pwr; i++)
 | |
| 		pcdac_out[pcdac_i++] = pcdac_0;
 | |
| 
 | |
| 	/* Copy values from pcdac_tmp */
 | |
| 	pwr_idx = min_pwr;
 | |
| 	for (i = 0 ; pwr_idx <= max_pwr &&
 | |
| 	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
 | |
| 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
 | |
| 		pwr_idx++;
 | |
| 	}
 | |
| 
 | |
| 	/* Extrapolate above maximum */
 | |
| 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
 | |
| 		pcdac_out[pcdac_i++] = pcdac_n;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Combine available XPD Curves and fill Linear Power to PCDAC table
 | |
|  * on RF5112
 | |
|  *
 | |
|  * RFX112 can have up to 2 curves (one for low txpower range and one for
 | |
|  * higher txpower range). We need to put them both on pcdac_out and place
 | |
|  * them in the correct location. In case we only have one curve available
 | |
|  * just fit it on pcdac_out (it's supposed to cover the entire range of
 | |
|  * available pwr levels since it's always the higher power curve). Extrapolate
 | |
|  * below and above final table if needed.
 | |
|  */
 | |
| static void
 | |
| ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
 | |
| 						s16 *table_max, u8 pdcurves)
 | |
| {
 | |
| 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
 | |
| 	u8	*pcdac_low_pwr;
 | |
| 	u8	*pcdac_high_pwr;
 | |
| 	u8	*pcdac_tmp;
 | |
| 	u8	pwr;
 | |
| 	s16	max_pwr_idx;
 | |
| 	s16	min_pwr_idx;
 | |
| 	s16	mid_pwr_idx = 0;
 | |
| 	/* Edge flag turs on the 7nth bit on the PCDAC
 | |
| 	 * to delcare the higher power curve (force values
 | |
| 	 * to be greater than 64). If we only have one curve
 | |
| 	 * we don't need to set this, if we have 2 curves and
 | |
| 	 * fill the table backwards this can also be used to
 | |
| 	 * switch from higher power curve to lower power curve */
 | |
| 	u8	edge_flag;
 | |
| 	int	i;
 | |
| 
 | |
| 	/* When we have only one curve available
 | |
| 	 * that's the higher power curve. If we have
 | |
| 	 * two curves the first is the high power curve
 | |
| 	 * and the next is the low power curve. */
 | |
| 	if (pdcurves > 1) {
 | |
| 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
 | |
| 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
 | |
| 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
 | |
| 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
 | |
| 
 | |
| 		/* If table size goes beyond 31.5dB, keep the
 | |
| 		 * upper 31.5dB range when setting tx power.
 | |
| 		 * Note: 126 = 31.5 dB in quarter dB steps */
 | |
| 		if (table_max[0] - table_min[1] > 126)
 | |
| 			min_pwr_idx = table_max[0] - 126;
 | |
| 		else
 | |
| 			min_pwr_idx = table_min[1];
 | |
| 
 | |
| 		/* Since we fill table backwards
 | |
| 		 * start from high power curve */
 | |
| 		pcdac_tmp = pcdac_high_pwr;
 | |
| 
 | |
| 		edge_flag = 0x40;
 | |
| 	} else {
 | |
| 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
 | |
| 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
 | |
| 		min_pwr_idx = table_min[0];
 | |
| 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
 | |
| 		pcdac_tmp = pcdac_high_pwr;
 | |
| 		edge_flag = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* This is used when setting tx power*/
 | |
| 	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
 | |
| 
 | |
| 	/* Fill Power to PCDAC table backwards */
 | |
| 	pwr = max_pwr_idx;
 | |
| 	for (i = 63; i >= 0; i--) {
 | |
| 		/* Entering lower power range, reset
 | |
| 		 * edge flag and set pcdac_tmp to lower
 | |
| 		 * power curve.*/
 | |
| 		if (edge_flag == 0x40 &&
 | |
| 		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
 | |
| 			edge_flag = 0x00;
 | |
| 			pcdac_tmp = pcdac_low_pwr;
 | |
| 			pwr = mid_pwr_idx/2;
 | |
| 		}
 | |
| 
 | |
| 		/* Don't go below 1, extrapolate below if we have
 | |
| 		 * already swithced to the lower power curve -or
 | |
| 		 * we only have one curve and edge_flag is zero
 | |
| 		 * anyway */
 | |
| 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
 | |
| 			while (i >= 0) {
 | |
| 				pcdac_out[i] = pcdac_out[i + 1];
 | |
| 				i--;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
 | |
| 
 | |
| 		/* Extrapolate above if pcdac is greater than
 | |
| 		 * 126 -this can happen because we OR pcdac_out
 | |
| 		 * value with edge_flag on high power curve */
 | |
| 		if (pcdac_out[i] > 126)
 | |
| 			pcdac_out[i] = 126;
 | |
| 
 | |
| 		/* Decrease by a 0.5dB step */
 | |
| 		pwr--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Write PCDAC values on hw */
 | |
| static void
 | |
| ath5k_write_pcdac_table(struct ath5k_hw *ah)
 | |
| {
 | |
| 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
 | |
| 	int	i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write TX power values
 | |
| 	 */
 | |
| 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
 | |
| 		ath5k_hw_reg_write(ah,
 | |
| 			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
 | |
| 			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
 | |
| 			AR5K_PHY_PCDAC_TXPOWER(i));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Power to PDADC table functions
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Set the gain boundaries and create final Power to PDADC table
 | |
|  *
 | |
|  * We can have up to 4 pd curves, we need to do a simmilar process
 | |
|  * as we do for RF5112. This time we don't have an edge_flag but we
 | |
|  * set the gain boundaries on a separate register.
 | |
|  */
 | |
| static void
 | |
| ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
 | |
| 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
 | |
| {
 | |
| 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
 | |
| 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
 | |
| 	u8 *pdadc_tmp;
 | |
| 	s16 pdadc_0;
 | |
| 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
 | |
| 	u8 pd_gain_overlap;
 | |
| 
 | |
| 	/* Note: Register value is initialized on initvals
 | |
| 	 * there is no feedback from hw.
 | |
| 	 * XXX: What about pd_gain_overlap from EEPROM ? */
 | |
| 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
 | |
| 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
 | |
| 
 | |
| 	/* Create final PDADC table */
 | |
| 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
 | |
| 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
 | |
| 
 | |
| 		if (pdg == pdcurves - 1)
 | |
| 			/* 2 dB boundary stretch for last
 | |
| 			 * (higher power) curve */
 | |
| 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
 | |
| 		else
 | |
| 			/* Set gain boundary in the middle
 | |
| 			 * between this curve and the next one */
 | |
| 			gain_boundaries[pdg] =
 | |
| 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
 | |
| 
 | |
| 		/* Sanity check in case our 2 db stretch got out of
 | |
| 		 * range. */
 | |
| 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
 | |
| 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
 | |
| 
 | |
| 		/* For the first curve (lower power)
 | |
| 		 * start from 0 dB */
 | |
| 		if (pdg == 0)
 | |
| 			pdadc_0 = 0;
 | |
| 		else
 | |
| 			/* For the other curves use the gain overlap */
 | |
| 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
 | |
| 							pd_gain_overlap;
 | |
| 
 | |
| 		/* Force each power step to be at least 0.5 dB */
 | |
| 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
 | |
| 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
 | |
| 		else
 | |
| 			pwr_step = 1;
 | |
| 
 | |
| 		/* If pdadc_0 is negative, we need to extrapolate
 | |
| 		 * below this pdgain by a number of pwr_steps */
 | |
| 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
 | |
| 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
 | |
| 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
 | |
| 			pdadc_0++;
 | |
| 		}
 | |
| 
 | |
| 		/* Set last pwr level, using gain boundaries */
 | |
| 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
 | |
| 		/* Limit it to be inside pwr range */
 | |
| 		table_size = pwr_max[pdg] - pwr_min[pdg];
 | |
| 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
 | |
| 
 | |
| 		/* Fill pdadc_out table */
 | |
| 		while (pdadc_0 < max_idx && pdadc_i < 128)
 | |
| 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
 | |
| 
 | |
| 		/* Need to extrapolate above this pdgain? */
 | |
| 		if (pdadc_n <= max_idx)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Force each power step to be at least 0.5 dB */
 | |
| 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
 | |
| 			pwr_step = pdadc_tmp[table_size - 1] -
 | |
| 						pdadc_tmp[table_size - 2];
 | |
| 		else
 | |
| 			pwr_step = 1;
 | |
| 
 | |
| 		/* Extrapolate above */
 | |
| 		while ((pdadc_0 < (s16) pdadc_n) &&
 | |
| 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
 | |
| 			s16 tmp = pdadc_tmp[table_size - 1] +
 | |
| 					(pdadc_0 - max_idx) * pwr_step;
 | |
| 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
 | |
| 			pdadc_0++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
 | |
| 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
 | |
| 		pdg++;
 | |
| 	}
 | |
| 
 | |
| 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
 | |
| 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
 | |
| 		pdadc_i++;
 | |
| 	}
 | |
| 
 | |
| 	/* Set gain boundaries */
 | |
| 	ath5k_hw_reg_write(ah,
 | |
| 		AR5K_REG_SM(pd_gain_overlap,
 | |
| 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
 | |
| 		AR5K_REG_SM(gain_boundaries[0],
 | |
| 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
 | |
| 		AR5K_REG_SM(gain_boundaries[1],
 | |
| 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
 | |
| 		AR5K_REG_SM(gain_boundaries[2],
 | |
| 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
 | |
| 		AR5K_REG_SM(gain_boundaries[3],
 | |
| 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
 | |
| 		AR5K_PHY_TPC_RG5);
 | |
| 
 | |
| 	/* Used for setting rate power table */
 | |
| 	ah->ah_txpower.txp_min_idx = pwr_min[0];
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Write PDADC values on hw */
 | |
| static void
 | |
| ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
 | |
| {
 | |
| 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 | |
| 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
 | |
| 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
 | |
| 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
 | |
| 	u32 reg;
 | |
| 	u8 i;
 | |
| 
 | |
| 	/* Select the right pdgain curves */
 | |
| 
 | |
| 	/* Clear current settings */
 | |
| 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
 | |
| 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
 | |
| 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
 | |
| 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
 | |
| 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
 | |
| 
 | |
| 	/*
 | |
| 	 * Use pd_gains curve from eeprom
 | |
| 	 *
 | |
| 	 * This overrides the default setting from initvals
 | |
| 	 * in case some vendors (e.g. Zcomax) don't use the default
 | |
| 	 * curves. If we don't honor their settings we 'll get a
 | |
| 	 * 5dB (1 * gain overlap ?) drop.
 | |
| 	 */
 | |
| 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
 | |
| 
 | |
| 	switch (pdcurves) {
 | |
| 	case 3:
 | |
| 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
 | |
| 		/* Fall through */
 | |
| 	case 2:
 | |
| 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
 | |
| 		/* Fall through */
 | |
| 	case 1:
 | |
| 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
 | |
| 		break;
 | |
| 	}
 | |
| 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write TX power values
 | |
| 	 */
 | |
| 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
 | |
| 		ath5k_hw_reg_write(ah,
 | |
| 			((pdadc_out[4*i + 0] & 0xff) << 0) |
 | |
| 			((pdadc_out[4*i + 1] & 0xff) << 8) |
 | |
| 			((pdadc_out[4*i + 2] & 0xff) << 16) |
 | |
| 			((pdadc_out[4*i + 3] & 0xff) << 24),
 | |
| 			AR5K_PHY_PDADC_TXPOWER(i));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Common code for PCDAC/PDADC tables
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This is the main function that uses all of the above
 | |
|  * to set PCDAC/PDADC table on hw for the current channel.
 | |
|  * This table is used for tx power calibration on the basband,
 | |
|  * without it we get weird tx power levels and in some cases
 | |
|  * distorted spectral mask
 | |
|  */
 | |
| static int
 | |
| ath5k_setup_channel_powertable(struct ath5k_hw *ah,
 | |
| 			struct ieee80211_channel *channel,
 | |
| 			u8 ee_mode, u8 type)
 | |
| {
 | |
| 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
 | |
| 	struct ath5k_chan_pcal_info *pcinfo_L;
 | |
| 	struct ath5k_chan_pcal_info *pcinfo_R;
 | |
| 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 | |
| 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
 | |
| 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
 | |
| 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
 | |
| 	u8 *tmpL;
 | |
| 	u8 *tmpR;
 | |
| 	u32 target = channel->center_freq;
 | |
| 	int pdg, i;
 | |
| 
 | |
| 	/* Get surounding freq piers for this channel */
 | |
| 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
 | |
| 						&pcinfo_L,
 | |
| 						&pcinfo_R);
 | |
| 
 | |
| 	/* Loop over pd gain curves on
 | |
| 	 * surounding freq piers by index */
 | |
| 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
 | |
| 
 | |
| 		/* Fill curves in reverse order
 | |
| 		 * from lower power (max gain)
 | |
| 		 * to higher power. Use curve -> idx
 | |
| 		 * backmapping we did on eeprom init */
 | |
| 		u8 idx = pdg_curve_to_idx[pdg];
 | |
| 
 | |
| 		/* Grab the needed curves by index */
 | |
| 		pdg_L = &pcinfo_L->pd_curves[idx];
 | |
| 		pdg_R = &pcinfo_R->pd_curves[idx];
 | |
| 
 | |
| 		/* Initialize the temp tables */
 | |
| 		tmpL = ah->ah_txpower.tmpL[pdg];
 | |
| 		tmpR = ah->ah_txpower.tmpR[pdg];
 | |
| 
 | |
| 		/* Set curve's x boundaries and create
 | |
| 		 * curves so that they cover the same
 | |
| 		 * range (if we don't do that one table
 | |
| 		 * will have values on some range and the
 | |
| 		 * other one won't have any so interpolation
 | |
| 		 * will fail) */
 | |
| 		table_min[pdg] = min(pdg_L->pd_pwr[0],
 | |
| 					pdg_R->pd_pwr[0]) / 2;
 | |
| 
 | |
| 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
 | |
| 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
 | |
| 
 | |
| 		/* Now create the curves on surrounding channels
 | |
| 		 * and interpolate if needed to get the final
 | |
| 		 * curve for this gain on this channel */
 | |
| 		switch (type) {
 | |
| 		case AR5K_PWRTABLE_LINEAR_PCDAC:
 | |
| 			/* Override min/max so that we don't loose
 | |
| 			 * accuracy (don't divide by 2) */
 | |
| 			table_min[pdg] = min(pdg_L->pd_pwr[0],
 | |
| 						pdg_R->pd_pwr[0]);
 | |
| 
 | |
| 			table_max[pdg] =
 | |
| 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
 | |
| 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
 | |
| 
 | |
| 			/* Override minimum so that we don't get
 | |
| 			 * out of bounds while extrapolating
 | |
| 			 * below. Don't do this when we have 2
 | |
| 			 * curves and we are on the high power curve
 | |
| 			 * because table_min is ok in this case */
 | |
| 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
 | |
| 
 | |
| 				table_min[pdg] =
 | |
| 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
 | |
| 								pdg_R->pd_step,
 | |
| 								pdg_L->pd_pwr,
 | |
| 								pdg_R->pd_pwr);
 | |
| 
 | |
| 				/* Don't go too low because we will
 | |
| 				 * miss the upper part of the curve.
 | |
| 				 * Note: 126 = 31.5dB (max power supported)
 | |
| 				 * in 0.25dB units */
 | |
| 				if (table_max[pdg] - table_min[pdg] > 126)
 | |
| 					table_min[pdg] = table_max[pdg] - 126;
 | |
| 			}
 | |
| 
 | |
| 			/* Fall through */
 | |
| 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
 | |
| 		case AR5K_PWRTABLE_PWR_TO_PDADC:
 | |
| 
 | |
| 			ath5k_create_power_curve(table_min[pdg],
 | |
| 						table_max[pdg],
 | |
| 						pdg_L->pd_pwr,
 | |
| 						pdg_L->pd_step,
 | |
| 						pdg_L->pd_points, tmpL, type);
 | |
| 
 | |
| 			/* We are in a calibration
 | |
| 			 * pier, no need to interpolate
 | |
| 			 * between freq piers */
 | |
| 			if (pcinfo_L == pcinfo_R)
 | |
| 				continue;
 | |
| 
 | |
| 			ath5k_create_power_curve(table_min[pdg],
 | |
| 						table_max[pdg],
 | |
| 						pdg_R->pd_pwr,
 | |
| 						pdg_R->pd_step,
 | |
| 						pdg_R->pd_points, tmpR, type);
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* Interpolate between curves
 | |
| 		 * of surounding freq piers to
 | |
| 		 * get the final curve for this
 | |
| 		 * pd gain. Re-use tmpL for interpolation
 | |
| 		 * output */
 | |
| 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
 | |
| 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
 | |
| 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
 | |
| 							(s16) pcinfo_L->freq,
 | |
| 							(s16) pcinfo_R->freq,
 | |
| 							(s16) tmpL[i],
 | |
| 							(s16) tmpR[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Now we have a set of curves for this
 | |
| 	 * channel on tmpL (x range is table_max - table_min
 | |
| 	 * and y values are tmpL[pdg][]) sorted in the same
 | |
| 	 * order as EEPROM (because we've used the backmapping).
 | |
| 	 * So for RF5112 it's from higher power to lower power
 | |
| 	 * and for RF2413 it's from lower power to higher power.
 | |
| 	 * For RF5111 we only have one curve. */
 | |
| 
 | |
| 	/* Fill min and max power levels for this
 | |
| 	 * channel by interpolating the values on
 | |
| 	 * surounding channels to complete the dataset */
 | |
| 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
 | |
| 					(s16) pcinfo_L->freq,
 | |
| 					(s16) pcinfo_R->freq,
 | |
| 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
 | |
| 
 | |
| 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
 | |
| 					(s16) pcinfo_L->freq,
 | |
| 					(s16) pcinfo_R->freq,
 | |
| 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
 | |
| 
 | |
| 	/* Fill PCDAC/PDADC table */
 | |
| 	switch (type) {
 | |
| 	case AR5K_PWRTABLE_LINEAR_PCDAC:
 | |
| 		/* For RF5112 we can have one or two curves
 | |
| 		 * and each curve covers a certain power lvl
 | |
| 		 * range so we need to do some more processing */
 | |
| 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
 | |
| 						ee->ee_pd_gains[ee_mode]);
 | |
| 
 | |
| 		/* Set txp.offset so that we can
 | |
| 		 * match max power value with max
 | |
| 		 * table index */
 | |
| 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
 | |
| 		break;
 | |
| 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
 | |
| 		/* We are done for RF5111 since it has only
 | |
| 		 * one curve, just fit the curve on the table */
 | |
| 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
 | |
| 
 | |
| 		/* No rate powertable adjustment for RF5111 */
 | |
| 		ah->ah_txpower.txp_min_idx = 0;
 | |
| 		ah->ah_txpower.txp_offset = 0;
 | |
| 		break;
 | |
| 	case AR5K_PWRTABLE_PWR_TO_PDADC:
 | |
| 		/* Set PDADC boundaries and fill
 | |
| 		 * final PDADC table */
 | |
| 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
 | |
| 						ee->ee_pd_gains[ee_mode]);
 | |
| 
 | |
| 		/* Set txp.offset, note that table_min
 | |
| 		 * can be negative */
 | |
| 		ah->ah_txpower.txp_offset = table_min[0];
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ah->ah_txpower.txp_setup = true;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Write power table for current channel to hw */
 | |
| static void
 | |
| ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
 | |
| {
 | |
| 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
 | |
| 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
 | |
| 	else
 | |
| 		ath5k_write_pcdac_table(ah);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Per-rate tx power setting
 | |
|  *
 | |
|  * This is the code that sets the desired tx power (below
 | |
|  * maximum) on hw for each rate (we also have TPC that sets
 | |
|  * power per packet). We do that by providing an index on the
 | |
|  * PCDAC/PDADC table we set up.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Set rate power table
 | |
|  *
 | |
|  * For now we only limit txpower based on maximum tx power
 | |
|  * supported by hw (what's inside rate_info). We need to limit
 | |
|  * this even more, based on regulatory domain etc.
 | |
|  *
 | |
|  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
 | |
|  * and is indexed as follows:
 | |
|  * rates[0] - rates[7] -> OFDM rates
 | |
|  * rates[8] - rates[14] -> CCK rates
 | |
|  * rates[15] -> XR rates (they all have the same power)
 | |
|  */
 | |
| static void
 | |
| ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
 | |
| 			struct ath5k_rate_pcal_info *rate_info,
 | |
| 			u8 ee_mode)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u16 *rates;
 | |
| 
 | |
| 	/* max_pwr is power level we got from driver/user in 0.5dB
 | |
| 	 * units, switch to 0.25dB units so we can compare */
 | |
| 	max_pwr *= 2;
 | |
| 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
 | |
| 
 | |
| 	/* apply rate limits */
 | |
| 	rates = ah->ah_txpower.txp_rates_power_table;
 | |
| 
 | |
| 	/* OFDM rates 6 to 24Mb/s */
 | |
| 	for (i = 0; i < 5; i++)
 | |
| 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
 | |
| 
 | |
| 	/* Rest OFDM rates */
 | |
| 	rates[5] = min(rates[0], rate_info->target_power_36);
 | |
| 	rates[6] = min(rates[0], rate_info->target_power_48);
 | |
| 	rates[7] = min(rates[0], rate_info->target_power_54);
 | |
| 
 | |
| 	/* CCK rates */
 | |
| 	/* 1L */
 | |
| 	rates[8] = min(rates[0], rate_info->target_power_6to24);
 | |
| 	/* 2L */
 | |
| 	rates[9] = min(rates[0], rate_info->target_power_36);
 | |
| 	/* 2S */
 | |
| 	rates[10] = min(rates[0], rate_info->target_power_36);
 | |
| 	/* 5L */
 | |
| 	rates[11] = min(rates[0], rate_info->target_power_48);
 | |
| 	/* 5S */
 | |
| 	rates[12] = min(rates[0], rate_info->target_power_48);
 | |
| 	/* 11L */
 | |
| 	rates[13] = min(rates[0], rate_info->target_power_54);
 | |
| 	/* 11S */
 | |
| 	rates[14] = min(rates[0], rate_info->target_power_54);
 | |
| 
 | |
| 	/* XR rates */
 | |
| 	rates[15] = min(rates[0], rate_info->target_power_6to24);
 | |
| 
 | |
| 	/* CCK rates have different peak to average ratio
 | |
| 	 * so we have to tweak their power so that gainf
 | |
| 	 * correction works ok. For this we use OFDM to
 | |
| 	 * CCK delta from eeprom */
 | |
| 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
 | |
| 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
 | |
| 		for (i = 8; i <= 15; i++)
 | |
| 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
 | |
| 
 | |
| 	/* Now that we have all rates setup use table offset to
 | |
| 	 * match the power range set by user with the power indices
 | |
| 	 * on PCDAC/PDADC table */
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		rates[i] += ah->ah_txpower.txp_offset;
 | |
| 		/* Don't get out of bounds */
 | |
| 		if (rates[i] > 63)
 | |
| 			rates[i] = 63;
 | |
| 	}
 | |
| 
 | |
| 	/* Min/max in 0.25dB units */
 | |
| 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
 | |
| 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
 | |
| 	ah->ah_txpower.txp_ofdm = rates[7];
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Set transmission power
 | |
|  */
 | |
| static int
 | |
| ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
 | |
| 		 u8 txpower)
 | |
| {
 | |
| 	struct ath5k_rate_pcal_info rate_info;
 | |
| 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
 | |
| 	int ee_mode;
 | |
| 	u8 type;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
 | |
| 		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
 | |
| 	if (ee_mode < 0) {
 | |
| 		ATH5K_ERR(ah->ah_sc,
 | |
| 			"invalid channel: %d\n", channel->center_freq);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize TX power table */
 | |
| 	switch (ah->ah_radio) {
 | |
| 	case AR5K_RF5110:
 | |
| 		/* TODO */
 | |
| 		return 0;
 | |
| 	case AR5K_RF5111:
 | |
| 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
 | |
| 		break;
 | |
| 	case AR5K_RF5112:
 | |
| 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
 | |
| 		break;
 | |
| 	case AR5K_RF2413:
 | |
| 	case AR5K_RF5413:
 | |
| 	case AR5K_RF2316:
 | |
| 	case AR5K_RF2317:
 | |
| 	case AR5K_RF2425:
 | |
| 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we don't change channel/mode skip tx powertable calculation
 | |
| 	 * and use the cached one.
 | |
| 	 */
 | |
| 	if (!ah->ah_txpower.txp_setup ||
 | |
| 	    (channel->hw_value != curr_channel->hw_value) ||
 | |
| 	    (channel->center_freq != curr_channel->center_freq)) {
 | |
| 		/* Reset TX power values */
 | |
| 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
 | |
| 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
 | |
| 
 | |
| 		/* Calculate the powertable */
 | |
| 		ret = ath5k_setup_channel_powertable(ah, channel,
 | |
| 							ee_mode, type);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Write table on hw */
 | |
| 	ath5k_write_channel_powertable(ah, ee_mode, type);
 | |
| 
 | |
| 	/* Limit max power if we have a CTL available */
 | |
| 	ath5k_get_max_ctl_power(ah, channel);
 | |
| 
 | |
| 	/* FIXME: Antenna reduction stuff */
 | |
| 
 | |
| 	/* FIXME: Limit power on turbo modes */
 | |
| 
 | |
| 	/* FIXME: TPC scale reduction */
 | |
| 
 | |
| 	/* Get surounding channels for per-rate power table
 | |
| 	 * calibration */
 | |
| 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
 | |
| 
 | |
| 	/* Setup rate power table */
 | |
| 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
 | |
| 
 | |
| 	/* Write rate power table on hw */
 | |
| 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
 | |
| 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
 | |
| 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
 | |
| 
 | |
| 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
 | |
| 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
 | |
| 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
 | |
| 
 | |
| 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
 | |
| 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
 | |
| 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
 | |
| 
 | |
| 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
 | |
| 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
 | |
| 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
 | |
| 
 | |
| 	/* FIXME: TPC support */
 | |
| 	if (ah->ah_txpower.txp_tpc) {
 | |
| 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
 | |
| 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
 | |
| 
 | |
| 		ath5k_hw_reg_write(ah,
 | |
| 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
 | |
| 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
 | |
| 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
 | |
| 			AR5K_TPC);
 | |
| 	} else {
 | |
| 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
 | |
| 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
 | |
| {
 | |
| 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
 | |
| 		"changing txpower to %d\n", txpower);
 | |
| 
 | |
| 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
 | |
| }
 | |
| 
 | |
| /*************\
 | |
|  Init function
 | |
| \*************/
 | |
| 
 | |
| int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
 | |
| 		      u8 mode, bool fast)
 | |
| {
 | |
| 	struct ieee80211_channel *curr_channel;
 | |
| 	int ret, i;
 | |
| 	u32 phy_tst1;
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity check for fast flag
 | |
| 	 * Don't try fast channel change when changing modulation
 | |
| 	 * mode/band. We check for chip compatibility on
 | |
| 	 * ath5k_hw_reset.
 | |
| 	 */
 | |
| 	curr_channel = ah->ah_current_channel;
 | |
| 	if (fast && (channel->hw_value != curr_channel->hw_value))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * On fast channel change we only set the synth parameters
 | |
| 	 * while PHY is running, enable calibration and skip the rest.
 | |
| 	 */
 | |
| 	if (fast) {
 | |
| 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
 | |
| 				    AR5K_PHY_RFBUS_REQ_REQUEST);
 | |
| 		for (i = 0; i < 100; i++) {
 | |
| 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
 | |
| 				break;
 | |
| 			udelay(5);
 | |
| 		}
 | |
| 		/* Failed */
 | |
| 		if (i >= 100)
 | |
| 			return -EIO;
 | |
| 
 | |
| 		/* Set channel and wait for synth */
 | |
| 		ret = ath5k_hw_channel(ah, channel);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ath5k_hw_wait_for_synth(ah, channel);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set TX power
 | |
| 	 *
 | |
| 	 * Note: We need to do that before we set
 | |
| 	 * RF buffer settings on 5211/5212+ so that we
 | |
| 	 * properly set curve indices.
 | |
| 	 */
 | |
| 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
 | |
| 			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Write OFDM timings on 5212*/
 | |
| 	if (ah->ah_version == AR5K_AR5212 &&
 | |
| 		channel->hw_value & CHANNEL_OFDM) {
 | |
| 
 | |
| 		ret = ath5k_hw_write_ofdm_timings(ah, channel);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/* Spur info is available only from EEPROM versions
 | |
| 		 * greater than 5.3, but the EEPROM routines will use
 | |
| 		 * static values for older versions */
 | |
| 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
 | |
| 			ath5k_hw_set_spur_mitigation_filter(ah,
 | |
| 							    channel);
 | |
| 	}
 | |
| 
 | |
| 	/* If we used fast channel switching
 | |
| 	 * we are done, release RF bus and
 | |
| 	 * fire up NF calibration.
 | |
| 	 *
 | |
| 	 * Note: Only NF calibration due to
 | |
| 	 * channel change, not AGC calibration
 | |
| 	 * since AGC is still running !
 | |
| 	 */
 | |
| 	if (fast) {
 | |
| 		/*
 | |
| 		 * Release RF Bus grant
 | |
| 		 */
 | |
| 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
 | |
| 				    AR5K_PHY_RFBUS_REQ_REQUEST);
 | |
| 
 | |
| 		/*
 | |
| 		 * Start NF calibration
 | |
| 		 */
 | |
| 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
 | |
| 					AR5K_PHY_AGCCTL_NF);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For 5210 we do all initialization using
 | |
| 	 * initvals, so we don't have to modify
 | |
| 	 * any settings (5210 also only supports
 | |
| 	 * a/aturbo modes)
 | |
| 	 */
 | |
| 	if (ah->ah_version != AR5K_AR5210) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Write initial RF gain settings
 | |
| 		 * This should work for both 5111/5112
 | |
| 		 */
 | |
| 		ret = ath5k_hw_rfgain_init(ah, channel->band);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		mdelay(1);
 | |
| 
 | |
| 		/*
 | |
| 		 * Write RF buffer
 | |
| 		 */
 | |
| 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*Enable/disable 802.11b mode on 5111
 | |
| 		(enable 2111 frequency converter + CCK)*/
 | |
| 		if (ah->ah_radio == AR5K_RF5111) {
 | |
| 			if (mode == AR5K_MODE_11B)
 | |
| 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
 | |
| 				    AR5K_TXCFG_B_MODE);
 | |
| 			else
 | |
| 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
 | |
| 				    AR5K_TXCFG_B_MODE);
 | |
| 		}
 | |
| 
 | |
| 	} else if (ah->ah_version == AR5K_AR5210) {
 | |
| 		mdelay(1);
 | |
| 		/* Disable phy and wait */
 | |
| 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 | |
| 		mdelay(1);
 | |
| 	}
 | |
| 
 | |
| 	/* Set channel on PHY */
 | |
| 	ret = ath5k_hw_channel(ah, channel);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable the PHY and wait until completion
 | |
| 	 * This includes BaseBand and Synthesizer
 | |
| 	 * activation.
 | |
| 	 */
 | |
| 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
 | |
| 
 | |
| 	ath5k_hw_wait_for_synth(ah, channel);
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform ADC test to see if baseband is ready
 | |
| 	 * Set tx hold and check adc test register
 | |
| 	 */
 | |
| 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
 | |
| 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
 | |
| 	for (i = 0; i <= 20; i++) {
 | |
| 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
 | |
| 			break;
 | |
| 		udelay(200);
 | |
| 	}
 | |
| 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Start automatic gain control calibration
 | |
| 	 *
 | |
| 	 * During AGC calibration RX path is re-routed to
 | |
| 	 * a power detector so we don't receive anything.
 | |
| 	 *
 | |
| 	 * This method is used to calibrate some static offsets
 | |
| 	 * used together with on-the fly I/Q calibration (the
 | |
| 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
 | |
| 	 * interrupt rx path.
 | |
| 	 *
 | |
| 	 * While rx path is re-routed to the power detector we also
 | |
| 	 * start a noise floor calibration to measure the
 | |
| 	 * card's noise floor (the noise we measure when we are not
 | |
| 	 * transmitting or receiving anything).
 | |
| 	 *
 | |
| 	 * If we are in a noisy environment, AGC calibration may time
 | |
| 	 * out and/or noise floor calibration might timeout.
 | |
| 	 */
 | |
| 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
 | |
| 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
 | |
| 
 | |
| 	/* At the same time start I/Q calibration for QAM constellation
 | |
| 	 * -no need for CCK- */
 | |
| 	ah->ah_calibration = false;
 | |
| 	if (!(mode == AR5K_MODE_11B)) {
 | |
| 		ah->ah_calibration = true;
 | |
| 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
 | |
| 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
 | |
| 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
 | |
| 				AR5K_PHY_IQ_RUN);
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for gain calibration to finish (we check for I/Q calibration
 | |
| 	 * during ath5k_phy_calibrate) */
 | |
| 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
 | |
| 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
 | |
| 		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
 | |
| 			channel->center_freq);
 | |
| 	}
 | |
| 
 | |
| 	/* Restore antenna mode */
 | |
| 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | 
