 cdf64c803e
			
		
	
	
	cdf64c803e
	
	
	
		
			
			The API for network devices has changed so that setting carrier off at probe is no longer required. This should fix the IPv6 addrconf issue. Addresses https://bugzilla.kernel.org/show_bug.cgi?id=29612 Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Reported-by: George Billios <gbillios@gmail.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			4160 lines
		
	
	
	
		
			106 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4160 lines
		
	
	
	
		
			106 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
 | |
|  * Ethernet adapters. Based on earlier sk98lin, e100 and
 | |
|  * FreeBSD if_sk drivers.
 | |
|  *
 | |
|  * This driver intentionally does not support all the features
 | |
|  * of the original driver such as link fail-over and link management because
 | |
|  * those should be done at higher levels.
 | |
|  *
 | |
|  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/in.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <asm/irq.h>
 | |
| 
 | |
| #include "skge.h"
 | |
| 
 | |
| #define DRV_NAME		"skge"
 | |
| #define DRV_VERSION		"1.13"
 | |
| 
 | |
| #define DEFAULT_TX_RING_SIZE	128
 | |
| #define DEFAULT_RX_RING_SIZE	512
 | |
| #define MAX_TX_RING_SIZE	1024
 | |
| #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
 | |
| #define MAX_RX_RING_SIZE	4096
 | |
| #define RX_COPY_THRESHOLD	128
 | |
| #define RX_BUF_SIZE		1536
 | |
| #define PHY_RETRIES	        1000
 | |
| #define ETH_JUMBO_MTU		9000
 | |
| #define TX_WATCHDOG		(5 * HZ)
 | |
| #define NAPI_WEIGHT		64
 | |
| #define BLINK_MS		250
 | |
| #define LINK_HZ			HZ
 | |
| 
 | |
| #define SKGE_EEPROM_MAGIC	0x9933aabb
 | |
| 
 | |
| 
 | |
| MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
 | |
| MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| 
 | |
| static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 | |
| 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
 | |
| 				NETIF_MSG_IFDOWN);
 | |
| 
 | |
| static int debug = -1;	/* defaults above */
 | |
| module_param(debug, int, 0);
 | |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 | |
| 
 | |
| static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	/* DGE-530T */
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
 | |
| 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
 | |
| 	{ 0 }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pci, skge_id_table);
 | |
| 
 | |
| static int skge_up(struct net_device *dev);
 | |
| static int skge_down(struct net_device *dev);
 | |
| static void skge_phy_reset(struct skge_port *skge);
 | |
| static void skge_tx_clean(struct net_device *dev);
 | |
| static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 | |
| static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 | |
| static void genesis_get_stats(struct skge_port *skge, u64 *data);
 | |
| static void yukon_get_stats(struct skge_port *skge, u64 *data);
 | |
| static void yukon_init(struct skge_hw *hw, int port);
 | |
| static void genesis_mac_init(struct skge_hw *hw, int port);
 | |
| static void genesis_link_up(struct skge_port *skge);
 | |
| static void skge_set_multicast(struct net_device *dev);
 | |
| 
 | |
| /* Avoid conditionals by using array */
 | |
| static const int txqaddr[] = { Q_XA1, Q_XA2 };
 | |
| static const int rxqaddr[] = { Q_R1, Q_R2 };
 | |
| static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 | |
| static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 | |
| static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 | |
| static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 | |
| 
 | |
| static int skge_get_regs_len(struct net_device *dev)
 | |
| {
 | |
| 	return 0x4000;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns copy of whole control register region
 | |
|  * Note: skip RAM address register because accessing it will
 | |
|  * 	 cause bus hangs!
 | |
|  */
 | |
| static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 | |
| 			  void *p)
 | |
| {
 | |
| 	const struct skge_port *skge = netdev_priv(dev);
 | |
| 	const void __iomem *io = skge->hw->regs;
 | |
| 
 | |
| 	regs->version = 1;
 | |
| 	memset(p, 0, regs->len);
 | |
| 	memcpy_fromio(p, io, B3_RAM_ADDR);
 | |
| 
 | |
| 	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 | |
| 		      regs->len - B3_RI_WTO_R1);
 | |
| }
 | |
| 
 | |
| /* Wake on Lan only supported on Yukon chips with rev 1 or above */
 | |
| static u32 wol_supported(const struct skge_hw *hw)
 | |
| {
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return WAKE_MAGIC | WAKE_PHY;
 | |
| }
 | |
| 
 | |
| static void skge_wol_init(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	u16 ctrl;
 | |
| 
 | |
| 	skge_write16(hw, B0_CTST, CS_RST_CLR);
 | |
| 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 | |
| 
 | |
| 	/* Turn on Vaux */
 | |
| 	skge_write8(hw, B0_POWER_CTRL,
 | |
| 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 | |
| 
 | |
| 	/* WA code for COMA mode -- clear PHY reset */
 | |
| 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 | |
| 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 | |
| 		u32 reg = skge_read32(hw, B2_GP_IO);
 | |
| 		reg |= GP_DIR_9;
 | |
| 		reg &= ~GP_IO_9;
 | |
| 		skge_write32(hw, B2_GP_IO, reg);
 | |
| 	}
 | |
| 
 | |
| 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
 | |
| 		     GPC_DIS_SLEEP |
 | |
| 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 | |
| 		     GPC_ANEG_1 | GPC_RST_SET);
 | |
| 
 | |
| 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
 | |
| 		     GPC_DIS_SLEEP |
 | |
| 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 | |
| 		     GPC_ANEG_1 | GPC_RST_CLR);
 | |
| 
 | |
| 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 | |
| 
 | |
| 	/* Force to 10/100 skge_reset will re-enable on resume	 */
 | |
| 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 | |
| 		     (PHY_AN_100FULL | PHY_AN_100HALF |
 | |
| 		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 | |
| 	/* no 1000 HD/FD */
 | |
| 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 | |
| 	gm_phy_write(hw, port, PHY_MARV_CTRL,
 | |
| 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 | |
| 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 | |
| 
 | |
| 
 | |
| 	/* Set GMAC to no flow control and auto update for speed/duplex */
 | |
| 	gma_write16(hw, port, GM_GP_CTRL,
 | |
| 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 | |
| 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 | |
| 
 | |
| 	/* Set WOL address */
 | |
| 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 | |
| 		    skge->netdev->dev_addr, ETH_ALEN);
 | |
| 
 | |
| 	/* Turn on appropriate WOL control bits */
 | |
| 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 | |
| 	ctrl = 0;
 | |
| 	if (skge->wol & WAKE_PHY)
 | |
| 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 | |
| 	else
 | |
| 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 | |
| 
 | |
| 	if (skge->wol & WAKE_MAGIC)
 | |
| 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 | |
| 	else
 | |
| 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 | |
| 
 | |
| 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 | |
| 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 | |
| 
 | |
| 	/* block receiver */
 | |
| 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 | |
| }
 | |
| 
 | |
| static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	wol->supported = wol_supported(skge->hw);
 | |
| 	wol->wolopts = skge->wol;
 | |
| }
 | |
| 
 | |
| static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 
 | |
| 	if ((wol->wolopts & ~wol_supported(hw)) ||
 | |
| 	    !device_can_wakeup(&hw->pdev->dev))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	skge->wol = wol->wolopts;
 | |
| 
 | |
| 	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Determine supported/advertised modes based on hardware.
 | |
|  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 | |
|  */
 | |
| static u32 skge_supported_modes(const struct skge_hw *hw)
 | |
| {
 | |
| 	u32 supported;
 | |
| 
 | |
| 	if (hw->copper) {
 | |
| 		supported = (SUPPORTED_10baseT_Half |
 | |
| 			     SUPPORTED_10baseT_Full |
 | |
| 			     SUPPORTED_100baseT_Half |
 | |
| 			     SUPPORTED_100baseT_Full |
 | |
| 			     SUPPORTED_1000baseT_Half |
 | |
| 			     SUPPORTED_1000baseT_Full |
 | |
| 			     SUPPORTED_Autoneg |
 | |
| 			     SUPPORTED_TP);
 | |
| 
 | |
| 		if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 			supported &= ~(SUPPORTED_10baseT_Half |
 | |
| 				       SUPPORTED_10baseT_Full |
 | |
| 				       SUPPORTED_100baseT_Half |
 | |
| 				       SUPPORTED_100baseT_Full);
 | |
| 
 | |
| 		else if (hw->chip_id == CHIP_ID_YUKON)
 | |
| 			supported &= ~SUPPORTED_1000baseT_Half;
 | |
| 	} else
 | |
| 		supported = (SUPPORTED_1000baseT_Full |
 | |
| 			     SUPPORTED_1000baseT_Half |
 | |
| 			     SUPPORTED_FIBRE |
 | |
| 			     SUPPORTED_Autoneg);
 | |
| 
 | |
| 	return supported;
 | |
| }
 | |
| 
 | |
| static int skge_get_settings(struct net_device *dev,
 | |
| 			     struct ethtool_cmd *ecmd)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 
 | |
| 	ecmd->transceiver = XCVR_INTERNAL;
 | |
| 	ecmd->supported = skge_supported_modes(hw);
 | |
| 
 | |
| 	if (hw->copper) {
 | |
| 		ecmd->port = PORT_TP;
 | |
| 		ecmd->phy_address = hw->phy_addr;
 | |
| 	} else
 | |
| 		ecmd->port = PORT_FIBRE;
 | |
| 
 | |
| 	ecmd->advertising = skge->advertising;
 | |
| 	ecmd->autoneg = skge->autoneg;
 | |
| 	ecmd->speed = skge->speed;
 | |
| 	ecmd->duplex = skge->duplex;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	const struct skge_hw *hw = skge->hw;
 | |
| 	u32 supported = skge_supported_modes(hw);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (ecmd->autoneg == AUTONEG_ENABLE) {
 | |
| 		ecmd->advertising = supported;
 | |
| 		skge->duplex = -1;
 | |
| 		skge->speed = -1;
 | |
| 	} else {
 | |
| 		u32 setting;
 | |
| 
 | |
| 		switch (ecmd->speed) {
 | |
| 		case SPEED_1000:
 | |
| 			if (ecmd->duplex == DUPLEX_FULL)
 | |
| 				setting = SUPPORTED_1000baseT_Full;
 | |
| 			else if (ecmd->duplex == DUPLEX_HALF)
 | |
| 				setting = SUPPORTED_1000baseT_Half;
 | |
| 			else
 | |
| 				return -EINVAL;
 | |
| 			break;
 | |
| 		case SPEED_100:
 | |
| 			if (ecmd->duplex == DUPLEX_FULL)
 | |
| 				setting = SUPPORTED_100baseT_Full;
 | |
| 			else if (ecmd->duplex == DUPLEX_HALF)
 | |
| 				setting = SUPPORTED_100baseT_Half;
 | |
| 			else
 | |
| 				return -EINVAL;
 | |
| 			break;
 | |
| 
 | |
| 		case SPEED_10:
 | |
| 			if (ecmd->duplex == DUPLEX_FULL)
 | |
| 				setting = SUPPORTED_10baseT_Full;
 | |
| 			else if (ecmd->duplex == DUPLEX_HALF)
 | |
| 				setting = SUPPORTED_10baseT_Half;
 | |
| 			else
 | |
| 				return -EINVAL;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if ((setting & supported) == 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		skge->speed = ecmd->speed;
 | |
| 		skge->duplex = ecmd->duplex;
 | |
| 	}
 | |
| 
 | |
| 	skge->autoneg = ecmd->autoneg;
 | |
| 	skge->advertising = ecmd->advertising;
 | |
| 
 | |
| 	if (netif_running(dev)) {
 | |
| 		skge_down(dev);
 | |
| 		err = skge_up(dev);
 | |
| 		if (err) {
 | |
| 			dev_close(dev);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void skge_get_drvinfo(struct net_device *dev,
 | |
| 			     struct ethtool_drvinfo *info)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	strcpy(info->driver, DRV_NAME);
 | |
| 	strcpy(info->version, DRV_VERSION);
 | |
| 	strcpy(info->fw_version, "N/A");
 | |
| 	strcpy(info->bus_info, pci_name(skge->hw->pdev));
 | |
| }
 | |
| 
 | |
| static const struct skge_stat {
 | |
| 	char 	   name[ETH_GSTRING_LEN];
 | |
| 	u16	   xmac_offset;
 | |
| 	u16	   gma_offset;
 | |
| } skge_stats[] = {
 | |
| 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
 | |
| 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
 | |
| 
 | |
| 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
 | |
| 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
 | |
| 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
 | |
| 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
 | |
| 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
 | |
| 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
 | |
| 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 | |
| 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 | |
| 
 | |
| 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 | |
| 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 | |
| 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 | |
| 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 | |
| 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 | |
| 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 | |
| 
 | |
| 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 | |
| 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 | |
| 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
 | |
| 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 | |
| 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 | |
| };
 | |
| 
 | |
| static int skge_get_sset_count(struct net_device *dev, int sset)
 | |
| {
 | |
| 	switch (sset) {
 | |
| 	case ETH_SS_STATS:
 | |
| 		return ARRAY_SIZE(skge_stats);
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void skge_get_ethtool_stats(struct net_device *dev,
 | |
| 				   struct ethtool_stats *stats, u64 *data)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	if (skge->hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		genesis_get_stats(skge, data);
 | |
| 	else
 | |
| 		yukon_get_stats(skge, data);
 | |
| }
 | |
| 
 | |
| /* Use hardware MIB variables for critical path statistics and
 | |
|  * transmit feedback not reported at interrupt.
 | |
|  * Other errors are accounted for in interrupt handler.
 | |
|  */
 | |
| static struct net_device_stats *skge_get_stats(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	u64 data[ARRAY_SIZE(skge_stats)];
 | |
| 
 | |
| 	if (skge->hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		genesis_get_stats(skge, data);
 | |
| 	else
 | |
| 		yukon_get_stats(skge, data);
 | |
| 
 | |
| 	dev->stats.tx_bytes = data[0];
 | |
| 	dev->stats.rx_bytes = data[1];
 | |
| 	dev->stats.tx_packets = data[2] + data[4] + data[6];
 | |
| 	dev->stats.rx_packets = data[3] + data[5] + data[7];
 | |
| 	dev->stats.multicast = data[3] + data[5];
 | |
| 	dev->stats.collisions = data[10];
 | |
| 	dev->stats.tx_aborted_errors = data[12];
 | |
| 
 | |
| 	return &dev->stats;
 | |
| }
 | |
| 
 | |
| static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	switch (stringset) {
 | |
| 	case ETH_SS_STATS:
 | |
| 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 | |
| 			memcpy(data + i * ETH_GSTRING_LEN,
 | |
| 			       skge_stats[i].name, ETH_GSTRING_LEN);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void skge_get_ring_param(struct net_device *dev,
 | |
| 				struct ethtool_ringparam *p)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	p->rx_max_pending = MAX_RX_RING_SIZE;
 | |
| 	p->tx_max_pending = MAX_TX_RING_SIZE;
 | |
| 	p->rx_mini_max_pending = 0;
 | |
| 	p->rx_jumbo_max_pending = 0;
 | |
| 
 | |
| 	p->rx_pending = skge->rx_ring.count;
 | |
| 	p->tx_pending = skge->tx_ring.count;
 | |
| 	p->rx_mini_pending = 0;
 | |
| 	p->rx_jumbo_pending = 0;
 | |
| }
 | |
| 
 | |
| static int skge_set_ring_param(struct net_device *dev,
 | |
| 			       struct ethtool_ringparam *p)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 | |
| 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	skge->rx_ring.count = p->rx_pending;
 | |
| 	skge->tx_ring.count = p->tx_pending;
 | |
| 
 | |
| 	if (netif_running(dev)) {
 | |
| 		skge_down(dev);
 | |
| 		err = skge_up(dev);
 | |
| 		if (err)
 | |
| 			dev_close(dev);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static u32 skge_get_msglevel(struct net_device *netdev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(netdev);
 | |
| 	return skge->msg_enable;
 | |
| }
 | |
| 
 | |
| static void skge_set_msglevel(struct net_device *netdev, u32 value)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(netdev);
 | |
| 	skge->msg_enable = value;
 | |
| }
 | |
| 
 | |
| static int skge_nway_reset(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	skge_phy_reset(skge);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int skge_set_sg(struct net_device *dev, u32 data)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS && data)
 | |
| 		return -EOPNOTSUPP;
 | |
| 	return ethtool_op_set_sg(dev, data);
 | |
| }
 | |
| 
 | |
| static int skge_set_tx_csum(struct net_device *dev, u32 data)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS && data)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	return ethtool_op_set_tx_csum(dev, data);
 | |
| }
 | |
| 
 | |
| static u32 skge_get_rx_csum(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	return skge->rx_csum;
 | |
| }
 | |
| 
 | |
| /* Only Yukon supports checksum offload. */
 | |
| static int skge_set_rx_csum(struct net_device *dev, u32 data)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	skge->rx_csum = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void skge_get_pauseparam(struct net_device *dev,
 | |
| 				struct ethtool_pauseparam *ecmd)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 | |
| 			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 | |
| 	ecmd->tx_pause = (ecmd->rx_pause ||
 | |
| 			  (skge->flow_control == FLOW_MODE_LOC_SEND));
 | |
| 
 | |
| 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 | |
| }
 | |
| 
 | |
| static int skge_set_pauseparam(struct net_device *dev,
 | |
| 			       struct ethtool_pauseparam *ecmd)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct ethtool_pauseparam old;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	skge_get_pauseparam(dev, &old);
 | |
| 
 | |
| 	if (ecmd->autoneg != old.autoneg)
 | |
| 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 | |
| 	else {
 | |
| 		if (ecmd->rx_pause && ecmd->tx_pause)
 | |
| 			skge->flow_control = FLOW_MODE_SYMMETRIC;
 | |
| 		else if (ecmd->rx_pause && !ecmd->tx_pause)
 | |
| 			skge->flow_control = FLOW_MODE_SYM_OR_REM;
 | |
| 		else if (!ecmd->rx_pause && ecmd->tx_pause)
 | |
| 			skge->flow_control = FLOW_MODE_LOC_SEND;
 | |
| 		else
 | |
| 			skge->flow_control = FLOW_MODE_NONE;
 | |
| 	}
 | |
| 
 | |
| 	if (netif_running(dev)) {
 | |
| 		skge_down(dev);
 | |
| 		err = skge_up(dev);
 | |
| 		if (err) {
 | |
| 			dev_close(dev);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Chip internal frequency for clock calculations */
 | |
| static inline u32 hwkhz(const struct skge_hw *hw)
 | |
| {
 | |
| 	return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
 | |
| }
 | |
| 
 | |
| /* Chip HZ to microseconds */
 | |
| static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 | |
| {
 | |
| 	return (ticks * 1000) / hwkhz(hw);
 | |
| }
 | |
| 
 | |
| /* Microseconds to chip HZ */
 | |
| static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 | |
| {
 | |
| 	return hwkhz(hw) * usec / 1000;
 | |
| }
 | |
| 
 | |
| static int skge_get_coalesce(struct net_device *dev,
 | |
| 			     struct ethtool_coalesce *ecmd)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 
 | |
| 	ecmd->rx_coalesce_usecs = 0;
 | |
| 	ecmd->tx_coalesce_usecs = 0;
 | |
| 
 | |
| 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 | |
| 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 | |
| 		u32 msk = skge_read32(hw, B2_IRQM_MSK);
 | |
| 
 | |
| 		if (msk & rxirqmask[port])
 | |
| 			ecmd->rx_coalesce_usecs = delay;
 | |
| 		if (msk & txirqmask[port])
 | |
| 			ecmd->tx_coalesce_usecs = delay;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Note: interrupt timer is per board, but can turn on/off per port */
 | |
| static int skge_set_coalesce(struct net_device *dev,
 | |
| 			     struct ethtool_coalesce *ecmd)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	u32 msk = skge_read32(hw, B2_IRQM_MSK);
 | |
| 	u32 delay = 25;
 | |
| 
 | |
| 	if (ecmd->rx_coalesce_usecs == 0)
 | |
| 		msk &= ~rxirqmask[port];
 | |
| 	else if (ecmd->rx_coalesce_usecs < 25 ||
 | |
| 		 ecmd->rx_coalesce_usecs > 33333)
 | |
| 		return -EINVAL;
 | |
| 	else {
 | |
| 		msk |= rxirqmask[port];
 | |
| 		delay = ecmd->rx_coalesce_usecs;
 | |
| 	}
 | |
| 
 | |
| 	if (ecmd->tx_coalesce_usecs == 0)
 | |
| 		msk &= ~txirqmask[port];
 | |
| 	else if (ecmd->tx_coalesce_usecs < 25 ||
 | |
| 		 ecmd->tx_coalesce_usecs > 33333)
 | |
| 		return -EINVAL;
 | |
| 	else {
 | |
| 		msk |= txirqmask[port];
 | |
| 		delay = min(delay, ecmd->rx_coalesce_usecs);
 | |
| 	}
 | |
| 
 | |
| 	skge_write32(hw, B2_IRQM_MSK, msk);
 | |
| 	if (msk == 0)
 | |
| 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 | |
| 	else {
 | |
| 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 | |
| 		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 | |
| static void skge_led(struct skge_port *skge, enum led_mode mode)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 
 | |
| 	spin_lock_bh(&hw->phy_lock);
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS) {
 | |
| 		switch (mode) {
 | |
| 		case LED_MODE_OFF:
 | |
| 			if (hw->phy_type == SK_PHY_BCOM)
 | |
| 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 | |
| 			else {
 | |
| 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 | |
| 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 | |
| 			}
 | |
| 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 | |
| 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 | |
| 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 | |
| 			break;
 | |
| 
 | |
| 		case LED_MODE_ON:
 | |
| 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 | |
| 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 | |
| 
 | |
| 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 | |
| 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		case LED_MODE_TST:
 | |
| 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 | |
| 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 | |
| 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 | |
| 
 | |
| 			if (hw->phy_type == SK_PHY_BCOM)
 | |
| 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 | |
| 			else {
 | |
| 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 | |
| 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 | |
| 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (mode) {
 | |
| 		case LED_MODE_OFF:
 | |
| 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 | |
| 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 | |
| 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 | |
| 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
 | |
| 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
 | |
| 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
 | |
| 				     PHY_M_LED_MO_RX(MO_LED_OFF));
 | |
| 			break;
 | |
| 		case LED_MODE_ON:
 | |
| 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 | |
| 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
 | |
| 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
 | |
| 				     PHY_M_LEDC_TX_CTRL |
 | |
| 				     PHY_M_LEDC_DP_CTRL);
 | |
| 
 | |
| 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 | |
| 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
 | |
| 				     (skge->speed == SPEED_100 ?
 | |
| 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
 | |
| 			break;
 | |
| 		case LED_MODE_TST:
 | |
| 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 | |
| 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 | |
| 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
 | |
| 				     PHY_M_LED_MO_10(MO_LED_ON)   |
 | |
| 				     PHY_M_LED_MO_100(MO_LED_ON)  |
 | |
| 				     PHY_M_LED_MO_1000(MO_LED_ON) |
 | |
| 				     PHY_M_LED_MO_RX(MO_LED_ON));
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_bh(&hw->phy_lock);
 | |
| }
 | |
| 
 | |
| /* blink LED's for finding board */
 | |
| static int skge_phys_id(struct net_device *dev, u32 data)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	unsigned long ms;
 | |
| 	enum led_mode mode = LED_MODE_TST;
 | |
| 
 | |
| 	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
 | |
| 		ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
 | |
| 	else
 | |
| 		ms = data * 1000;
 | |
| 
 | |
| 	while (ms > 0) {
 | |
| 		skge_led(skge, mode);
 | |
| 		mode ^= LED_MODE_TST;
 | |
| 
 | |
| 		if (msleep_interruptible(BLINK_MS))
 | |
| 			break;
 | |
| 		ms -= BLINK_MS;
 | |
| 	}
 | |
| 
 | |
| 	/* back to regular LED state */
 | |
| 	skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int skge_get_eeprom_len(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	u32 reg2;
 | |
| 
 | |
| 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2);
 | |
| 	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 | |
| }
 | |
| 
 | |
| static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 | |
| 
 | |
| 	do {
 | |
| 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 | |
| 	} while (!(offset & PCI_VPD_ADDR_F));
 | |
| 
 | |
| 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 | |
| {
 | |
| 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 | |
| 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 | |
| 			      offset | PCI_VPD_ADDR_F);
 | |
| 
 | |
| 	do {
 | |
| 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 | |
| 	} while (offset & PCI_VPD_ADDR_F);
 | |
| }
 | |
| 
 | |
| static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 | |
| 			   u8 *data)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct pci_dev *pdev = skge->hw->pdev;
 | |
| 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 | |
| 	int length = eeprom->len;
 | |
| 	u16 offset = eeprom->offset;
 | |
| 
 | |
| 	if (!cap)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	eeprom->magic = SKGE_EEPROM_MAGIC;
 | |
| 
 | |
| 	while (length > 0) {
 | |
| 		u32 val = skge_vpd_read(pdev, cap, offset);
 | |
| 		int n = min_t(int, length, sizeof(val));
 | |
| 
 | |
| 		memcpy(data, &val, n);
 | |
| 		length -= n;
 | |
| 		data += n;
 | |
| 		offset += n;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 | |
| 			   u8 *data)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct pci_dev *pdev = skge->hw->pdev;
 | |
| 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 | |
| 	int length = eeprom->len;
 | |
| 	u16 offset = eeprom->offset;
 | |
| 
 | |
| 	if (!cap)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	while (length > 0) {
 | |
| 		u32 val;
 | |
| 		int n = min_t(int, length, sizeof(val));
 | |
| 
 | |
| 		if (n < sizeof(val))
 | |
| 			val = skge_vpd_read(pdev, cap, offset);
 | |
| 		memcpy(&val, data, n);
 | |
| 
 | |
| 		skge_vpd_write(pdev, cap, offset, val);
 | |
| 
 | |
| 		length -= n;
 | |
| 		data += n;
 | |
| 		offset += n;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct ethtool_ops skge_ethtool_ops = {
 | |
| 	.get_settings	= skge_get_settings,
 | |
| 	.set_settings	= skge_set_settings,
 | |
| 	.get_drvinfo	= skge_get_drvinfo,
 | |
| 	.get_regs_len	= skge_get_regs_len,
 | |
| 	.get_regs	= skge_get_regs,
 | |
| 	.get_wol	= skge_get_wol,
 | |
| 	.set_wol	= skge_set_wol,
 | |
| 	.get_msglevel	= skge_get_msglevel,
 | |
| 	.set_msglevel	= skge_set_msglevel,
 | |
| 	.nway_reset	= skge_nway_reset,
 | |
| 	.get_link	= ethtool_op_get_link,
 | |
| 	.get_eeprom_len	= skge_get_eeprom_len,
 | |
| 	.get_eeprom	= skge_get_eeprom,
 | |
| 	.set_eeprom	= skge_set_eeprom,
 | |
| 	.get_ringparam	= skge_get_ring_param,
 | |
| 	.set_ringparam	= skge_set_ring_param,
 | |
| 	.get_pauseparam = skge_get_pauseparam,
 | |
| 	.set_pauseparam = skge_set_pauseparam,
 | |
| 	.get_coalesce	= skge_get_coalesce,
 | |
| 	.set_coalesce	= skge_set_coalesce,
 | |
| 	.set_sg		= skge_set_sg,
 | |
| 	.set_tx_csum	= skge_set_tx_csum,
 | |
| 	.get_rx_csum	= skge_get_rx_csum,
 | |
| 	.set_rx_csum	= skge_set_rx_csum,
 | |
| 	.get_strings	= skge_get_strings,
 | |
| 	.phys_id	= skge_phys_id,
 | |
| 	.get_sset_count = skge_get_sset_count,
 | |
| 	.get_ethtool_stats = skge_get_ethtool_stats,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Allocate ring elements and chain them together
 | |
|  * One-to-one association of board descriptors with ring elements
 | |
|  */
 | |
| static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 | |
| {
 | |
| 	struct skge_tx_desc *d;
 | |
| 	struct skge_element *e;
 | |
| 	int i;
 | |
| 
 | |
| 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 | |
| 	if (!ring->start)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 | |
| 		e->desc = d;
 | |
| 		if (i == ring->count - 1) {
 | |
| 			e->next = ring->start;
 | |
| 			d->next_offset = base;
 | |
| 		} else {
 | |
| 			e->next = e + 1;
 | |
| 			d->next_offset = base + (i+1) * sizeof(*d);
 | |
| 		}
 | |
| 	}
 | |
| 	ring->to_use = ring->to_clean = ring->start;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Allocate and setup a new buffer for receiving */
 | |
| static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 | |
| 			  struct sk_buff *skb, unsigned int bufsize)
 | |
| {
 | |
| 	struct skge_rx_desc *rd = e->desc;
 | |
| 	u64 map;
 | |
| 
 | |
| 	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
 | |
| 			     PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 	rd->dma_lo = map;
 | |
| 	rd->dma_hi = map >> 32;
 | |
| 	e->skb = skb;
 | |
| 	rd->csum1_start = ETH_HLEN;
 | |
| 	rd->csum2_start = ETH_HLEN;
 | |
| 	rd->csum1 = 0;
 | |
| 	rd->csum2 = 0;
 | |
| 
 | |
| 	wmb();
 | |
| 
 | |
| 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 | |
| 	dma_unmap_addr_set(e, mapaddr, map);
 | |
| 	dma_unmap_len_set(e, maplen, bufsize);
 | |
| }
 | |
| 
 | |
| /* Resume receiving using existing skb,
 | |
|  * Note: DMA address is not changed by chip.
 | |
|  * 	 MTU not changed while receiver active.
 | |
|  */
 | |
| static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 | |
| {
 | |
| 	struct skge_rx_desc *rd = e->desc;
 | |
| 
 | |
| 	rd->csum2 = 0;
 | |
| 	rd->csum2_start = ETH_HLEN;
 | |
| 
 | |
| 	wmb();
 | |
| 
 | |
| 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Free all  buffers in receive ring, assumes receiver stopped */
 | |
| static void skge_rx_clean(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	struct skge_ring *ring = &skge->rx_ring;
 | |
| 	struct skge_element *e;
 | |
| 
 | |
| 	e = ring->start;
 | |
| 	do {
 | |
| 		struct skge_rx_desc *rd = e->desc;
 | |
| 		rd->control = 0;
 | |
| 		if (e->skb) {
 | |
| 			pci_unmap_single(hw->pdev,
 | |
| 					 dma_unmap_addr(e, mapaddr),
 | |
| 					 dma_unmap_len(e, maplen),
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 			dev_kfree_skb(e->skb);
 | |
| 			e->skb = NULL;
 | |
| 		}
 | |
| 	} while ((e = e->next) != ring->start);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Allocate buffers for receive ring
 | |
|  * For receive:  to_clean is next received frame.
 | |
|  */
 | |
| static int skge_rx_fill(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_ring *ring = &skge->rx_ring;
 | |
| 	struct skge_element *e;
 | |
| 
 | |
| 	e = ring->start;
 | |
| 	do {
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
 | |
| 					 GFP_KERNEL);
 | |
| 		if (!skb)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		skb_reserve(skb, NET_IP_ALIGN);
 | |
| 		skge_rx_setup(skge, e, skb, skge->rx_buf_size);
 | |
| 	} while ((e = e->next) != ring->start);
 | |
| 
 | |
| 	ring->to_clean = ring->start;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const char *skge_pause(enum pause_status status)
 | |
| {
 | |
| 	switch (status) {
 | |
| 	case FLOW_STAT_NONE:
 | |
| 		return "none";
 | |
| 	case FLOW_STAT_REM_SEND:
 | |
| 		return "rx only";
 | |
| 	case FLOW_STAT_LOC_SEND:
 | |
| 		return "tx_only";
 | |
| 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
 | |
| 		return "both";
 | |
| 	default:
 | |
| 		return "indeterminated";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void skge_link_up(struct skge_port *skge)
 | |
| {
 | |
| 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
 | |
| 		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
 | |
| 
 | |
| 	netif_carrier_on(skge->netdev);
 | |
| 	netif_wake_queue(skge->netdev);
 | |
| 
 | |
| 	netif_info(skge, link, skge->netdev,
 | |
| 		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
 | |
| 		   skge->speed,
 | |
| 		   skge->duplex == DUPLEX_FULL ? "full" : "half",
 | |
| 		   skge_pause(skge->flow_status));
 | |
| }
 | |
| 
 | |
| static void skge_link_down(struct skge_port *skge)
 | |
| {
 | |
| 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
 | |
| 	netif_carrier_off(skge->netdev);
 | |
| 	netif_stop_queue(skge->netdev);
 | |
| 
 | |
| 	netif_info(skge, link, skge->netdev, "Link is down\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| static void xm_link_down(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	struct net_device *dev = hw->dev[port];
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
 | |
| 
 | |
| 	if (netif_carrier_ok(dev))
 | |
| 		skge_link_down(skge);
 | |
| }
 | |
| 
 | |
| static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
 | |
| 	*val = xm_read16(hw, port, XM_PHY_DATA);
 | |
| 
 | |
| 	if (hw->phy_type == SK_PHY_XMAC)
 | |
| 		goto ready;
 | |
| 
 | |
| 	for (i = 0; i < PHY_RETRIES; i++) {
 | |
| 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
 | |
| 			goto ready;
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	return -ETIMEDOUT;
 | |
|  ready:
 | |
| 	*val = xm_read16(hw, port, XM_PHY_DATA);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
 | |
| {
 | |
| 	u16 v = 0;
 | |
| 	if (__xm_phy_read(hw, port, reg, &v))
 | |
| 		pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
 | |
| 	for (i = 0; i < PHY_RETRIES; i++) {
 | |
| 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
 | |
| 			goto ready;
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	return -EIO;
 | |
| 
 | |
|  ready:
 | |
| 	xm_write16(hw, port, XM_PHY_DATA, val);
 | |
| 	for (i = 0; i < PHY_RETRIES; i++) {
 | |
| 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
 | |
| 			return 0;
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| static void genesis_init(struct skge_hw *hw)
 | |
| {
 | |
| 	/* set blink source counter */
 | |
| 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
 | |
| 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
 | |
| 
 | |
| 	/* configure mac arbiter */
 | |
| 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
 | |
| 
 | |
| 	/* configure mac arbiter timeout values */
 | |
| 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
 | |
| 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
 | |
| 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
 | |
| 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
 | |
| 
 | |
| 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
 | |
| 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
 | |
| 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
 | |
| 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
 | |
| 
 | |
| 	/* configure packet arbiter timeout */
 | |
| 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
 | |
| 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
 | |
| 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
 | |
| 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
 | |
| 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
 | |
| }
 | |
| 
 | |
| static void genesis_reset(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	static const u8 zero[8]  = { 0 };
 | |
| 	u32 reg;
 | |
| 
 | |
| 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
 | |
| 
 | |
| 	/* reset the statistics module */
 | |
| 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
 | |
| 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
 | |
| 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
 | |
| 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
 | |
| 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
 | |
| 
 | |
| 	/* disable Broadcom PHY IRQ */
 | |
| 	if (hw->phy_type == SK_PHY_BCOM)
 | |
| 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
 | |
| 
 | |
| 	xm_outhash(hw, port, XM_HSM, zero);
 | |
| 
 | |
| 	/* Flush TX and RX fifo */
 | |
| 	reg = xm_read32(hw, port, XM_MODE);
 | |
| 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
 | |
| 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Convert mode to MII values  */
 | |
| static const u16 phy_pause_map[] = {
 | |
| 	[FLOW_MODE_NONE] =	0,
 | |
| 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
 | |
| 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
 | |
| 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
 | |
| };
 | |
| 
 | |
| /* special defines for FIBER (88E1011S only) */
 | |
| static const u16 fiber_pause_map[] = {
 | |
| 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
 | |
| 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
 | |
| 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
 | |
| 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
 | |
| };
 | |
| 
 | |
| 
 | |
| /* Check status of Broadcom phy link */
 | |
| static void bcom_check_link(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	struct net_device *dev = hw->dev[port];
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	u16 status;
 | |
| 
 | |
| 	/* read twice because of latch */
 | |
| 	xm_phy_read(hw, port, PHY_BCOM_STAT);
 | |
| 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
 | |
| 
 | |
| 	if ((status & PHY_ST_LSYNC) == 0) {
 | |
| 		xm_link_down(hw, port);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (skge->autoneg == AUTONEG_ENABLE) {
 | |
| 		u16 lpa, aux;
 | |
| 
 | |
| 		if (!(status & PHY_ST_AN_OVER))
 | |
| 			return;
 | |
| 
 | |
| 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
 | |
| 		if (lpa & PHY_B_AN_RF) {
 | |
| 			netdev_notice(dev, "remote fault\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
 | |
| 
 | |
| 		/* Check Duplex mismatch */
 | |
| 		switch (aux & PHY_B_AS_AN_RES_MSK) {
 | |
| 		case PHY_B_RES_1000FD:
 | |
| 			skge->duplex = DUPLEX_FULL;
 | |
| 			break;
 | |
| 		case PHY_B_RES_1000HD:
 | |
| 			skge->duplex = DUPLEX_HALF;
 | |
| 			break;
 | |
| 		default:
 | |
| 			netdev_notice(dev, "duplex mismatch\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
 | |
| 		switch (aux & PHY_B_AS_PAUSE_MSK) {
 | |
| 		case PHY_B_AS_PAUSE_MSK:
 | |
| 			skge->flow_status = FLOW_STAT_SYMMETRIC;
 | |
| 			break;
 | |
| 		case PHY_B_AS_PRR:
 | |
| 			skge->flow_status = FLOW_STAT_REM_SEND;
 | |
| 			break;
 | |
| 		case PHY_B_AS_PRT:
 | |
| 			skge->flow_status = FLOW_STAT_LOC_SEND;
 | |
| 			break;
 | |
| 		default:
 | |
| 			skge->flow_status = FLOW_STAT_NONE;
 | |
| 		}
 | |
| 		skge->speed = SPEED_1000;
 | |
| 	}
 | |
| 
 | |
| 	if (!netif_carrier_ok(dev))
 | |
| 		genesis_link_up(skge);
 | |
| }
 | |
| 
 | |
| /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
 | |
|  * Phy on for 100 or 10Mbit operation
 | |
|  */
 | |
| static void bcom_phy_init(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	int i;
 | |
| 	u16 id1, r, ext, ctl;
 | |
| 
 | |
| 	/* magic workaround patterns for Broadcom */
 | |
| 	static const struct {
 | |
| 		u16 reg;
 | |
| 		u16 val;
 | |
| 	} A1hack[] = {
 | |
| 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
 | |
| 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
 | |
| 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
 | |
| 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
 | |
| 	}, C0hack[] = {
 | |
| 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
 | |
| 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
 | |
| 	};
 | |
| 
 | |
| 	/* read Id from external PHY (all have the same address) */
 | |
| 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
 | |
| 
 | |
| 	/* Optimize MDIO transfer by suppressing preamble. */
 | |
| 	r = xm_read16(hw, port, XM_MMU_CMD);
 | |
| 	r |=  XM_MMU_NO_PRE;
 | |
| 	xm_write16(hw, port, XM_MMU_CMD, r);
 | |
| 
 | |
| 	switch (id1) {
 | |
| 	case PHY_BCOM_ID1_C0:
 | |
| 		/*
 | |
| 		 * Workaround BCOM Errata for the C0 type.
 | |
| 		 * Write magic patterns to reserved registers.
 | |
| 		 */
 | |
| 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
 | |
| 			xm_phy_write(hw, port,
 | |
| 				     C0hack[i].reg, C0hack[i].val);
 | |
| 
 | |
| 		break;
 | |
| 	case PHY_BCOM_ID1_A1:
 | |
| 		/*
 | |
| 		 * Workaround BCOM Errata for the A1 type.
 | |
| 		 * Write magic patterns to reserved registers.
 | |
| 		 */
 | |
| 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
 | |
| 			xm_phy_write(hw, port,
 | |
| 				     A1hack[i].reg, A1hack[i].val);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
 | |
| 	 * Disable Power Management after reset.
 | |
| 	 */
 | |
| 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
 | |
| 	r |= PHY_B_AC_DIS_PM;
 | |
| 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
 | |
| 
 | |
| 	/* Dummy read */
 | |
| 	xm_read16(hw, port, XM_ISRC);
 | |
| 
 | |
| 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
 | |
| 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
 | |
| 
 | |
| 	if (skge->autoneg == AUTONEG_ENABLE) {
 | |
| 		/*
 | |
| 		 * Workaround BCOM Errata #1 for the C5 type.
 | |
| 		 * 1000Base-T Link Acquisition Failure in Slave Mode
 | |
| 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
 | |
| 		 */
 | |
| 		u16 adv = PHY_B_1000C_RD;
 | |
| 		if (skge->advertising & ADVERTISED_1000baseT_Half)
 | |
| 			adv |= PHY_B_1000C_AHD;
 | |
| 		if (skge->advertising & ADVERTISED_1000baseT_Full)
 | |
| 			adv |= PHY_B_1000C_AFD;
 | |
| 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
 | |
| 
 | |
| 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
 | |
| 	} else {
 | |
| 		if (skge->duplex == DUPLEX_FULL)
 | |
| 			ctl |= PHY_CT_DUP_MD;
 | |
| 		/* Force to slave */
 | |
| 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
 | |
| 	}
 | |
| 
 | |
| 	/* Set autonegotiation pause parameters */
 | |
| 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
 | |
| 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
 | |
| 
 | |
| 	/* Handle Jumbo frames */
 | |
| 	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
 | |
| 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
 | |
| 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
 | |
| 
 | |
| 		ext |= PHY_B_PEC_HIGH_LA;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
 | |
| 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
 | |
| 
 | |
| 	/* Use link status change interrupt */
 | |
| 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
 | |
| }
 | |
| 
 | |
| static void xm_phy_init(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	u16 ctrl = 0;
 | |
| 
 | |
| 	if (skge->autoneg == AUTONEG_ENABLE) {
 | |
| 		if (skge->advertising & ADVERTISED_1000baseT_Half)
 | |
| 			ctrl |= PHY_X_AN_HD;
 | |
| 		if (skge->advertising & ADVERTISED_1000baseT_Full)
 | |
| 			ctrl |= PHY_X_AN_FD;
 | |
| 
 | |
| 		ctrl |= fiber_pause_map[skge->flow_control];
 | |
| 
 | |
| 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
 | |
| 
 | |
| 		/* Restart Auto-negotiation */
 | |
| 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
 | |
| 	} else {
 | |
| 		/* Set DuplexMode in Config register */
 | |
| 		if (skge->duplex == DUPLEX_FULL)
 | |
| 			ctrl |= PHY_CT_DUP_MD;
 | |
| 		/*
 | |
| 		 * Do NOT enable Auto-negotiation here. This would hold
 | |
| 		 * the link down because no IDLEs are transmitted
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
 | |
| 
 | |
| 	/* Poll PHY for status changes */
 | |
| 	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
 | |
| }
 | |
| 
 | |
| static int xm_check_link(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	u16 status;
 | |
| 
 | |
| 	/* read twice because of latch */
 | |
| 	xm_phy_read(hw, port, PHY_XMAC_STAT);
 | |
| 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
 | |
| 
 | |
| 	if ((status & PHY_ST_LSYNC) == 0) {
 | |
| 		xm_link_down(hw, port);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (skge->autoneg == AUTONEG_ENABLE) {
 | |
| 		u16 lpa, res;
 | |
| 
 | |
| 		if (!(status & PHY_ST_AN_OVER))
 | |
| 			return 0;
 | |
| 
 | |
| 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
 | |
| 		if (lpa & PHY_B_AN_RF) {
 | |
| 			netdev_notice(dev, "remote fault\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
 | |
| 
 | |
| 		/* Check Duplex mismatch */
 | |
| 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
 | |
| 		case PHY_X_RS_FD:
 | |
| 			skge->duplex = DUPLEX_FULL;
 | |
| 			break;
 | |
| 		case PHY_X_RS_HD:
 | |
| 			skge->duplex = DUPLEX_HALF;
 | |
| 			break;
 | |
| 		default:
 | |
| 			netdev_notice(dev, "duplex mismatch\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
 | |
| 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
 | |
| 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
 | |
| 		    (lpa & PHY_X_P_SYM_MD))
 | |
| 			skge->flow_status = FLOW_STAT_SYMMETRIC;
 | |
| 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
 | |
| 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
 | |
| 			/* Enable PAUSE receive, disable PAUSE transmit */
 | |
| 			skge->flow_status  = FLOW_STAT_REM_SEND;
 | |
| 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
 | |
| 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
 | |
| 			/* Disable PAUSE receive, enable PAUSE transmit */
 | |
| 			skge->flow_status = FLOW_STAT_LOC_SEND;
 | |
| 		else
 | |
| 			skge->flow_status = FLOW_STAT_NONE;
 | |
| 
 | |
| 		skge->speed = SPEED_1000;
 | |
| 	}
 | |
| 
 | |
| 	if (!netif_carrier_ok(dev))
 | |
| 		genesis_link_up(skge);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Poll to check for link coming up.
 | |
|  *
 | |
|  * Since internal PHY is wired to a level triggered pin, can't
 | |
|  * get an interrupt when carrier is detected, need to poll for
 | |
|  * link coming up.
 | |
|  */
 | |
| static void xm_link_timer(unsigned long arg)
 | |
| {
 | |
| 	struct skge_port *skge = (struct skge_port *) arg;
 | |
| 	struct net_device *dev = skge->netdev;
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	int i;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&hw->phy_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that the link by checking GPIO register three times.
 | |
| 	 * This pin has the signal from the link_sync pin connected to it.
 | |
| 	 */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
 | |
| 			goto link_down;
 | |
| 	}
 | |
| 
 | |
| 	/* Re-enable interrupt to detect link down */
 | |
| 	if (xm_check_link(dev)) {
 | |
| 		u16 msk = xm_read16(hw, port, XM_IMSK);
 | |
| 		msk &= ~XM_IS_INP_ASS;
 | |
| 		xm_write16(hw, port, XM_IMSK, msk);
 | |
| 		xm_read16(hw, port, XM_ISRC);
 | |
| 	} else {
 | |
| link_down:
 | |
| 		mod_timer(&skge->link_timer,
 | |
| 			  round_jiffies(jiffies + LINK_HZ));
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&hw->phy_lock, flags);
 | |
| }
 | |
| 
 | |
| static void genesis_mac_init(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	struct net_device *dev = hw->dev[port];
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
 | |
| 	int i;
 | |
| 	u32 r;
 | |
| 	static const u8 zero[6]  = { 0 };
 | |
| 
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
 | |
| 			     MFF_SET_MAC_RST);
 | |
| 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
 | |
| 			goto reset_ok;
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	netdev_warn(dev, "genesis reset failed\n");
 | |
| 
 | |
|  reset_ok:
 | |
| 	/* Unreset the XMAC. */
 | |
| 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform additional initialization for external PHYs,
 | |
| 	 * namely for the 1000baseTX cards that use the XMAC's
 | |
| 	 * GMII mode.
 | |
| 	 */
 | |
| 	if (hw->phy_type != SK_PHY_XMAC) {
 | |
| 		/* Take external Phy out of reset */
 | |
| 		r = skge_read32(hw, B2_GP_IO);
 | |
| 		if (port == 0)
 | |
| 			r |= GP_DIR_0|GP_IO_0;
 | |
| 		else
 | |
| 			r |= GP_DIR_2|GP_IO_2;
 | |
| 
 | |
| 		skge_write32(hw, B2_GP_IO, r);
 | |
| 
 | |
| 		/* Enable GMII interface */
 | |
| 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	switch (hw->phy_type) {
 | |
| 	case SK_PHY_XMAC:
 | |
| 		xm_phy_init(skge);
 | |
| 		break;
 | |
| 	case SK_PHY_BCOM:
 | |
| 		bcom_phy_init(skge);
 | |
| 		bcom_check_link(hw, port);
 | |
| 	}
 | |
| 
 | |
| 	/* Set Station Address */
 | |
| 	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
 | |
| 
 | |
| 	/* We don't use match addresses so clear */
 | |
| 	for (i = 1; i < 16; i++)
 | |
| 		xm_outaddr(hw, port, XM_EXM(i), zero);
 | |
| 
 | |
| 	/* Clear MIB counters */
 | |
| 	xm_write16(hw, port, XM_STAT_CMD,
 | |
| 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
 | |
| 	/* Clear two times according to Errata #3 */
 | |
| 	xm_write16(hw, port, XM_STAT_CMD,
 | |
| 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
 | |
| 
 | |
| 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
 | |
| 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
 | |
| 
 | |
| 	/* We don't need the FCS appended to the packet. */
 | |
| 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
 | |
| 	if (jumbo)
 | |
| 		r |= XM_RX_BIG_PK_OK;
 | |
| 
 | |
| 	if (skge->duplex == DUPLEX_HALF) {
 | |
| 		/*
 | |
| 		 * If in manual half duplex mode the other side might be in
 | |
| 		 * full duplex mode, so ignore if a carrier extension is not seen
 | |
| 		 * on frames received
 | |
| 		 */
 | |
| 		r |= XM_RX_DIS_CEXT;
 | |
| 	}
 | |
| 	xm_write16(hw, port, XM_RX_CMD, r);
 | |
| 
 | |
| 	/* We want short frames padded to 60 bytes. */
 | |
| 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
 | |
| 
 | |
| 	/* Increase threshold for jumbo frames on dual port */
 | |
| 	if (hw->ports > 1 && jumbo)
 | |
| 		xm_write16(hw, port, XM_TX_THR, 1020);
 | |
| 	else
 | |
| 		xm_write16(hw, port, XM_TX_THR, 512);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable the reception of all error frames. This is is
 | |
| 	 * a necessary evil due to the design of the XMAC. The
 | |
| 	 * XMAC's receive FIFO is only 8K in size, however jumbo
 | |
| 	 * frames can be up to 9000 bytes in length. When bad
 | |
| 	 * frame filtering is enabled, the XMAC's RX FIFO operates
 | |
| 	 * in 'store and forward' mode. For this to work, the
 | |
| 	 * entire frame has to fit into the FIFO, but that means
 | |
| 	 * that jumbo frames larger than 8192 bytes will be
 | |
| 	 * truncated. Disabling all bad frame filtering causes
 | |
| 	 * the RX FIFO to operate in streaming mode, in which
 | |
| 	 * case the XMAC will start transferring frames out of the
 | |
| 	 * RX FIFO as soon as the FIFO threshold is reached.
 | |
| 	 */
 | |
| 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
 | |
| 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
 | |
| 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
 | |
| 	 */
 | |
| 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
 | |
| 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
 | |
| 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
 | |
| 	 */
 | |
| 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
 | |
| 
 | |
| 	/* Configure MAC arbiter */
 | |
| 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
 | |
| 
 | |
| 	/* configure timeout values */
 | |
| 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
 | |
| 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
 | |
| 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
 | |
| 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
 | |
| 
 | |
| 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
 | |
| 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
 | |
| 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
 | |
| 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
 | |
| 
 | |
| 	/* Configure Rx MAC FIFO */
 | |
| 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
 | |
| 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
 | |
| 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
 | |
| 
 | |
| 	/* Configure Tx MAC FIFO */
 | |
| 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
 | |
| 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
 | |
| 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
 | |
| 
 | |
| 	if (jumbo) {
 | |
| 		/* Enable frame flushing if jumbo frames used */
 | |
| 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
 | |
| 	} else {
 | |
| 		/* enable timeout timers if normal frames */
 | |
| 		skge_write16(hw, B3_PA_CTRL,
 | |
| 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void genesis_stop(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	unsigned retries = 1000;
 | |
| 	u16 cmd;
 | |
| 
 | |
| 	/* Disable Tx and Rx */
 | |
| 	cmd = xm_read16(hw, port, XM_MMU_CMD);
 | |
| 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
 | |
| 	xm_write16(hw, port, XM_MMU_CMD, cmd);
 | |
| 
 | |
| 	genesis_reset(hw, port);
 | |
| 
 | |
| 	/* Clear Tx packet arbiter timeout IRQ */
 | |
| 	skge_write16(hw, B3_PA_CTRL,
 | |
| 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
 | |
| 
 | |
| 	/* Reset the MAC */
 | |
| 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
 | |
| 	do {
 | |
| 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
 | |
| 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
 | |
| 			break;
 | |
| 	} while (--retries > 0);
 | |
| 
 | |
| 	/* For external PHYs there must be special handling */
 | |
| 	if (hw->phy_type != SK_PHY_XMAC) {
 | |
| 		u32 reg = skge_read32(hw, B2_GP_IO);
 | |
| 		if (port == 0) {
 | |
| 			reg |= GP_DIR_0;
 | |
| 			reg &= ~GP_IO_0;
 | |
| 		} else {
 | |
| 			reg |= GP_DIR_2;
 | |
| 			reg &= ~GP_IO_2;
 | |
| 		}
 | |
| 		skge_write32(hw, B2_GP_IO, reg);
 | |
| 		skge_read32(hw, B2_GP_IO);
 | |
| 	}
 | |
| 
 | |
| 	xm_write16(hw, port, XM_MMU_CMD,
 | |
| 			xm_read16(hw, port, XM_MMU_CMD)
 | |
| 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
 | |
| 
 | |
| 	xm_read16(hw, port, XM_MMU_CMD);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void genesis_get_stats(struct skge_port *skge, u64 *data)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	int i;
 | |
| 	unsigned long timeout = jiffies + HZ;
 | |
| 
 | |
| 	xm_write16(hw, port,
 | |
| 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
 | |
| 
 | |
| 	/* wait for update to complete */
 | |
| 	while (xm_read16(hw, port, XM_STAT_CMD)
 | |
| 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
 | |
| 		if (time_after(jiffies, timeout))
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	/* special case for 64 bit octet counter */
 | |
| 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
 | |
| 		| xm_read32(hw, port, XM_TXO_OK_LO);
 | |
| 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
 | |
| 		| xm_read32(hw, port, XM_RXO_OK_LO);
 | |
| 
 | |
| 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
 | |
| 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
 | |
| }
 | |
| 
 | |
| static void genesis_mac_intr(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	struct net_device *dev = hw->dev[port];
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	u16 status = xm_read16(hw, port, XM_ISRC);
 | |
| 
 | |
| 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
 | |
| 		     "mac interrupt status 0x%x\n", status);
 | |
| 
 | |
| 	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
 | |
| 		xm_link_down(hw, port);
 | |
| 		mod_timer(&skge->link_timer, jiffies + 1);
 | |
| 	}
 | |
| 
 | |
| 	if (status & XM_IS_TXF_UR) {
 | |
| 		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
 | |
| 		++dev->stats.tx_fifo_errors;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void genesis_link_up(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	u16 cmd, msk;
 | |
| 	u32 mode;
 | |
| 
 | |
| 	cmd = xm_read16(hw, port, XM_MMU_CMD);
 | |
| 
 | |
| 	/*
 | |
| 	 * enabling pause frame reception is required for 1000BT
 | |
| 	 * because the XMAC is not reset if the link is going down
 | |
| 	 */
 | |
| 	if (skge->flow_status == FLOW_STAT_NONE ||
 | |
| 	    skge->flow_status == FLOW_STAT_LOC_SEND)
 | |
| 		/* Disable Pause Frame Reception */
 | |
| 		cmd |= XM_MMU_IGN_PF;
 | |
| 	else
 | |
| 		/* Enable Pause Frame Reception */
 | |
| 		cmd &= ~XM_MMU_IGN_PF;
 | |
| 
 | |
| 	xm_write16(hw, port, XM_MMU_CMD, cmd);
 | |
| 
 | |
| 	mode = xm_read32(hw, port, XM_MODE);
 | |
| 	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
 | |
| 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
 | |
| 		/*
 | |
| 		 * Configure Pause Frame Generation
 | |
| 		 * Use internal and external Pause Frame Generation.
 | |
| 		 * Sending pause frames is edge triggered.
 | |
| 		 * Send a Pause frame with the maximum pause time if
 | |
| 		 * internal oder external FIFO full condition occurs.
 | |
| 		 * Send a zero pause time frame to re-start transmission.
 | |
| 		 */
 | |
| 		/* XM_PAUSE_DA = '010000C28001' (default) */
 | |
| 		/* XM_MAC_PTIME = 0xffff (maximum) */
 | |
| 		/* remember this value is defined in big endian (!) */
 | |
| 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
 | |
| 
 | |
| 		mode |= XM_PAUSE_MODE;
 | |
| 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * disable pause frame generation is required for 1000BT
 | |
| 		 * because the XMAC is not reset if the link is going down
 | |
| 		 */
 | |
| 		/* Disable Pause Mode in Mode Register */
 | |
| 		mode &= ~XM_PAUSE_MODE;
 | |
| 
 | |
| 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
 | |
| 	}
 | |
| 
 | |
| 	xm_write32(hw, port, XM_MODE, mode);
 | |
| 
 | |
| 	/* Turn on detection of Tx underrun */
 | |
| 	msk = xm_read16(hw, port, XM_IMSK);
 | |
| 	msk &= ~XM_IS_TXF_UR;
 | |
| 	xm_write16(hw, port, XM_IMSK, msk);
 | |
| 
 | |
| 	xm_read16(hw, port, XM_ISRC);
 | |
| 
 | |
| 	/* get MMU Command Reg. */
 | |
| 	cmd = xm_read16(hw, port, XM_MMU_CMD);
 | |
| 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
 | |
| 		cmd |= XM_MMU_GMII_FD;
 | |
| 
 | |
| 	/*
 | |
| 	 * Workaround BCOM Errata (#10523) for all BCom Phys
 | |
| 	 * Enable Power Management after link up
 | |
| 	 */
 | |
| 	if (hw->phy_type == SK_PHY_BCOM) {
 | |
| 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
 | |
| 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
 | |
| 			     & ~PHY_B_AC_DIS_PM);
 | |
| 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
 | |
| 	}
 | |
| 
 | |
| 	/* enable Rx/Tx */
 | |
| 	xm_write16(hw, port, XM_MMU_CMD,
 | |
| 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
 | |
| 	skge_link_up(skge);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void bcom_phy_intr(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	u16 isrc;
 | |
| 
 | |
| 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
 | |
| 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
 | |
| 		     "phy interrupt status 0x%x\n", isrc);
 | |
| 
 | |
| 	if (isrc & PHY_B_IS_PSE)
 | |
| 		pr_err("%s: uncorrectable pair swap error\n",
 | |
| 		       hw->dev[port]->name);
 | |
| 
 | |
| 	/* Workaround BCom Errata:
 | |
| 	 *	enable and disable loopback mode if "NO HCD" occurs.
 | |
| 	 */
 | |
| 	if (isrc & PHY_B_IS_NO_HDCL) {
 | |
| 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
 | |
| 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
 | |
| 				  ctrl | PHY_CT_LOOP);
 | |
| 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
 | |
| 				  ctrl & ~PHY_CT_LOOP);
 | |
| 	}
 | |
| 
 | |
| 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
 | |
| 		bcom_check_link(hw, port);
 | |
| 
 | |
| }
 | |
| 
 | |
| static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	gma_write16(hw, port, GM_SMI_DATA, val);
 | |
| 	gma_write16(hw, port, GM_SMI_CTRL,
 | |
| 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
 | |
| 	for (i = 0; i < PHY_RETRIES; i++) {
 | |
| 		udelay(1);
 | |
| 
 | |
| 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	gma_write16(hw, port, GM_SMI_CTRL,
 | |
| 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
 | |
| 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
 | |
| 
 | |
| 	for (i = 0; i < PHY_RETRIES; i++) {
 | |
| 		udelay(1);
 | |
| 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
 | |
| 			goto ready;
 | |
| 	}
 | |
| 
 | |
| 	return -ETIMEDOUT;
 | |
|  ready:
 | |
| 	*val = gma_read16(hw, port, GM_SMI_DATA);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
 | |
| {
 | |
| 	u16 v = 0;
 | |
| 	if (__gm_phy_read(hw, port, reg, &v))
 | |
| 		pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /* Marvell Phy Initialization */
 | |
| static void yukon_init(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(hw->dev[port]);
 | |
| 	u16 ctrl, ct1000, adv;
 | |
| 
 | |
| 	if (skge->autoneg == AUTONEG_ENABLE) {
 | |
| 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
 | |
| 
 | |
| 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
 | |
| 			  PHY_M_EC_MAC_S_MSK);
 | |
| 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
 | |
| 
 | |
| 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
 | |
| 
 | |
| 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
 | |
| 	}
 | |
| 
 | |
| 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
 | |
| 	if (skge->autoneg == AUTONEG_DISABLE)
 | |
| 		ctrl &= ~PHY_CT_ANE;
 | |
| 
 | |
| 	ctrl |= PHY_CT_RESET;
 | |
| 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
 | |
| 
 | |
| 	ctrl = 0;
 | |
| 	ct1000 = 0;
 | |
| 	adv = PHY_AN_CSMA;
 | |
| 
 | |
| 	if (skge->autoneg == AUTONEG_ENABLE) {
 | |
| 		if (hw->copper) {
 | |
| 			if (skge->advertising & ADVERTISED_1000baseT_Full)
 | |
| 				ct1000 |= PHY_M_1000C_AFD;
 | |
| 			if (skge->advertising & ADVERTISED_1000baseT_Half)
 | |
| 				ct1000 |= PHY_M_1000C_AHD;
 | |
| 			if (skge->advertising & ADVERTISED_100baseT_Full)
 | |
| 				adv |= PHY_M_AN_100_FD;
 | |
| 			if (skge->advertising & ADVERTISED_100baseT_Half)
 | |
| 				adv |= PHY_M_AN_100_HD;
 | |
| 			if (skge->advertising & ADVERTISED_10baseT_Full)
 | |
| 				adv |= PHY_M_AN_10_FD;
 | |
| 			if (skge->advertising & ADVERTISED_10baseT_Half)
 | |
| 				adv |= PHY_M_AN_10_HD;
 | |
| 
 | |
| 			/* Set Flow-control capabilities */
 | |
| 			adv |= phy_pause_map[skge->flow_control];
 | |
| 		} else {
 | |
| 			if (skge->advertising & ADVERTISED_1000baseT_Full)
 | |
| 				adv |= PHY_M_AN_1000X_AFD;
 | |
| 			if (skge->advertising & ADVERTISED_1000baseT_Half)
 | |
| 				adv |= PHY_M_AN_1000X_AHD;
 | |
| 
 | |
| 			adv |= fiber_pause_map[skge->flow_control];
 | |
| 		}
 | |
| 
 | |
| 		/* Restart Auto-negotiation */
 | |
| 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
 | |
| 	} else {
 | |
| 		/* forced speed/duplex settings */
 | |
| 		ct1000 = PHY_M_1000C_MSE;
 | |
| 
 | |
| 		if (skge->duplex == DUPLEX_FULL)
 | |
| 			ctrl |= PHY_CT_DUP_MD;
 | |
| 
 | |
| 		switch (skge->speed) {
 | |
| 		case SPEED_1000:
 | |
| 			ctrl |= PHY_CT_SP1000;
 | |
| 			break;
 | |
| 		case SPEED_100:
 | |
| 			ctrl |= PHY_CT_SP100;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ctrl |= PHY_CT_RESET;
 | |
| 	}
 | |
| 
 | |
| 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
 | |
| 
 | |
| 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
 | |
| 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
 | |
| 
 | |
| 	/* Enable phy interrupt on autonegotiation complete (or link up) */
 | |
| 	if (skge->autoneg == AUTONEG_ENABLE)
 | |
| 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
 | |
| 	else
 | |
| 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
 | |
| }
 | |
| 
 | |
| static void yukon_reset(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
 | |
| 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
 | |
| 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
 | |
| 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
 | |
| 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
 | |
| 
 | |
| 	gma_write16(hw, port, GM_RX_CTRL,
 | |
| 			 gma_read16(hw, port, GM_RX_CTRL)
 | |
| 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
 | |
| }
 | |
| 
 | |
| /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
 | |
| static int is_yukon_lite_a0(struct skge_hw *hw)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (hw->chip_id != CHIP_ID_YUKON)
 | |
| 		return 0;
 | |
| 
 | |
| 	reg = skge_read32(hw, B2_FAR);
 | |
| 	skge_write8(hw, B2_FAR + 3, 0xff);
 | |
| 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
 | |
| 	skge_write32(hw, B2_FAR, reg);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void yukon_mac_init(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(hw->dev[port]);
 | |
| 	int i;
 | |
| 	u32 reg;
 | |
| 	const u8 *addr = hw->dev[port]->dev_addr;
 | |
| 
 | |
| 	/* WA code for COMA mode -- set PHY reset */
 | |
| 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 | |
| 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 | |
| 		reg = skge_read32(hw, B2_GP_IO);
 | |
| 		reg |= GP_DIR_9 | GP_IO_9;
 | |
| 		skge_write32(hw, B2_GP_IO, reg);
 | |
| 	}
 | |
| 
 | |
| 	/* hard reset */
 | |
| 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
 | |
| 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
 | |
| 
 | |
| 	/* WA code for COMA mode -- clear PHY reset */
 | |
| 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 | |
| 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 | |
| 		reg = skge_read32(hw, B2_GP_IO);
 | |
| 		reg |= GP_DIR_9;
 | |
| 		reg &= ~GP_IO_9;
 | |
| 		skge_write32(hw, B2_GP_IO, reg);
 | |
| 	}
 | |
| 
 | |
| 	/* Set hardware config mode */
 | |
| 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
 | |
| 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
 | |
| 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
 | |
| 
 | |
| 	/* Clear GMC reset */
 | |
| 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
 | |
| 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
 | |
| 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
 | |
| 
 | |
| 	if (skge->autoneg == AUTONEG_DISABLE) {
 | |
| 		reg = GM_GPCR_AU_ALL_DIS;
 | |
| 		gma_write16(hw, port, GM_GP_CTRL,
 | |
| 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
 | |
| 
 | |
| 		switch (skge->speed) {
 | |
| 		case SPEED_1000:
 | |
| 			reg &= ~GM_GPCR_SPEED_100;
 | |
| 			reg |= GM_GPCR_SPEED_1000;
 | |
| 			break;
 | |
| 		case SPEED_100:
 | |
| 			reg &= ~GM_GPCR_SPEED_1000;
 | |
| 			reg |= GM_GPCR_SPEED_100;
 | |
| 			break;
 | |
| 		case SPEED_10:
 | |
| 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (skge->duplex == DUPLEX_FULL)
 | |
| 			reg |= GM_GPCR_DUP_FULL;
 | |
| 	} else
 | |
| 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
 | |
| 
 | |
| 	switch (skge->flow_control) {
 | |
| 	case FLOW_MODE_NONE:
 | |
| 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
 | |
| 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
 | |
| 		break;
 | |
| 	case FLOW_MODE_LOC_SEND:
 | |
| 		/* disable Rx flow-control */
 | |
| 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
 | |
| 		break;
 | |
| 	case FLOW_MODE_SYMMETRIC:
 | |
| 	case FLOW_MODE_SYM_OR_REM:
 | |
| 		/* enable Tx & Rx flow-control */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	gma_write16(hw, port, GM_GP_CTRL, reg);
 | |
| 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
 | |
| 
 | |
| 	yukon_init(hw, port);
 | |
| 
 | |
| 	/* MIB clear */
 | |
| 	reg = gma_read16(hw, port, GM_PHY_ADDR);
 | |
| 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
 | |
| 
 | |
| 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
 | |
| 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
 | |
| 	gma_write16(hw, port, GM_PHY_ADDR, reg);
 | |
| 
 | |
| 	/* transmit control */
 | |
| 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
 | |
| 
 | |
| 	/* receive control reg: unicast + multicast + no FCS  */
 | |
| 	gma_write16(hw, port, GM_RX_CTRL,
 | |
| 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
 | |
| 
 | |
| 	/* transmit flow control */
 | |
| 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
 | |
| 
 | |
| 	/* transmit parameter */
 | |
| 	gma_write16(hw, port, GM_TX_PARAM,
 | |
| 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
 | |
| 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
 | |
| 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
 | |
| 
 | |
| 	/* configure the Serial Mode Register */
 | |
| 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
 | |
| 		| GM_SMOD_VLAN_ENA
 | |
| 		| IPG_DATA_VAL(IPG_DATA_DEF);
 | |
| 
 | |
| 	if (hw->dev[port]->mtu > ETH_DATA_LEN)
 | |
| 		reg |= GM_SMOD_JUMBO_ENA;
 | |
| 
 | |
| 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
 | |
| 
 | |
| 	/* physical address: used for pause frames */
 | |
| 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
 | |
| 	/* virtual address for data */
 | |
| 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
 | |
| 
 | |
| 	/* enable interrupt mask for counter overflows */
 | |
| 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
 | |
| 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
 | |
| 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
 | |
| 
 | |
| 	/* Initialize Mac Fifo */
 | |
| 
 | |
| 	/* Configure Rx MAC FIFO */
 | |
| 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
 | |
| 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
 | |
| 
 | |
| 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
 | |
| 	if (is_yukon_lite_a0(hw))
 | |
| 		reg &= ~GMF_RX_F_FL_ON;
 | |
| 
 | |
| 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
 | |
| 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
 | |
| 	/*
 | |
| 	 * because Pause Packet Truncation in GMAC is not working
 | |
| 	 * we have to increase the Flush Threshold to 64 bytes
 | |
| 	 * in order to flush pause packets in Rx FIFO on Yukon-1
 | |
| 	 */
 | |
| 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
 | |
| 
 | |
| 	/* Configure Tx MAC FIFO */
 | |
| 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
 | |
| 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
 | |
| }
 | |
| 
 | |
| /* Go into power down mode */
 | |
| static void yukon_suspend(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	u16 ctrl;
 | |
| 
 | |
| 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
 | |
| 	ctrl |= PHY_M_PC_POL_R_DIS;
 | |
| 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
 | |
| 
 | |
| 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
 | |
| 	ctrl |= PHY_CT_RESET;
 | |
| 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
 | |
| 
 | |
| 	/* switch IEEE compatible power down mode on */
 | |
| 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
 | |
| 	ctrl |= PHY_CT_PDOWN;
 | |
| 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
 | |
| }
 | |
| 
 | |
| static void yukon_stop(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 
 | |
| 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
 | |
| 	yukon_reset(hw, port);
 | |
| 
 | |
| 	gma_write16(hw, port, GM_GP_CTRL,
 | |
| 			 gma_read16(hw, port, GM_GP_CTRL)
 | |
| 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
 | |
| 	gma_read16(hw, port, GM_GP_CTRL);
 | |
| 
 | |
| 	yukon_suspend(hw, port);
 | |
| 
 | |
| 	/* set GPHY Control reset */
 | |
| 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
 | |
| 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
 | |
| }
 | |
| 
 | |
| static void yukon_get_stats(struct skge_port *skge, u64 *data)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	int i;
 | |
| 
 | |
| 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
 | |
| 		| gma_read32(hw, port, GM_TXO_OK_LO);
 | |
| 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
 | |
| 		| gma_read32(hw, port, GM_RXO_OK_LO);
 | |
| 
 | |
| 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
 | |
| 		data[i] = gma_read32(hw, port,
 | |
| 					  skge_stats[i].gma_offset);
 | |
| }
 | |
| 
 | |
| static void yukon_mac_intr(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	struct net_device *dev = hw->dev[port];
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
 | |
| 
 | |
| 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
 | |
| 		     "mac interrupt status 0x%x\n", status);
 | |
| 
 | |
| 	if (status & GM_IS_RX_FF_OR) {
 | |
| 		++dev->stats.rx_fifo_errors;
 | |
| 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
 | |
| 	}
 | |
| 
 | |
| 	if (status & GM_IS_TX_FF_UR) {
 | |
| 		++dev->stats.tx_fifo_errors;
 | |
| 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
 | |
| {
 | |
| 	switch (aux & PHY_M_PS_SPEED_MSK) {
 | |
| 	case PHY_M_PS_SPEED_1000:
 | |
| 		return SPEED_1000;
 | |
| 	case PHY_M_PS_SPEED_100:
 | |
| 		return SPEED_100;
 | |
| 	default:
 | |
| 		return SPEED_10;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void yukon_link_up(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	u16 reg;
 | |
| 
 | |
| 	/* Enable Transmit FIFO Underrun */
 | |
| 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
 | |
| 
 | |
| 	reg = gma_read16(hw, port, GM_GP_CTRL);
 | |
| 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
 | |
| 		reg |= GM_GPCR_DUP_FULL;
 | |
| 
 | |
| 	/* enable Rx/Tx */
 | |
| 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
 | |
| 	gma_write16(hw, port, GM_GP_CTRL, reg);
 | |
| 
 | |
| 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
 | |
| 	skge_link_up(skge);
 | |
| }
 | |
| 
 | |
| static void yukon_link_down(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	u16 ctrl;
 | |
| 
 | |
| 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
 | |
| 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
 | |
| 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
 | |
| 
 | |
| 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
 | |
| 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
 | |
| 		ctrl |= PHY_M_AN_ASP;
 | |
| 		/* restore Asymmetric Pause bit */
 | |
| 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
 | |
| 	}
 | |
| 
 | |
| 	skge_link_down(skge);
 | |
| 
 | |
| 	yukon_init(hw, port);
 | |
| }
 | |
| 
 | |
| static void yukon_phy_intr(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	const char *reason = NULL;
 | |
| 	u16 istatus, phystat;
 | |
| 
 | |
| 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
 | |
| 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
 | |
| 
 | |
| 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
 | |
| 		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
 | |
| 
 | |
| 	if (istatus & PHY_M_IS_AN_COMPL) {
 | |
| 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
 | |
| 		    & PHY_M_AN_RF) {
 | |
| 			reason = "remote fault";
 | |
| 			goto failed;
 | |
| 		}
 | |
| 
 | |
| 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
 | |
| 			reason = "master/slave fault";
 | |
| 			goto failed;
 | |
| 		}
 | |
| 
 | |
| 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
 | |
| 			reason = "speed/duplex";
 | |
| 			goto failed;
 | |
| 		}
 | |
| 
 | |
| 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
 | |
| 			? DUPLEX_FULL : DUPLEX_HALF;
 | |
| 		skge->speed = yukon_speed(hw, phystat);
 | |
| 
 | |
| 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
 | |
| 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
 | |
| 		case PHY_M_PS_PAUSE_MSK:
 | |
| 			skge->flow_status = FLOW_STAT_SYMMETRIC;
 | |
| 			break;
 | |
| 		case PHY_M_PS_RX_P_EN:
 | |
| 			skge->flow_status = FLOW_STAT_REM_SEND;
 | |
| 			break;
 | |
| 		case PHY_M_PS_TX_P_EN:
 | |
| 			skge->flow_status = FLOW_STAT_LOC_SEND;
 | |
| 			break;
 | |
| 		default:
 | |
| 			skge->flow_status = FLOW_STAT_NONE;
 | |
| 		}
 | |
| 
 | |
| 		if (skge->flow_status == FLOW_STAT_NONE ||
 | |
| 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
 | |
| 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
 | |
| 		else
 | |
| 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
 | |
| 		yukon_link_up(skge);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (istatus & PHY_M_IS_LSP_CHANGE)
 | |
| 		skge->speed = yukon_speed(hw, phystat);
 | |
| 
 | |
| 	if (istatus & PHY_M_IS_DUP_CHANGE)
 | |
| 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
 | |
| 	if (istatus & PHY_M_IS_LST_CHANGE) {
 | |
| 		if (phystat & PHY_M_PS_LINK_UP)
 | |
| 			yukon_link_up(skge);
 | |
| 		else
 | |
| 			yukon_link_down(skge);
 | |
| 	}
 | |
| 	return;
 | |
|  failed:
 | |
| 	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
 | |
| 
 | |
| 	/* XXX restart autonegotiation? */
 | |
| }
 | |
| 
 | |
| static void skge_phy_reset(struct skge_port *skge)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	struct net_device *dev = hw->dev[port];
 | |
| 
 | |
| 	netif_stop_queue(skge->netdev);
 | |
| 	netif_carrier_off(skge->netdev);
 | |
| 
 | |
| 	spin_lock_bh(&hw->phy_lock);
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS) {
 | |
| 		genesis_reset(hw, port);
 | |
| 		genesis_mac_init(hw, port);
 | |
| 	} else {
 | |
| 		yukon_reset(hw, port);
 | |
| 		yukon_init(hw, port);
 | |
| 	}
 | |
| 	spin_unlock_bh(&hw->phy_lock);
 | |
| 
 | |
| 	skge_set_multicast(dev);
 | |
| }
 | |
| 
 | |
| /* Basic MII support */
 | |
| static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 | |
| {
 | |
| 	struct mii_ioctl_data *data = if_mii(ifr);
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int err = -EOPNOTSUPP;
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return -ENODEV;	/* Phy still in reset */
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case SIOCGMIIPHY:
 | |
| 		data->phy_id = hw->phy_addr;
 | |
| 
 | |
| 		/* fallthru */
 | |
| 	case SIOCGMIIREG: {
 | |
| 		u16 val = 0;
 | |
| 		spin_lock_bh(&hw->phy_lock);
 | |
| 		if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
 | |
| 		else
 | |
| 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
 | |
| 		spin_unlock_bh(&hw->phy_lock);
 | |
| 		data->val_out = val;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case SIOCSMIIREG:
 | |
| 		spin_lock_bh(&hw->phy_lock);
 | |
| 		if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
 | |
| 				   data->val_in);
 | |
| 		else
 | |
| 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
 | |
| 				   data->val_in);
 | |
| 		spin_unlock_bh(&hw->phy_lock);
 | |
| 		break;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
 | |
| {
 | |
| 	u32 end;
 | |
| 
 | |
| 	start /= 8;
 | |
| 	len /= 8;
 | |
| 	end = start + len - 1;
 | |
| 
 | |
| 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
 | |
| 	skge_write32(hw, RB_ADDR(q, RB_START), start);
 | |
| 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
 | |
| 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
 | |
| 	skge_write32(hw, RB_ADDR(q, RB_END), end);
 | |
| 
 | |
| 	if (q == Q_R1 || q == Q_R2) {
 | |
| 		/* Set thresholds on receive queue's */
 | |
| 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
 | |
| 			     start + (2*len)/3);
 | |
| 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
 | |
| 			     start + (len/3));
 | |
| 	} else {
 | |
| 		/* Enable store & forward on Tx queue's because
 | |
| 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
 | |
| 		 */
 | |
| 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
 | |
| 	}
 | |
| 
 | |
| 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
 | |
| }
 | |
| 
 | |
| /* Setup Bus Memory Interface */
 | |
| static void skge_qset(struct skge_port *skge, u16 q,
 | |
| 		      const struct skge_element *e)
 | |
| {
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	u32 watermark = 0x600;
 | |
| 	u64 base = skge->dma + (e->desc - skge->mem);
 | |
| 
 | |
| 	/* optimization to reduce window on 32bit/33mhz */
 | |
| 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
 | |
| 		watermark /= 2;
 | |
| 
 | |
| 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
 | |
| 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
 | |
| 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
 | |
| 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
 | |
| }
 | |
| 
 | |
| static int skge_up(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	u32 chunk, ram_addr;
 | |
| 	size_t rx_size, tx_size;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!is_valid_ether_addr(dev->dev_addr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
 | |
| 
 | |
| 	if (dev->mtu > RX_BUF_SIZE)
 | |
| 		skge->rx_buf_size = dev->mtu + ETH_HLEN;
 | |
| 	else
 | |
| 		skge->rx_buf_size = RX_BUF_SIZE;
 | |
| 
 | |
| 
 | |
| 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
 | |
| 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
 | |
| 	skge->mem_size = tx_size + rx_size;
 | |
| 	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
 | |
| 	if (!skge->mem)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	BUG_ON(skge->dma & 7);
 | |
| 
 | |
| 	if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
 | |
| 		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
 | |
| 		err = -EINVAL;
 | |
| 		goto free_pci_mem;
 | |
| 	}
 | |
| 
 | |
| 	memset(skge->mem, 0, skge->mem_size);
 | |
| 
 | |
| 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
 | |
| 	if (err)
 | |
| 		goto free_pci_mem;
 | |
| 
 | |
| 	err = skge_rx_fill(dev);
 | |
| 	if (err)
 | |
| 		goto free_rx_ring;
 | |
| 
 | |
| 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
 | |
| 			      skge->dma + rx_size);
 | |
| 	if (err)
 | |
| 		goto free_rx_ring;
 | |
| 
 | |
| 	/* Initialize MAC */
 | |
| 	spin_lock_bh(&hw->phy_lock);
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		genesis_mac_init(hw, port);
 | |
| 	else
 | |
| 		yukon_mac_init(hw, port);
 | |
| 	spin_unlock_bh(&hw->phy_lock);
 | |
| 
 | |
| 	/* Configure RAMbuffers - equally between ports and tx/rx */
 | |
| 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
 | |
| 	ram_addr = hw->ram_offset + 2 * chunk * port;
 | |
| 
 | |
| 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
 | |
| 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
 | |
| 
 | |
| 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
 | |
| 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
 | |
| 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
 | |
| 
 | |
| 	/* Start receiver BMU */
 | |
| 	wmb();
 | |
| 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
 | |
| 	skge_led(skge, LED_MODE_ON);
 | |
| 
 | |
| 	spin_lock_irq(&hw->hw_lock);
 | |
| 	hw->intr_mask |= portmask[port];
 | |
| 	skge_write32(hw, B0_IMSK, hw->intr_mask);
 | |
| 	spin_unlock_irq(&hw->hw_lock);
 | |
| 
 | |
| 	napi_enable(&skge->napi);
 | |
| 	return 0;
 | |
| 
 | |
|  free_rx_ring:
 | |
| 	skge_rx_clean(skge);
 | |
| 	kfree(skge->rx_ring.start);
 | |
|  free_pci_mem:
 | |
| 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
 | |
| 	skge->mem = NULL;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* stop receiver */
 | |
| static void skge_rx_stop(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
 | |
| 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
 | |
| 		     RB_RST_SET|RB_DIS_OP_MD);
 | |
| 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
 | |
| }
 | |
| 
 | |
| static int skge_down(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 
 | |
| 	if (skge->mem == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
 | |
| 
 | |
| 	netif_tx_disable(dev);
 | |
| 
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
 | |
| 		del_timer_sync(&skge->link_timer);
 | |
| 
 | |
| 	napi_disable(&skge->napi);
 | |
| 	netif_carrier_off(dev);
 | |
| 
 | |
| 	spin_lock_irq(&hw->hw_lock);
 | |
| 	hw->intr_mask &= ~portmask[port];
 | |
| 	skge_write32(hw, B0_IMSK, hw->intr_mask);
 | |
| 	spin_unlock_irq(&hw->hw_lock);
 | |
| 
 | |
| 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		genesis_stop(skge);
 | |
| 	else
 | |
| 		yukon_stop(skge);
 | |
| 
 | |
| 	/* Stop transmitter */
 | |
| 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
 | |
| 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
 | |
| 		     RB_RST_SET|RB_DIS_OP_MD);
 | |
| 
 | |
| 
 | |
| 	/* Disable Force Sync bit and Enable Alloc bit */
 | |
| 	skge_write8(hw, SK_REG(port, TXA_CTRL),
 | |
| 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
 | |
| 
 | |
| 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
 | |
| 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
 | |
| 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
 | |
| 
 | |
| 	/* Reset PCI FIFO */
 | |
| 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
 | |
| 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
 | |
| 
 | |
| 	/* Reset the RAM Buffer async Tx queue */
 | |
| 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
 | |
| 
 | |
| 	skge_rx_stop(hw, port);
 | |
| 
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS) {
 | |
| 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
 | |
| 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
 | |
| 	} else {
 | |
| 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 | |
| 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
 | |
| 	}
 | |
| 
 | |
| 	skge_led(skge, LED_MODE_OFF);
 | |
| 
 | |
| 	netif_tx_lock_bh(dev);
 | |
| 	skge_tx_clean(dev);
 | |
| 	netif_tx_unlock_bh(dev);
 | |
| 
 | |
| 	skge_rx_clean(skge);
 | |
| 
 | |
| 	kfree(skge->rx_ring.start);
 | |
| 	kfree(skge->tx_ring.start);
 | |
| 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
 | |
| 	skge->mem = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int skge_avail(const struct skge_ring *ring)
 | |
| {
 | |
| 	smp_mb();
 | |
| 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
 | |
| 		+ (ring->to_clean - ring->to_use) - 1;
 | |
| }
 | |
| 
 | |
| static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
 | |
| 				   struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	struct skge_element *e;
 | |
| 	struct skge_tx_desc *td;
 | |
| 	int i;
 | |
| 	u32 control, len;
 | |
| 	u64 map;
 | |
| 
 | |
| 	if (skb_padto(skb, ETH_ZLEN))
 | |
| 		return NETDEV_TX_OK;
 | |
| 
 | |
| 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 
 | |
| 	e = skge->tx_ring.to_use;
 | |
| 	td = e->desc;
 | |
| 	BUG_ON(td->control & BMU_OWN);
 | |
| 	e->skb = skb;
 | |
| 	len = skb_headlen(skb);
 | |
| 	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
 | |
| 	dma_unmap_addr_set(e, mapaddr, map);
 | |
| 	dma_unmap_len_set(e, maplen, len);
 | |
| 
 | |
| 	td->dma_lo = map;
 | |
| 	td->dma_hi = map >> 32;
 | |
| 
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 		const int offset = skb_checksum_start_offset(skb);
 | |
| 
 | |
| 		/* This seems backwards, but it is what the sk98lin
 | |
| 		 * does.  Looks like hardware is wrong?
 | |
| 		 */
 | |
| 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
 | |
| 		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
 | |
| 			control = BMU_TCP_CHECK;
 | |
| 		else
 | |
| 			control = BMU_UDP_CHECK;
 | |
| 
 | |
| 		td->csum_offs = 0;
 | |
| 		td->csum_start = offset;
 | |
| 		td->csum_write = offset + skb->csum_offset;
 | |
| 	} else
 | |
| 		control = BMU_CHECK;
 | |
| 
 | |
| 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
 | |
| 		control |= BMU_EOF | BMU_IRQ_EOF;
 | |
| 	else {
 | |
| 		struct skge_tx_desc *tf = td;
 | |
| 
 | |
| 		control |= BMU_STFWD;
 | |
| 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 
 | |
| 			map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
 | |
| 					   frag->size, PCI_DMA_TODEVICE);
 | |
| 
 | |
| 			e = e->next;
 | |
| 			e->skb = skb;
 | |
| 			tf = e->desc;
 | |
| 			BUG_ON(tf->control & BMU_OWN);
 | |
| 
 | |
| 			tf->dma_lo = map;
 | |
| 			tf->dma_hi = (u64) map >> 32;
 | |
| 			dma_unmap_addr_set(e, mapaddr, map);
 | |
| 			dma_unmap_len_set(e, maplen, frag->size);
 | |
| 
 | |
| 			tf->control = BMU_OWN | BMU_SW | control | frag->size;
 | |
| 		}
 | |
| 		tf->control |= BMU_EOF | BMU_IRQ_EOF;
 | |
| 	}
 | |
| 	/* Make sure all the descriptors written */
 | |
| 	wmb();
 | |
| 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
 | |
| 	wmb();
 | |
| 
 | |
| 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
 | |
| 
 | |
| 	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
 | |
| 		     "tx queued, slot %td, len %d\n",
 | |
| 		     e - skge->tx_ring.start, skb->len);
 | |
| 
 | |
| 	skge->tx_ring.to_use = e->next;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
 | |
| 		netdev_dbg(dev, "transmit queue full\n");
 | |
| 		netif_stop_queue(dev);
 | |
| 	}
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Free resources associated with this reing element */
 | |
| static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
 | |
| 			 u32 control)
 | |
| {
 | |
| 	struct pci_dev *pdev = skge->hw->pdev;
 | |
| 
 | |
| 	/* skb header vs. fragment */
 | |
| 	if (control & BMU_STF)
 | |
| 		pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
 | |
| 				 dma_unmap_len(e, maplen),
 | |
| 				 PCI_DMA_TODEVICE);
 | |
| 	else
 | |
| 		pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
 | |
| 			       dma_unmap_len(e, maplen),
 | |
| 			       PCI_DMA_TODEVICE);
 | |
| 
 | |
| 	if (control & BMU_EOF) {
 | |
| 		netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
 | |
| 			     "tx done slot %td\n", e - skge->tx_ring.start);
 | |
| 
 | |
| 		dev_kfree_skb(e->skb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Free all buffers in transmit ring */
 | |
| static void skge_tx_clean(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_element *e;
 | |
| 
 | |
| 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
 | |
| 		struct skge_tx_desc *td = e->desc;
 | |
| 		skge_tx_free(skge, e, td->control);
 | |
| 		td->control = 0;
 | |
| 	}
 | |
| 
 | |
| 	skge->tx_ring.to_clean = e;
 | |
| }
 | |
| 
 | |
| static void skge_tx_timeout(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
 | |
| 
 | |
| 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
 | |
| 	skge_tx_clean(dev);
 | |
| 	netif_wake_queue(dev);
 | |
| }
 | |
| 
 | |
| static int skge_change_mtu(struct net_device *dev, int new_mtu)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!netif_running(dev)) {
 | |
| 		dev->mtu = new_mtu;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	skge_down(dev);
 | |
| 
 | |
| 	dev->mtu = new_mtu;
 | |
| 
 | |
| 	err = skge_up(dev);
 | |
| 	if (err)
 | |
| 		dev_close(dev);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
 | |
| 
 | |
| static void genesis_add_filter(u8 filter[8], const u8 *addr)
 | |
| {
 | |
| 	u32 crc, bit;
 | |
| 
 | |
| 	crc = ether_crc_le(ETH_ALEN, addr);
 | |
| 	bit = ~crc & 0x3f;
 | |
| 	filter[bit/8] |= 1 << (bit%8);
 | |
| }
 | |
| 
 | |
| static void genesis_set_multicast(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	u32 mode;
 | |
| 	u8 filter[8];
 | |
| 
 | |
| 	mode = xm_read32(hw, port, XM_MODE);
 | |
| 	mode |= XM_MD_ENA_HASH;
 | |
| 	if (dev->flags & IFF_PROMISC)
 | |
| 		mode |= XM_MD_ENA_PROM;
 | |
| 	else
 | |
| 		mode &= ~XM_MD_ENA_PROM;
 | |
| 
 | |
| 	if (dev->flags & IFF_ALLMULTI)
 | |
| 		memset(filter, 0xff, sizeof(filter));
 | |
| 	else {
 | |
| 		memset(filter, 0, sizeof(filter));
 | |
| 
 | |
| 		if (skge->flow_status == FLOW_STAT_REM_SEND ||
 | |
| 		    skge->flow_status == FLOW_STAT_SYMMETRIC)
 | |
| 			genesis_add_filter(filter, pause_mc_addr);
 | |
| 
 | |
| 		netdev_for_each_mc_addr(ha, dev)
 | |
| 			genesis_add_filter(filter, ha->addr);
 | |
| 	}
 | |
| 
 | |
| 	xm_write32(hw, port, XM_MODE, mode);
 | |
| 	xm_outhash(hw, port, XM_HSM, filter);
 | |
| }
 | |
| 
 | |
| static void yukon_add_filter(u8 filter[8], const u8 *addr)
 | |
| {
 | |
| 	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
 | |
| 	 filter[bit/8] |= 1 << (bit%8);
 | |
| }
 | |
| 
 | |
| static void yukon_set_multicast(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	int port = skge->port;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
 | |
| 			skge->flow_status == FLOW_STAT_SYMMETRIC);
 | |
| 	u16 reg;
 | |
| 	u8 filter[8];
 | |
| 
 | |
| 	memset(filter, 0, sizeof(filter));
 | |
| 
 | |
| 	reg = gma_read16(hw, port, GM_RX_CTRL);
 | |
| 	reg |= GM_RXCR_UCF_ENA;
 | |
| 
 | |
| 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
 | |
| 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
 | |
| 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
 | |
| 		memset(filter, 0xff, sizeof(filter));
 | |
| 	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
 | |
| 		reg &= ~GM_RXCR_MCF_ENA;
 | |
| 	else {
 | |
| 		reg |= GM_RXCR_MCF_ENA;
 | |
| 
 | |
| 		if (rx_pause)
 | |
| 			yukon_add_filter(filter, pause_mc_addr);
 | |
| 
 | |
| 		netdev_for_each_mc_addr(ha, dev)
 | |
| 			yukon_add_filter(filter, ha->addr);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	gma_write16(hw, port, GM_MC_ADDR_H1,
 | |
| 			 (u16)filter[0] | ((u16)filter[1] << 8));
 | |
| 	gma_write16(hw, port, GM_MC_ADDR_H2,
 | |
| 			 (u16)filter[2] | ((u16)filter[3] << 8));
 | |
| 	gma_write16(hw, port, GM_MC_ADDR_H3,
 | |
| 			 (u16)filter[4] | ((u16)filter[5] << 8));
 | |
| 	gma_write16(hw, port, GM_MC_ADDR_H4,
 | |
| 			 (u16)filter[6] | ((u16)filter[7] << 8));
 | |
| 
 | |
| 	gma_write16(hw, port, GM_RX_CTRL, reg);
 | |
| }
 | |
| 
 | |
| static inline u16 phy_length(const struct skge_hw *hw, u32 status)
 | |
| {
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		return status >> XMR_FS_LEN_SHIFT;
 | |
| 	else
 | |
| 		return status >> GMR_FS_LEN_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
 | |
| {
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
 | |
| 	else
 | |
| 		return (status & GMR_FS_ANY_ERR) ||
 | |
| 			(status & GMR_FS_RX_OK) == 0;
 | |
| }
 | |
| 
 | |
| static void skge_set_multicast(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		genesis_set_multicast(dev);
 | |
| 	else
 | |
| 		yukon_set_multicast(dev);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Get receive buffer from descriptor.
 | |
|  * Handles copy of small buffers and reallocation failures
 | |
|  */
 | |
| static struct sk_buff *skge_rx_get(struct net_device *dev,
 | |
| 				   struct skge_element *e,
 | |
| 				   u32 control, u32 status, u16 csum)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct sk_buff *skb;
 | |
| 	u16 len = control & BMU_BBC;
 | |
| 
 | |
| 	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
 | |
| 		     "rx slot %td status 0x%x len %d\n",
 | |
| 		     e - skge->rx_ring.start, status, len);
 | |
| 
 | |
| 	if (len > skge->rx_buf_size)
 | |
| 		goto error;
 | |
| 
 | |
| 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
 | |
| 		goto error;
 | |
| 
 | |
| 	if (bad_phy_status(skge->hw, status))
 | |
| 		goto error;
 | |
| 
 | |
| 	if (phy_length(skge->hw, status) != len)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (len < RX_COPY_THRESHOLD) {
 | |
| 		skb = netdev_alloc_skb_ip_align(dev, len);
 | |
| 		if (!skb)
 | |
| 			goto resubmit;
 | |
| 
 | |
| 		pci_dma_sync_single_for_cpu(skge->hw->pdev,
 | |
| 					    dma_unmap_addr(e, mapaddr),
 | |
| 					    len, PCI_DMA_FROMDEVICE);
 | |
| 		skb_copy_from_linear_data(e->skb, skb->data, len);
 | |
| 		pci_dma_sync_single_for_device(skge->hw->pdev,
 | |
| 					       dma_unmap_addr(e, mapaddr),
 | |
| 					       len, PCI_DMA_FROMDEVICE);
 | |
| 		skge_rx_reuse(e, skge->rx_buf_size);
 | |
| 	} else {
 | |
| 		struct sk_buff *nskb;
 | |
| 
 | |
| 		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
 | |
| 		if (!nskb)
 | |
| 			goto resubmit;
 | |
| 
 | |
| 		pci_unmap_single(skge->hw->pdev,
 | |
| 				 dma_unmap_addr(e, mapaddr),
 | |
| 				 dma_unmap_len(e, maplen),
 | |
| 				 PCI_DMA_FROMDEVICE);
 | |
| 		skb = e->skb;
 | |
| 		prefetch(skb->data);
 | |
| 		skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
 | |
| 	}
 | |
| 
 | |
| 	skb_put(skb, len);
 | |
| 	if (skge->rx_csum) {
 | |
| 		skb->csum = csum;
 | |
| 		skb->ip_summed = CHECKSUM_COMPLETE;
 | |
| 	}
 | |
| 
 | |
| 	skb->protocol = eth_type_trans(skb, dev);
 | |
| 
 | |
| 	return skb;
 | |
| error:
 | |
| 
 | |
| 	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
 | |
| 		     "rx err, slot %td control 0x%x status 0x%x\n",
 | |
| 		     e - skge->rx_ring.start, control, status);
 | |
| 
 | |
| 	if (skge->hw->chip_id == CHIP_ID_GENESIS) {
 | |
| 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
 | |
| 			dev->stats.rx_length_errors++;
 | |
| 		if (status & XMR_FS_FRA_ERR)
 | |
| 			dev->stats.rx_frame_errors++;
 | |
| 		if (status & XMR_FS_FCS_ERR)
 | |
| 			dev->stats.rx_crc_errors++;
 | |
| 	} else {
 | |
| 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
 | |
| 			dev->stats.rx_length_errors++;
 | |
| 		if (status & GMR_FS_FRAGMENT)
 | |
| 			dev->stats.rx_frame_errors++;
 | |
| 		if (status & GMR_FS_CRC_ERR)
 | |
| 			dev->stats.rx_crc_errors++;
 | |
| 	}
 | |
| 
 | |
| resubmit:
 | |
| 	skge_rx_reuse(e, skge->rx_buf_size);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Free all buffers in Tx ring which are no longer owned by device */
 | |
| static void skge_tx_done(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_ring *ring = &skge->tx_ring;
 | |
| 	struct skge_element *e;
 | |
| 
 | |
| 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
 | |
| 
 | |
| 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
 | |
| 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
 | |
| 
 | |
| 		if (control & BMU_OWN)
 | |
| 			break;
 | |
| 
 | |
| 		skge_tx_free(skge, e, control);
 | |
| 	}
 | |
| 	skge->tx_ring.to_clean = e;
 | |
| 
 | |
| 	/* Can run lockless until we need to synchronize to restart queue. */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	if (unlikely(netif_queue_stopped(dev) &&
 | |
| 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
 | |
| 		netif_tx_lock(dev);
 | |
| 		if (unlikely(netif_queue_stopped(dev) &&
 | |
| 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
 | |
| 			netif_wake_queue(dev);
 | |
| 
 | |
| 		}
 | |
| 		netif_tx_unlock(dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int skge_poll(struct napi_struct *napi, int to_do)
 | |
| {
 | |
| 	struct skge_port *skge = container_of(napi, struct skge_port, napi);
 | |
| 	struct net_device *dev = skge->netdev;
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	struct skge_ring *ring = &skge->rx_ring;
 | |
| 	struct skge_element *e;
 | |
| 	int work_done = 0;
 | |
| 
 | |
| 	skge_tx_done(dev);
 | |
| 
 | |
| 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
 | |
| 
 | |
| 	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
 | |
| 		struct skge_rx_desc *rd = e->desc;
 | |
| 		struct sk_buff *skb;
 | |
| 		u32 control;
 | |
| 
 | |
| 		rmb();
 | |
| 		control = rd->control;
 | |
| 		if (control & BMU_OWN)
 | |
| 			break;
 | |
| 
 | |
| 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
 | |
| 		if (likely(skb)) {
 | |
| 			napi_gro_receive(napi, skb);
 | |
| 			++work_done;
 | |
| 		}
 | |
| 	}
 | |
| 	ring->to_clean = e;
 | |
| 
 | |
| 	/* restart receiver */
 | |
| 	wmb();
 | |
| 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
 | |
| 
 | |
| 	if (work_done < to_do) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		napi_gro_flush(napi);
 | |
| 		spin_lock_irqsave(&hw->hw_lock, flags);
 | |
| 		__napi_complete(napi);
 | |
| 		hw->intr_mask |= napimask[skge->port];
 | |
| 		skge_write32(hw, B0_IMSK, hw->intr_mask);
 | |
| 		skge_read32(hw, B0_IMSK);
 | |
| 		spin_unlock_irqrestore(&hw->hw_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	return work_done;
 | |
| }
 | |
| 
 | |
| /* Parity errors seem to happen when Genesis is connected to a switch
 | |
|  * with no other ports present. Heartbeat error??
 | |
|  */
 | |
| static void skge_mac_parity(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	struct net_device *dev = hw->dev[port];
 | |
| 
 | |
| 	++dev->stats.tx_heartbeat_errors;
 | |
| 
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
 | |
| 			     MFF_CLR_PERR);
 | |
| 	else
 | |
| 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
 | |
| 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
 | |
| 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 | |
| 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
 | |
| }
 | |
| 
 | |
| static void skge_mac_intr(struct skge_hw *hw, int port)
 | |
| {
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		genesis_mac_intr(hw, port);
 | |
| 	else
 | |
| 		yukon_mac_intr(hw, port);
 | |
| }
 | |
| 
 | |
| /* Handle device specific framing and timeout interrupts */
 | |
| static void skge_error_irq(struct skge_hw *hw)
 | |
| {
 | |
| 	struct pci_dev *pdev = hw->pdev;
 | |
| 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
 | |
| 
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS) {
 | |
| 		/* clear xmac errors */
 | |
| 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
 | |
| 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
 | |
| 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
 | |
| 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
 | |
| 	} else {
 | |
| 		/* Timestamp (unused) overflow */
 | |
| 		if (hwstatus & IS_IRQ_TIST_OV)
 | |
| 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
 | |
| 	}
 | |
| 
 | |
| 	if (hwstatus & IS_RAM_RD_PAR) {
 | |
| 		dev_err(&pdev->dev, "Ram read data parity error\n");
 | |
| 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
 | |
| 	}
 | |
| 
 | |
| 	if (hwstatus & IS_RAM_WR_PAR) {
 | |
| 		dev_err(&pdev->dev, "Ram write data parity error\n");
 | |
| 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
 | |
| 	}
 | |
| 
 | |
| 	if (hwstatus & IS_M1_PAR_ERR)
 | |
| 		skge_mac_parity(hw, 0);
 | |
| 
 | |
| 	if (hwstatus & IS_M2_PAR_ERR)
 | |
| 		skge_mac_parity(hw, 1);
 | |
| 
 | |
| 	if (hwstatus & IS_R1_PAR_ERR) {
 | |
| 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
 | |
| 			hw->dev[0]->name);
 | |
| 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
 | |
| 	}
 | |
| 
 | |
| 	if (hwstatus & IS_R2_PAR_ERR) {
 | |
| 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
 | |
| 			hw->dev[1]->name);
 | |
| 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
 | |
| 	}
 | |
| 
 | |
| 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
 | |
| 		u16 pci_status, pci_cmd;
 | |
| 
 | |
| 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
 | |
| 		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
 | |
| 
 | |
| 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
 | |
| 			pci_cmd, pci_status);
 | |
| 
 | |
| 		/* Write the error bits back to clear them. */
 | |
| 		pci_status &= PCI_STATUS_ERROR_BITS;
 | |
| 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
 | |
| 		pci_write_config_word(pdev, PCI_COMMAND,
 | |
| 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
 | |
| 		pci_write_config_word(pdev, PCI_STATUS, pci_status);
 | |
| 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
 | |
| 
 | |
| 		/* if error still set then just ignore it */
 | |
| 		hwstatus = skge_read32(hw, B0_HWE_ISRC);
 | |
| 		if (hwstatus & IS_IRQ_STAT) {
 | |
| 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
 | |
| 			hw->intr_mask &= ~IS_HW_ERR;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt from PHY are handled in tasklet (softirq)
 | |
|  * because accessing phy registers requires spin wait which might
 | |
|  * cause excess interrupt latency.
 | |
|  */
 | |
| static void skge_extirq(unsigned long arg)
 | |
| {
 | |
| 	struct skge_hw *hw = (struct skge_hw *) arg;
 | |
| 	int port;
 | |
| 
 | |
| 	for (port = 0; port < hw->ports; port++) {
 | |
| 		struct net_device *dev = hw->dev[port];
 | |
| 
 | |
| 		if (netif_running(dev)) {
 | |
| 			struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 			spin_lock(&hw->phy_lock);
 | |
| 			if (hw->chip_id != CHIP_ID_GENESIS)
 | |
| 				yukon_phy_intr(skge);
 | |
| 			else if (hw->phy_type == SK_PHY_BCOM)
 | |
| 				bcom_phy_intr(skge);
 | |
| 			spin_unlock(&hw->phy_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&hw->hw_lock);
 | |
| 	hw->intr_mask |= IS_EXT_REG;
 | |
| 	skge_write32(hw, B0_IMSK, hw->intr_mask);
 | |
| 	skge_read32(hw, B0_IMSK);
 | |
| 	spin_unlock_irq(&hw->hw_lock);
 | |
| }
 | |
| 
 | |
| static irqreturn_t skge_intr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct skge_hw *hw = dev_id;
 | |
| 	u32 status;
 | |
| 	int handled = 0;
 | |
| 
 | |
| 	spin_lock(&hw->hw_lock);
 | |
| 	/* Reading this register masks IRQ */
 | |
| 	status = skge_read32(hw, B0_SP_ISRC);
 | |
| 	if (status == 0 || status == ~0)
 | |
| 		goto out;
 | |
| 
 | |
| 	handled = 1;
 | |
| 	status &= hw->intr_mask;
 | |
| 	if (status & IS_EXT_REG) {
 | |
| 		hw->intr_mask &= ~IS_EXT_REG;
 | |
| 		tasklet_schedule(&hw->phy_task);
 | |
| 	}
 | |
| 
 | |
| 	if (status & (IS_XA1_F|IS_R1_F)) {
 | |
| 		struct skge_port *skge = netdev_priv(hw->dev[0]);
 | |
| 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
 | |
| 		napi_schedule(&skge->napi);
 | |
| 	}
 | |
| 
 | |
| 	if (status & IS_PA_TO_TX1)
 | |
| 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
 | |
| 
 | |
| 	if (status & IS_PA_TO_RX1) {
 | |
| 		++hw->dev[0]->stats.rx_over_errors;
 | |
| 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (status & IS_MAC1)
 | |
| 		skge_mac_intr(hw, 0);
 | |
| 
 | |
| 	if (hw->dev[1]) {
 | |
| 		struct skge_port *skge = netdev_priv(hw->dev[1]);
 | |
| 
 | |
| 		if (status & (IS_XA2_F|IS_R2_F)) {
 | |
| 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
 | |
| 			napi_schedule(&skge->napi);
 | |
| 		}
 | |
| 
 | |
| 		if (status & IS_PA_TO_RX2) {
 | |
| 			++hw->dev[1]->stats.rx_over_errors;
 | |
| 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
 | |
| 		}
 | |
| 
 | |
| 		if (status & IS_PA_TO_TX2)
 | |
| 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
 | |
| 
 | |
| 		if (status & IS_MAC2)
 | |
| 			skge_mac_intr(hw, 1);
 | |
| 	}
 | |
| 
 | |
| 	if (status & IS_HW_ERR)
 | |
| 		skge_error_irq(hw);
 | |
| 
 | |
| 	skge_write32(hw, B0_IMSK, hw->intr_mask);
 | |
| 	skge_read32(hw, B0_IMSK);
 | |
| out:
 | |
| 	spin_unlock(&hw->hw_lock);
 | |
| 
 | |
| 	return IRQ_RETVAL(handled);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| static void skge_netpoll(struct net_device *dev)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	disable_irq(dev->irq);
 | |
| 	skge_intr(dev->irq, skge->hw);
 | |
| 	enable_irq(dev->irq);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int skge_set_mac_address(struct net_device *dev, void *p)
 | |
| {
 | |
| 	struct skge_port *skge = netdev_priv(dev);
 | |
| 	struct skge_hw *hw = skge->hw;
 | |
| 	unsigned port = skge->port;
 | |
| 	const struct sockaddr *addr = p;
 | |
| 	u16 ctrl;
 | |
| 
 | |
| 	if (!is_valid_ether_addr(addr->sa_data))
 | |
| 		return -EADDRNOTAVAIL;
 | |
| 
 | |
| 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
 | |
| 
 | |
| 	if (!netif_running(dev)) {
 | |
| 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
 | |
| 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
 | |
| 	} else {
 | |
| 		/* disable Rx */
 | |
| 		spin_lock_bh(&hw->phy_lock);
 | |
| 		ctrl = gma_read16(hw, port, GM_GP_CTRL);
 | |
| 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
 | |
| 
 | |
| 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
 | |
| 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
 | |
| 
 | |
| 		if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
 | |
| 		else {
 | |
| 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
 | |
| 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
 | |
| 		}
 | |
| 
 | |
| 		gma_write16(hw, port, GM_GP_CTRL, ctrl);
 | |
| 		spin_unlock_bh(&hw->phy_lock);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct {
 | |
| 	u8 id;
 | |
| 	const char *name;
 | |
| } skge_chips[] = {
 | |
| 	{ CHIP_ID_GENESIS,	"Genesis" },
 | |
| 	{ CHIP_ID_YUKON,	 "Yukon" },
 | |
| 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
 | |
| 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
 | |
| };
 | |
| 
 | |
| static const char *skge_board_name(const struct skge_hw *hw)
 | |
| {
 | |
| 	int i;
 | |
| 	static char buf[16];
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
 | |
| 		if (skge_chips[i].id == hw->chip_id)
 | |
| 			return skge_chips[i].name;
 | |
| 
 | |
| 	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Setup the board data structure, but don't bring up
 | |
|  * the port(s)
 | |
|  */
 | |
| static int skge_reset(struct skge_hw *hw)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	u16 ctst, pci_status;
 | |
| 	u8 t8, mac_cfg, pmd_type;
 | |
| 	int i;
 | |
| 
 | |
| 	ctst = skge_read16(hw, B0_CTST);
 | |
| 
 | |
| 	/* do a SW reset */
 | |
| 	skge_write8(hw, B0_CTST, CS_RST_SET);
 | |
| 	skge_write8(hw, B0_CTST, CS_RST_CLR);
 | |
| 
 | |
| 	/* clear PCI errors, if any */
 | |
| 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
 | |
| 	skge_write8(hw, B2_TST_CTRL2, 0);
 | |
| 
 | |
| 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
 | |
| 	pci_write_config_word(hw->pdev, PCI_STATUS,
 | |
| 			      pci_status | PCI_STATUS_ERROR_BITS);
 | |
| 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
 | |
| 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
 | |
| 
 | |
| 	/* restore CLK_RUN bits (for Yukon-Lite) */
 | |
| 	skge_write16(hw, B0_CTST,
 | |
| 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
 | |
| 
 | |
| 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
 | |
| 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
 | |
| 	pmd_type = skge_read8(hw, B2_PMD_TYP);
 | |
| 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
 | |
| 
 | |
| 	switch (hw->chip_id) {
 | |
| 	case CHIP_ID_GENESIS:
 | |
| 		switch (hw->phy_type) {
 | |
| 		case SK_PHY_XMAC:
 | |
| 			hw->phy_addr = PHY_ADDR_XMAC;
 | |
| 			break;
 | |
| 		case SK_PHY_BCOM:
 | |
| 			hw->phy_addr = PHY_ADDR_BCOM;
 | |
| 			break;
 | |
| 		default:
 | |
| 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
 | |
| 			       hw->phy_type);
 | |
| 			return -EOPNOTSUPP;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case CHIP_ID_YUKON:
 | |
| 	case CHIP_ID_YUKON_LITE:
 | |
| 	case CHIP_ID_YUKON_LP:
 | |
| 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
 | |
| 			hw->copper = 1;
 | |
| 
 | |
| 		hw->phy_addr = PHY_ADDR_MARV;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
 | |
| 		       hw->chip_id);
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
 | |
| 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
 | |
| 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
 | |
| 
 | |
| 	/* read the adapters RAM size */
 | |
| 	t8 = skge_read8(hw, B2_E_0);
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS) {
 | |
| 		if (t8 == 3) {
 | |
| 			/* special case: 4 x 64k x 36, offset = 0x80000 */
 | |
| 			hw->ram_size = 0x100000;
 | |
| 			hw->ram_offset = 0x80000;
 | |
| 		} else
 | |
| 			hw->ram_size = t8 * 512;
 | |
| 	} else if (t8 == 0)
 | |
| 		hw->ram_size = 0x20000;
 | |
| 	else
 | |
| 		hw->ram_size = t8 * 4096;
 | |
| 
 | |
| 	hw->intr_mask = IS_HW_ERR;
 | |
| 
 | |
| 	/* Use PHY IRQ for all but fiber based Genesis board */
 | |
| 	if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
 | |
| 		hw->intr_mask |= IS_EXT_REG;
 | |
| 
 | |
| 	if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 		genesis_init(hw);
 | |
| 	else {
 | |
| 		/* switch power to VCC (WA for VAUX problem) */
 | |
| 		skge_write8(hw, B0_POWER_CTRL,
 | |
| 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
 | |
| 
 | |
| 		/* avoid boards with stuck Hardware error bits */
 | |
| 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
 | |
| 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
 | |
| 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
 | |
| 			hw->intr_mask &= ~IS_HW_ERR;
 | |
| 		}
 | |
| 
 | |
| 		/* Clear PHY COMA */
 | |
| 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
 | |
| 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
 | |
| 		reg &= ~PCI_PHY_COMA;
 | |
| 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
 | |
| 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
 | |
| 
 | |
| 
 | |
| 		for (i = 0; i < hw->ports; i++) {
 | |
| 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
 | |
| 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* turn off hardware timer (unused) */
 | |
| 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
 | |
| 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
 | |
| 	skge_write8(hw, B0_LED, LED_STAT_ON);
 | |
| 
 | |
| 	/* enable the Tx Arbiters */
 | |
| 	for (i = 0; i < hw->ports; i++)
 | |
| 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
 | |
| 
 | |
| 	/* Initialize ram interface */
 | |
| 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
 | |
| 
 | |
| 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
 | |
| 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
 | |
| 
 | |
| 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
 | |
| 
 | |
| 	/* Set interrupt moderation for Transmit only
 | |
| 	 * Receive interrupts avoided by NAPI
 | |
| 	 */
 | |
| 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
 | |
| 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
 | |
| 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 | |
| 
 | |
| 	skge_write32(hw, B0_IMSK, hw->intr_mask);
 | |
| 
 | |
| 	for (i = 0; i < hw->ports; i++) {
 | |
| 		if (hw->chip_id == CHIP_ID_GENESIS)
 | |
| 			genesis_reset(hw, i);
 | |
| 		else
 | |
| 			yukon_reset(hw, i);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_SKGE_DEBUG
 | |
| 
 | |
| static struct dentry *skge_debug;
 | |
| 
 | |
| static int skge_debug_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct net_device *dev = seq->private;
 | |
| 	const struct skge_port *skge = netdev_priv(dev);
 | |
| 	const struct skge_hw *hw = skge->hw;
 | |
| 	const struct skge_element *e;
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return -ENETDOWN;
 | |
| 
 | |
| 	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
 | |
| 		   skge_read32(hw, B0_IMSK));
 | |
| 
 | |
| 	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
 | |
| 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
 | |
| 		const struct skge_tx_desc *t = e->desc;
 | |
| 		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
 | |
| 			   t->control, t->dma_hi, t->dma_lo, t->status,
 | |
| 			   t->csum_offs, t->csum_write, t->csum_start);
 | |
| 	}
 | |
| 
 | |
| 	seq_printf(seq, "\nRx Ring:\n");
 | |
| 	for (e = skge->rx_ring.to_clean; ; e = e->next) {
 | |
| 		const struct skge_rx_desc *r = e->desc;
 | |
| 
 | |
| 		if (r->control & BMU_OWN)
 | |
| 			break;
 | |
| 
 | |
| 		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
 | |
| 			   r->control, r->dma_hi, r->dma_lo, r->status,
 | |
| 			   r->timestamp, r->csum1, r->csum1_start);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int skge_debug_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, skge_debug_show, inode->i_private);
 | |
| }
 | |
| 
 | |
| static const struct file_operations skge_debug_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.open		= skge_debug_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Use network device events to create/remove/rename
 | |
|  * debugfs file entries
 | |
|  */
 | |
| static int skge_device_event(struct notifier_block *unused,
 | |
| 			     unsigned long event, void *ptr)
 | |
| {
 | |
| 	struct net_device *dev = ptr;
 | |
| 	struct skge_port *skge;
 | |
| 	struct dentry *d;
 | |
| 
 | |
| 	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
 | |
| 		goto done;
 | |
| 
 | |
| 	skge = netdev_priv(dev);
 | |
| 	switch (event) {
 | |
| 	case NETDEV_CHANGENAME:
 | |
| 		if (skge->debugfs) {
 | |
| 			d = debugfs_rename(skge_debug, skge->debugfs,
 | |
| 					   skge_debug, dev->name);
 | |
| 			if (d)
 | |
| 				skge->debugfs = d;
 | |
| 			else {
 | |
| 				netdev_info(dev, "rename failed\n");
 | |
| 				debugfs_remove(skge->debugfs);
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case NETDEV_GOING_DOWN:
 | |
| 		if (skge->debugfs) {
 | |
| 			debugfs_remove(skge->debugfs);
 | |
| 			skge->debugfs = NULL;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case NETDEV_UP:
 | |
| 		d = debugfs_create_file(dev->name, S_IRUGO,
 | |
| 					skge_debug, dev,
 | |
| 					&skge_debug_fops);
 | |
| 		if (!d || IS_ERR(d))
 | |
| 			netdev_info(dev, "debugfs create failed\n");
 | |
| 		else
 | |
| 			skge->debugfs = d;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static struct notifier_block skge_notifier = {
 | |
| 	.notifier_call = skge_device_event,
 | |
| };
 | |
| 
 | |
| 
 | |
| static __init void skge_debug_init(void)
 | |
| {
 | |
| 	struct dentry *ent;
 | |
| 
 | |
| 	ent = debugfs_create_dir("skge", NULL);
 | |
| 	if (!ent || IS_ERR(ent)) {
 | |
| 		pr_info("debugfs create directory failed\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	skge_debug = ent;
 | |
| 	register_netdevice_notifier(&skge_notifier);
 | |
| }
 | |
| 
 | |
| static __exit void skge_debug_cleanup(void)
 | |
| {
 | |
| 	if (skge_debug) {
 | |
| 		unregister_netdevice_notifier(&skge_notifier);
 | |
| 		debugfs_remove(skge_debug);
 | |
| 		skge_debug = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define skge_debug_init()
 | |
| #define skge_debug_cleanup()
 | |
| #endif
 | |
| 
 | |
| static const struct net_device_ops skge_netdev_ops = {
 | |
| 	.ndo_open		= skge_up,
 | |
| 	.ndo_stop		= skge_down,
 | |
| 	.ndo_start_xmit		= skge_xmit_frame,
 | |
| 	.ndo_do_ioctl		= skge_ioctl,
 | |
| 	.ndo_get_stats		= skge_get_stats,
 | |
| 	.ndo_tx_timeout		= skge_tx_timeout,
 | |
| 	.ndo_change_mtu		= skge_change_mtu,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_set_multicast_list	= skge_set_multicast,
 | |
| 	.ndo_set_mac_address	= skge_set_mac_address,
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller	= skge_netpoll,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| 
 | |
| /* Initialize network device */
 | |
| static struct net_device *skge_devinit(struct skge_hw *hw, int port,
 | |
| 				       int highmem)
 | |
| {
 | |
| 	struct skge_port *skge;
 | |
| 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
 | |
| 
 | |
| 	if (!dev) {
 | |
| 		dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	SET_NETDEV_DEV(dev, &hw->pdev->dev);
 | |
| 	dev->netdev_ops = &skge_netdev_ops;
 | |
| 	dev->ethtool_ops = &skge_ethtool_ops;
 | |
| 	dev->watchdog_timeo = TX_WATCHDOG;
 | |
| 	dev->irq = hw->pdev->irq;
 | |
| 
 | |
| 	if (highmem)
 | |
| 		dev->features |= NETIF_F_HIGHDMA;
 | |
| 
 | |
| 	skge = netdev_priv(dev);
 | |
| 	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
 | |
| 	skge->netdev = dev;
 | |
| 	skge->hw = hw;
 | |
| 	skge->msg_enable = netif_msg_init(debug, default_msg);
 | |
| 
 | |
| 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
 | |
| 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
 | |
| 
 | |
| 	/* Auto speed and flow control */
 | |
| 	skge->autoneg = AUTONEG_ENABLE;
 | |
| 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
 | |
| 	skge->duplex = -1;
 | |
| 	skge->speed = -1;
 | |
| 	skge->advertising = skge_supported_modes(hw);
 | |
| 
 | |
| 	if (device_can_wakeup(&hw->pdev->dev)) {
 | |
| 		skge->wol = wol_supported(hw) & WAKE_MAGIC;
 | |
| 		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 | |
| 	}
 | |
| 
 | |
| 	hw->dev[port] = dev;
 | |
| 
 | |
| 	skge->port = port;
 | |
| 
 | |
| 	/* Only used for Genesis XMAC */
 | |
| 	setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
 | |
| 
 | |
| 	if (hw->chip_id != CHIP_ID_GENESIS) {
 | |
| 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
 | |
| 		skge->rx_csum = 1;
 | |
| 	}
 | |
| 	dev->features |= NETIF_F_GRO;
 | |
| 
 | |
| 	/* read the mac address */
 | |
| 	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
 | |
| 	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
 | |
| 
 | |
| 	return dev;
 | |
| }
 | |
| 
 | |
| static void __devinit skge_show_addr(struct net_device *dev)
 | |
| {
 | |
| 	const struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
 | |
| }
 | |
| 
 | |
| static int only_32bit_dma;
 | |
| 
 | |
| static int __devinit skge_probe(struct pci_dev *pdev,
 | |
| 				const struct pci_device_id *ent)
 | |
| {
 | |
| 	struct net_device *dev, *dev1;
 | |
| 	struct skge_hw *hw;
 | |
| 	int err, using_dac = 0;
 | |
| 
 | |
| 	err = pci_enable_device(pdev);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "cannot enable PCI device\n");
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	err = pci_request_regions(pdev, DRV_NAME);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
 | |
| 		goto err_out_disable_pdev;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
 | |
| 		using_dac = 1;
 | |
| 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
 | |
| 	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
 | |
| 		using_dac = 0;
 | |
| 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
 | |
| 	}
 | |
| 
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "no usable DMA configuration\n");
 | |
| 		goto err_out_free_regions;
 | |
| 	}
 | |
| 
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	/* byte swap descriptors in hardware */
 | |
| 	{
 | |
| 		u32 reg;
 | |
| 
 | |
| 		pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
 | |
| 		reg |= PCI_REV_DESC;
 | |
| 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	/* space for skge@pci:0000:04:00.0 */
 | |
| 	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
 | |
| 		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
 | |
| 	if (!hw) {
 | |
| 		dev_err(&pdev->dev, "cannot allocate hardware struct\n");
 | |
| 		goto err_out_free_regions;
 | |
| 	}
 | |
| 	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
 | |
| 
 | |
| 	hw->pdev = pdev;
 | |
| 	spin_lock_init(&hw->hw_lock);
 | |
| 	spin_lock_init(&hw->phy_lock);
 | |
| 	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
 | |
| 
 | |
| 	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
 | |
| 	if (!hw->regs) {
 | |
| 		dev_err(&pdev->dev, "cannot map device registers\n");
 | |
| 		goto err_out_free_hw;
 | |
| 	}
 | |
| 
 | |
| 	err = skge_reset(hw);
 | |
| 	if (err)
 | |
| 		goto err_out_iounmap;
 | |
| 
 | |
| 	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
 | |
| 		DRV_VERSION,
 | |
| 		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
 | |
| 		skge_board_name(hw), hw->chip_rev);
 | |
| 
 | |
| 	dev = skge_devinit(hw, 0, using_dac);
 | |
| 	if (!dev)
 | |
| 		goto err_out_led_off;
 | |
| 
 | |
| 	/* Some motherboards are broken and has zero in ROM. */
 | |
| 	if (!is_valid_ether_addr(dev->dev_addr))
 | |
| 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
 | |
| 
 | |
| 	err = register_netdev(dev);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "cannot register net device\n");
 | |
| 		goto err_out_free_netdev;
 | |
| 	}
 | |
| 
 | |
| 	err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
 | |
| 		       dev->name, pdev->irq);
 | |
| 		goto err_out_unregister;
 | |
| 	}
 | |
| 	skge_show_addr(dev);
 | |
| 
 | |
| 	if (hw->ports > 1) {
 | |
| 		dev1 = skge_devinit(hw, 1, using_dac);
 | |
| 		if (dev1 && register_netdev(dev1) == 0)
 | |
| 			skge_show_addr(dev1);
 | |
| 		else {
 | |
| 			/* Failure to register second port need not be fatal */
 | |
| 			dev_warn(&pdev->dev, "register of second port failed\n");
 | |
| 			hw->dev[1] = NULL;
 | |
| 			hw->ports = 1;
 | |
| 			if (dev1)
 | |
| 				free_netdev(dev1);
 | |
| 		}
 | |
| 	}
 | |
| 	pci_set_drvdata(pdev, hw);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out_unregister:
 | |
| 	unregister_netdev(dev);
 | |
| err_out_free_netdev:
 | |
| 	free_netdev(dev);
 | |
| err_out_led_off:
 | |
| 	skge_write16(hw, B0_LED, LED_STAT_OFF);
 | |
| err_out_iounmap:
 | |
| 	iounmap(hw->regs);
 | |
| err_out_free_hw:
 | |
| 	kfree(hw);
 | |
| err_out_free_regions:
 | |
| 	pci_release_regions(pdev);
 | |
| err_out_disable_pdev:
 | |
| 	pci_disable_device(pdev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| err_out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __devexit skge_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct skge_hw *hw  = pci_get_drvdata(pdev);
 | |
| 	struct net_device *dev0, *dev1;
 | |
| 
 | |
| 	if (!hw)
 | |
| 		return;
 | |
| 
 | |
| 	dev1 = hw->dev[1];
 | |
| 	if (dev1)
 | |
| 		unregister_netdev(dev1);
 | |
| 	dev0 = hw->dev[0];
 | |
| 	unregister_netdev(dev0);
 | |
| 
 | |
| 	tasklet_disable(&hw->phy_task);
 | |
| 
 | |
| 	spin_lock_irq(&hw->hw_lock);
 | |
| 	hw->intr_mask = 0;
 | |
| 	skge_write32(hw, B0_IMSK, 0);
 | |
| 	skge_read32(hw, B0_IMSK);
 | |
| 	spin_unlock_irq(&hw->hw_lock);
 | |
| 
 | |
| 	skge_write16(hw, B0_LED, LED_STAT_OFF);
 | |
| 	skge_write8(hw, B0_CTST, CS_RST_SET);
 | |
| 
 | |
| 	free_irq(pdev->irq, hw);
 | |
| 	pci_release_regions(pdev);
 | |
| 	pci_disable_device(pdev);
 | |
| 	if (dev1)
 | |
| 		free_netdev(dev1);
 | |
| 	free_netdev(dev0);
 | |
| 
 | |
| 	iounmap(hw->regs);
 | |
| 	kfree(hw);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int skge_suspend(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 	struct skge_hw *hw  = pci_get_drvdata(pdev);
 | |
| 	int i;
 | |
| 
 | |
| 	if (!hw)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < hw->ports; i++) {
 | |
| 		struct net_device *dev = hw->dev[i];
 | |
| 		struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 		if (netif_running(dev))
 | |
| 			skge_down(dev);
 | |
| 
 | |
| 		if (skge->wol)
 | |
| 			skge_wol_init(skge);
 | |
| 	}
 | |
| 
 | |
| 	skge_write32(hw, B0_IMSK, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int skge_resume(struct device *dev)
 | |
| {
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 	struct skge_hw *hw  = pci_get_drvdata(pdev);
 | |
| 	int i, err;
 | |
| 
 | |
| 	if (!hw)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = skge_reset(hw);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (i = 0; i < hw->ports; i++) {
 | |
| 		struct net_device *dev = hw->dev[i];
 | |
| 
 | |
| 		if (netif_running(dev)) {
 | |
| 			err = skge_up(dev);
 | |
| 
 | |
| 			if (err) {
 | |
| 				netdev_err(dev, "could not up: %d\n", err);
 | |
| 				dev_close(dev);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
 | |
| #define SKGE_PM_OPS (&skge_pm_ops)
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define SKGE_PM_OPS NULL
 | |
| #endif
 | |
| 
 | |
| static void skge_shutdown(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct skge_hw *hw  = pci_get_drvdata(pdev);
 | |
| 	int i;
 | |
| 
 | |
| 	if (!hw)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < hw->ports; i++) {
 | |
| 		struct net_device *dev = hw->dev[i];
 | |
| 		struct skge_port *skge = netdev_priv(dev);
 | |
| 
 | |
| 		if (skge->wol)
 | |
| 			skge_wol_init(skge);
 | |
| 	}
 | |
| 
 | |
| 	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
 | |
| 	pci_set_power_state(pdev, PCI_D3hot);
 | |
| }
 | |
| 
 | |
| static struct pci_driver skge_driver = {
 | |
| 	.name =         DRV_NAME,
 | |
| 	.id_table =     skge_id_table,
 | |
| 	.probe =        skge_probe,
 | |
| 	.remove =       __devexit_p(skge_remove),
 | |
| 	.shutdown =	skge_shutdown,
 | |
| 	.driver.pm =	SKGE_PM_OPS,
 | |
| };
 | |
| 
 | |
| static struct dmi_system_id skge_32bit_dma_boards[] = {
 | |
| 	{
 | |
| 		.ident = "Gigabyte nForce boards",
 | |
| 		.matches = {
 | |
| 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
 | |
| 			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
 | |
| 		},
 | |
| 	},
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static int __init skge_init_module(void)
 | |
| {
 | |
| 	if (dmi_check_system(skge_32bit_dma_boards))
 | |
| 		only_32bit_dma = 1;
 | |
| 	skge_debug_init();
 | |
| 	return pci_register_driver(&skge_driver);
 | |
| }
 | |
| 
 | |
| static void __exit skge_cleanup_module(void)
 | |
| {
 | |
| 	pci_unregister_driver(&skge_driver);
 | |
| 	skge_debug_cleanup();
 | |
| }
 | |
| 
 | |
| module_init(skge_init_module);
 | |
| module_exit(skge_cleanup_module);
 |