 2f32bfd834
			
		
	
	
	2f32bfd834
	
	
	
		
			
			fips_cprng_get_random and fips_cprng_reset is used only by CONFIG_CRYPTO_FIPS. This also fixes compilation warnings: crypto/ansi_cprng.c:360: warning: ‘fips_cprng_get_random’ defined but not used crypto/ansi_cprng.c:393: warning: ‘fips_cprng_reset’ defined but not used Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			488 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			488 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * PRNG: Pseudo Random Number Generator
 | |
|  *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
 | |
|  *       AES 128 cipher
 | |
|  *
 | |
|  *  (C) Neil Horman <nhorman@tuxdriver.com>
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify it
 | |
|  *  under the terms of the GNU General Public License as published by the
 | |
|  *  Free Software Foundation; either version 2 of the License, or (at your
 | |
|  *  any later version.
 | |
|  *
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <crypto/internal/rng.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/string.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| #define DEFAULT_PRNG_KEY "0123456789abcdef"
 | |
| #define DEFAULT_PRNG_KSZ 16
 | |
| #define DEFAULT_BLK_SZ 16
 | |
| #define DEFAULT_V_SEED "zaybxcwdveuftgsh"
 | |
| 
 | |
| /*
 | |
|  * Flags for the prng_context flags field
 | |
|  */
 | |
| 
 | |
| #define PRNG_FIXED_SIZE 0x1
 | |
| #define PRNG_NEED_RESET 0x2
 | |
| 
 | |
| /*
 | |
|  * Note: DT is our counter value
 | |
|  *	 I is our intermediate value
 | |
|  *	 V is our seed vector
 | |
|  * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
 | |
|  * for implementation details
 | |
|  */
 | |
| 
 | |
| 
 | |
| struct prng_context {
 | |
| 	spinlock_t prng_lock;
 | |
| 	unsigned char rand_data[DEFAULT_BLK_SZ];
 | |
| 	unsigned char last_rand_data[DEFAULT_BLK_SZ];
 | |
| 	unsigned char DT[DEFAULT_BLK_SZ];
 | |
| 	unsigned char I[DEFAULT_BLK_SZ];
 | |
| 	unsigned char V[DEFAULT_BLK_SZ];
 | |
| 	u32 rand_data_valid;
 | |
| 	struct crypto_cipher *tfm;
 | |
| 	u32 flags;
 | |
| };
 | |
| 
 | |
| static int dbg;
 | |
| 
 | |
| static void hexdump(char *note, unsigned char *buf, unsigned int len)
 | |
| {
 | |
| 	if (dbg) {
 | |
| 		printk(KERN_CRIT "%s", note);
 | |
| 		print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
 | |
| 				16, 1,
 | |
| 				buf, len, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define dbgprint(format, args...) do {\
 | |
| if (dbg)\
 | |
| 	printk(format, ##args);\
 | |
| } while (0)
 | |
| 
 | |
| static void xor_vectors(unsigned char *in1, unsigned char *in2,
 | |
| 			unsigned char *out, unsigned int size)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		out[i] = in1[i] ^ in2[i];
 | |
| 
 | |
| }
 | |
| /*
 | |
|  * Returns DEFAULT_BLK_SZ bytes of random data per call
 | |
|  * returns 0 if generation succeded, <0 if something went wrong
 | |
|  */
 | |
| static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned char tmp[DEFAULT_BLK_SZ];
 | |
| 	unsigned char *output = NULL;
 | |
| 
 | |
| 
 | |
| 	dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
 | |
| 		ctx);
 | |
| 
 | |
| 	hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
 | |
| 	hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
 | |
| 	hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
 | |
| 
 | |
| 	/*
 | |
| 	 * This algorithm is a 3 stage state machine
 | |
| 	 */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 
 | |
| 		switch (i) {
 | |
| 		case 0:
 | |
| 			/*
 | |
| 			 * Start by encrypting the counter value
 | |
| 			 * This gives us an intermediate value I
 | |
| 			 */
 | |
| 			memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
 | |
| 			output = ctx->I;
 | |
| 			hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
 | |
| 			break;
 | |
| 		case 1:
 | |
| 
 | |
| 			/*
 | |
| 			 * Next xor I with our secret vector V
 | |
| 			 * encrypt that result to obtain our
 | |
| 			 * pseudo random data which we output
 | |
| 			 */
 | |
| 			xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
 | |
| 			hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
 | |
| 			output = ctx->rand_data;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			/*
 | |
| 			 * First check that we didn't produce the same
 | |
| 			 * random data that we did last time around through this
 | |
| 			 */
 | |
| 			if (!memcmp(ctx->rand_data, ctx->last_rand_data,
 | |
| 					DEFAULT_BLK_SZ)) {
 | |
| 				if (cont_test) {
 | |
| 					panic("cprng %p Failed repetition check!\n",
 | |
| 						ctx);
 | |
| 				}
 | |
| 
 | |
| 				printk(KERN_ERR
 | |
| 					"ctx %p Failed repetition check!\n",
 | |
| 					ctx);
 | |
| 
 | |
| 				ctx->flags |= PRNG_NEED_RESET;
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			memcpy(ctx->last_rand_data, ctx->rand_data,
 | |
| 				DEFAULT_BLK_SZ);
 | |
| 
 | |
| 			/*
 | |
| 			 * Lastly xor the random data with I
 | |
| 			 * and encrypt that to obtain a new secret vector V
 | |
| 			 */
 | |
| 			xor_vectors(ctx->rand_data, ctx->I, tmp,
 | |
| 				DEFAULT_BLK_SZ);
 | |
| 			output = ctx->V;
 | |
| 			hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		/* do the encryption */
 | |
| 		crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now update our DT value
 | |
| 	 */
 | |
| 	for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
 | |
| 		ctx->DT[i] += 1;
 | |
| 		if (ctx->DT[i] != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	dbgprint("Returning new block for context %p\n", ctx);
 | |
| 	ctx->rand_data_valid = 0;
 | |
| 
 | |
| 	hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
 | |
| 	hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
 | |
| 	hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
 | |
| 	hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Our exported functions */
 | |
| static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
 | |
| 				int do_cont_test)
 | |
| {
 | |
| 	unsigned char *ptr = buf;
 | |
| 	unsigned int byte_count = (unsigned int)nbytes;
 | |
| 	int err;
 | |
| 
 | |
| 
 | |
| 	spin_lock_bh(&ctx->prng_lock);
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (ctx->flags & PRNG_NEED_RESET)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the FIXED_SIZE flag is on, only return whole blocks of
 | |
| 	 * pseudo random data
 | |
| 	 */
 | |
| 	err = -EINVAL;
 | |
| 	if (ctx->flags & PRNG_FIXED_SIZE) {
 | |
| 		if (nbytes < DEFAULT_BLK_SZ)
 | |
| 			goto done;
 | |
| 		byte_count = DEFAULT_BLK_SZ;
 | |
| 	}
 | |
| 
 | |
| 	err = byte_count;
 | |
| 
 | |
| 	dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
 | |
| 		byte_count, ctx);
 | |
| 
 | |
| 
 | |
| remainder:
 | |
| 	if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
 | |
| 		if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
 | |
| 			memset(buf, 0, nbytes);
 | |
| 			err = -EINVAL;
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy any data less than an entire block
 | |
| 	 */
 | |
| 	if (byte_count < DEFAULT_BLK_SZ) {
 | |
| empty_rbuf:
 | |
| 		for (; ctx->rand_data_valid < DEFAULT_BLK_SZ;
 | |
| 			ctx->rand_data_valid++) {
 | |
| 			*ptr = ctx->rand_data[ctx->rand_data_valid];
 | |
| 			ptr++;
 | |
| 			byte_count--;
 | |
| 			if (byte_count == 0)
 | |
| 				goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now copy whole blocks
 | |
| 	 */
 | |
| 	for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
 | |
| 		if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
 | |
| 			if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
 | |
| 				memset(buf, 0, nbytes);
 | |
| 				err = -EINVAL;
 | |
| 				goto done;
 | |
| 			}
 | |
| 		}
 | |
| 		if (ctx->rand_data_valid > 0)
 | |
| 			goto empty_rbuf;
 | |
| 		memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
 | |
| 		ctx->rand_data_valid += DEFAULT_BLK_SZ;
 | |
| 		ptr += DEFAULT_BLK_SZ;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now go back and get any remaining partial block
 | |
| 	 */
 | |
| 	if (byte_count)
 | |
| 		goto remainder;
 | |
| 
 | |
| done:
 | |
| 	spin_unlock_bh(&ctx->prng_lock);
 | |
| 	dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
 | |
| 		err, ctx);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void free_prng_context(struct prng_context *ctx)
 | |
| {
 | |
| 	crypto_free_cipher(ctx->tfm);
 | |
| }
 | |
| 
 | |
| static int reset_prng_context(struct prng_context *ctx,
 | |
| 			      unsigned char *key, size_t klen,
 | |
| 			      unsigned char *V, unsigned char *DT)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned char *prng_key;
 | |
| 
 | |
| 	spin_lock_bh(&ctx->prng_lock);
 | |
| 	ctx->flags |= PRNG_NEED_RESET;
 | |
| 
 | |
| 	prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
 | |
| 
 | |
| 	if (!key)
 | |
| 		klen = DEFAULT_PRNG_KSZ;
 | |
| 
 | |
| 	if (V)
 | |
| 		memcpy(ctx->V, V, DEFAULT_BLK_SZ);
 | |
| 	else
 | |
| 		memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
 | |
| 
 | |
| 	if (DT)
 | |
| 		memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
 | |
| 	else
 | |
| 		memset(ctx->DT, 0, DEFAULT_BLK_SZ);
 | |
| 
 | |
| 	memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
 | |
| 	memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
 | |
| 
 | |
| 	ctx->rand_data_valid = DEFAULT_BLK_SZ;
 | |
| 
 | |
| 	ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
 | |
| 	if (ret) {
 | |
| 		dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
 | |
| 			crypto_cipher_get_flags(ctx->tfm));
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 	ctx->flags &= ~PRNG_NEED_RESET;
 | |
| out:
 | |
| 	spin_unlock_bh(&ctx->prng_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cprng_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct prng_context *ctx = crypto_tfm_ctx(tfm);
 | |
| 
 | |
| 	spin_lock_init(&ctx->prng_lock);
 | |
| 	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
 | |
| 	if (IS_ERR(ctx->tfm)) {
 | |
| 		dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
 | |
| 				ctx);
 | |
| 		return PTR_ERR(ctx->tfm);
 | |
| 	}
 | |
| 
 | |
| 	if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * after allocation, we should always force the user to reset
 | |
| 	 * so they don't inadvertently use the insecure default values
 | |
| 	 * without specifying them intentially
 | |
| 	 */
 | |
| 	ctx->flags |= PRNG_NEED_RESET;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cprng_exit(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	free_prng_context(crypto_tfm_ctx(tfm));
 | |
| }
 | |
| 
 | |
| static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
 | |
| 			    unsigned int dlen)
 | |
| {
 | |
| 	struct prng_context *prng = crypto_rng_ctx(tfm);
 | |
| 
 | |
| 	return get_prng_bytes(rdata, dlen, prng, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  This is the cprng_registered reset method the seed value is
 | |
|  *  interpreted as the tuple { V KEY DT}
 | |
|  *  V and KEY are required during reset, and DT is optional, detected
 | |
|  *  as being present by testing the length of the seed
 | |
|  */
 | |
| static int cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
 | |
| {
 | |
| 	struct prng_context *prng = crypto_rng_ctx(tfm);
 | |
| 	u8 *key = seed + DEFAULT_BLK_SZ;
 | |
| 	u8 *dt = NULL;
 | |
| 
 | |
| 	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
 | |
| 		dt = key + DEFAULT_PRNG_KSZ;
 | |
| 
 | |
| 	reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
 | |
| 
 | |
| 	if (prng->flags & PRNG_NEED_RESET)
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct crypto_alg rng_alg = {
 | |
| 	.cra_name		= "stdrng",
 | |
| 	.cra_driver_name	= "ansi_cprng",
 | |
| 	.cra_priority		= 100,
 | |
| 	.cra_flags		= CRYPTO_ALG_TYPE_RNG,
 | |
| 	.cra_ctxsize		= sizeof(struct prng_context),
 | |
| 	.cra_type		= &crypto_rng_type,
 | |
| 	.cra_module		= THIS_MODULE,
 | |
| 	.cra_list		= LIST_HEAD_INIT(rng_alg.cra_list),
 | |
| 	.cra_init		= cprng_init,
 | |
| 	.cra_exit		= cprng_exit,
 | |
| 	.cra_u			= {
 | |
| 		.rng = {
 | |
| 			.rng_make_random	= cprng_get_random,
 | |
| 			.rng_reset		= cprng_reset,
 | |
| 			.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
 | |
| 		}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_CRYPTO_FIPS
 | |
| static int fips_cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
 | |
| 			    unsigned int dlen)
 | |
| {
 | |
| 	struct prng_context *prng = crypto_rng_ctx(tfm);
 | |
| 
 | |
| 	return get_prng_bytes(rdata, dlen, prng, 1);
 | |
| }
 | |
| 
 | |
| static int fips_cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
 | |
| {
 | |
| 	u8 rdata[DEFAULT_BLK_SZ];
 | |
| 	int rc;
 | |
| 
 | |
| 	struct prng_context *prng = crypto_rng_ctx(tfm);
 | |
| 
 | |
| 	rc = cprng_reset(tfm, seed, slen);
 | |
| 
 | |
| 	if (!rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* this primes our continuity test */
 | |
| 	rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
 | |
| 	prng->rand_data_valid = DEFAULT_BLK_SZ;
 | |
| 
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static struct crypto_alg fips_rng_alg = {
 | |
| 	.cra_name		= "fips(ansi_cprng)",
 | |
| 	.cra_driver_name	= "fips_ansi_cprng",
 | |
| 	.cra_priority		= 300,
 | |
| 	.cra_flags		= CRYPTO_ALG_TYPE_RNG,
 | |
| 	.cra_ctxsize		= sizeof(struct prng_context),
 | |
| 	.cra_type		= &crypto_rng_type,
 | |
| 	.cra_module		= THIS_MODULE,
 | |
| 	.cra_list		= LIST_HEAD_INIT(rng_alg.cra_list),
 | |
| 	.cra_init		= cprng_init,
 | |
| 	.cra_exit		= cprng_exit,
 | |
| 	.cra_u			= {
 | |
| 		.rng = {
 | |
| 			.rng_make_random	= fips_cprng_get_random,
 | |
| 			.rng_reset		= fips_cprng_reset,
 | |
| 			.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
 | |
| 		}
 | |
| 	}
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /* Module initalization */
 | |
| static int __init prng_mod_init(void)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	rc = crypto_register_alg(&rng_alg);
 | |
| #ifdef CONFIG_CRYPTO_FIPS
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	rc = crypto_register_alg(&fips_rng_alg);
 | |
| 
 | |
| out:
 | |
| #endif
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void __exit prng_mod_fini(void)
 | |
| {
 | |
| 	crypto_unregister_alg(&rng_alg);
 | |
| #ifdef CONFIG_CRYPTO_FIPS
 | |
| 	crypto_unregister_alg(&fips_rng_alg);
 | |
| #endif
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
 | |
| MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
 | |
| module_param(dbg, int, 0);
 | |
| MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
 | |
| module_init(prng_mod_init);
 | |
| module_exit(prng_mod_fini);
 | |
| MODULE_ALIAS("stdrng");
 |