 c177c81e09
			
		
	
	
	c177c81e09
	
	
	
		
			
			Currently hugepage migration is available for all archs which support pmd-level hugepage, but testing is done only for x86_64 and there're bugs for other archs. So to avoid breaking such archs, this patch limits the availability strictly to x86_64 until developers of other archs get interested in enabling this feature. Simply disabling hugepage migration on non-x86_64 archs is not enough to fix the reported problem where sys_move_pages() hits the BUG_ON() in follow_page(FOLL_GET), so let's fix this by checking if hugepage migration is supported in vma_migratable(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: <stable@vger.kernel.org> [3.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1089 lines
		
	
	
	
		
			26 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1089 lines
		
	
	
	
		
			26 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * PPC Huge TLB Page Support for Kernel.
 | |
|  *
 | |
|  * Copyright (C) 2003 David Gibson, IBM Corporation.
 | |
|  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
 | |
|  *
 | |
|  * Based on the IA-32 version:
 | |
|  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/of_fdt.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/hugetlb.h>
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 
 | |
| #define PAGE_SHIFT_64K	16
 | |
| #define PAGE_SHIFT_16M	24
 | |
| #define PAGE_SHIFT_16G	34
 | |
| 
 | |
| unsigned int HPAGE_SHIFT;
 | |
| 
 | |
| /*
 | |
|  * Tracks gpages after the device tree is scanned and before the
 | |
|  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
 | |
|  * just used to track 16G pages and so is a single array.  FSL-based
 | |
|  * implementations may have more than one gpage size, so we need multiple
 | |
|  * arrays
 | |
|  */
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| #define MAX_NUMBER_GPAGES	128
 | |
| struct psize_gpages {
 | |
| 	u64 gpage_list[MAX_NUMBER_GPAGES];
 | |
| 	unsigned int nr_gpages;
 | |
| };
 | |
| static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
 | |
| #else
 | |
| #define MAX_NUMBER_GPAGES	1024
 | |
| static u64 gpage_freearray[MAX_NUMBER_GPAGES];
 | |
| static unsigned nr_gpages;
 | |
| #endif
 | |
| 
 | |
| #define hugepd_none(hpd)	((hpd).pd == 0)
 | |
| 
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| /*
 | |
|  * At this point we do the placement change only for BOOK3S 64. This would
 | |
|  * possibly work on other subarchs.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
 | |
|  * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
 | |
|  */
 | |
| int pmd_huge(pmd_t pmd)
 | |
| {
 | |
| 	/*
 | |
| 	 * leaf pte for huge page, bottom two bits != 00
 | |
| 	 */
 | |
| 	return ((pmd_val(pmd) & 0x3) != 0x0);
 | |
| }
 | |
| 
 | |
| int pud_huge(pud_t pud)
 | |
| {
 | |
| 	/*
 | |
| 	 * leaf pte for huge page, bottom two bits != 00
 | |
| 	 */
 | |
| 	return ((pud_val(pud) & 0x3) != 0x0);
 | |
| }
 | |
| 
 | |
| int pgd_huge(pgd_t pgd)
 | |
| {
 | |
| 	/*
 | |
| 	 * leaf pte for huge page, bottom two bits != 00
 | |
| 	 */
 | |
| 	return ((pgd_val(pgd) & 0x3) != 0x0);
 | |
| }
 | |
| #else
 | |
| int pmd_huge(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int pud_huge(pud_t pud)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int pgd_huge(pgd_t pgd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	/* Only called for hugetlbfs pages, hence can ignore THP */
 | |
| 	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
 | |
| }
 | |
| 
 | |
| static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 | |
| 			   unsigned long address, unsigned pdshift, unsigned pshift)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 	pte_t *new;
 | |
| 
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| 	int i;
 | |
| 	int num_hugepd = 1 << (pshift - pdshift);
 | |
| 	cachep = hugepte_cache;
 | |
| #else
 | |
| 	cachep = PGT_CACHE(pdshift - pshift);
 | |
| #endif
 | |
| 
 | |
| 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
 | |
| 
 | |
| 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 | |
| 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 | |
| 
 | |
| 	if (! new)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| 	/*
 | |
| 	 * We have multiple higher-level entries that point to the same
 | |
| 	 * actual pte location.  Fill in each as we go and backtrack on error.
 | |
| 	 * We need all of these so the DTLB pgtable walk code can find the
 | |
| 	 * right higher-level entry without knowing if it's a hugepage or not.
 | |
| 	 */
 | |
| 	for (i = 0; i < num_hugepd; i++, hpdp++) {
 | |
| 		if (unlikely(!hugepd_none(*hpdp)))
 | |
| 			break;
 | |
| 		else
 | |
| 			/* We use the old format for PPC_FSL_BOOK3E */
 | |
| 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 | |
| 	}
 | |
| 	/* If we bailed from the for loop early, an error occurred, clean up */
 | |
| 	if (i < num_hugepd) {
 | |
| 		for (i = i - 1 ; i >= 0; i--, hpdp--)
 | |
| 			hpdp->pd = 0;
 | |
| 		kmem_cache_free(cachep, new);
 | |
| 	}
 | |
| #else
 | |
| 	if (!hugepd_none(*hpdp))
 | |
| 		kmem_cache_free(cachep, new);
 | |
| 	else {
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| 		hpdp->pd = (unsigned long)new |
 | |
| 			    (shift_to_mmu_psize(pshift) << 2);
 | |
| #else
 | |
| 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 | |
| #endif
 | |
| 	}
 | |
| #endif
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These macros define how to determine which level of the page table holds
 | |
|  * the hpdp.
 | |
|  */
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
 | |
| #define HUGEPD_PUD_SHIFT PUD_SHIFT
 | |
| #else
 | |
| #define HUGEPD_PGD_SHIFT PUD_SHIFT
 | |
| #define HUGEPD_PUD_SHIFT PMD_SHIFT
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| /*
 | |
|  * At this point we do the placement change only for BOOK3S 64. This would
 | |
|  * possibly work on other subarchs.
 | |
|  */
 | |
| pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 | |
| {
 | |
| 	pgd_t *pg;
 | |
| 	pud_t *pu;
 | |
| 	pmd_t *pm;
 | |
| 	hugepd_t *hpdp = NULL;
 | |
| 	unsigned pshift = __ffs(sz);
 | |
| 	unsigned pdshift = PGDIR_SHIFT;
 | |
| 
 | |
| 	addr &= ~(sz-1);
 | |
| 	pg = pgd_offset(mm, addr);
 | |
| 
 | |
| 	if (pshift == PGDIR_SHIFT)
 | |
| 		/* 16GB huge page */
 | |
| 		return (pte_t *) pg;
 | |
| 	else if (pshift > PUD_SHIFT)
 | |
| 		/*
 | |
| 		 * We need to use hugepd table
 | |
| 		 */
 | |
| 		hpdp = (hugepd_t *)pg;
 | |
| 	else {
 | |
| 		pdshift = PUD_SHIFT;
 | |
| 		pu = pud_alloc(mm, pg, addr);
 | |
| 		if (pshift == PUD_SHIFT)
 | |
| 			return (pte_t *)pu;
 | |
| 		else if (pshift > PMD_SHIFT)
 | |
| 			hpdp = (hugepd_t *)pu;
 | |
| 		else {
 | |
| 			pdshift = PMD_SHIFT;
 | |
| 			pm = pmd_alloc(mm, pu, addr);
 | |
| 			if (pshift == PMD_SHIFT)
 | |
| 				/* 16MB hugepage */
 | |
| 				return (pte_t *)pm;
 | |
| 			else
 | |
| 				hpdp = (hugepd_t *)pm;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!hpdp)
 | |
| 		return NULL;
 | |
| 
 | |
| 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 | |
| 
 | |
| 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return hugepte_offset(hpdp, addr, pdshift);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 | |
| {
 | |
| 	pgd_t *pg;
 | |
| 	pud_t *pu;
 | |
| 	pmd_t *pm;
 | |
| 	hugepd_t *hpdp = NULL;
 | |
| 	unsigned pshift = __ffs(sz);
 | |
| 	unsigned pdshift = PGDIR_SHIFT;
 | |
| 
 | |
| 	addr &= ~(sz-1);
 | |
| 
 | |
| 	pg = pgd_offset(mm, addr);
 | |
| 
 | |
| 	if (pshift >= HUGEPD_PGD_SHIFT) {
 | |
| 		hpdp = (hugepd_t *)pg;
 | |
| 	} else {
 | |
| 		pdshift = PUD_SHIFT;
 | |
| 		pu = pud_alloc(mm, pg, addr);
 | |
| 		if (pshift >= HUGEPD_PUD_SHIFT) {
 | |
| 			hpdp = (hugepd_t *)pu;
 | |
| 		} else {
 | |
| 			pdshift = PMD_SHIFT;
 | |
| 			pm = pmd_alloc(mm, pu, addr);
 | |
| 			hpdp = (hugepd_t *)pm;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!hpdp)
 | |
| 		return NULL;
 | |
| 
 | |
| 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 | |
| 
 | |
| 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return hugepte_offset(hpdp, addr, pdshift);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| /* Build list of addresses of gigantic pages.  This function is used in early
 | |
|  * boot before the buddy or bootmem allocator is setup.
 | |
|  */
 | |
| void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 | |
| {
 | |
| 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
 | |
| 	int i;
 | |
| 
 | |
| 	if (addr == 0)
 | |
| 		return;
 | |
| 
 | |
| 	gpage_freearray[idx].nr_gpages = number_of_pages;
 | |
| 
 | |
| 	for (i = 0; i < number_of_pages; i++) {
 | |
| 		gpage_freearray[idx].gpage_list[i] = addr;
 | |
| 		addr += page_size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Moves the gigantic page addresses from the temporary list to the
 | |
|  * huge_boot_pages list.
 | |
|  */
 | |
| int alloc_bootmem_huge_page(struct hstate *hstate)
 | |
| {
 | |
| 	struct huge_bootmem_page *m;
 | |
| 	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
 | |
| 	int nr_gpages = gpage_freearray[idx].nr_gpages;
 | |
| 
 | |
| 	if (nr_gpages == 0)
 | |
| 		return 0;
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	/*
 | |
| 	 * If gpages can be in highmem we can't use the trick of storing the
 | |
| 	 * data structure in the page; allocate space for this
 | |
| 	 */
 | |
| 	m = alloc_bootmem(sizeof(struct huge_bootmem_page));
 | |
| 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
 | |
| #else
 | |
| 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
 | |
| #endif
 | |
| 
 | |
| 	list_add(&m->list, &huge_boot_pages);
 | |
| 	gpage_freearray[idx].nr_gpages = nr_gpages;
 | |
| 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
 | |
| 	m->hstate = hstate;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| /*
 | |
|  * Scan the command line hugepagesz= options for gigantic pages; store those in
 | |
|  * a list that we use to allocate the memory once all options are parsed.
 | |
|  */
 | |
| 
 | |
| unsigned long gpage_npages[MMU_PAGE_COUNT];
 | |
| 
 | |
| static int __init do_gpage_early_setup(char *param, char *val,
 | |
| 				       const char *unused)
 | |
| {
 | |
| 	static phys_addr_t size;
 | |
| 	unsigned long npages;
 | |
| 
 | |
| 	/*
 | |
| 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
 | |
| 	 * use the size variable to keep track of whether or not this was done
 | |
| 	 * properly and skip over instances where it is incorrect.  Other
 | |
| 	 * command-line parsing code will issue warnings, so we don't need to.
 | |
| 	 *
 | |
| 	 */
 | |
| 	if ((strcmp(param, "default_hugepagesz") == 0) ||
 | |
| 	    (strcmp(param, "hugepagesz") == 0)) {
 | |
| 		size = memparse(val, NULL);
 | |
| 	} else if (strcmp(param, "hugepages") == 0) {
 | |
| 		if (size != 0) {
 | |
| 			if (sscanf(val, "%lu", &npages) <= 0)
 | |
| 				npages = 0;
 | |
| 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
 | |
| 			size = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This function allocates physical space for pages that are larger than the
 | |
|  * buddy allocator can handle.  We want to allocate these in highmem because
 | |
|  * the amount of lowmem is limited.  This means that this function MUST be
 | |
|  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 | |
|  * allocate to grab highmem.
 | |
|  */
 | |
| void __init reserve_hugetlb_gpages(void)
 | |
| {
 | |
| 	static __initdata char cmdline[COMMAND_LINE_SIZE];
 | |
| 	phys_addr_t size, base;
 | |
| 	int i;
 | |
| 
 | |
| 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
 | |
| 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
 | |
| 			&do_gpage_early_setup);
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk gpage list in reverse, allocating larger page sizes first.
 | |
| 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
 | |
| 	 * When we reach the point in the list where pages are no longer
 | |
| 	 * considered gpages, we're done.
 | |
| 	 */
 | |
| 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
 | |
| 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
 | |
| 			continue;
 | |
| 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
 | |
| 			break;
 | |
| 
 | |
| 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
 | |
| 		base = memblock_alloc_base(size * gpage_npages[i], size,
 | |
| 					   MEMBLOCK_ALLOC_ANYWHERE);
 | |
| 		add_gpage(base, size, gpage_npages[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else /* !PPC_FSL_BOOK3E */
 | |
| 
 | |
| /* Build list of addresses of gigantic pages.  This function is used in early
 | |
|  * boot before the buddy or bootmem allocator is setup.
 | |
|  */
 | |
| void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 | |
| {
 | |
| 	if (!addr)
 | |
| 		return;
 | |
| 	while (number_of_pages > 0) {
 | |
| 		gpage_freearray[nr_gpages] = addr;
 | |
| 		nr_gpages++;
 | |
| 		number_of_pages--;
 | |
| 		addr += page_size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Moves the gigantic page addresses from the temporary list to the
 | |
|  * huge_boot_pages list.
 | |
|  */
 | |
| int alloc_bootmem_huge_page(struct hstate *hstate)
 | |
| {
 | |
| 	struct huge_bootmem_page *m;
 | |
| 	if (nr_gpages == 0)
 | |
| 		return 0;
 | |
| 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
 | |
| 	gpage_freearray[nr_gpages] = 0;
 | |
| 	list_add(&m->list, &huge_boot_pages);
 | |
| 	m->hstate = hstate;
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| #define HUGEPD_FREELIST_SIZE \
 | |
| 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 | |
| 
 | |
| struct hugepd_freelist {
 | |
| 	struct rcu_head	rcu;
 | |
| 	unsigned int index;
 | |
| 	void *ptes[0];
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 | |
| 
 | |
| static void hugepd_free_rcu_callback(struct rcu_head *head)
 | |
| {
 | |
| 	struct hugepd_freelist *batch =
 | |
| 		container_of(head, struct hugepd_freelist, rcu);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < batch->index; i++)
 | |
| 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
 | |
| 
 | |
| 	free_page((unsigned long)batch);
 | |
| }
 | |
| 
 | |
| static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 | |
| {
 | |
| 	struct hugepd_freelist **batchp;
 | |
| 
 | |
| 	batchp = &get_cpu_var(hugepd_freelist_cur);
 | |
| 
 | |
| 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
 | |
| 	    cpumask_equal(mm_cpumask(tlb->mm),
 | |
| 			  cpumask_of(smp_processor_id()))) {
 | |
| 		kmem_cache_free(hugepte_cache, hugepte);
 | |
|         put_cpu_var(hugepd_freelist_cur);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (*batchp == NULL) {
 | |
| 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 | |
| 		(*batchp)->index = 0;
 | |
| 	}
 | |
| 
 | |
| 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
 | |
| 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 | |
| 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
 | |
| 		*batchp = NULL;
 | |
| 	}
 | |
| 	put_cpu_var(hugepd_freelist_cur);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 | |
| 			      unsigned long start, unsigned long end,
 | |
| 			      unsigned long floor, unsigned long ceiling)
 | |
| {
 | |
| 	pte_t *hugepte = hugepd_page(*hpdp);
 | |
| 	int i;
 | |
| 
 | |
| 	unsigned long pdmask = ~((1UL << pdshift) - 1);
 | |
| 	unsigned int num_hugepd = 1;
 | |
| 
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| 	/* Note: On fsl the hpdp may be the first of several */
 | |
| 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
 | |
| #else
 | |
| 	unsigned int shift = hugepd_shift(*hpdp);
 | |
| #endif
 | |
| 
 | |
| 	start &= pdmask;
 | |
| 	if (start < floor)
 | |
| 		return;
 | |
| 	if (ceiling) {
 | |
| 		ceiling &= pdmask;
 | |
| 		if (! ceiling)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (end - 1 > ceiling - 1)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < num_hugepd; i++, hpdp++)
 | |
| 		hpdp->pd = 0;
 | |
| 
 | |
| 	tlb->need_flush = 1;
 | |
| 
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| 	hugepd_free(tlb, hugepte);
 | |
| #else
 | |
| 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 | |
| 				   unsigned long addr, unsigned long end,
 | |
| 				   unsigned long floor, unsigned long ceiling)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 	unsigned long start;
 | |
| 
 | |
| 	start = addr;
 | |
| 	do {
 | |
| 		pmd = pmd_offset(pud, addr);
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (!is_hugepd(pmd)) {
 | |
| 			/*
 | |
| 			 * if it is not hugepd pointer, we should already find
 | |
| 			 * it cleared.
 | |
| 			 */
 | |
| 			WARN_ON(!pmd_none_or_clear_bad(pmd));
 | |
| 			continue;
 | |
| 		}
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| 		/*
 | |
| 		 * Increment next by the size of the huge mapping since
 | |
| 		 * there may be more than one entry at this level for a
 | |
| 		 * single hugepage, but all of them point to
 | |
| 		 * the same kmem cache that holds the hugepte.
 | |
| 		 */
 | |
| 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 | |
| #endif
 | |
| 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 | |
| 				  addr, next, floor, ceiling);
 | |
| 	} while (addr = next, addr != end);
 | |
| 
 | |
| 	start &= PUD_MASK;
 | |
| 	if (start < floor)
 | |
| 		return;
 | |
| 	if (ceiling) {
 | |
| 		ceiling &= PUD_MASK;
 | |
| 		if (!ceiling)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (end - 1 > ceiling - 1)
 | |
| 		return;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, start);
 | |
| 	pud_clear(pud);
 | |
| 	pmd_free_tlb(tlb, pmd, start);
 | |
| }
 | |
| 
 | |
| static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 | |
| 				   unsigned long addr, unsigned long end,
 | |
| 				   unsigned long floor, unsigned long ceiling)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 	unsigned long start;
 | |
| 
 | |
| 	start = addr;
 | |
| 	do {
 | |
| 		pud = pud_offset(pgd, addr);
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (!is_hugepd(pud)) {
 | |
| 			if (pud_none_or_clear_bad(pud))
 | |
| 				continue;
 | |
| 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 | |
| 					       ceiling);
 | |
| 		} else {
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| 			/*
 | |
| 			 * Increment next by the size of the huge mapping since
 | |
| 			 * there may be more than one entry at this level for a
 | |
| 			 * single hugepage, but all of them point to
 | |
| 			 * the same kmem cache that holds the hugepte.
 | |
| 			 */
 | |
| 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 | |
| #endif
 | |
| 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 | |
| 					  addr, next, floor, ceiling);
 | |
| 		}
 | |
| 	} while (addr = next, addr != end);
 | |
| 
 | |
| 	start &= PGDIR_MASK;
 | |
| 	if (start < floor)
 | |
| 		return;
 | |
| 	if (ceiling) {
 | |
| 		ceiling &= PGDIR_MASK;
 | |
| 		if (!ceiling)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (end - 1 > ceiling - 1)
 | |
| 		return;
 | |
| 
 | |
| 	pud = pud_offset(pgd, start);
 | |
| 	pgd_clear(pgd);
 | |
| 	pud_free_tlb(tlb, pud, start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function frees user-level page tables of a process.
 | |
|  */
 | |
| void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 | |
| 			    unsigned long addr, unsigned long end,
 | |
| 			    unsigned long floor, unsigned long ceiling)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	/*
 | |
| 	 * Because there are a number of different possible pagetable
 | |
| 	 * layouts for hugepage ranges, we limit knowledge of how
 | |
| 	 * things should be laid out to the allocation path
 | |
| 	 * (huge_pte_alloc(), above).  Everything else works out the
 | |
| 	 * structure as it goes from information in the hugepd
 | |
| 	 * pointers.  That means that we can't here use the
 | |
| 	 * optimization used in the normal page free_pgd_range(), of
 | |
| 	 * checking whether we're actually covering a large enough
 | |
| 	 * range to have to do anything at the top level of the walk
 | |
| 	 * instead of at the bottom.
 | |
| 	 *
 | |
| 	 * To make sense of this, you should probably go read the big
 | |
| 	 * block comment at the top of the normal free_pgd_range(),
 | |
| 	 * too.
 | |
| 	 */
 | |
| 
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		pgd = pgd_offset(tlb->mm, addr);
 | |
| 		if (!is_hugepd(pgd)) {
 | |
| 			if (pgd_none_or_clear_bad(pgd))
 | |
| 				continue;
 | |
| 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 | |
| 		} else {
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| 			/*
 | |
| 			 * Increment next by the size of the huge mapping since
 | |
| 			 * there may be more than one entry at the pgd level
 | |
| 			 * for a single hugepage, but all of them point to the
 | |
| 			 * same kmem cache that holds the hugepte.
 | |
| 			 */
 | |
| 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 | |
| #endif
 | |
| 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
 | |
| 					  addr, next, floor, ceiling);
 | |
| 		}
 | |
| 	} while (addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| struct page *
 | |
| follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 | |
| {
 | |
| 	pte_t *ptep;
 | |
| 	struct page *page;
 | |
| 	unsigned shift;
 | |
| 	unsigned long mask;
 | |
| 	/*
 | |
| 	 * Transparent hugepages are handled by generic code. We can skip them
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
 | |
| 
 | |
| 	/* Verify it is a huge page else bail. */
 | |
| 	if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	mask = (1UL << shift) - 1;
 | |
| 	page = pte_page(*ptep);
 | |
| 	if (page)
 | |
| 		page += (address & mask) / PAGE_SIZE;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| struct page *
 | |
| follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 | |
| 		pmd_t *pmd, int write)
 | |
| {
 | |
| 	BUG();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
 | |
| 				      unsigned long sz)
 | |
| {
 | |
| 	unsigned long __boundary = (addr + sz) & ~(sz-1);
 | |
| 	return (__boundary - 1 < end - 1) ? __boundary : end;
 | |
| }
 | |
| 
 | |
| int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
 | |
| 	       unsigned long addr, unsigned long end,
 | |
| 	       int write, struct page **pages, int *nr)
 | |
| {
 | |
| 	pte_t *ptep;
 | |
| 	unsigned long sz = 1UL << hugepd_shift(*hugepd);
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	ptep = hugepte_offset(hugepd, addr, pdshift);
 | |
| 	do {
 | |
| 		next = hugepte_addr_end(addr, end, sz);
 | |
| 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
 | |
| 			return 0;
 | |
| 	} while (ptep++, addr = next, addr != end);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_MM_SLICES
 | |
| unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 | |
| 					unsigned long len, unsigned long pgoff,
 | |
| 					unsigned long flags)
 | |
| {
 | |
| 	struct hstate *hstate = hstate_file(file);
 | |
| 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 | |
| 
 | |
| 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 | |
| {
 | |
| #ifdef CONFIG_PPC_MM_SLICES
 | |
| 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 | |
| 
 | |
| 	return 1UL << mmu_psize_to_shift(psize);
 | |
| #else
 | |
| 	if (!is_vm_hugetlb_page(vma))
 | |
| 		return PAGE_SIZE;
 | |
| 
 | |
| 	return huge_page_size(hstate_vma(vma));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline bool is_power_of_4(unsigned long x)
 | |
| {
 | |
| 	if (is_power_of_2(x))
 | |
| 		return (__ilog2(x) % 2) ? false : true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int __init add_huge_page_size(unsigned long long size)
 | |
| {
 | |
| 	int shift = __ffs(size);
 | |
| 	int mmu_psize;
 | |
| 
 | |
| 	/* Check that it is a page size supported by the hardware and
 | |
| 	 * that it fits within pagetable and slice limits. */
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
 | |
| 		return -EINVAL;
 | |
| #else
 | |
| 	if (!is_power_of_2(size)
 | |
| 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 
 | |
| 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| #ifdef CONFIG_SPU_FS_64K_LS
 | |
| 	/* Disable support for 64K huge pages when 64K SPU local store
 | |
| 	 * support is enabled as the current implementation conflicts.
 | |
| 	 */
 | |
| 	if (shift == PAGE_SHIFT_64K)
 | |
| 		return -EINVAL;
 | |
| #endif /* CONFIG_SPU_FS_64K_LS */
 | |
| 
 | |
| 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 | |
| 
 | |
| 	/* Return if huge page size has already been setup */
 | |
| 	if (size_to_hstate(size))
 | |
| 		return 0;
 | |
| 
 | |
| 	hugetlb_add_hstate(shift - PAGE_SHIFT);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init hugepage_setup_sz(char *str)
 | |
| {
 | |
| 	unsigned long long size;
 | |
| 
 | |
| 	size = memparse(str, &str);
 | |
| 
 | |
| 	if (add_huge_page_size(size) != 0)
 | |
| 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("hugepagesz=", hugepage_setup_sz);
 | |
| 
 | |
| #ifdef CONFIG_PPC_FSL_BOOK3E
 | |
| struct kmem_cache *hugepte_cache;
 | |
| static int __init hugetlbpage_init(void)
 | |
| {
 | |
| 	int psize;
 | |
| 
 | |
| 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 | |
| 		unsigned shift;
 | |
| 
 | |
| 		if (!mmu_psize_defs[psize].shift)
 | |
| 			continue;
 | |
| 
 | |
| 		shift = mmu_psize_to_shift(psize);
 | |
| 
 | |
| 		/* Don't treat normal page sizes as huge... */
 | |
| 		if (shift != PAGE_SHIFT)
 | |
| 			if (add_huge_page_size(1ULL << shift) < 0)
 | |
| 				continue;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
 | |
| 	 * size information encoded in them, so align them to allow this
 | |
| 	 */
 | |
| 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
 | |
| 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
 | |
| 	if (hugepte_cache == NULL)
 | |
| 		panic("%s: Unable to create kmem cache for hugeptes\n",
 | |
| 		      __func__);
 | |
| 
 | |
| 	/* Default hpage size = 4M */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
 | |
| 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
 | |
| 	else
 | |
| 		panic("%s: Unable to set default huge page size\n", __func__);
 | |
| 
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static int __init hugetlbpage_init(void)
 | |
| {
 | |
| 	int psize;
 | |
| 
 | |
| 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 | |
| 		unsigned shift;
 | |
| 		unsigned pdshift;
 | |
| 
 | |
| 		if (!mmu_psize_defs[psize].shift)
 | |
| 			continue;
 | |
| 
 | |
| 		shift = mmu_psize_to_shift(psize);
 | |
| 
 | |
| 		if (add_huge_page_size(1ULL << shift) < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		if (shift < PMD_SHIFT)
 | |
| 			pdshift = PMD_SHIFT;
 | |
| 		else if (shift < PUD_SHIFT)
 | |
| 			pdshift = PUD_SHIFT;
 | |
| 		else
 | |
| 			pdshift = PGDIR_SHIFT;
 | |
| 		/*
 | |
| 		 * if we have pdshift and shift value same, we don't
 | |
| 		 * use pgt cache for hugepd.
 | |
| 		 */
 | |
| 		if (pdshift != shift) {
 | |
| 			pgtable_cache_add(pdshift - shift, NULL);
 | |
| 			if (!PGT_CACHE(pdshift - shift))
 | |
| 				panic("hugetlbpage_init(): could not create "
 | |
| 				      "pgtable cache for %d bit pagesize\n", shift);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set default large page size. Currently, we pick 16M or 1M
 | |
| 	 * depending on what is available
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
 | |
| 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
 | |
| 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 | |
| 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| module_init(hugetlbpage_init);
 | |
| 
 | |
| void flush_dcache_icache_hugepage(struct page *page)
 | |
| {
 | |
| 	int i;
 | |
| 	void *start;
 | |
| 
 | |
| 	BUG_ON(!PageCompound(page));
 | |
| 
 | |
| 	for (i = 0; i < (1UL << compound_order(page)); i++) {
 | |
| 		if (!PageHighMem(page)) {
 | |
| 			__flush_dcache_icache(page_address(page+i));
 | |
| 		} else {
 | |
| 			start = kmap_atomic(page+i);
 | |
| 			__flush_dcache_icache(start);
 | |
| 			kunmap_atomic(start);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 | |
| 
 | |
| /*
 | |
|  * We have 4 cases for pgds and pmds:
 | |
|  * (1) invalid (all zeroes)
 | |
|  * (2) pointer to next table, as normal; bottom 6 bits == 0
 | |
|  * (3) leaf pte for huge page, bottom two bits != 00
 | |
|  * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
 | |
|  *
 | |
|  * So long as we atomically load page table pointers we are safe against teardown,
 | |
|  * we can follow the address down to the the page and take a ref on it.
 | |
|  */
 | |
| 
 | |
| pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
 | |
| {
 | |
| 	pgd_t pgd, *pgdp;
 | |
| 	pud_t pud, *pudp;
 | |
| 	pmd_t pmd, *pmdp;
 | |
| 	pte_t *ret_pte;
 | |
| 	hugepd_t *hpdp = NULL;
 | |
| 	unsigned pdshift = PGDIR_SHIFT;
 | |
| 
 | |
| 	if (shift)
 | |
| 		*shift = 0;
 | |
| 
 | |
| 	pgdp = pgdir + pgd_index(ea);
 | |
| 	pgd  = ACCESS_ONCE(*pgdp);
 | |
| 	/*
 | |
| 	 * Always operate on the local stack value. This make sure the
 | |
| 	 * value don't get updated by a parallel THP split/collapse,
 | |
| 	 * page fault or a page unmap. The return pte_t * is still not
 | |
| 	 * stable. So should be checked there for above conditions.
 | |
| 	 */
 | |
| 	if (pgd_none(pgd))
 | |
| 		return NULL;
 | |
| 	else if (pgd_huge(pgd)) {
 | |
| 		ret_pte = (pte_t *) pgdp;
 | |
| 		goto out;
 | |
| 	} else if (is_hugepd(&pgd))
 | |
| 		hpdp = (hugepd_t *)&pgd;
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * Even if we end up with an unmap, the pgtable will not
 | |
| 		 * be freed, because we do an rcu free and here we are
 | |
| 		 * irq disabled
 | |
| 		 */
 | |
| 		pdshift = PUD_SHIFT;
 | |
| 		pudp = pud_offset(&pgd, ea);
 | |
| 		pud  = ACCESS_ONCE(*pudp);
 | |
| 
 | |
| 		if (pud_none(pud))
 | |
| 			return NULL;
 | |
| 		else if (pud_huge(pud)) {
 | |
| 			ret_pte = (pte_t *) pudp;
 | |
| 			goto out;
 | |
| 		} else if (is_hugepd(&pud))
 | |
| 			hpdp = (hugepd_t *)&pud;
 | |
| 		else {
 | |
| 			pdshift = PMD_SHIFT;
 | |
| 			pmdp = pmd_offset(&pud, ea);
 | |
| 			pmd  = ACCESS_ONCE(*pmdp);
 | |
| 			/*
 | |
| 			 * A hugepage collapse is captured by pmd_none, because
 | |
| 			 * it mark the pmd none and do a hpte invalidate.
 | |
| 			 *
 | |
| 			 * A hugepage split is captured by pmd_trans_splitting
 | |
| 			 * because we mark the pmd trans splitting and do a
 | |
| 			 * hpte invalidate
 | |
| 			 *
 | |
| 			 */
 | |
| 			if (pmd_none(pmd) || pmd_trans_splitting(pmd))
 | |
| 				return NULL;
 | |
| 
 | |
| 			if (pmd_huge(pmd) || pmd_large(pmd)) {
 | |
| 				ret_pte = (pte_t *) pmdp;
 | |
| 				goto out;
 | |
| 			} else if (is_hugepd(&pmd))
 | |
| 				hpdp = (hugepd_t *)&pmd;
 | |
| 			else
 | |
| 				return pte_offset_kernel(&pmd, ea);
 | |
| 		}
 | |
| 	}
 | |
| 	if (!hpdp)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret_pte = hugepte_offset(hpdp, ea, pdshift);
 | |
| 	pdshift = hugepd_shift(*hpdp);
 | |
| out:
 | |
| 	if (shift)
 | |
| 		*shift = pdshift;
 | |
| 	return ret_pte;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
 | |
| 
 | |
| int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
 | |
| 		unsigned long end, int write, struct page **pages, int *nr)
 | |
| {
 | |
| 	unsigned long mask;
 | |
| 	unsigned long pte_end;
 | |
| 	struct page *head, *page, *tail;
 | |
| 	pte_t pte;
 | |
| 	int refs;
 | |
| 
 | |
| 	pte_end = (addr + sz) & ~(sz-1);
 | |
| 	if (pte_end < end)
 | |
| 		end = pte_end;
 | |
| 
 | |
| 	pte = ACCESS_ONCE(*ptep);
 | |
| 	mask = _PAGE_PRESENT | _PAGE_USER;
 | |
| 	if (write)
 | |
| 		mask |= _PAGE_RW;
 | |
| 
 | |
| 	if ((pte_val(pte) & mask) != mask)
 | |
| 		return 0;
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	/*
 | |
| 	 * check for splitting here
 | |
| 	 */
 | |
| 	if (pmd_trans_splitting(pte_pmd(pte)))
 | |
| 		return 0;
 | |
| #endif
 | |
| 
 | |
| 	/* hugepages are never "special" */
 | |
| 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
 | |
| 
 | |
| 	refs = 0;
 | |
| 	head = pte_page(pte);
 | |
| 
 | |
| 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
 | |
| 	tail = page;
 | |
| 	do {
 | |
| 		VM_BUG_ON(compound_head(page) != head);
 | |
| 		pages[*nr] = page;
 | |
| 		(*nr)++;
 | |
| 		page++;
 | |
| 		refs++;
 | |
| 	} while (addr += PAGE_SIZE, addr != end);
 | |
| 
 | |
| 	if (!page_cache_add_speculative(head, refs)) {
 | |
| 		*nr -= refs;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
 | |
| 		/* Could be optimized better */
 | |
| 		*nr -= refs;
 | |
| 		while (refs--)
 | |
| 			put_page(head);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Any tail page need their mapcount reference taken before we
 | |
| 	 * return.
 | |
| 	 */
 | |
| 	while (refs--) {
 | |
| 		if (PageTail(tail))
 | |
| 			get_huge_page_tail(tail);
 | |
| 		tail++;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 |