 45e98cdb6d
			
		
	
	
	45e98cdb6d
	
	
	
		
			
			Kill pte_rdprotect(), pte_exprotect(), pte_mkread(), pte_mkexec(), pte_read(), pte_exec(), and pte_user() except where arch-specific code is making use of them. Signed-off-by: Jan Beulich <jbeulich@novell.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			361 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _ALPHA_PGTABLE_H
 | |
| #define _ALPHA_PGTABLE_H
 | |
| 
 | |
| #include <asm-generic/4level-fixup.h>
 | |
| 
 | |
| /*
 | |
|  * This file contains the functions and defines necessary to modify and use
 | |
|  * the Alpha page table tree.
 | |
|  *
 | |
|  * This hopefully works with any standard Alpha page-size, as defined
 | |
|  * in <asm/page.h> (currently 8192).
 | |
|  */
 | |
| #include <linux/mmzone.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/processor.h>	/* For TASK_SIZE */
 | |
| #include <asm/machvec.h>
 | |
| 
 | |
| struct mm_struct;
 | |
| struct vm_area_struct;
 | |
| 
 | |
| /* Certain architectures need to do special things when PTEs
 | |
|  * within a page table are directly modified.  Thus, the following
 | |
|  * hook is made available.
 | |
|  */
 | |
| #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
 | |
| #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
 | |
| 
 | |
| /* PMD_SHIFT determines the size of the area a second-level page table can map */
 | |
| #define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-3))
 | |
| #define PMD_SIZE	(1UL << PMD_SHIFT)
 | |
| #define PMD_MASK	(~(PMD_SIZE-1))
 | |
| 
 | |
| /* PGDIR_SHIFT determines what a third-level page table entry can map */
 | |
| #define PGDIR_SHIFT	(PAGE_SHIFT + 2*(PAGE_SHIFT-3))
 | |
| #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
 | |
| #define PGDIR_MASK	(~(PGDIR_SIZE-1))
 | |
| 
 | |
| /*
 | |
|  * Entries per page directory level:  the Alpha is three-level, with
 | |
|  * all levels having a one-page page table.
 | |
|  */
 | |
| #define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-3))
 | |
| #define PTRS_PER_PMD	(1UL << (PAGE_SHIFT-3))
 | |
| #define PTRS_PER_PGD	(1UL << (PAGE_SHIFT-3))
 | |
| #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
 | |
| #define FIRST_USER_ADDRESS	0
 | |
| 
 | |
| /* Number of pointers that fit on a page:  this will go away. */
 | |
| #define PTRS_PER_PAGE	(1UL << (PAGE_SHIFT-3))
 | |
| 
 | |
| #ifdef CONFIG_ALPHA_LARGE_VMALLOC
 | |
| #define VMALLOC_START		0xfffffe0000000000
 | |
| #else
 | |
| #define VMALLOC_START		(-2*PGDIR_SIZE)
 | |
| #endif
 | |
| #define VMALLOC_END		(-PGDIR_SIZE)
 | |
| 
 | |
| /*
 | |
|  * OSF/1 PAL-code-imposed page table bits
 | |
|  */
 | |
| #define _PAGE_VALID	0x0001
 | |
| #define _PAGE_FOR	0x0002	/* used for page protection (fault on read) */
 | |
| #define _PAGE_FOW	0x0004	/* used for page protection (fault on write) */
 | |
| #define _PAGE_FOE	0x0008	/* used for page protection (fault on exec) */
 | |
| #define _PAGE_ASM	0x0010
 | |
| #define _PAGE_KRE	0x0100	/* xxx - see below on the "accessed" bit */
 | |
| #define _PAGE_URE	0x0200	/* xxx */
 | |
| #define _PAGE_KWE	0x1000	/* used to do the dirty bit in software */
 | |
| #define _PAGE_UWE	0x2000	/* used to do the dirty bit in software */
 | |
| 
 | |
| /* .. and these are ours ... */
 | |
| #define _PAGE_DIRTY	0x20000
 | |
| #define _PAGE_ACCESSED	0x40000
 | |
| #define _PAGE_FILE	0x80000	/* set:pagecache, unset:swap */
 | |
| 
 | |
| /*
 | |
|  * NOTE! The "accessed" bit isn't necessarily exact:  it can be kept exactly
 | |
|  * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it.
 | |
|  * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use
 | |
|  * the KRE/URE bits to watch for it. That way we don't need to overload the
 | |
|  * KWE/UWE bits with both handling dirty and accessed.
 | |
|  *
 | |
|  * Note that the kernel uses the accessed bit just to check whether to page
 | |
|  * out a page or not, so it doesn't have to be exact anyway.
 | |
|  */
 | |
| 
 | |
| #define __DIRTY_BITS	(_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE)
 | |
| #define __ACCESS_BITS	(_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE)
 | |
| 
 | |
| #define _PFN_MASK	0xFFFFFFFF00000000UL
 | |
| 
 | |
| #define _PAGE_TABLE	(_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS)
 | |
| #define _PAGE_CHG_MASK	(_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS)
 | |
| 
 | |
| /*
 | |
|  * All the normal masks have the "page accessed" bits on, as any time they are used,
 | |
|  * the page is accessed. They are cleared only by the page-out routines
 | |
|  */
 | |
| #define PAGE_NONE	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE)
 | |
| #define PAGE_SHARED	__pgprot(_PAGE_VALID | __ACCESS_BITS)
 | |
| #define PAGE_COPY	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
 | |
| #define PAGE_READONLY	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
 | |
| #define PAGE_KERNEL	__pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE)
 | |
| 
 | |
| #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x))
 | |
| 
 | |
| #define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW))
 | |
| #define _PAGE_S(x) _PAGE_NORMAL(x)
 | |
| 
 | |
| /*
 | |
|  * The hardware can handle write-only mappings, but as the Alpha
 | |
|  * architecture does byte-wide writes with a read-modify-write
 | |
|  * sequence, it's not practical to have write-without-read privs.
 | |
|  * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in
 | |
|  * arch/alpha/mm/fault.c)
 | |
|  */
 | |
| 	/* xwr */
 | |
| #define __P000	_PAGE_P(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR)
 | |
| #define __P001	_PAGE_P(_PAGE_FOE | _PAGE_FOW)
 | |
| #define __P010	_PAGE_P(_PAGE_FOE)
 | |
| #define __P011	_PAGE_P(_PAGE_FOE)
 | |
| #define __P100	_PAGE_P(_PAGE_FOW | _PAGE_FOR)
 | |
| #define __P101	_PAGE_P(_PAGE_FOW)
 | |
| #define __P110	_PAGE_P(0)
 | |
| #define __P111	_PAGE_P(0)
 | |
| 
 | |
| #define __S000	_PAGE_S(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR)
 | |
| #define __S001	_PAGE_S(_PAGE_FOE | _PAGE_FOW)
 | |
| #define __S010	_PAGE_S(_PAGE_FOE)
 | |
| #define __S011	_PAGE_S(_PAGE_FOE)
 | |
| #define __S100	_PAGE_S(_PAGE_FOW | _PAGE_FOR)
 | |
| #define __S101	_PAGE_S(_PAGE_FOW)
 | |
| #define __S110	_PAGE_S(0)
 | |
| #define __S111	_PAGE_S(0)
 | |
| 
 | |
| /*
 | |
|  * pgprot_noncached() is only for infiniband pci support, and a real
 | |
|  * implementation for RAM would be more complicated.
 | |
|  */
 | |
| #define pgprot_noncached(prot)	(prot)
 | |
| 
 | |
| /*
 | |
|  * BAD_PAGETABLE is used when we need a bogus page-table, while
 | |
|  * BAD_PAGE is used for a bogus page.
 | |
|  *
 | |
|  * ZERO_PAGE is a global shared page that is always zero:  used
 | |
|  * for zero-mapped memory areas etc..
 | |
|  */
 | |
| extern pte_t __bad_page(void);
 | |
| extern pmd_t * __bad_pagetable(void);
 | |
| 
 | |
| extern unsigned long __zero_page(void);
 | |
| 
 | |
| #define BAD_PAGETABLE	__bad_pagetable()
 | |
| #define BAD_PAGE	__bad_page()
 | |
| #define ZERO_PAGE(vaddr)	(virt_to_page(ZERO_PGE))
 | |
| 
 | |
| /* number of bits that fit into a memory pointer */
 | |
| #define BITS_PER_PTR			(8*sizeof(unsigned long))
 | |
| 
 | |
| /* to align the pointer to a pointer address */
 | |
| #define PTR_MASK			(~(sizeof(void*)-1))
 | |
| 
 | |
| /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
 | |
| #define SIZEOF_PTR_LOG2			3
 | |
| 
 | |
| /* to find an entry in a page-table */
 | |
| #define PAGE_PTR(address)		\
 | |
|   ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
 | |
| 
 | |
| /*
 | |
|  * On certain platforms whose physical address space can overlap KSEG,
 | |
|  * namely EV6 and above, we must re-twiddle the physaddr to restore the
 | |
|  * correct high-order bits.
 | |
|  *
 | |
|  * This is extremely confusing until you realize that this is actually
 | |
|  * just working around a userspace bug.  The X server was intending to
 | |
|  * provide the physical address but instead provided the KSEG address.
 | |
|  * Or tried to, except it's not representable.
 | |
|  * 
 | |
|  * On Tsunami there's nothing meaningful at 0x40000000000, so this is
 | |
|  * a safe thing to do.  Come the first core logic that does put something
 | |
|  * in this area -- memory or whathaveyou -- then this hack will have
 | |
|  * to go away.  So be prepared!
 | |
|  */
 | |
| 
 | |
| #if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG)
 | |
| #error "EV6-only feature in a generic kernel"
 | |
| #endif
 | |
| #if defined(CONFIG_ALPHA_GENERIC) || \
 | |
|     (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG))
 | |
| #define KSEG_PFN	(0xc0000000000UL >> PAGE_SHIFT)
 | |
| #define PHYS_TWIDDLE(pfn) \
 | |
|   ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \
 | |
|   ? ((pfn) ^= KSEG_PFN) : (pfn))
 | |
| #else
 | |
| #define PHYS_TWIDDLE(pfn) (pfn)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Conversion functions:  convert a page and protection to a page entry,
 | |
|  * and a page entry and page directory to the page they refer to.
 | |
|  */
 | |
| #ifndef CONFIG_DISCONTIGMEM
 | |
| #define page_to_pa(page)	(((page) - mem_map) << PAGE_SHIFT)
 | |
| 
 | |
| #define pte_pfn(pte)	(pte_val(pte) >> 32)
 | |
| #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
 | |
| #define mk_pte(page, pgprot)						\
 | |
| ({									\
 | |
| 	pte_t pte;							\
 | |
| 									\
 | |
| 	pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot);	\
 | |
| 	pte;								\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot)
 | |
| { pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; }
 | |
| 
 | |
| extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 | |
| { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
 | |
| 
 | |
| extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
 | |
| { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
 | |
| 
 | |
| extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
 | |
| { pgd_val(*pgdp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
 | |
| 
 | |
| 
 | |
| extern inline unsigned long
 | |
| pmd_page_vaddr(pmd_t pmd)
 | |
| {
 | |
| 	return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_DISCONTIGMEM
 | |
| #define pmd_page(pmd)	(mem_map + ((pmd_val(pmd) & _PFN_MASK) >> 32))
 | |
| #define pgd_page(pgd)	(mem_map + ((pgd_val(pgd) & _PFN_MASK) >> 32))
 | |
| #endif
 | |
| 
 | |
| extern inline unsigned long pgd_page_vaddr(pgd_t pgd)
 | |
| { return PAGE_OFFSET + ((pgd_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)); }
 | |
| 
 | |
| extern inline int pte_none(pte_t pte)		{ return !pte_val(pte); }
 | |
| extern inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_VALID; }
 | |
| extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	pte_val(*ptep) = 0;
 | |
| }
 | |
| 
 | |
| extern inline int pmd_none(pmd_t pmd)		{ return !pmd_val(pmd); }
 | |
| extern inline int pmd_bad(pmd_t pmd)		{ return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; }
 | |
| extern inline int pmd_present(pmd_t pmd)	{ return pmd_val(pmd) & _PAGE_VALID; }
 | |
| extern inline void pmd_clear(pmd_t * pmdp)	{ pmd_val(*pmdp) = 0; }
 | |
| 
 | |
| extern inline int pgd_none(pgd_t pgd)		{ return !pgd_val(pgd); }
 | |
| extern inline int pgd_bad(pgd_t pgd)		{ return (pgd_val(pgd) & ~_PFN_MASK) != _PAGE_TABLE; }
 | |
| extern inline int pgd_present(pgd_t pgd)	{ return pgd_val(pgd) & _PAGE_VALID; }
 | |
| extern inline void pgd_clear(pgd_t * pgdp)	{ pgd_val(*pgdp) = 0; }
 | |
| 
 | |
| /*
 | |
|  * The following only work if pte_present() is true.
 | |
|  * Undefined behaviour if not..
 | |
|  */
 | |
| extern inline int pte_write(pte_t pte)		{ return !(pte_val(pte) & _PAGE_FOW); }
 | |
| extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
 | |
| extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
 | |
| extern inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; }
 | |
| 
 | |
| extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) |= _PAGE_FOW; return pte; }
 | |
| extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~(__DIRTY_BITS); return pte; }
 | |
| extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~(__ACCESS_BITS); return pte; }
 | |
| extern inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) &= ~_PAGE_FOW; return pte; }
 | |
| extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= __DIRTY_BITS; return pte; }
 | |
| extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= __ACCESS_BITS; return pte; }
 | |
| 
 | |
| #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))
 | |
| 
 | |
| /* to find an entry in a kernel page-table-directory */
 | |
| #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
 | |
| 
 | |
| /* to find an entry in a page-table-directory. */
 | |
| #define pgd_index(address)	(((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 | |
| #define pgd_offset(mm, address)	((mm)->pgd+pgd_index(address))
 | |
| 
 | |
| /* Find an entry in the second-level page table.. */
 | |
| extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
 | |
| {
 | |
| 	return (pmd_t *) pgd_page_vaddr(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1));
 | |
| }
 | |
| 
 | |
| /* Find an entry in the third-level page table.. */
 | |
| extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address)
 | |
| {
 | |
| 	return (pte_t *) pmd_page_vaddr(*dir)
 | |
| 		+ ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1));
 | |
| }
 | |
| 
 | |
| #define pte_offset_map(dir,addr)	pte_offset_kernel((dir),(addr))
 | |
| #define pte_offset_map_nested(dir,addr)	pte_offset_kernel((dir),(addr))
 | |
| #define pte_unmap(pte)			do { } while (0)
 | |
| #define pte_unmap_nested(pte)		do { } while (0)
 | |
| 
 | |
| extern pgd_t swapper_pg_dir[1024];
 | |
| 
 | |
| /*
 | |
|  * The Alpha doesn't have any external MMU info:  the kernel page
 | |
|  * tables contain all the necessary information.
 | |
|  */
 | |
| extern inline void update_mmu_cache(struct vm_area_struct * vma,
 | |
| 	unsigned long address, pte_t pte)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Non-present pages:  high 24 bits are offset, next 8 bits type,
 | |
|  * low 32 bits zero.
 | |
|  */
 | |
| extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
 | |
| { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
 | |
| 
 | |
| #define __swp_type(x)		(((x).val >> 32) & 0xff)
 | |
| #define __swp_offset(x)		((x).val >> 40)
 | |
| #define __swp_entry(type, off)	((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) })
 | |
| #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
 | |
| #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
 | |
| 
 | |
| #define pte_to_pgoff(pte)	(pte_val(pte) >> 32)
 | |
| #define pgoff_to_pte(off)	((pte_t) { ((off) << 32) | _PAGE_FILE })
 | |
| 
 | |
| #define PTE_FILE_MAX_BITS	32
 | |
| 
 | |
| #ifndef CONFIG_DISCONTIGMEM
 | |
| #define kern_addr_valid(addr)	(1)
 | |
| #endif
 | |
| 
 | |
| #define io_remap_pfn_range(vma, start, pfn, size, prot)	\
 | |
| 		remap_pfn_range(vma, start, pfn, size, prot)
 | |
| 
 | |
| #define pte_ERROR(e) \
 | |
| 	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
 | |
| #define pmd_ERROR(e) \
 | |
| 	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
 | |
| #define pgd_ERROR(e) \
 | |
| 	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
 | |
| 
 | |
| extern void paging_init(void);
 | |
| 
 | |
| #include <asm-generic/pgtable.h>
 | |
| 
 | |
| /*
 | |
|  * No page table caches to initialise
 | |
|  */
 | |
| #define pgtable_cache_init()	do { } while (0)
 | |
| 
 | |
| /* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT.  */
 | |
| #define HAVE_ARCH_UNMAPPED_AREA
 | |
| 
 | |
| #endif /* _ALPHA_PGTABLE_H */
 |