 7e586fa024
			
		
	
	
	7e586fa024
	
	
	
		
			
			While calculating CRC for the checkpoint block, we use __u32, but when storing the crc value to the disk, we use __le32. Let's fix the inconsistency. Reported-and-Tested-by: Oded Gabbay <ogabbay@advaoptical.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
		
			
				
	
	
		
			838 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			838 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * fs/f2fs/checkpoint.c
 | |
|  *
 | |
|  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 | |
|  *             http://www.samsung.com/
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <linux/fs.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/f2fs_fs.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/swap.h>
 | |
| 
 | |
| #include "f2fs.h"
 | |
| #include "node.h"
 | |
| #include "segment.h"
 | |
| #include <trace/events/f2fs.h>
 | |
| 
 | |
| static struct kmem_cache *orphan_entry_slab;
 | |
| static struct kmem_cache *inode_entry_slab;
 | |
| 
 | |
| /*
 | |
|  * We guarantee no failure on the returned page.
 | |
|  */
 | |
| struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 | |
| {
 | |
| 	struct address_space *mapping = sbi->meta_inode->i_mapping;
 | |
| 	struct page *page = NULL;
 | |
| repeat:
 | |
| 	page = grab_cache_page(mapping, index);
 | |
| 	if (!page) {
 | |
| 		cond_resched();
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	/* We wait writeback only inside grab_meta_page() */
 | |
| 	wait_on_page_writeback(page);
 | |
| 	SetPageUptodate(page);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We guarantee no failure on the returned page.
 | |
|  */
 | |
| struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 | |
| {
 | |
| 	struct address_space *mapping = sbi->meta_inode->i_mapping;
 | |
| 	struct page *page;
 | |
| repeat:
 | |
| 	page = grab_cache_page(mapping, index);
 | |
| 	if (!page) {
 | |
| 		cond_resched();
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 	if (PageUptodate(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (f2fs_readpage(sbi, page, index, READ_SYNC))
 | |
| 		goto repeat;
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	if (page->mapping != mapping) {
 | |
| 		f2fs_put_page(page, 1);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| out:
 | |
| 	mark_page_accessed(page);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static int f2fs_write_meta_page(struct page *page,
 | |
| 				struct writeback_control *wbc)
 | |
| {
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 
 | |
| 	/* Should not write any meta pages, if any IO error was occurred */
 | |
| 	if (wbc->for_reclaim ||
 | |
| 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
 | |
| 		dec_page_count(sbi, F2FS_DIRTY_META);
 | |
| 		wbc->pages_skipped++;
 | |
| 		set_page_dirty(page);
 | |
| 		return AOP_WRITEPAGE_ACTIVATE;
 | |
| 	}
 | |
| 
 | |
| 	wait_on_page_writeback(page);
 | |
| 
 | |
| 	write_meta_page(sbi, page);
 | |
| 	dec_page_count(sbi, F2FS_DIRTY_META);
 | |
| 	unlock_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int f2fs_write_meta_pages(struct address_space *mapping,
 | |
| 				struct writeback_control *wbc)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
 | |
| 	struct block_device *bdev = sbi->sb->s_bdev;
 | |
| 	long written;
 | |
| 
 | |
| 	if (wbc->for_kupdate)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (get_pages(sbi, F2FS_DIRTY_META) == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* if mounting is failed, skip writing node pages */
 | |
| 	mutex_lock(&sbi->cp_mutex);
 | |
| 	written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
 | |
| 	mutex_unlock(&sbi->cp_mutex);
 | |
| 	wbc->nr_to_write -= written;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 | |
| 						long nr_to_write)
 | |
| {
 | |
| 	struct address_space *mapping = sbi->meta_inode->i_mapping;
 | |
| 	pgoff_t index = 0, end = LONG_MAX;
 | |
| 	struct pagevec pvec;
 | |
| 	long nwritten = 0;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.for_reclaim = 0,
 | |
| 	};
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 
 | |
| 	while (index <= end) {
 | |
| 		int i, nr_pages;
 | |
| 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 | |
| 				PAGECACHE_TAG_DIRTY,
 | |
| 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 | |
| 		if (nr_pages == 0)
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 			lock_page(page);
 | |
| 			BUG_ON(page->mapping != mapping);
 | |
| 			BUG_ON(!PageDirty(page));
 | |
| 			clear_page_dirty_for_io(page);
 | |
| 			if (f2fs_write_meta_page(page, &wbc)) {
 | |
| 				unlock_page(page);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (nwritten++ >= nr_to_write)
 | |
| 				break;
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	if (nwritten)
 | |
| 		f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
 | |
| 
 | |
| 	return nwritten;
 | |
| }
 | |
| 
 | |
| static int f2fs_set_meta_page_dirty(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
 | |
| 
 | |
| 	SetPageUptodate(page);
 | |
| 	if (!PageDirty(page)) {
 | |
| 		__set_page_dirty_nobuffers(page);
 | |
| 		inc_page_count(sbi, F2FS_DIRTY_META);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const struct address_space_operations f2fs_meta_aops = {
 | |
| 	.writepage	= f2fs_write_meta_page,
 | |
| 	.writepages	= f2fs_write_meta_pages,
 | |
| 	.set_page_dirty	= f2fs_set_meta_page_dirty,
 | |
| };
 | |
| 
 | |
| int check_orphan_space(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	unsigned int max_orphans;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * considering 512 blocks in a segment 5 blocks are needed for cp
 | |
| 	 * and log segment summaries. Remaining blocks are used to keep
 | |
| 	 * orphan entries with the limitation one reserved segment
 | |
| 	 * for cp pack we can have max 1020*507 orphan entries
 | |
| 	 */
 | |
| 	max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
 | |
| 	mutex_lock(&sbi->orphan_inode_mutex);
 | |
| 	if (sbi->n_orphans >= max_orphans)
 | |
| 		err = -ENOSPC;
 | |
| 	mutex_unlock(&sbi->orphan_inode_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 | |
| {
 | |
| 	struct list_head *head, *this;
 | |
| 	struct orphan_inode_entry *new = NULL, *orphan = NULL;
 | |
| 
 | |
| 	mutex_lock(&sbi->orphan_inode_mutex);
 | |
| 	head = &sbi->orphan_inode_list;
 | |
| 	list_for_each(this, head) {
 | |
| 		orphan = list_entry(this, struct orphan_inode_entry, list);
 | |
| 		if (orphan->ino == ino)
 | |
| 			goto out;
 | |
| 		if (orphan->ino > ino)
 | |
| 			break;
 | |
| 		orphan = NULL;
 | |
| 	}
 | |
| retry:
 | |
| 	new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
 | |
| 	if (!new) {
 | |
| 		cond_resched();
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	new->ino = ino;
 | |
| 
 | |
| 	/* add new_oentry into list which is sorted by inode number */
 | |
| 	if (orphan)
 | |
| 		list_add(&new->list, this->prev);
 | |
| 	else
 | |
| 		list_add_tail(&new->list, head);
 | |
| 
 | |
| 	sbi->n_orphans++;
 | |
| out:
 | |
| 	mutex_unlock(&sbi->orphan_inode_mutex);
 | |
| }
 | |
| 
 | |
| void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 | |
| {
 | |
| 	struct list_head *this, *next, *head;
 | |
| 	struct orphan_inode_entry *orphan;
 | |
| 
 | |
| 	mutex_lock(&sbi->orphan_inode_mutex);
 | |
| 	head = &sbi->orphan_inode_list;
 | |
| 	list_for_each_safe(this, next, head) {
 | |
| 		orphan = list_entry(this, struct orphan_inode_entry, list);
 | |
| 		if (orphan->ino == ino) {
 | |
| 			list_del(&orphan->list);
 | |
| 			kmem_cache_free(orphan_entry_slab, orphan);
 | |
| 			sbi->n_orphans--;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&sbi->orphan_inode_mutex);
 | |
| }
 | |
| 
 | |
| static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 | |
| {
 | |
| 	struct inode *inode = f2fs_iget(sbi->sb, ino);
 | |
| 	BUG_ON(IS_ERR(inode));
 | |
| 	clear_nlink(inode);
 | |
| 
 | |
| 	/* truncate all the data during iput */
 | |
| 	iput(inode);
 | |
| }
 | |
| 
 | |
| int recover_orphan_inodes(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	block_t start_blk, orphan_blkaddr, i, j;
 | |
| 
 | |
| 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
 | |
| 		return 0;
 | |
| 
 | |
| 	sbi->por_doing = 1;
 | |
| 	start_blk = __start_cp_addr(sbi) + 1;
 | |
| 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
 | |
| 
 | |
| 	for (i = 0; i < orphan_blkaddr; i++) {
 | |
| 		struct page *page = get_meta_page(sbi, start_blk + i);
 | |
| 		struct f2fs_orphan_block *orphan_blk;
 | |
| 
 | |
| 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 | |
| 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 | |
| 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 | |
| 			recover_orphan_inode(sbi, ino);
 | |
| 		}
 | |
| 		f2fs_put_page(page, 1);
 | |
| 	}
 | |
| 	/* clear Orphan Flag */
 | |
| 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
 | |
| 	sbi->por_doing = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 | |
| {
 | |
| 	struct list_head *head, *this, *next;
 | |
| 	struct f2fs_orphan_block *orphan_blk = NULL;
 | |
| 	struct page *page = NULL;
 | |
| 	unsigned int nentries = 0;
 | |
| 	unsigned short index = 1;
 | |
| 	unsigned short orphan_blocks;
 | |
| 
 | |
| 	orphan_blocks = (unsigned short)((sbi->n_orphans +
 | |
| 		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
 | |
| 
 | |
| 	mutex_lock(&sbi->orphan_inode_mutex);
 | |
| 	head = &sbi->orphan_inode_list;
 | |
| 
 | |
| 	/* loop for each orphan inode entry and write them in Jornal block */
 | |
| 	list_for_each_safe(this, next, head) {
 | |
| 		struct orphan_inode_entry *orphan;
 | |
| 
 | |
| 		orphan = list_entry(this, struct orphan_inode_entry, list);
 | |
| 
 | |
| 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 | |
| 			/*
 | |
| 			 * an orphan block is full of 1020 entries,
 | |
| 			 * then we need to flush current orphan blocks
 | |
| 			 * and bring another one in memory
 | |
| 			 */
 | |
| 			orphan_blk->blk_addr = cpu_to_le16(index);
 | |
| 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 | |
| 			orphan_blk->entry_count = cpu_to_le32(nentries);
 | |
| 			set_page_dirty(page);
 | |
| 			f2fs_put_page(page, 1);
 | |
| 			index++;
 | |
| 			start_blk++;
 | |
| 			nentries = 0;
 | |
| 			page = NULL;
 | |
| 		}
 | |
| 		if (page)
 | |
| 			goto page_exist;
 | |
| 
 | |
| 		page = grab_meta_page(sbi, start_blk);
 | |
| 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 | |
| 		memset(orphan_blk, 0, sizeof(*orphan_blk));
 | |
| page_exist:
 | |
| 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 | |
| 	}
 | |
| 	if (!page)
 | |
| 		goto end;
 | |
| 
 | |
| 	orphan_blk->blk_addr = cpu_to_le16(index);
 | |
| 	orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 | |
| 	orphan_blk->entry_count = cpu_to_le32(nentries);
 | |
| 	set_page_dirty(page);
 | |
| 	f2fs_put_page(page, 1);
 | |
| end:
 | |
| 	mutex_unlock(&sbi->orphan_inode_mutex);
 | |
| }
 | |
| 
 | |
| static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 | |
| 				block_t cp_addr, unsigned long long *version)
 | |
| {
 | |
| 	struct page *cp_page_1, *cp_page_2 = NULL;
 | |
| 	unsigned long blk_size = sbi->blocksize;
 | |
| 	struct f2fs_checkpoint *cp_block;
 | |
| 	unsigned long long cur_version = 0, pre_version = 0;
 | |
| 	size_t crc_offset;
 | |
| 	__u32 crc = 0;
 | |
| 
 | |
| 	/* Read the 1st cp block in this CP pack */
 | |
| 	cp_page_1 = get_meta_page(sbi, cp_addr);
 | |
| 
 | |
| 	/* get the version number */
 | |
| 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
 | |
| 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
 | |
| 	if (crc_offset >= blk_size)
 | |
| 		goto invalid_cp1;
 | |
| 
 | |
| 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
 | |
| 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
 | |
| 		goto invalid_cp1;
 | |
| 
 | |
| 	pre_version = le64_to_cpu(cp_block->checkpoint_ver);
 | |
| 
 | |
| 	/* Read the 2nd cp block in this CP pack */
 | |
| 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 | |
| 	cp_page_2 = get_meta_page(sbi, cp_addr);
 | |
| 
 | |
| 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
 | |
| 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
 | |
| 	if (crc_offset >= blk_size)
 | |
| 		goto invalid_cp2;
 | |
| 
 | |
| 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
 | |
| 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
 | |
| 		goto invalid_cp2;
 | |
| 
 | |
| 	cur_version = le64_to_cpu(cp_block->checkpoint_ver);
 | |
| 
 | |
| 	if (cur_version == pre_version) {
 | |
| 		*version = cur_version;
 | |
| 		f2fs_put_page(cp_page_2, 1);
 | |
| 		return cp_page_1;
 | |
| 	}
 | |
| invalid_cp2:
 | |
| 	f2fs_put_page(cp_page_2, 1);
 | |
| invalid_cp1:
 | |
| 	f2fs_put_page(cp_page_1, 1);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int get_valid_checkpoint(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct f2fs_checkpoint *cp_block;
 | |
| 	struct f2fs_super_block *fsb = sbi->raw_super;
 | |
| 	struct page *cp1, *cp2, *cur_page;
 | |
| 	unsigned long blk_size = sbi->blocksize;
 | |
| 	unsigned long long cp1_version = 0, cp2_version = 0;
 | |
| 	unsigned long long cp_start_blk_no;
 | |
| 
 | |
| 	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
 | |
| 	if (!sbi->ckpt)
 | |
| 		return -ENOMEM;
 | |
| 	/*
 | |
| 	 * Finding out valid cp block involves read both
 | |
| 	 * sets( cp pack1 and cp pack 2)
 | |
| 	 */
 | |
| 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 | |
| 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 | |
| 
 | |
| 	/* The second checkpoint pack should start at the next segment */
 | |
| 	cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 | |
| 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 | |
| 
 | |
| 	if (cp1 && cp2) {
 | |
| 		if (ver_after(cp2_version, cp1_version))
 | |
| 			cur_page = cp2;
 | |
| 		else
 | |
| 			cur_page = cp1;
 | |
| 	} else if (cp1) {
 | |
| 		cur_page = cp1;
 | |
| 	} else if (cp2) {
 | |
| 		cur_page = cp2;
 | |
| 	} else {
 | |
| 		goto fail_no_cp;
 | |
| 	}
 | |
| 
 | |
| 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 | |
| 	memcpy(sbi->ckpt, cp_block, blk_size);
 | |
| 
 | |
| 	f2fs_put_page(cp1, 1);
 | |
| 	f2fs_put_page(cp2, 1);
 | |
| 	return 0;
 | |
| 
 | |
| fail_no_cp:
 | |
| 	kfree(sbi->ckpt);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	struct list_head *head = &sbi->dir_inode_list;
 | |
| 	struct list_head *this;
 | |
| 
 | |
| 	list_for_each(this, head) {
 | |
| 		struct dir_inode_entry *entry;
 | |
| 		entry = list_entry(this, struct dir_inode_entry, list);
 | |
| 		if (entry->inode == inode)
 | |
| 			return -EEXIST;
 | |
| 	}
 | |
| 	list_add_tail(&new->list, head);
 | |
| #ifdef CONFIG_F2FS_STAT_FS
 | |
| 	sbi->n_dirty_dirs++;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void set_dirty_dir_page(struct inode *inode, struct page *page)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	struct dir_inode_entry *new;
 | |
| 
 | |
| 	if (!S_ISDIR(inode->i_mode))
 | |
| 		return;
 | |
| retry:
 | |
| 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
 | |
| 	if (!new) {
 | |
| 		cond_resched();
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	new->inode = inode;
 | |
| 	INIT_LIST_HEAD(&new->list);
 | |
| 
 | |
| 	spin_lock(&sbi->dir_inode_lock);
 | |
| 	if (__add_dirty_inode(inode, new))
 | |
| 		kmem_cache_free(inode_entry_slab, new);
 | |
| 
 | |
| 	inc_page_count(sbi, F2FS_DIRTY_DENTS);
 | |
| 	inode_inc_dirty_dents(inode);
 | |
| 	SetPagePrivate(page);
 | |
| 	spin_unlock(&sbi->dir_inode_lock);
 | |
| }
 | |
| 
 | |
| void add_dirty_dir_inode(struct inode *inode)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	struct dir_inode_entry *new;
 | |
| retry:
 | |
| 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
 | |
| 	if (!new) {
 | |
| 		cond_resched();
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	new->inode = inode;
 | |
| 	INIT_LIST_HEAD(&new->list);
 | |
| 
 | |
| 	spin_lock(&sbi->dir_inode_lock);
 | |
| 	if (__add_dirty_inode(inode, new))
 | |
| 		kmem_cache_free(inode_entry_slab, new);
 | |
| 	spin_unlock(&sbi->dir_inode_lock);
 | |
| }
 | |
| 
 | |
| void remove_dirty_dir_inode(struct inode *inode)
 | |
| {
 | |
| 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 | |
| 	struct list_head *head = &sbi->dir_inode_list;
 | |
| 	struct list_head *this;
 | |
| 
 | |
| 	if (!S_ISDIR(inode->i_mode))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&sbi->dir_inode_lock);
 | |
| 	if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
 | |
| 		spin_unlock(&sbi->dir_inode_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each(this, head) {
 | |
| 		struct dir_inode_entry *entry;
 | |
| 		entry = list_entry(this, struct dir_inode_entry, list);
 | |
| 		if (entry->inode == inode) {
 | |
| 			list_del(&entry->list);
 | |
| 			kmem_cache_free(inode_entry_slab, entry);
 | |
| #ifdef CONFIG_F2FS_STAT_FS
 | |
| 			sbi->n_dirty_dirs--;
 | |
| #endif
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&sbi->dir_inode_lock);
 | |
| 
 | |
| 	/* Only from the recovery routine */
 | |
| 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
 | |
| 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
 | |
| 		iput(inode);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
 | |
| {
 | |
| 	struct list_head *head = &sbi->dir_inode_list;
 | |
| 	struct list_head *this;
 | |
| 	struct inode *inode = NULL;
 | |
| 
 | |
| 	spin_lock(&sbi->dir_inode_lock);
 | |
| 	list_for_each(this, head) {
 | |
| 		struct dir_inode_entry *entry;
 | |
| 		entry = list_entry(this, struct dir_inode_entry, list);
 | |
| 		if (entry->inode->i_ino == ino) {
 | |
| 			inode = entry->inode;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&sbi->dir_inode_lock);
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct list_head *head = &sbi->dir_inode_list;
 | |
| 	struct dir_inode_entry *entry;
 | |
| 	struct inode *inode;
 | |
| retry:
 | |
| 	spin_lock(&sbi->dir_inode_lock);
 | |
| 	if (list_empty(head)) {
 | |
| 		spin_unlock(&sbi->dir_inode_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	entry = list_entry(head->next, struct dir_inode_entry, list);
 | |
| 	inode = igrab(entry->inode);
 | |
| 	spin_unlock(&sbi->dir_inode_lock);
 | |
| 	if (inode) {
 | |
| 		filemap_flush(inode->i_mapping);
 | |
| 		iput(inode);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We should submit bio, since it exists several
 | |
| 		 * wribacking dentry pages in the freeing inode.
 | |
| 		 */
 | |
| 		f2fs_submit_bio(sbi, DATA, true);
 | |
| 	}
 | |
| 	goto retry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Freeze all the FS-operations for checkpoint.
 | |
|  */
 | |
| static void block_operations(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = WB_SYNC_ALL,
 | |
| 		.nr_to_write = LONG_MAX,
 | |
| 		.for_reclaim = 0,
 | |
| 	};
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| retry_flush_dents:
 | |
| 	mutex_lock_all(sbi);
 | |
| 
 | |
| 	/* write all the dirty dentry pages */
 | |
| 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
 | |
| 		mutex_unlock_all(sbi);
 | |
| 		sync_dirty_dir_inodes(sbi);
 | |
| 		goto retry_flush_dents;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * POR: we should ensure that there is no dirty node pages
 | |
| 	 * until finishing nat/sit flush.
 | |
| 	 */
 | |
| retry_flush_nodes:
 | |
| 	mutex_lock(&sbi->node_write);
 | |
| 
 | |
| 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
 | |
| 		mutex_unlock(&sbi->node_write);
 | |
| 		sync_node_pages(sbi, 0, &wbc);
 | |
| 		goto retry_flush_nodes;
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| }
 | |
| 
 | |
| static void unblock_operations(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	mutex_unlock(&sbi->node_write);
 | |
| 	mutex_unlock_all(sbi);
 | |
| }
 | |
| 
 | |
| static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	nid_t last_nid = 0;
 | |
| 	block_t start_blk;
 | |
| 	struct page *cp_page;
 | |
| 	unsigned int data_sum_blocks, orphan_blocks;
 | |
| 	__u32 crc32 = 0;
 | |
| 	void *kaddr;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Flush all the NAT/SIT pages */
 | |
| 	while (get_pages(sbi, F2FS_DIRTY_META))
 | |
| 		sync_meta_pages(sbi, META, LONG_MAX);
 | |
| 
 | |
| 	next_free_nid(sbi, &last_nid);
 | |
| 
 | |
| 	/*
 | |
| 	 * modify checkpoint
 | |
| 	 * version number is already updated
 | |
| 	 */
 | |
| 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
 | |
| 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
 | |
| 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		ckpt->cur_node_segno[i] =
 | |
| 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
 | |
| 		ckpt->cur_node_blkoff[i] =
 | |
| 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
 | |
| 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
 | |
| 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
 | |
| 	}
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		ckpt->cur_data_segno[i] =
 | |
| 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
 | |
| 		ckpt->cur_data_blkoff[i] =
 | |
| 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
 | |
| 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
 | |
| 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
 | |
| 	}
 | |
| 
 | |
| 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
 | |
| 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
 | |
| 	ckpt->next_free_nid = cpu_to_le32(last_nid);
 | |
| 
 | |
| 	/* 2 cp  + n data seg summary + orphan inode blocks */
 | |
| 	data_sum_blocks = npages_for_summary_flush(sbi);
 | |
| 	if (data_sum_blocks < 3)
 | |
| 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 | |
| 	else
 | |
| 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 | |
| 
 | |
| 	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
 | |
| 					/ F2FS_ORPHANS_PER_BLOCK;
 | |
| 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
 | |
| 
 | |
| 	if (is_umount) {
 | |
| 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
 | |
| 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
 | |
| 			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
 | |
| 	} else {
 | |
| 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
 | |
| 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
 | |
| 			data_sum_blocks + orphan_blocks);
 | |
| 	}
 | |
| 
 | |
| 	if (sbi->n_orphans)
 | |
| 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
 | |
| 	else
 | |
| 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
 | |
| 
 | |
| 	/* update SIT/NAT bitmap */
 | |
| 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
 | |
| 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
 | |
| 
 | |
| 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
 | |
| 	*((__le32 *)((unsigned char *)ckpt +
 | |
| 				le32_to_cpu(ckpt->checksum_offset)))
 | |
| 				= cpu_to_le32(crc32);
 | |
| 
 | |
| 	start_blk = __start_cp_addr(sbi);
 | |
| 
 | |
| 	/* write out checkpoint buffer at block 0 */
 | |
| 	cp_page = grab_meta_page(sbi, start_blk++);
 | |
| 	kaddr = page_address(cp_page);
 | |
| 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
 | |
| 	set_page_dirty(cp_page);
 | |
| 	f2fs_put_page(cp_page, 1);
 | |
| 
 | |
| 	if (sbi->n_orphans) {
 | |
| 		write_orphan_inodes(sbi, start_blk);
 | |
| 		start_blk += orphan_blocks;
 | |
| 	}
 | |
| 
 | |
| 	write_data_summaries(sbi, start_blk);
 | |
| 	start_blk += data_sum_blocks;
 | |
| 	if (is_umount) {
 | |
| 		write_node_summaries(sbi, start_blk);
 | |
| 		start_blk += NR_CURSEG_NODE_TYPE;
 | |
| 	}
 | |
| 
 | |
| 	/* writeout checkpoint block */
 | |
| 	cp_page = grab_meta_page(sbi, start_blk);
 | |
| 	kaddr = page_address(cp_page);
 | |
| 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
 | |
| 	set_page_dirty(cp_page);
 | |
| 	f2fs_put_page(cp_page, 1);
 | |
| 
 | |
| 	/* wait for previous submitted node/meta pages writeback */
 | |
| 	while (get_pages(sbi, F2FS_WRITEBACK))
 | |
| 		congestion_wait(BLK_RW_ASYNC, HZ / 50);
 | |
| 
 | |
| 	filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
 | |
| 	filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
 | |
| 
 | |
| 	/* update user_block_counts */
 | |
| 	sbi->last_valid_block_count = sbi->total_valid_block_count;
 | |
| 	sbi->alloc_valid_block_count = 0;
 | |
| 
 | |
| 	/* Here, we only have one bio having CP pack */
 | |
| 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
 | |
| 
 | |
| 	if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
 | |
| 		clear_prefree_segments(sbi);
 | |
| 		F2FS_RESET_SB_DIRT(sbi);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We guarantee that this checkpoint procedure should not fail.
 | |
|  */
 | |
| void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
 | |
| {
 | |
| 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 | |
| 	unsigned long long ckpt_ver;
 | |
| 
 | |
| 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
 | |
| 
 | |
| 	mutex_lock(&sbi->cp_mutex);
 | |
| 	block_operations(sbi);
 | |
| 
 | |
| 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
 | |
| 
 | |
| 	f2fs_submit_bio(sbi, DATA, true);
 | |
| 	f2fs_submit_bio(sbi, NODE, true);
 | |
| 	f2fs_submit_bio(sbi, META, true);
 | |
| 
 | |
| 	/*
 | |
| 	 * update checkpoint pack index
 | |
| 	 * Increase the version number so that
 | |
| 	 * SIT entries and seg summaries are written at correct place
 | |
| 	 */
 | |
| 	ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
 | |
| 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
 | |
| 
 | |
| 	/* write cached NAT/SIT entries to NAT/SIT area */
 | |
| 	flush_nat_entries(sbi);
 | |
| 	flush_sit_entries(sbi);
 | |
| 
 | |
| 	/* unlock all the fs_lock[] in do_checkpoint() */
 | |
| 	do_checkpoint(sbi, is_umount);
 | |
| 
 | |
| 	unblock_operations(sbi);
 | |
| 	mutex_unlock(&sbi->cp_mutex);
 | |
| 
 | |
| 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
 | |
| }
 | |
| 
 | |
| void init_orphan_info(struct f2fs_sb_info *sbi)
 | |
| {
 | |
| 	mutex_init(&sbi->orphan_inode_mutex);
 | |
| 	INIT_LIST_HEAD(&sbi->orphan_inode_list);
 | |
| 	sbi->n_orphans = 0;
 | |
| }
 | |
| 
 | |
| int __init create_checkpoint_caches(void)
 | |
| {
 | |
| 	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
 | |
| 			sizeof(struct orphan_inode_entry), NULL);
 | |
| 	if (unlikely(!orphan_entry_slab))
 | |
| 		return -ENOMEM;
 | |
| 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
 | |
| 			sizeof(struct dir_inode_entry), NULL);
 | |
| 	if (unlikely(!inode_entry_slab)) {
 | |
| 		kmem_cache_destroy(orphan_entry_slab);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void destroy_checkpoint_caches(void)
 | |
| {
 | |
| 	kmem_cache_destroy(orphan_entry_slab);
 | |
| 	kmem_cache_destroy(inode_entry_slab);
 | |
| }
 |