 1da177e4c3
			
		
	
	
	1da177e4c3
	
	
	
		
			
			Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
		
			
				
	
	
		
			208 lines
		
	
	
	
		
			5.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			208 lines
		
	
	
	
		
			5.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ip22-mc.c: Routines for manipulating SGI Memory Controller.
 | |
|  *
 | |
|  * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
 | |
|  * Copyright (C) 1999 Andrew R. Baker (andrewb@uab.edu) - Indigo2 changes
 | |
|  * Copyright (C) 2003 Ladislav Michl  (ladis@linux-mips.org)
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/bootinfo.h>
 | |
| #include <asm/sgialib.h>
 | |
| #include <asm/sgi/mc.h>
 | |
| #include <asm/sgi/hpc3.h>
 | |
| #include <asm/sgi/ip22.h>
 | |
| 
 | |
| struct sgimc_regs *sgimc;
 | |
| 
 | |
| EXPORT_SYMBOL(sgimc);
 | |
| 
 | |
| static inline unsigned long get_bank_addr(unsigned int memconfig)
 | |
| {
 | |
| 	return ((memconfig & SGIMC_MCONFIG_BASEADDR) <<
 | |
| 		((sgimc->systemid & SGIMC_SYSID_MASKREV) >= 5 ? 24 : 22));
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_bank_size(unsigned int memconfig)
 | |
| {
 | |
| 	return ((memconfig & SGIMC_MCONFIG_RMASK) + 0x0100) <<
 | |
| 		((sgimc->systemid & SGIMC_SYSID_MASKREV) >= 5 ? 16 : 14);
 | |
| }
 | |
| 
 | |
| static inline unsigned int get_bank_config(int bank)
 | |
| {
 | |
| 	unsigned int res = bank > 1 ? sgimc->mconfig1 : sgimc->mconfig0;
 | |
| 	return bank % 2 ? res & 0xffff : res >> 16;
 | |
| }
 | |
| 
 | |
| struct mem {
 | |
| 	unsigned long addr;
 | |
| 	unsigned long size;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Detect installed memory, do some sanity checks and notify kernel about it
 | |
|  */
 | |
| static void probe_memory(void)
 | |
| {
 | |
| 	int i, j, found, cnt = 0;
 | |
| 	struct mem bank[4];
 | |
| 	struct mem space[2] = {{SGIMC_SEG0_BADDR, 0}, {SGIMC_SEG1_BADDR, 0}};
 | |
| 
 | |
| 	printk(KERN_INFO "MC: Probing memory configuration:\n");
 | |
| 	for (i = 0; i < ARRAY_SIZE(bank); i++) {
 | |
| 		unsigned int tmp = get_bank_config(i);
 | |
| 		if (!(tmp & SGIMC_MCONFIG_BVALID))
 | |
| 			continue;
 | |
| 
 | |
| 		bank[cnt].size = get_bank_size(tmp);
 | |
| 		bank[cnt].addr = get_bank_addr(tmp);
 | |
| 		printk(KERN_INFO " bank%d: %3ldM @ %08lx\n",
 | |
| 			i, bank[cnt].size / 1024 / 1024, bank[cnt].addr);
 | |
| 		cnt++;
 | |
| 	}
 | |
| 
 | |
| 	/* And you thought bubble sort is dead algorithm... */
 | |
| 	do {
 | |
| 		unsigned long addr, size;
 | |
| 
 | |
| 		found = 0;
 | |
| 		for (i = 1; i < cnt; i++)
 | |
| 			if (bank[i-1].addr > bank[i].addr) {
 | |
| 				addr = bank[i].addr;
 | |
| 				size = bank[i].size;
 | |
| 				bank[i].addr = bank[i-1].addr;
 | |
| 				bank[i].size = bank[i-1].size;
 | |
| 				bank[i-1].addr = addr;
 | |
| 				bank[i-1].size = size;
 | |
| 				found = 1;
 | |
| 			}
 | |
| 	} while (found);
 | |
| 
 | |
| 	/* Figure out how are memory banks mapped into spaces */
 | |
| 	for (i = 0; i < cnt; i++) {
 | |
| 		found = 0;
 | |
| 		for (j = 0; j < ARRAY_SIZE(space) && !found; j++)
 | |
| 			if (space[j].addr + space[j].size == bank[i].addr) {
 | |
| 				space[j].size += bank[i].size;
 | |
| 				found = 1;
 | |
| 			}
 | |
| 		/* There is either hole or overlapping memory */
 | |
| 		if (!found)
 | |
| 			printk(KERN_CRIT "MC: Memory configuration mismatch "
 | |
| 					 "(%08lx), expect Bus Error soon\n",
 | |
| 					 bank[i].addr);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(space); i++)
 | |
| 		if (space[i].size)
 | |
| 			add_memory_region(space[i].addr, space[i].size,
 | |
| 					  BOOT_MEM_RAM);
 | |
| }
 | |
| 
 | |
| void __init sgimc_init(void)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	/* ioremap can't fail */
 | |
| 	sgimc = (struct sgimc_regs *)
 | |
| 		ioremap(SGIMC_BASE, sizeof(struct sgimc_regs));
 | |
| 
 | |
| 	printk(KERN_INFO "MC: SGI memory controller Revision %d\n",
 | |
| 	       (int) sgimc->systemid & SGIMC_SYSID_MASKREV);
 | |
| 
 | |
| 	/* Place the MC into a known state.  This must be done before
 | |
| 	 * interrupts are first enabled etc.
 | |
| 	 */
 | |
| 
 | |
| 	/* Step 0: Make sure we turn off the watchdog in case it's
 | |
| 	 *         still running (which might be the case after a
 | |
| 	 *         soft reboot).
 | |
| 	 */
 | |
| 	tmp = sgimc->cpuctrl0;
 | |
| 	tmp &= ~SGIMC_CCTRL0_WDOG;
 | |
| 	sgimc->cpuctrl0 = tmp;
 | |
| 
 | |
| 	/* Step 1: The CPU/GIO error status registers will not latch
 | |
| 	 *         up a new error status until the register has been
 | |
| 	 *         cleared by the cpu.  These status registers are
 | |
| 	 *         cleared by writing any value to them.
 | |
| 	 */
 | |
| 	sgimc->cstat = sgimc->gstat = 0;
 | |
| 
 | |
| 	/* Step 2: Enable all parity checking in cpu control register
 | |
| 	 *         zero.
 | |
| 	 */
 | |
| 	tmp = sgimc->cpuctrl0;
 | |
| 	tmp |= (SGIMC_CCTRL0_EPERRGIO | SGIMC_CCTRL0_EPERRMEM |
 | |
| 		SGIMC_CCTRL0_R4KNOCHKPARR);
 | |
| 	sgimc->cpuctrl0 = tmp;
 | |
| 
 | |
| 	/* Step 3: Setup the MC write buffer depth, this is controlled
 | |
| 	 *         in cpu control register 1 in the lower 4 bits.
 | |
| 	 */
 | |
| 	tmp = sgimc->cpuctrl1;
 | |
| 	tmp &= ~0xf;
 | |
| 	tmp |= 0xd;
 | |
| 	sgimc->cpuctrl1 = tmp;
 | |
| 
 | |
| 	/* Step 4: Initialize the RPSS divider register to run as fast
 | |
| 	 *         as it can correctly operate.  The register is laid
 | |
| 	 *         out as follows:
 | |
| 	 *
 | |
| 	 *         ----------------------------------------
 | |
| 	 *         |  RESERVED  |   INCREMENT   | DIVIDER |
 | |
| 	 *         ----------------------------------------
 | |
| 	 *          31        16 15            8 7       0
 | |
| 	 *
 | |
| 	 *         DIVIDER determines how often a 'tick' happens,
 | |
| 	 *         INCREMENT determines by how the RPSS increment
 | |
| 	 *         registers value increases at each 'tick'. Thus,
 | |
| 	 *         for IP22 we get INCREMENT=1, DIVIDER=1 == 0x101
 | |
| 	 */
 | |
| 	sgimc->divider = 0x101;
 | |
| 
 | |
| 	/* Step 5: Initialize GIO64 arbitrator configuration register.
 | |
| 	 *
 | |
| 	 * NOTE: HPC init code in sgihpc_init() must run before us because
 | |
| 	 *       we need to know Guiness vs. FullHouse and the board
 | |
| 	 *       revision on this machine. You have been warned.
 | |
| 	 */
 | |
| 
 | |
| 	/* First the basic invariants across all GIO64 implementations. */
 | |
| 	tmp = SGIMC_GIOPAR_HPC64;	/* All 1st HPC's interface at 64bits */
 | |
| 	tmp |= SGIMC_GIOPAR_ONEBUS;	/* Only one physical GIO bus exists */
 | |
| 
 | |
| 	if (ip22_is_fullhouse()) {
 | |
| 		/* Fullhouse specific settings. */
 | |
| 		if (SGIOC_SYSID_BOARDREV(sgioc->sysid) < 2) {
 | |
| 			tmp |= SGIMC_GIOPAR_HPC264;	/* 2nd HPC at 64bits */
 | |
| 			tmp |= SGIMC_GIOPAR_PLINEEXP0;	/* exp0 pipelines */
 | |
| 			tmp |= SGIMC_GIOPAR_MASTEREXP1;	/* exp1 masters */
 | |
| 			tmp |= SGIMC_GIOPAR_RTIMEEXP0;	/* exp0 is realtime */
 | |
| 		} else {
 | |
| 			tmp |= SGIMC_GIOPAR_HPC264;	/* 2nd HPC 64bits */
 | |
| 			tmp |= SGIMC_GIOPAR_PLINEEXP0;	/* exp[01] pipelined */
 | |
| 			tmp |= SGIMC_GIOPAR_PLINEEXP1;
 | |
| 			tmp |= SGIMC_GIOPAR_MASTEREISA;	/* EISA masters */
 | |
| 			tmp |= SGIMC_GIOPAR_GFX64;	/* GFX at 64 bits */
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Guiness specific settings. */
 | |
| 		tmp |= SGIMC_GIOPAR_EISA64;	/* MC talks to EISA at 64bits */
 | |
| 		tmp |= SGIMC_GIOPAR_MASTEREISA;	/* EISA bus can act as master */
 | |
| 	}
 | |
| 	sgimc->giopar = tmp;	/* poof */
 | |
| 
 | |
| 	probe_memory();
 | |
| }
 | |
| 
 | |
| void __init prom_meminit(void) {}
 | |
| unsigned long __init prom_free_prom_memory(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 |