 1da177e4c3
			
		
	
	
	1da177e4c3
	
	
	
		
			
			Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
		
			
				
	
	
		
			1845 lines
		
	
	
	
		
			41 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1845 lines
		
	
	
	
		
			41 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*---------------------------------------------------------------------------+
 | |
|  |  fpu_trig.c                                                               |
 | |
|  |                                                                           |
 | |
|  | Implementation of the FPU "transcendental" functions.                     |
 | |
|  |                                                                           |
 | |
|  | Copyright (C) 1992,1993,1994,1997,1999                                    |
 | |
|  |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
 | |
|  |                       Australia.  E-mail   billm@melbpc.org.au            |
 | |
|  |                                                                           |
 | |
|  |                                                                           |
 | |
|  +---------------------------------------------------------------------------*/
 | |
| 
 | |
| #include "fpu_system.h"
 | |
| #include "exception.h"
 | |
| #include "fpu_emu.h"
 | |
| #include "status_w.h"
 | |
| #include "control_w.h"
 | |
| #include "reg_constant.h"	
 | |
| 
 | |
| static void rem_kernel(unsigned long long st0, unsigned long long *y,
 | |
| 		       unsigned long long st1,
 | |
| 		       unsigned long long q, int n);
 | |
| 
 | |
| #define BETTER_THAN_486
 | |
| 
 | |
| #define FCOS  4
 | |
| 
 | |
| /* Used only by fptan, fsin, fcos, and fsincos. */
 | |
| /* This routine produces very accurate results, similar to
 | |
|    using a value of pi with more than 128 bits precision. */
 | |
| /* Limited measurements show no results worse than 64 bit precision
 | |
|    except for the results for arguments close to 2^63, where the
 | |
|    precision of the result sometimes degrades to about 63.9 bits */
 | |
| static int trig_arg(FPU_REG *st0_ptr, int even)
 | |
| {
 | |
|   FPU_REG tmp;
 | |
|   u_char tmptag;
 | |
|   unsigned long long q;
 | |
|   int old_cw = control_word, saved_status = partial_status;
 | |
|   int tag, st0_tag = TAG_Valid;
 | |
| 
 | |
|   if ( exponent(st0_ptr) >= 63 )
 | |
|     {
 | |
|       partial_status |= SW_C2;     /* Reduction incomplete. */
 | |
|       return -1;
 | |
|     }
 | |
| 
 | |
|   control_word &= ~CW_RC;
 | |
|   control_word |= RC_CHOP;
 | |
| 
 | |
|   setpositive(st0_ptr);
 | |
|   tag = FPU_u_div(st0_ptr, &CONST_PI2, &tmp, PR_64_BITS | RC_CHOP | 0x3f,
 | |
| 		  SIGN_POS);
 | |
| 
 | |
|   FPU_round_to_int(&tmp, tag);  /* Fortunately, this can't overflow
 | |
| 				   to 2^64 */
 | |
|   q = significand(&tmp);
 | |
|   if ( q )
 | |
|     {
 | |
|       rem_kernel(significand(st0_ptr),
 | |
| 		 &significand(&tmp),
 | |
| 		 significand(&CONST_PI2),
 | |
| 		 q, exponent(st0_ptr) - exponent(&CONST_PI2));
 | |
|       setexponent16(&tmp, exponent(&CONST_PI2));
 | |
|       st0_tag = FPU_normalize(&tmp);
 | |
|       FPU_copy_to_reg0(&tmp, st0_tag);
 | |
|     }
 | |
| 
 | |
|   if ( (even && !(q & 1)) || (!even && (q & 1)) )
 | |
|     {
 | |
|       st0_tag = FPU_sub(REV|LOADED|TAG_Valid, (int)&CONST_PI2, FULL_PRECISION);
 | |
| 
 | |
| #ifdef BETTER_THAN_486
 | |
|       /* So far, the results are exact but based upon a 64 bit
 | |
| 	 precision approximation to pi/2. The technique used
 | |
| 	 now is equivalent to using an approximation to pi/2 which
 | |
| 	 is accurate to about 128 bits. */
 | |
|       if ( (exponent(st0_ptr) <= exponent(&CONST_PI2extra) + 64) || (q > 1) )
 | |
| 	{
 | |
| 	  /* This code gives the effect of having pi/2 to better than
 | |
| 	     128 bits precision. */
 | |
| 
 | |
| 	  significand(&tmp) = q + 1;
 | |
| 	  setexponent16(&tmp, 63);
 | |
| 	  FPU_normalize(&tmp);
 | |
| 	  tmptag =
 | |
| 	    FPU_u_mul(&CONST_PI2extra, &tmp, &tmp, FULL_PRECISION, SIGN_POS,
 | |
| 		      exponent(&CONST_PI2extra) + exponent(&tmp));
 | |
| 	  setsign(&tmp, getsign(&CONST_PI2extra));
 | |
| 	  st0_tag = FPU_add(&tmp, tmptag, 0, FULL_PRECISION);
 | |
| 	  if ( signnegative(st0_ptr) )
 | |
| 	    {
 | |
| 	      /* CONST_PI2extra is negative, so the result of the addition
 | |
| 		 can be negative. This means that the argument is actually
 | |
| 		 in a different quadrant. The correction is always < pi/2,
 | |
| 		 so it can't overflow into yet another quadrant. */
 | |
| 	      setpositive(st0_ptr);
 | |
| 	      q++;
 | |
| 	    }
 | |
| 	}
 | |
| #endif /* BETTER_THAN_486 */
 | |
|     }
 | |
| #ifdef BETTER_THAN_486
 | |
|   else
 | |
|     {
 | |
|       /* So far, the results are exact but based upon a 64 bit
 | |
| 	 precision approximation to pi/2. The technique used
 | |
| 	 now is equivalent to using an approximation to pi/2 which
 | |
| 	 is accurate to about 128 bits. */
 | |
|       if ( ((q > 0) && (exponent(st0_ptr) <= exponent(&CONST_PI2extra) + 64))
 | |
| 	   || (q > 1) )
 | |
| 	{
 | |
| 	  /* This code gives the effect of having p/2 to better than
 | |
| 	     128 bits precision. */
 | |
| 
 | |
| 	  significand(&tmp) = q;
 | |
| 	  setexponent16(&tmp, 63);
 | |
| 	  FPU_normalize(&tmp);         /* This must return TAG_Valid */
 | |
| 	  tmptag = FPU_u_mul(&CONST_PI2extra, &tmp, &tmp, FULL_PRECISION,
 | |
| 			     SIGN_POS,
 | |
| 			     exponent(&CONST_PI2extra) + exponent(&tmp));
 | |
| 	  setsign(&tmp, getsign(&CONST_PI2extra));
 | |
| 	  st0_tag = FPU_sub(LOADED|(tmptag & 0x0f), (int)&tmp,
 | |
| 			    FULL_PRECISION);
 | |
| 	  if ( (exponent(st0_ptr) == exponent(&CONST_PI2)) &&
 | |
| 	      ((st0_ptr->sigh > CONST_PI2.sigh)
 | |
| 	       || ((st0_ptr->sigh == CONST_PI2.sigh)
 | |
| 		   && (st0_ptr->sigl > CONST_PI2.sigl))) )
 | |
| 	    {
 | |
| 	      /* CONST_PI2extra is negative, so the result of the
 | |
| 		 subtraction can be larger than pi/2. This means
 | |
| 		 that the argument is actually in a different quadrant.
 | |
| 		 The correction is always < pi/2, so it can't overflow
 | |
| 		 into yet another quadrant. */
 | |
| 	      st0_tag = FPU_sub(REV|LOADED|TAG_Valid, (int)&CONST_PI2,
 | |
| 				FULL_PRECISION);
 | |
| 	      q++;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| #endif /* BETTER_THAN_486 */
 | |
| 
 | |
|   FPU_settag0(st0_tag);
 | |
|   control_word = old_cw;
 | |
|   partial_status = saved_status & ~SW_C2;     /* Reduction complete. */
 | |
| 
 | |
|   return (q & 3) | even;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Convert a long to register */
 | |
| static void convert_l2reg(long const *arg, int deststnr)
 | |
| {
 | |
|   int tag;
 | |
|   long num = *arg;
 | |
|   u_char sign;
 | |
|   FPU_REG *dest = &st(deststnr);
 | |
| 
 | |
|   if (num == 0)
 | |
|     {
 | |
|       FPU_copy_to_regi(&CONST_Z, TAG_Zero, deststnr);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if (num > 0)
 | |
|     { sign = SIGN_POS; }
 | |
|   else
 | |
|     { num = -num; sign = SIGN_NEG; }
 | |
| 
 | |
|   dest->sigh = num;
 | |
|   dest->sigl = 0;
 | |
|   setexponent16(dest, 31);
 | |
|   tag = FPU_normalize(dest);
 | |
|   FPU_settagi(deststnr, tag);
 | |
|   setsign(dest, sign);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void single_arg_error(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   if ( st0_tag == TAG_Empty )
 | |
|     FPU_stack_underflow();  /* Puts a QNaN in st(0) */
 | |
|   else if ( st0_tag == TW_NaN )
 | |
|     real_1op_NaN(st0_ptr);       /* return with a NaN in st(0) */
 | |
| #ifdef PARANOID
 | |
|   else
 | |
|     EXCEPTION(EX_INTERNAL|0x0112);
 | |
| #endif /* PARANOID */
 | |
| }
 | |
| 
 | |
| 
 | |
| static void single_arg_2_error(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   int isNaN;
 | |
| 
 | |
|   switch ( st0_tag )
 | |
|     {
 | |
|     case TW_NaN:
 | |
|       isNaN = (exponent(st0_ptr) == EXP_OVER) && (st0_ptr->sigh & 0x80000000);
 | |
|       if ( isNaN && !(st0_ptr->sigh & 0x40000000) )   /* Signaling ? */
 | |
| 	{
 | |
| 	  EXCEPTION(EX_Invalid);
 | |
| 	  if ( control_word & CW_Invalid )
 | |
| 	    {
 | |
| 	      /* The masked response */
 | |
| 	      /* Convert to a QNaN */
 | |
| 	      st0_ptr->sigh |= 0x40000000;
 | |
| 	      push();
 | |
| 	      FPU_copy_to_reg0(st0_ptr, TAG_Special);
 | |
| 	    }
 | |
| 	}
 | |
|       else if ( isNaN )
 | |
| 	{
 | |
| 	  /* A QNaN */
 | |
| 	  push();
 | |
| 	  FPU_copy_to_reg0(st0_ptr, TAG_Special);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* pseudoNaN or other unsupported */
 | |
| 	  EXCEPTION(EX_Invalid);
 | |
| 	  if ( control_word & CW_Invalid )
 | |
| 	    {
 | |
| 	      /* The masked response */
 | |
| 	      FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
 | |
| 	      push();
 | |
| 	      FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
 | |
| 	    }
 | |
| 	}
 | |
|       break;              /* return with a NaN in st(0) */
 | |
| #ifdef PARANOID
 | |
|     default:
 | |
|       EXCEPTION(EX_INTERNAL|0x0112);
 | |
| #endif /* PARANOID */
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| 
 | |
| static void f2xm1(FPU_REG *st0_ptr, u_char tag)
 | |
| {
 | |
|   FPU_REG a;
 | |
| 
 | |
|   clear_C1();
 | |
| 
 | |
|   if ( tag == TAG_Valid )
 | |
|     {
 | |
|       /* For an 80486 FPU, the result is undefined if the arg is >= 1.0 */
 | |
|       if ( exponent(st0_ptr) < 0 )
 | |
| 	{
 | |
| 	denormal_arg:
 | |
| 
 | |
| 	  FPU_to_exp16(st0_ptr, &a);
 | |
| 
 | |
| 	  /* poly_2xm1(x) requires 0 < st(0) < 1. */
 | |
| 	  poly_2xm1(getsign(st0_ptr), &a, st0_ptr);
 | |
| 	}
 | |
|       set_precision_flag_up();   /* 80486 appears to always do this */
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( tag == TAG_Zero )
 | |
|     return;
 | |
| 
 | |
|   if ( tag == TAG_Special )
 | |
|     tag = FPU_Special(st0_ptr);
 | |
| 
 | |
|   switch ( tag )
 | |
|     {
 | |
|     case TW_Denormal:
 | |
|       if ( denormal_operand() < 0 )
 | |
| 	return;
 | |
|       goto denormal_arg;
 | |
|     case TW_Infinity:
 | |
|       if ( signnegative(st0_ptr) )
 | |
| 	{
 | |
| 	  /* -infinity gives -1 (p16-10) */
 | |
| 	  FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
| 	  setnegative(st0_ptr);
 | |
| 	}
 | |
|       return;
 | |
|     default:
 | |
|       single_arg_error(st0_ptr, tag);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fptan(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   FPU_REG *st_new_ptr;
 | |
|   int q;
 | |
|   u_char arg_sign = getsign(st0_ptr);
 | |
| 
 | |
|   /* Stack underflow has higher priority */
 | |
|   if ( st0_tag == TAG_Empty )
 | |
|     {
 | |
|       FPU_stack_underflow();  /* Puts a QNaN in st(0) */
 | |
|       if ( control_word & CW_Invalid )
 | |
| 	{
 | |
| 	  st_new_ptr = &st(-1);
 | |
| 	  push();
 | |
| 	  FPU_stack_underflow();  /* Puts a QNaN in the new st(0) */
 | |
| 	}
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( STACK_OVERFLOW )
 | |
|     { FPU_stack_overflow(); return; }
 | |
| 
 | |
|   if ( st0_tag == TAG_Valid )
 | |
|     {
 | |
|       if ( exponent(st0_ptr) > -40 )
 | |
| 	{
 | |
| 	  if ( (q = trig_arg(st0_ptr, 0)) == -1 )
 | |
| 	    {
 | |
| 	      /* Operand is out of range */
 | |
| 	      return;
 | |
| 	    }
 | |
| 
 | |
| 	  poly_tan(st0_ptr);
 | |
| 	  setsign(st0_ptr, (q & 1) ^ (arg_sign != 0));
 | |
| 	  set_precision_flag_up();  /* We do not really know if up or down */
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* For a small arg, the result == the argument */
 | |
| 	  /* Underflow may happen */
 | |
| 
 | |
| 	denormal_arg:
 | |
| 
 | |
| 	  FPU_to_exp16(st0_ptr, st0_ptr);
 | |
|       
 | |
| 	  st0_tag = FPU_round(st0_ptr, 1, 0, FULL_PRECISION, arg_sign);
 | |
| 	  FPU_settag0(st0_tag);
 | |
| 	}
 | |
|       push();
 | |
|       FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TAG_Zero )
 | |
|     {
 | |
|       push();
 | |
|       FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
|       setcc(0);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TAG_Special )
 | |
|     st0_tag = FPU_Special(st0_ptr);
 | |
| 
 | |
|   if ( st0_tag == TW_Denormal )
 | |
|     {
 | |
|       if ( denormal_operand() < 0 )
 | |
| 	return;
 | |
| 
 | |
|       goto denormal_arg;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TW_Infinity )
 | |
|     {
 | |
|       /* The 80486 treats infinity as an invalid operand */
 | |
|       if ( arith_invalid(0) >= 0 )
 | |
| 	{
 | |
| 	  st_new_ptr = &st(-1);
 | |
| 	  push();
 | |
| 	  arith_invalid(0);
 | |
| 	}
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   single_arg_2_error(st0_ptr, st0_tag);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fxtract(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   FPU_REG *st_new_ptr;
 | |
|   u_char sign;
 | |
|   register FPU_REG *st1_ptr = st0_ptr;  /* anticipate */
 | |
| 
 | |
|   if ( STACK_OVERFLOW )
 | |
|     {  FPU_stack_overflow(); return; }
 | |
| 
 | |
|   clear_C1();
 | |
| 
 | |
|   if ( st0_tag == TAG_Valid )
 | |
|     {
 | |
|       long e;
 | |
| 
 | |
|       push();
 | |
|       sign = getsign(st1_ptr);
 | |
|       reg_copy(st1_ptr, st_new_ptr);
 | |
|       setexponent16(st_new_ptr, exponent(st_new_ptr));
 | |
| 
 | |
|     denormal_arg:
 | |
| 
 | |
|       e = exponent16(st_new_ptr);
 | |
|       convert_l2reg(&e, 1);
 | |
|       setexponentpos(st_new_ptr, 0);
 | |
|       setsign(st_new_ptr, sign);
 | |
|       FPU_settag0(TAG_Valid);       /* Needed if arg was a denormal */
 | |
|       return;
 | |
|     }
 | |
|   else if ( st0_tag == TAG_Zero )
 | |
|     {
 | |
|       sign = getsign(st0_ptr);
 | |
| 
 | |
|       if ( FPU_divide_by_zero(0, SIGN_NEG) < 0 )
 | |
| 	return;
 | |
| 
 | |
|       push();
 | |
|       FPU_copy_to_reg0(&CONST_Z, TAG_Zero);
 | |
|       setsign(st_new_ptr, sign);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TAG_Special )
 | |
|     st0_tag = FPU_Special(st0_ptr);
 | |
| 
 | |
|   if ( st0_tag == TW_Denormal )
 | |
|     {
 | |
|       if (denormal_operand() < 0 )
 | |
| 	return;
 | |
| 
 | |
|       push();
 | |
|       sign = getsign(st1_ptr);
 | |
|       FPU_to_exp16(st1_ptr, st_new_ptr);
 | |
|       goto denormal_arg;
 | |
|     }
 | |
|   else if ( st0_tag == TW_Infinity )
 | |
|     {
 | |
|       sign = getsign(st0_ptr);
 | |
|       setpositive(st0_ptr);
 | |
|       push();
 | |
|       FPU_copy_to_reg0(&CONST_INF, TAG_Special);
 | |
|       setsign(st_new_ptr, sign);
 | |
|       return;
 | |
|     }
 | |
|   else if ( st0_tag == TW_NaN )
 | |
|     {
 | |
|       if ( real_1op_NaN(st0_ptr) < 0 )
 | |
| 	return;
 | |
| 
 | |
|       push();
 | |
|       FPU_copy_to_reg0(st0_ptr, TAG_Special);
 | |
|       return;
 | |
|     }
 | |
|   else if ( st0_tag == TAG_Empty )
 | |
|     {
 | |
|       /* Is this the correct behaviour? */
 | |
|       if ( control_word & EX_Invalid )
 | |
| 	{
 | |
| 	  FPU_stack_underflow();
 | |
| 	  push();
 | |
| 	  FPU_stack_underflow();
 | |
| 	}
 | |
|       else
 | |
| 	EXCEPTION(EX_StackUnder);
 | |
|     }
 | |
| #ifdef PARANOID
 | |
|   else
 | |
|     EXCEPTION(EX_INTERNAL | 0x119);
 | |
| #endif /* PARANOID */
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fdecstp(void)
 | |
| {
 | |
|   clear_C1();
 | |
|   top--;
 | |
| }
 | |
| 
 | |
| static void fincstp(void)
 | |
| {
 | |
|   clear_C1();
 | |
|   top++;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fsqrt_(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   int expon;
 | |
| 
 | |
|   clear_C1();
 | |
| 
 | |
|   if ( st0_tag == TAG_Valid )
 | |
|     {
 | |
|       u_char tag;
 | |
|       
 | |
|       if (signnegative(st0_ptr))
 | |
| 	{
 | |
| 	  arith_invalid(0);  /* sqrt(negative) is invalid */
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       /* make st(0) in  [1.0 .. 4.0) */
 | |
|       expon = exponent(st0_ptr);
 | |
| 
 | |
|     denormal_arg:
 | |
| 
 | |
|       setexponent16(st0_ptr, (expon & 1));
 | |
| 
 | |
|       /* Do the computation, the sign of the result will be positive. */
 | |
|       tag = wm_sqrt(st0_ptr, 0, 0, control_word, SIGN_POS);
 | |
|       addexponent(st0_ptr, expon >> 1);
 | |
|       FPU_settag0(tag);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TAG_Zero )
 | |
|     return;
 | |
| 
 | |
|   if ( st0_tag == TAG_Special )
 | |
|     st0_tag = FPU_Special(st0_ptr);
 | |
| 
 | |
|   if ( st0_tag == TW_Infinity )
 | |
|     {
 | |
|       if ( signnegative(st0_ptr) )
 | |
| 	arith_invalid(0);  /* sqrt(-Infinity) is invalid */
 | |
|       return;
 | |
|     }
 | |
|   else if ( st0_tag == TW_Denormal )
 | |
|     {
 | |
|       if (signnegative(st0_ptr))
 | |
| 	{
 | |
| 	  arith_invalid(0);  /* sqrt(negative) is invalid */
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if ( denormal_operand() < 0 )
 | |
| 	return;
 | |
| 
 | |
|       FPU_to_exp16(st0_ptr, st0_ptr);
 | |
| 
 | |
|       expon = exponent16(st0_ptr);
 | |
| 
 | |
|       goto denormal_arg;
 | |
|     }
 | |
| 
 | |
|   single_arg_error(st0_ptr, st0_tag);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| static void frndint_(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   int flags, tag;
 | |
| 
 | |
|   if ( st0_tag == TAG_Valid )
 | |
|     {
 | |
|       u_char sign;
 | |
| 
 | |
|     denormal_arg:
 | |
| 
 | |
|       sign = getsign(st0_ptr);
 | |
| 
 | |
|       if (exponent(st0_ptr) > 63)
 | |
| 	return;
 | |
| 
 | |
|       if ( st0_tag == TW_Denormal )
 | |
| 	{
 | |
| 	  if (denormal_operand() < 0 )
 | |
| 	    return;
 | |
| 	}
 | |
| 
 | |
|       /* Fortunately, this can't overflow to 2^64 */
 | |
|       if ( (flags = FPU_round_to_int(st0_ptr, st0_tag)) )
 | |
| 	set_precision_flag(flags);
 | |
| 
 | |
|       setexponent16(st0_ptr, 63);
 | |
|       tag = FPU_normalize(st0_ptr);
 | |
|       setsign(st0_ptr, sign);
 | |
|       FPU_settag0(tag);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TAG_Zero )
 | |
|     return;
 | |
| 
 | |
|   if ( st0_tag == TAG_Special )
 | |
|     st0_tag = FPU_Special(st0_ptr);
 | |
| 
 | |
|   if ( st0_tag == TW_Denormal )
 | |
|     goto denormal_arg;
 | |
|   else if ( st0_tag == TW_Infinity )
 | |
|     return;
 | |
|   else
 | |
|     single_arg_error(st0_ptr, st0_tag);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int fsin(FPU_REG *st0_ptr, u_char tag)
 | |
| {
 | |
|   u_char arg_sign = getsign(st0_ptr);
 | |
| 
 | |
|   if ( tag == TAG_Valid )
 | |
|     {
 | |
|       int q;
 | |
| 
 | |
|       if ( exponent(st0_ptr) > -40 )
 | |
| 	{
 | |
| 	  if ( (q = trig_arg(st0_ptr, 0)) == -1 )
 | |
| 	    {
 | |
| 	      /* Operand is out of range */
 | |
| 	      return 1;
 | |
| 	    }
 | |
| 
 | |
| 	  poly_sine(st0_ptr);
 | |
| 	  
 | |
| 	  if (q & 2)
 | |
| 	    changesign(st0_ptr);
 | |
| 
 | |
| 	  setsign(st0_ptr, getsign(st0_ptr) ^ arg_sign);
 | |
| 
 | |
| 	  /* We do not really know if up or down */
 | |
| 	  set_precision_flag_up();
 | |
| 	  return 0;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* For a small arg, the result == the argument */
 | |
| 	  set_precision_flag_up();  /* Must be up. */
 | |
| 	  return 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if ( tag == TAG_Zero )
 | |
|     {
 | |
|       setcc(0);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|   if ( tag == TAG_Special )
 | |
|     tag = FPU_Special(st0_ptr);
 | |
| 
 | |
|   if ( tag == TW_Denormal )
 | |
|     {
 | |
|       if ( denormal_operand() < 0 )
 | |
| 	return 1;
 | |
| 
 | |
|       /* For a small arg, the result == the argument */
 | |
|       /* Underflow may happen */
 | |
|       FPU_to_exp16(st0_ptr, st0_ptr);
 | |
|       
 | |
|       tag = FPU_round(st0_ptr, 1, 0, FULL_PRECISION, arg_sign);
 | |
| 
 | |
|       FPU_settag0(tag);
 | |
| 
 | |
|       return 0;
 | |
|     }
 | |
|   else if ( tag == TW_Infinity )
 | |
|     {
 | |
|       /* The 80486 treats infinity as an invalid operand */
 | |
|       arith_invalid(0);
 | |
|       return 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       single_arg_error(st0_ptr, tag);
 | |
|       return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static int f_cos(FPU_REG *st0_ptr, u_char tag)
 | |
| {
 | |
|   u_char st0_sign;
 | |
| 
 | |
|   st0_sign = getsign(st0_ptr);
 | |
| 
 | |
|   if ( tag == TAG_Valid )
 | |
|     {
 | |
|       int q;
 | |
| 
 | |
|       if ( exponent(st0_ptr) > -40 )
 | |
| 	{
 | |
| 	  if ( (exponent(st0_ptr) < 0)
 | |
| 	      || ((exponent(st0_ptr) == 0)
 | |
| 		  && (significand(st0_ptr) <= 0xc90fdaa22168c234LL)) )
 | |
| 	    {
 | |
| 	      poly_cos(st0_ptr);
 | |
| 
 | |
| 	      /* We do not really know if up or down */
 | |
| 	      set_precision_flag_down();
 | |
| 	  
 | |
| 	      return 0;
 | |
| 	    }
 | |
| 	  else if ( (q = trig_arg(st0_ptr, FCOS)) != -1 )
 | |
| 	    {
 | |
| 	      poly_sine(st0_ptr);
 | |
| 
 | |
| 	      if ((q+1) & 2)
 | |
| 		changesign(st0_ptr);
 | |
| 
 | |
| 	      /* We do not really know if up or down */
 | |
| 	      set_precision_flag_down();
 | |
| 	  
 | |
| 	      return 0;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      /* Operand is out of range */
 | |
| 	      return 1;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	denormal_arg:
 | |
| 
 | |
| 	  setcc(0);
 | |
| 	  FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
| #ifdef PECULIAR_486
 | |
| 	  set_precision_flag_down();  /* 80486 appears to do this. */
 | |
| #else
 | |
| 	  set_precision_flag_up();  /* Must be up. */
 | |
| #endif /* PECULIAR_486 */
 | |
| 	  return 0;
 | |
| 	}
 | |
|     }
 | |
|   else if ( tag == TAG_Zero )
 | |
|     {
 | |
|       FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
|       setcc(0);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|   if ( tag == TAG_Special )
 | |
|     tag = FPU_Special(st0_ptr);
 | |
| 
 | |
|   if ( tag == TW_Denormal )
 | |
|     {
 | |
|       if ( denormal_operand() < 0 )
 | |
| 	return 1;
 | |
| 
 | |
|       goto denormal_arg;
 | |
|     }
 | |
|   else if ( tag == TW_Infinity )
 | |
|     {
 | |
|       /* The 80486 treats infinity as an invalid operand */
 | |
|       arith_invalid(0);
 | |
|       return 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       single_arg_error(st0_ptr, tag);  /* requires st0_ptr == &st(0) */
 | |
|       return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fcos(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   f_cos(st0_ptr, st0_tag);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fsincos(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   FPU_REG *st_new_ptr;
 | |
|   FPU_REG arg;
 | |
|   u_char tag;
 | |
| 
 | |
|   /* Stack underflow has higher priority */
 | |
|   if ( st0_tag == TAG_Empty )
 | |
|     {
 | |
|       FPU_stack_underflow();  /* Puts a QNaN in st(0) */
 | |
|       if ( control_word & CW_Invalid )
 | |
| 	{
 | |
| 	  st_new_ptr = &st(-1);
 | |
| 	  push();
 | |
| 	  FPU_stack_underflow();  /* Puts a QNaN in the new st(0) */
 | |
| 	}
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( STACK_OVERFLOW )
 | |
|     { FPU_stack_overflow(); return; }
 | |
| 
 | |
|   if ( st0_tag == TAG_Special )
 | |
|     tag = FPU_Special(st0_ptr);
 | |
|   else
 | |
|     tag = st0_tag;
 | |
| 
 | |
|   if ( tag == TW_NaN )
 | |
|     {
 | |
|       single_arg_2_error(st0_ptr, TW_NaN);
 | |
|       return;
 | |
|     }
 | |
|   else if ( tag == TW_Infinity )
 | |
|     {
 | |
|       /* The 80486 treats infinity as an invalid operand */
 | |
|       if ( arith_invalid(0) >= 0 )
 | |
| 	{
 | |
| 	  /* Masked response */
 | |
| 	  push();
 | |
| 	  arith_invalid(0);
 | |
| 	}
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   reg_copy(st0_ptr, &arg);
 | |
|   if ( !fsin(st0_ptr, st0_tag) )
 | |
|     {
 | |
|       push();
 | |
|       FPU_copy_to_reg0(&arg, st0_tag);
 | |
|       f_cos(&st(0), st0_tag);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* An error, so restore st(0) */
 | |
|       FPU_copy_to_reg0(&arg, st0_tag);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| /* The following all require two arguments: st(0) and st(1) */
 | |
| 
 | |
| /* A lean, mean kernel for the fprem instructions. This relies upon
 | |
|    the division and rounding to an integer in do_fprem giving an
 | |
|    exact result. Because of this, rem_kernel() needs to deal only with
 | |
|    the least significant 64 bits, the more significant bits of the
 | |
|    result must be zero.
 | |
|  */
 | |
| static void rem_kernel(unsigned long long st0, unsigned long long *y,
 | |
| 		       unsigned long long st1,
 | |
| 		       unsigned long long q, int n)
 | |
| {
 | |
|   int dummy;
 | |
|   unsigned long long x;
 | |
| 
 | |
|   x = st0 << n;
 | |
| 
 | |
|   /* Do the required multiplication and subtraction in the one operation */
 | |
| 
 | |
|   /* lsw x -= lsw st1 * lsw q */
 | |
|   asm volatile ("mull %4; subl %%eax,%0; sbbl %%edx,%1"
 | |
| 		:"=m" (((unsigned *)&x)[0]), "=m" (((unsigned *)&x)[1]),
 | |
| 		"=a" (dummy)
 | |
| 		:"2" (((unsigned *)&st1)[0]), "m" (((unsigned *)&q)[0])
 | |
| 		:"%dx");
 | |
|   /* msw x -= msw st1 * lsw q */
 | |
|   asm volatile ("mull %3; subl %%eax,%0"
 | |
| 		:"=m" (((unsigned *)&x)[1]), "=a" (dummy)
 | |
| 		:"1" (((unsigned *)&st1)[1]), "m" (((unsigned *)&q)[0])
 | |
| 		:"%dx");
 | |
|   /* msw x -= lsw st1 * msw q */
 | |
|   asm volatile ("mull %3; subl %%eax,%0"
 | |
| 		:"=m" (((unsigned *)&x)[1]), "=a" (dummy)
 | |
| 		:"1" (((unsigned *)&st1)[0]), "m" (((unsigned *)&q)[1])
 | |
| 		:"%dx");
 | |
| 
 | |
|   *y = x;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Remainder of st(0) / st(1) */
 | |
| /* This routine produces exact results, i.e. there is never any
 | |
|    rounding or truncation, etc of the result. */
 | |
| static void do_fprem(FPU_REG *st0_ptr, u_char st0_tag, int round)
 | |
| {
 | |
|   FPU_REG *st1_ptr = &st(1);
 | |
|   u_char st1_tag = FPU_gettagi(1);
 | |
| 
 | |
|   if ( !((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid)) )
 | |
|     {
 | |
|       FPU_REG tmp, st0, st1;
 | |
|       u_char st0_sign, st1_sign;
 | |
|       u_char tmptag;
 | |
|       int tag;
 | |
|       int old_cw;
 | |
|       int expdif;
 | |
|       long long q;
 | |
|       unsigned short saved_status;
 | |
|       int cc;
 | |
| 
 | |
|     fprem_valid:
 | |
|       /* Convert registers for internal use. */
 | |
|       st0_sign = FPU_to_exp16(st0_ptr, &st0);
 | |
|       st1_sign = FPU_to_exp16(st1_ptr, &st1);
 | |
|       expdif = exponent16(&st0) - exponent16(&st1);
 | |
| 
 | |
|       old_cw = control_word;
 | |
|       cc = 0;
 | |
| 
 | |
|       /* We want the status following the denorm tests, but don't want
 | |
| 	 the status changed by the arithmetic operations. */
 | |
|       saved_status = partial_status;
 | |
|       control_word &= ~CW_RC;
 | |
|       control_word |= RC_CHOP;
 | |
| 
 | |
|       if ( expdif < 64 )
 | |
| 	{
 | |
| 	  /* This should be the most common case */
 | |
| 
 | |
| 	  if ( expdif > -2 )
 | |
| 	    {
 | |
| 	      u_char sign = st0_sign ^ st1_sign;
 | |
| 	      tag = FPU_u_div(&st0, &st1, &tmp,
 | |
| 			      PR_64_BITS | RC_CHOP | 0x3f,
 | |
| 			      sign);
 | |
| 	      setsign(&tmp, sign);
 | |
| 
 | |
| 	      if ( exponent(&tmp) >= 0 )
 | |
| 		{
 | |
| 		  FPU_round_to_int(&tmp, tag);  /* Fortunately, this can't
 | |
| 						   overflow to 2^64 */
 | |
| 		  q = significand(&tmp);
 | |
| 
 | |
| 		  rem_kernel(significand(&st0),
 | |
| 			     &significand(&tmp),
 | |
| 			     significand(&st1),
 | |
| 			     q, expdif);
 | |
| 
 | |
| 		  setexponent16(&tmp, exponent16(&st1));
 | |
| 		}
 | |
| 	      else
 | |
| 		{
 | |
| 		  reg_copy(&st0, &tmp);
 | |
| 		  q = 0;
 | |
| 		}
 | |
| 
 | |
| 	      if ( (round == RC_RND) && (tmp.sigh & 0xc0000000) )
 | |
| 		{
 | |
| 		  /* We may need to subtract st(1) once more,
 | |
| 		     to get a result <= 1/2 of st(1). */
 | |
| 		  unsigned long long x;
 | |
| 		  expdif = exponent16(&st1) - exponent16(&tmp);
 | |
| 		  if ( expdif <= 1 )
 | |
| 		    {
 | |
| 		      if ( expdif == 0 )
 | |
| 			x = significand(&st1) - significand(&tmp);
 | |
| 		      else /* expdif is 1 */
 | |
| 			x = (significand(&st1) << 1) - significand(&tmp);
 | |
| 		      if ( (x < significand(&tmp)) ||
 | |
| 			  /* or equi-distant (from 0 & st(1)) and q is odd */
 | |
| 			  ((x == significand(&tmp)) && (q & 1) ) )
 | |
| 			{
 | |
| 			  st0_sign = ! st0_sign;
 | |
| 			  significand(&tmp) = x;
 | |
| 			  q++;
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 	      if (q & 4) cc |= SW_C0;
 | |
| 	      if (q & 2) cc |= SW_C3;
 | |
| 	      if (q & 1) cc |= SW_C1;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      control_word = old_cw;
 | |
| 	      setcc(0);
 | |
| 	      return;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* There is a large exponent difference ( >= 64 ) */
 | |
| 	  /* To make much sense, the code in this section should
 | |
| 	     be done at high precision. */
 | |
| 	  int exp_1, N;
 | |
| 	  u_char sign;
 | |
| 
 | |
| 	  /* prevent overflow here */
 | |
| 	  /* N is 'a number between 32 and 63' (p26-113) */
 | |
| 	  reg_copy(&st0, &tmp);
 | |
| 	  tmptag = st0_tag;
 | |
| 	  N = (expdif & 0x0000001f) + 32;  /* This choice gives results
 | |
| 					      identical to an AMD 486 */
 | |
| 	  setexponent16(&tmp, N);
 | |
| 	  exp_1 = exponent16(&st1);
 | |
| 	  setexponent16(&st1, 0);
 | |
| 	  expdif -= N;
 | |
| 
 | |
| 	  sign = getsign(&tmp) ^ st1_sign;
 | |
| 	  tag = FPU_u_div(&tmp, &st1, &tmp, PR_64_BITS | RC_CHOP | 0x3f,
 | |
| 			  sign);
 | |
| 	  setsign(&tmp, sign);
 | |
| 
 | |
| 	  FPU_round_to_int(&tmp, tag);  /* Fortunately, this can't
 | |
| 					   overflow to 2^64 */
 | |
| 
 | |
| 	  rem_kernel(significand(&st0),
 | |
| 		     &significand(&tmp),
 | |
| 		     significand(&st1),
 | |
| 		     significand(&tmp),
 | |
| 		     exponent(&tmp)
 | |
| 		     ); 
 | |
| 	  setexponent16(&tmp, exp_1 + expdif);
 | |
| 
 | |
| 	  /* It is possible for the operation to be complete here.
 | |
| 	     What does the IEEE standard say? The Intel 80486 manual
 | |
| 	     implies that the operation will never be completed at this
 | |
| 	     point, and the behaviour of a real 80486 confirms this.
 | |
| 	   */
 | |
| 	  if ( !(tmp.sigh | tmp.sigl) )
 | |
| 	    {
 | |
| 	      /* The result is zero */
 | |
| 	      control_word = old_cw;
 | |
| 	      partial_status = saved_status;
 | |
| 	      FPU_copy_to_reg0(&CONST_Z, TAG_Zero);
 | |
| 	      setsign(&st0, st0_sign);
 | |
| #ifdef PECULIAR_486
 | |
| 	      setcc(SW_C2);
 | |
| #else
 | |
| 	      setcc(0);
 | |
| #endif /* PECULIAR_486 */
 | |
| 	      return;
 | |
| 	    }
 | |
| 	  cc = SW_C2;
 | |
| 	}
 | |
| 
 | |
|       control_word = old_cw;
 | |
|       partial_status = saved_status;
 | |
|       tag = FPU_normalize_nuo(&tmp);
 | |
|       reg_copy(&tmp, st0_ptr);
 | |
| 
 | |
|       /* The only condition to be looked for is underflow,
 | |
| 	 and it can occur here only if underflow is unmasked. */
 | |
|       if ( (exponent16(&tmp) <= EXP_UNDER) && (tag != TAG_Zero)
 | |
| 	  && !(control_word & CW_Underflow) )
 | |
| 	{
 | |
| 	  setcc(cc);
 | |
| 	  tag = arith_underflow(st0_ptr);
 | |
| 	  setsign(st0_ptr, st0_sign);
 | |
| 	  FPU_settag0(tag);
 | |
| 	  return;
 | |
| 	}
 | |
|       else if ( (exponent16(&tmp) > EXP_UNDER) || (tag == TAG_Zero) )
 | |
| 	{
 | |
| 	  stdexp(st0_ptr);
 | |
| 	  setsign(st0_ptr, st0_sign);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  tag = FPU_round(st0_ptr, 0, 0, FULL_PRECISION, st0_sign);
 | |
| 	}
 | |
|       FPU_settag0(tag);
 | |
|       setcc(cc);
 | |
| 
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TAG_Special )
 | |
|     st0_tag = FPU_Special(st0_ptr);
 | |
|   if ( st1_tag == TAG_Special )
 | |
|     st1_tag = FPU_Special(st1_ptr);
 | |
| 
 | |
|   if ( ((st0_tag == TAG_Valid) && (st1_tag == TW_Denormal))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TAG_Valid))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TW_Denormal)) )
 | |
|     {
 | |
|       if ( denormal_operand() < 0 )
 | |
| 	return;
 | |
|       goto fprem_valid;
 | |
|     }
 | |
|   else if ( (st0_tag == TAG_Empty) || (st1_tag == TAG_Empty) )
 | |
|     {
 | |
|       FPU_stack_underflow();
 | |
|       return;
 | |
|     }
 | |
|   else if ( st0_tag == TAG_Zero )
 | |
|     {
 | |
|       if ( st1_tag == TAG_Valid )
 | |
| 	{
 | |
| 	  setcc(0); return;
 | |
| 	}
 | |
|       else if ( st1_tag == TW_Denormal )
 | |
| 	{
 | |
| 	  if ( denormal_operand() < 0 )
 | |
| 	    return;
 | |
| 	  setcc(0); return;
 | |
| 	}
 | |
|       else if ( st1_tag == TAG_Zero )
 | |
| 	{ arith_invalid(0); return; } /* fprem(?,0) always invalid */
 | |
|       else if ( st1_tag == TW_Infinity )
 | |
| 	{ setcc(0); return; }
 | |
|     }
 | |
|   else if ( (st0_tag == TAG_Valid) || (st0_tag == TW_Denormal) )
 | |
|     {
 | |
|       if ( st1_tag == TAG_Zero )
 | |
| 	{
 | |
| 	  arith_invalid(0); /* fprem(Valid,Zero) is invalid */
 | |
| 	  return;
 | |
| 	}
 | |
|       else if ( st1_tag != TW_NaN )
 | |
| 	{
 | |
| 	  if ( ((st0_tag == TW_Denormal) || (st1_tag == TW_Denormal))
 | |
| 	       && (denormal_operand() < 0) )
 | |
| 	    return;
 | |
| 
 | |
| 	  if ( st1_tag == TW_Infinity )
 | |
| 	    {
 | |
| 	      /* fprem(Valid,Infinity) is o.k. */
 | |
| 	      setcc(0); return;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else if ( st0_tag == TW_Infinity )
 | |
|     {
 | |
|       if ( st1_tag != TW_NaN )
 | |
| 	{
 | |
| 	  arith_invalid(0); /* fprem(Infinity,?) is invalid */
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* One of the registers must contain a NaN if we got here. */
 | |
| 
 | |
| #ifdef PARANOID
 | |
|   if ( (st0_tag != TW_NaN) && (st1_tag != TW_NaN) )
 | |
|       EXCEPTION(EX_INTERNAL | 0x118);
 | |
| #endif /* PARANOID */
 | |
| 
 | |
|   real_2op_NaN(st1_ptr, st1_tag, 0, st1_ptr);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ST(1) <- ST(1) * log ST;  pop ST */
 | |
| static void fyl2x(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   FPU_REG *st1_ptr = &st(1), exponent;
 | |
|   u_char st1_tag = FPU_gettagi(1);
 | |
|   u_char sign;
 | |
|   int e, tag;
 | |
| 
 | |
|   clear_C1();
 | |
| 
 | |
|   if ( (st0_tag == TAG_Valid) && (st1_tag == TAG_Valid) )
 | |
|     {
 | |
|     both_valid:
 | |
|       /* Both regs are Valid or Denormal */
 | |
|       if ( signpositive(st0_ptr) )
 | |
| 	{
 | |
| 	  if ( st0_tag == TW_Denormal )
 | |
| 	    FPU_to_exp16(st0_ptr, st0_ptr);
 | |
| 	  else
 | |
| 	    /* Convert st(0) for internal use. */
 | |
| 	    setexponent16(st0_ptr, exponent(st0_ptr));
 | |
| 
 | |
| 	  if ( (st0_ptr->sigh == 0x80000000) && (st0_ptr->sigl == 0) )
 | |
| 	    {
 | |
| 	      /* Special case. The result can be precise. */
 | |
| 	      u_char esign;
 | |
| 	      e = exponent16(st0_ptr);
 | |
| 	      if ( e >= 0 )
 | |
| 		{
 | |
| 		  exponent.sigh = e;
 | |
| 		  esign = SIGN_POS;
 | |
| 		}
 | |
| 	      else
 | |
| 		{
 | |
| 		  exponent.sigh = -e;
 | |
| 		  esign = SIGN_NEG;
 | |
| 		}
 | |
| 	      exponent.sigl = 0;
 | |
| 	      setexponent16(&exponent, 31);
 | |
| 	      tag = FPU_normalize_nuo(&exponent);
 | |
| 	      stdexp(&exponent);
 | |
| 	      setsign(&exponent, esign);
 | |
| 	      tag = FPU_mul(&exponent, tag, 1, FULL_PRECISION);
 | |
| 	      if ( tag >= 0 )
 | |
| 		FPU_settagi(1, tag);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      /* The usual case */
 | |
| 	      sign = getsign(st1_ptr);
 | |
| 	      if ( st1_tag == TW_Denormal )
 | |
| 		FPU_to_exp16(st1_ptr, st1_ptr);
 | |
| 	      else
 | |
| 		/* Convert st(1) for internal use. */
 | |
| 		setexponent16(st1_ptr, exponent(st1_ptr));
 | |
| 	      poly_l2(st0_ptr, st1_ptr, sign);
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* negative */
 | |
| 	  if ( arith_invalid(1) < 0 )
 | |
| 	    return;
 | |
| 	}
 | |
| 
 | |
|       FPU_pop();
 | |
| 
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TAG_Special )
 | |
|     st0_tag = FPU_Special(st0_ptr);
 | |
|   if ( st1_tag == TAG_Special )
 | |
|     st1_tag = FPU_Special(st1_ptr);
 | |
| 
 | |
|   if ( (st0_tag == TAG_Empty) || (st1_tag == TAG_Empty) )
 | |
|     {
 | |
|       FPU_stack_underflow_pop(1);
 | |
|       return;
 | |
|     }
 | |
|   else if ( (st0_tag <= TW_Denormal) && (st1_tag <= TW_Denormal) )
 | |
|     {
 | |
|       if ( st0_tag == TAG_Zero )
 | |
| 	{
 | |
| 	  if ( st1_tag == TAG_Zero )
 | |
| 	    {
 | |
| 	      /* Both args zero is invalid */
 | |
| 	      if ( arith_invalid(1) < 0 )
 | |
| 		return;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      u_char sign;
 | |
| 	      sign = getsign(st1_ptr)^SIGN_NEG;
 | |
| 	      if ( FPU_divide_by_zero(1, sign) < 0 )
 | |
| 		return;
 | |
| 
 | |
| 	      setsign(st1_ptr, sign);
 | |
| 	    }
 | |
| 	}
 | |
|       else if ( st1_tag == TAG_Zero )
 | |
| 	{
 | |
| 	  /* st(1) contains zero, st(0) valid <> 0 */
 | |
| 	  /* Zero is the valid answer */
 | |
| 	  sign = getsign(st1_ptr);
 | |
| 	  
 | |
| 	  if ( signnegative(st0_ptr) )
 | |
| 	    {
 | |
| 	      /* log(negative) */
 | |
| 	      if ( arith_invalid(1) < 0 )
 | |
| 		return;
 | |
| 	    }
 | |
| 	  else if ( (st0_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	    return;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      if ( exponent(st0_ptr) < 0 )
 | |
| 		sign ^= SIGN_NEG;
 | |
| 
 | |
| 	      FPU_copy_to_reg1(&CONST_Z, TAG_Zero);
 | |
| 	      setsign(st1_ptr, sign);
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* One or both operands are denormals. */
 | |
| 	  if ( denormal_operand() < 0 )
 | |
| 	    return;
 | |
| 	  goto both_valid;
 | |
| 	}
 | |
|     }
 | |
|   else if ( (st0_tag == TW_NaN) || (st1_tag == TW_NaN) )
 | |
|     {
 | |
|       if ( real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0 )
 | |
| 	return;
 | |
|     }
 | |
|   /* One or both arg must be an infinity */
 | |
|   else if ( st0_tag == TW_Infinity )
 | |
|     {
 | |
|       if ( (signnegative(st0_ptr)) || (st1_tag == TAG_Zero) )
 | |
| 	{
 | |
| 	  /* log(-infinity) or 0*log(infinity) */
 | |
| 	  if ( arith_invalid(1) < 0 )
 | |
| 	    return;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  u_char sign = getsign(st1_ptr);
 | |
| 
 | |
| 	  if ( (st1_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	    return;
 | |
| 
 | |
| 	  FPU_copy_to_reg1(&CONST_INF, TAG_Special);
 | |
| 	  setsign(st1_ptr, sign);
 | |
| 	}
 | |
|     }
 | |
|   /* st(1) must be infinity here */
 | |
|   else if ( ((st0_tag == TAG_Valid) || (st0_tag == TW_Denormal))
 | |
| 	    && ( signpositive(st0_ptr) ) )
 | |
|     {
 | |
|       if ( exponent(st0_ptr) >= 0 )
 | |
| 	{
 | |
| 	  if ( (exponent(st0_ptr) == 0) &&
 | |
| 	      (st0_ptr->sigh == 0x80000000) &&
 | |
| 	      (st0_ptr->sigl == 0) )
 | |
| 	    {
 | |
| 	      /* st(0) holds 1.0 */
 | |
| 	      /* infinity*log(1) */
 | |
| 	      if ( arith_invalid(1) < 0 )
 | |
| 		return;
 | |
| 	    }
 | |
| 	  /* else st(0) is positive and > 1.0 */
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* st(0) is positive and < 1.0 */
 | |
| 
 | |
| 	  if ( (st0_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	    return;
 | |
| 
 | |
| 	  changesign(st1_ptr);
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* st(0) must be zero or negative */
 | |
|       if ( st0_tag == TAG_Zero )
 | |
| 	{
 | |
| 	  /* This should be invalid, but a real 80486 is happy with it. */
 | |
| 
 | |
| #ifndef PECULIAR_486
 | |
| 	  sign = getsign(st1_ptr);
 | |
| 	  if ( FPU_divide_by_zero(1, sign) < 0 )
 | |
| 	    return;
 | |
| #endif /* PECULIAR_486 */
 | |
| 
 | |
| 	  changesign(st1_ptr);
 | |
| 	}
 | |
|       else if ( arith_invalid(1) < 0 )	  /* log(negative) */
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|   FPU_pop();
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fpatan(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   FPU_REG *st1_ptr = &st(1);
 | |
|   u_char st1_tag = FPU_gettagi(1);
 | |
|   int tag;
 | |
| 
 | |
|   clear_C1();
 | |
|   if ( !((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid)) )
 | |
|     {
 | |
|     valid_atan:
 | |
| 
 | |
|       poly_atan(st0_ptr, st0_tag, st1_ptr, st1_tag);
 | |
| 
 | |
|       FPU_pop();
 | |
| 
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TAG_Special )
 | |
|     st0_tag = FPU_Special(st0_ptr);
 | |
|   if ( st1_tag == TAG_Special )
 | |
|     st1_tag = FPU_Special(st1_ptr);
 | |
| 
 | |
|   if ( ((st0_tag == TAG_Valid) && (st1_tag == TW_Denormal))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TAG_Valid))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TW_Denormal)) )
 | |
|     {
 | |
|       if ( denormal_operand() < 0 )
 | |
| 	return;
 | |
| 
 | |
|       goto valid_atan;
 | |
|     }
 | |
|   else if ( (st0_tag == TAG_Empty) || (st1_tag == TAG_Empty) )
 | |
|     {
 | |
|       FPU_stack_underflow_pop(1);
 | |
|       return;
 | |
|     }
 | |
|   else if ( (st0_tag == TW_NaN) || (st1_tag == TW_NaN) )
 | |
|     {
 | |
|       if ( real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) >= 0 )
 | |
| 	  FPU_pop();
 | |
|       return;
 | |
|     }
 | |
|   else if ( (st0_tag == TW_Infinity) || (st1_tag == TW_Infinity) )
 | |
|     {
 | |
|       u_char sign = getsign(st1_ptr);
 | |
|       if ( st0_tag == TW_Infinity )
 | |
| 	{
 | |
| 	  if ( st1_tag == TW_Infinity )
 | |
| 	    {
 | |
| 	      if ( signpositive(st0_ptr) )
 | |
| 		{
 | |
| 		  FPU_copy_to_reg1(&CONST_PI4, TAG_Valid);
 | |
| 		}
 | |
| 	      else
 | |
| 		{
 | |
| 		  setpositive(st1_ptr);
 | |
| 		  tag = FPU_u_add(&CONST_PI4, &CONST_PI2, st1_ptr,
 | |
| 				  FULL_PRECISION, SIGN_POS,
 | |
| 				  exponent(&CONST_PI4), exponent(&CONST_PI2));
 | |
| 		  if ( tag >= 0 )
 | |
| 		    FPU_settagi(1, tag);
 | |
| 		}
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      if ( (st1_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 		return;
 | |
| 
 | |
| 	      if ( signpositive(st0_ptr) )
 | |
| 		{
 | |
| 		  FPU_copy_to_reg1(&CONST_Z, TAG_Zero);
 | |
| 		  setsign(st1_ptr, sign);   /* An 80486 preserves the sign */
 | |
| 		  FPU_pop();
 | |
| 		  return;
 | |
| 		}
 | |
| 	      else
 | |
| 		{
 | |
| 		  FPU_copy_to_reg1(&CONST_PI, TAG_Valid);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* st(1) is infinity, st(0) not infinity */
 | |
| 	  if ( (st0_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	    return;
 | |
| 
 | |
| 	  FPU_copy_to_reg1(&CONST_PI2, TAG_Valid);
 | |
| 	}
 | |
|       setsign(st1_ptr, sign);
 | |
|     }
 | |
|   else if ( st1_tag == TAG_Zero )
 | |
|     {
 | |
|       /* st(0) must be valid or zero */
 | |
|       u_char sign = getsign(st1_ptr);
 | |
| 
 | |
|       if ( (st0_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	return;
 | |
| 
 | |
|       if ( signpositive(st0_ptr) )
 | |
| 	{
 | |
| 	  /* An 80486 preserves the sign */
 | |
| 	  FPU_pop();
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       FPU_copy_to_reg1(&CONST_PI, TAG_Valid);
 | |
|       setsign(st1_ptr, sign);
 | |
|     }
 | |
|   else if ( st0_tag == TAG_Zero )
 | |
|     {
 | |
|       /* st(1) must be TAG_Valid here */
 | |
|       u_char sign = getsign(st1_ptr);
 | |
| 
 | |
|       if ( (st1_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	return;
 | |
| 
 | |
|       FPU_copy_to_reg1(&CONST_PI2, TAG_Valid);
 | |
|       setsign(st1_ptr, sign);
 | |
|     }
 | |
| #ifdef PARANOID
 | |
|   else
 | |
|     EXCEPTION(EX_INTERNAL | 0x125);
 | |
| #endif /* PARANOID */
 | |
| 
 | |
|   FPU_pop();
 | |
|   set_precision_flag_up();  /* We do not really know if up or down */
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fprem(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   do_fprem(st0_ptr, st0_tag, RC_CHOP);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fprem1(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   do_fprem(st0_ptr, st0_tag, RC_RND);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fyl2xp1(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   u_char sign, sign1;
 | |
|   FPU_REG *st1_ptr = &st(1), a, b;
 | |
|   u_char st1_tag = FPU_gettagi(1);
 | |
| 
 | |
|   clear_C1();
 | |
|   if ( !((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid)) )
 | |
|     {
 | |
|     valid_yl2xp1:
 | |
| 
 | |
|       sign = getsign(st0_ptr);
 | |
|       sign1 = getsign(st1_ptr);
 | |
| 
 | |
|       FPU_to_exp16(st0_ptr, &a);
 | |
|       FPU_to_exp16(st1_ptr, &b);
 | |
| 
 | |
|       if ( poly_l2p1(sign, sign1, &a, &b, st1_ptr) )
 | |
| 	return;
 | |
| 
 | |
|       FPU_pop();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TAG_Special )
 | |
|     st0_tag = FPU_Special(st0_ptr);
 | |
|   if ( st1_tag == TAG_Special )
 | |
|     st1_tag = FPU_Special(st1_ptr);
 | |
| 
 | |
|   if ( ((st0_tag == TAG_Valid) && (st1_tag == TW_Denormal))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TAG_Valid))
 | |
| 	    || ((st0_tag == TW_Denormal) && (st1_tag == TW_Denormal)) )
 | |
|     {
 | |
|       if ( denormal_operand() < 0 )
 | |
| 	return;
 | |
| 
 | |
|       goto valid_yl2xp1;
 | |
|     }
 | |
|   else if ( (st0_tag == TAG_Empty) | (st1_tag == TAG_Empty) )
 | |
|     {
 | |
|       FPU_stack_underflow_pop(1);
 | |
|       return;
 | |
|     }
 | |
|   else if ( st0_tag == TAG_Zero )
 | |
|     {
 | |
|       switch ( st1_tag )
 | |
| 	{
 | |
| 	case TW_Denormal:
 | |
| 	  if ( denormal_operand() < 0 )
 | |
| 	    return;
 | |
| 
 | |
| 	case TAG_Zero:
 | |
| 	case TAG_Valid:
 | |
| 	  setsign(st0_ptr, getsign(st0_ptr) ^ getsign(st1_ptr));
 | |
| 	  FPU_copy_to_reg1(st0_ptr, st0_tag);
 | |
| 	  break;
 | |
| 
 | |
| 	case TW_Infinity:
 | |
| 	  /* Infinity*log(1) */
 | |
| 	  if ( arith_invalid(1) < 0 )
 | |
| 	    return;
 | |
| 	  break;
 | |
| 
 | |
| 	case TW_NaN:
 | |
| 	  if ( real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0 )
 | |
| 	    return;
 | |
| 	  break;
 | |
| 
 | |
| 	default:
 | |
| #ifdef PARANOID
 | |
| 	  EXCEPTION(EX_INTERNAL | 0x116);
 | |
| 	  return;
 | |
| #endif /* PARANOID */
 | |
| 	  break;
 | |
| 	}
 | |
|     }
 | |
|   else if ( (st0_tag == TAG_Valid) || (st0_tag == TW_Denormal) )
 | |
|     {
 | |
|       switch ( st1_tag )
 | |
| 	{
 | |
| 	case TAG_Zero:
 | |
| 	  if ( signnegative(st0_ptr) )
 | |
| 	    {
 | |
| 	      if ( exponent(st0_ptr) >= 0 )
 | |
| 		{
 | |
| 		  /* st(0) holds <= -1.0 */
 | |
| #ifdef PECULIAR_486   /* Stupid 80486 doesn't worry about log(negative). */
 | |
| 		  changesign(st1_ptr);
 | |
| #else
 | |
| 		  if ( arith_invalid(1) < 0 )
 | |
| 		    return;
 | |
| #endif /* PECULIAR_486 */
 | |
| 		}
 | |
| 	      else if ( (st0_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 		return;
 | |
| 	      else
 | |
| 		changesign(st1_ptr);
 | |
| 	    }
 | |
| 	  else if ( (st0_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	    return;
 | |
| 	  break;
 | |
| 
 | |
| 	case TW_Infinity:
 | |
| 	  if ( signnegative(st0_ptr) )
 | |
| 	    {
 | |
| 	      if ( (exponent(st0_ptr) >= 0) &&
 | |
| 		  !((st0_ptr->sigh == 0x80000000) &&
 | |
| 		    (st0_ptr->sigl == 0)) )
 | |
| 		{
 | |
| 		  /* st(0) holds < -1.0 */
 | |
| #ifdef PECULIAR_486   /* Stupid 80486 doesn't worry about log(negative). */
 | |
| 		  changesign(st1_ptr);
 | |
| #else
 | |
| 		  if ( arith_invalid(1) < 0 ) return;
 | |
| #endif /* PECULIAR_486 */
 | |
| 		}
 | |
| 	      else if ( (st0_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 		return;
 | |
| 	      else
 | |
| 		changesign(st1_ptr);
 | |
| 	    }
 | |
| 	  else if ( (st0_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	    return;
 | |
| 	  break;
 | |
| 
 | |
| 	case TW_NaN:
 | |
| 	  if ( real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0 )
 | |
| 	    return;
 | |
| 	}
 | |
| 
 | |
|     }
 | |
|   else if ( st0_tag == TW_NaN )
 | |
|     {
 | |
|       if ( real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0 )
 | |
| 	return;
 | |
|     }
 | |
|   else if ( st0_tag == TW_Infinity )
 | |
|     {
 | |
|       if ( st1_tag == TW_NaN )
 | |
| 	{
 | |
| 	  if ( real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0 )
 | |
| 	    return;
 | |
| 	}
 | |
|       else if ( signnegative(st0_ptr) )
 | |
| 	{
 | |
| #ifndef PECULIAR_486
 | |
| 	  /* This should have higher priority than denormals, but... */
 | |
| 	  if ( arith_invalid(1) < 0 )  /* log(-infinity) */
 | |
| 	    return;
 | |
| #endif /* PECULIAR_486 */
 | |
| 	  if ( (st1_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	    return;
 | |
| #ifdef PECULIAR_486
 | |
| 	  /* Denormal operands actually get higher priority */
 | |
| 	  if ( arith_invalid(1) < 0 )  /* log(-infinity) */
 | |
| 	    return;
 | |
| #endif /* PECULIAR_486 */
 | |
| 	}
 | |
|       else if ( st1_tag == TAG_Zero )
 | |
| 	{
 | |
| 	  /* log(infinity) */
 | |
| 	  if ( arith_invalid(1) < 0 )
 | |
| 	    return;
 | |
| 	}
 | |
| 	
 | |
|       /* st(1) must be valid here. */
 | |
| 
 | |
|       else if ( (st1_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	return;
 | |
| 
 | |
|       /* The Manual says that log(Infinity) is invalid, but a real
 | |
| 	 80486 sensibly says that it is o.k. */
 | |
|       else
 | |
| 	{
 | |
| 	  u_char sign = getsign(st1_ptr);
 | |
| 	  FPU_copy_to_reg1(&CONST_INF, TAG_Special);
 | |
| 	  setsign(st1_ptr, sign);
 | |
| 	}
 | |
|     }
 | |
| #ifdef PARANOID
 | |
|   else
 | |
|     {
 | |
|       EXCEPTION(EX_INTERNAL | 0x117);
 | |
|       return;
 | |
|     }
 | |
| #endif /* PARANOID */
 | |
| 
 | |
|   FPU_pop();
 | |
|   return;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| static void fscale(FPU_REG *st0_ptr, u_char st0_tag)
 | |
| {
 | |
|   FPU_REG *st1_ptr = &st(1);
 | |
|   u_char st1_tag = FPU_gettagi(1);
 | |
|   int old_cw = control_word;
 | |
|   u_char sign = getsign(st0_ptr);
 | |
| 
 | |
|   clear_C1();
 | |
|   if ( !((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid)) )
 | |
|     {
 | |
|       long scale;
 | |
|       FPU_REG tmp;
 | |
| 
 | |
|       /* Convert register for internal use. */
 | |
|       setexponent16(st0_ptr, exponent(st0_ptr));
 | |
| 
 | |
|     valid_scale:
 | |
| 
 | |
|       if ( exponent(st1_ptr) > 30 )
 | |
| 	{
 | |
| 	  /* 2^31 is far too large, would require 2^(2^30) or 2^(-2^30) */
 | |
| 
 | |
| 	  if ( signpositive(st1_ptr) )
 | |
| 	    {
 | |
| 	      EXCEPTION(EX_Overflow);
 | |
| 	      FPU_copy_to_reg0(&CONST_INF, TAG_Special);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      EXCEPTION(EX_Underflow);
 | |
| 	      FPU_copy_to_reg0(&CONST_Z, TAG_Zero);
 | |
| 	    }
 | |
| 	  setsign(st0_ptr, sign);
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       control_word &= ~CW_RC;
 | |
|       control_word |= RC_CHOP;
 | |
|       reg_copy(st1_ptr, &tmp);
 | |
|       FPU_round_to_int(&tmp, st1_tag);      /* This can never overflow here */
 | |
|       control_word = old_cw;
 | |
|       scale = signnegative(st1_ptr) ? -tmp.sigl : tmp.sigl;
 | |
|       scale += exponent16(st0_ptr);
 | |
| 
 | |
|       setexponent16(st0_ptr, scale);
 | |
| 
 | |
|       /* Use FPU_round() to properly detect under/overflow etc */
 | |
|       FPU_round(st0_ptr, 0, 0, control_word, sign);
 | |
| 
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if ( st0_tag == TAG_Special )
 | |
|     st0_tag = FPU_Special(st0_ptr);
 | |
|   if ( st1_tag == TAG_Special )
 | |
|     st1_tag = FPU_Special(st1_ptr);
 | |
| 
 | |
|   if ( (st0_tag == TAG_Valid) || (st0_tag == TW_Denormal) )
 | |
|     {
 | |
|       switch ( st1_tag )
 | |
| 	{
 | |
| 	case TAG_Valid:
 | |
| 	  /* st(0) must be a denormal */
 | |
| 	  if ( (st0_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	    return;
 | |
| 
 | |
| 	  FPU_to_exp16(st0_ptr, st0_ptr);  /* Will not be left on stack */
 | |
| 	  goto valid_scale;
 | |
| 
 | |
| 	case TAG_Zero:
 | |
| 	  if ( st0_tag == TW_Denormal )
 | |
| 	    denormal_operand();
 | |
| 	  return;
 | |
| 
 | |
| 	case TW_Denormal:
 | |
| 	  denormal_operand();
 | |
| 	  return;
 | |
| 
 | |
| 	case TW_Infinity:
 | |
| 	  if ( (st0_tag == TW_Denormal) && (denormal_operand() < 0) )
 | |
| 	    return;
 | |
| 
 | |
| 	  if ( signpositive(st1_ptr) )
 | |
| 	    FPU_copy_to_reg0(&CONST_INF, TAG_Special);
 | |
| 	  else
 | |
| 	    FPU_copy_to_reg0(&CONST_Z, TAG_Zero);
 | |
| 	  setsign(st0_ptr, sign);
 | |
| 	  return;
 | |
| 
 | |
| 	case TW_NaN:
 | |
| 	  real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr);
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
|   else if ( st0_tag == TAG_Zero )
 | |
|     {
 | |
|       switch ( st1_tag )
 | |
| 	{
 | |
| 	case TAG_Valid:
 | |
| 	case TAG_Zero:
 | |
| 	  return;
 | |
| 
 | |
| 	case TW_Denormal:
 | |
| 	  denormal_operand();
 | |
| 	  return;
 | |
| 
 | |
| 	case TW_Infinity:
 | |
| 	  if ( signpositive(st1_ptr) )
 | |
| 	    arith_invalid(0); /* Zero scaled by +Infinity */
 | |
| 	  return;
 | |
| 
 | |
| 	case TW_NaN:
 | |
| 	  real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr);
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
|   else if ( st0_tag == TW_Infinity )
 | |
|     {
 | |
|       switch ( st1_tag )
 | |
| 	{
 | |
| 	case TAG_Valid:
 | |
| 	case TAG_Zero:
 | |
| 	  return;
 | |
| 
 | |
| 	case TW_Denormal:
 | |
| 	  denormal_operand();
 | |
| 	  return;
 | |
| 
 | |
| 	case TW_Infinity:
 | |
| 	  if ( signnegative(st1_ptr) )
 | |
| 	    arith_invalid(0); /* Infinity scaled by -Infinity */
 | |
| 	  return;
 | |
| 
 | |
| 	case TW_NaN:
 | |
| 	  real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr);
 | |
| 	  return;
 | |
| 	}
 | |
|     }
 | |
|   else if ( st0_tag == TW_NaN )
 | |
|     {
 | |
|       if ( st1_tag != TAG_Empty )
 | |
| 	{ real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr); return; }
 | |
|     }
 | |
| 
 | |
| #ifdef PARANOID
 | |
|   if ( !((st0_tag == TAG_Empty) || (st1_tag == TAG_Empty)) )
 | |
|     {
 | |
|       EXCEPTION(EX_INTERNAL | 0x115);
 | |
|       return;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   /* At least one of st(0), st(1) must be empty */
 | |
|   FPU_stack_underflow();
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| 
 | |
| static FUNC_ST0 const trig_table_a[] = {
 | |
|   f2xm1, fyl2x, fptan, fpatan,
 | |
|   fxtract, fprem1, (FUNC_ST0)fdecstp, (FUNC_ST0)fincstp
 | |
| };
 | |
| 
 | |
| void FPU_triga(void)
 | |
| {
 | |
|   (trig_table_a[FPU_rm])(&st(0), FPU_gettag0());
 | |
| }
 | |
| 
 | |
| 
 | |
| static FUNC_ST0 const trig_table_b[] =
 | |
|   {
 | |
|     fprem, fyl2xp1, fsqrt_, fsincos, frndint_, fscale, (FUNC_ST0)fsin, fcos
 | |
|   };
 | |
| 
 | |
| void FPU_trigb(void)
 | |
| {
 | |
|   (trig_table_b[FPU_rm])(&st(0), FPU_gettag0());
 | |
| }
 |