A user has encountered a NULL pointer kernel oops in btrfs when
encountering media errors.  The problem has been identified
as an unhandled NULL pointer returned from find_get_page().
This modification simply checks for a NULL page, and returns
with an error if found (the extent_range_uptodate() function
returns 1 on errors).
After testing this patch, the user reported that the error with
the NULL pointer oops was solved.  However, there is still a
remaining problem with a thread becoming stuck in
wait_on_page_locked(page) in the read_extent_buffer_pages(...)
function in extent_io.c
       for (i = start_i; i < num_pages; i++) {
               page = extent_buffer_page(eb, i);
               wait_on_page_locked(page);
               if (!PageUptodate(page))
                       ret = -EIO;
       }
This patch leaves the issue with the locked page yet to be resolved.
Signed-off-by: Mitch Harder <mitch.harder@sabayonlinux.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
		
	
			
		
			
				
	
	
		
			4437 lines
		
	
	
	
		
			109 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4437 lines
		
	
	
	
		
			109 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
#include <linux/bitops.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/bio.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/page-flags.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/writeback.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/prefetch.h>
 | 
						|
#include <linux/cleancache.h>
 | 
						|
#include "extent_io.h"
 | 
						|
#include "extent_map.h"
 | 
						|
#include "compat.h"
 | 
						|
#include "ctree.h"
 | 
						|
#include "btrfs_inode.h"
 | 
						|
#include "volumes.h"
 | 
						|
#include "check-integrity.h"
 | 
						|
 | 
						|
static struct kmem_cache *extent_state_cache;
 | 
						|
static struct kmem_cache *extent_buffer_cache;
 | 
						|
 | 
						|
static LIST_HEAD(buffers);
 | 
						|
static LIST_HEAD(states);
 | 
						|
 | 
						|
#define LEAK_DEBUG 0
 | 
						|
#if LEAK_DEBUG
 | 
						|
static DEFINE_SPINLOCK(leak_lock);
 | 
						|
#endif
 | 
						|
 | 
						|
#define BUFFER_LRU_MAX 64
 | 
						|
 | 
						|
struct tree_entry {
 | 
						|
	u64 start;
 | 
						|
	u64 end;
 | 
						|
	struct rb_node rb_node;
 | 
						|
};
 | 
						|
 | 
						|
struct extent_page_data {
 | 
						|
	struct bio *bio;
 | 
						|
	struct extent_io_tree *tree;
 | 
						|
	get_extent_t *get_extent;
 | 
						|
 | 
						|
	/* tells writepage not to lock the state bits for this range
 | 
						|
	 * it still does the unlocking
 | 
						|
	 */
 | 
						|
	unsigned int extent_locked:1;
 | 
						|
 | 
						|
	/* tells the submit_bio code to use a WRITE_SYNC */
 | 
						|
	unsigned int sync_io:1;
 | 
						|
};
 | 
						|
 | 
						|
int __init extent_io_init(void)
 | 
						|
{
 | 
						|
	extent_state_cache = kmem_cache_create("extent_state",
 | 
						|
			sizeof(struct extent_state), 0,
 | 
						|
			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 | 
						|
	if (!extent_state_cache)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	extent_buffer_cache = kmem_cache_create("extent_buffers",
 | 
						|
			sizeof(struct extent_buffer), 0,
 | 
						|
			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 | 
						|
	if (!extent_buffer_cache)
 | 
						|
		goto free_state_cache;
 | 
						|
	return 0;
 | 
						|
 | 
						|
free_state_cache:
 | 
						|
	kmem_cache_destroy(extent_state_cache);
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
void extent_io_exit(void)
 | 
						|
{
 | 
						|
	struct extent_state *state;
 | 
						|
	struct extent_buffer *eb;
 | 
						|
 | 
						|
	while (!list_empty(&states)) {
 | 
						|
		state = list_entry(states.next, struct extent_state, leak_list);
 | 
						|
		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
 | 
						|
		       "state %lu in tree %p refs %d\n",
 | 
						|
		       (unsigned long long)state->start,
 | 
						|
		       (unsigned long long)state->end,
 | 
						|
		       state->state, state->tree, atomic_read(&state->refs));
 | 
						|
		list_del(&state->leak_list);
 | 
						|
		kmem_cache_free(extent_state_cache, state);
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	while (!list_empty(&buffers)) {
 | 
						|
		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
 | 
						|
		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
 | 
						|
		       "refs %d\n", (unsigned long long)eb->start,
 | 
						|
		       eb->len, atomic_read(&eb->refs));
 | 
						|
		list_del(&eb->leak_list);
 | 
						|
		kmem_cache_free(extent_buffer_cache, eb);
 | 
						|
	}
 | 
						|
	if (extent_state_cache)
 | 
						|
		kmem_cache_destroy(extent_state_cache);
 | 
						|
	if (extent_buffer_cache)
 | 
						|
		kmem_cache_destroy(extent_buffer_cache);
 | 
						|
}
 | 
						|
 | 
						|
void extent_io_tree_init(struct extent_io_tree *tree,
 | 
						|
			 struct address_space *mapping)
 | 
						|
{
 | 
						|
	tree->state = RB_ROOT;
 | 
						|
	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 | 
						|
	tree->ops = NULL;
 | 
						|
	tree->dirty_bytes = 0;
 | 
						|
	spin_lock_init(&tree->lock);
 | 
						|
	spin_lock_init(&tree->buffer_lock);
 | 
						|
	tree->mapping = mapping;
 | 
						|
}
 | 
						|
 | 
						|
static struct extent_state *alloc_extent_state(gfp_t mask)
 | 
						|
{
 | 
						|
	struct extent_state *state;
 | 
						|
#if LEAK_DEBUG
 | 
						|
	unsigned long flags;
 | 
						|
#endif
 | 
						|
 | 
						|
	state = kmem_cache_alloc(extent_state_cache, mask);
 | 
						|
	if (!state)
 | 
						|
		return state;
 | 
						|
	state->state = 0;
 | 
						|
	state->private = 0;
 | 
						|
	state->tree = NULL;
 | 
						|
#if LEAK_DEBUG
 | 
						|
	spin_lock_irqsave(&leak_lock, flags);
 | 
						|
	list_add(&state->leak_list, &states);
 | 
						|
	spin_unlock_irqrestore(&leak_lock, flags);
 | 
						|
#endif
 | 
						|
	atomic_set(&state->refs, 1);
 | 
						|
	init_waitqueue_head(&state->wq);
 | 
						|
	return state;
 | 
						|
}
 | 
						|
 | 
						|
void free_extent_state(struct extent_state *state)
 | 
						|
{
 | 
						|
	if (!state)
 | 
						|
		return;
 | 
						|
	if (atomic_dec_and_test(&state->refs)) {
 | 
						|
#if LEAK_DEBUG
 | 
						|
		unsigned long flags;
 | 
						|
#endif
 | 
						|
		WARN_ON(state->tree);
 | 
						|
#if LEAK_DEBUG
 | 
						|
		spin_lock_irqsave(&leak_lock, flags);
 | 
						|
		list_del(&state->leak_list);
 | 
						|
		spin_unlock_irqrestore(&leak_lock, flags);
 | 
						|
#endif
 | 
						|
		kmem_cache_free(extent_state_cache, state);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 | 
						|
				   struct rb_node *node)
 | 
						|
{
 | 
						|
	struct rb_node **p = &root->rb_node;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	struct tree_entry *entry;
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		entry = rb_entry(parent, struct tree_entry, rb_node);
 | 
						|
 | 
						|
		if (offset < entry->start)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		else if (offset > entry->end)
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
		else
 | 
						|
			return parent;
 | 
						|
	}
 | 
						|
 | 
						|
	entry = rb_entry(node, struct tree_entry, rb_node);
 | 
						|
	rb_link_node(node, parent, p);
 | 
						|
	rb_insert_color(node, root);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 | 
						|
				     struct rb_node **prev_ret,
 | 
						|
				     struct rb_node **next_ret)
 | 
						|
{
 | 
						|
	struct rb_root *root = &tree->state;
 | 
						|
	struct rb_node *n = root->rb_node;
 | 
						|
	struct rb_node *prev = NULL;
 | 
						|
	struct rb_node *orig_prev = NULL;
 | 
						|
	struct tree_entry *entry;
 | 
						|
	struct tree_entry *prev_entry = NULL;
 | 
						|
 | 
						|
	while (n) {
 | 
						|
		entry = rb_entry(n, struct tree_entry, rb_node);
 | 
						|
		prev = n;
 | 
						|
		prev_entry = entry;
 | 
						|
 | 
						|
		if (offset < entry->start)
 | 
						|
			n = n->rb_left;
 | 
						|
		else if (offset > entry->end)
 | 
						|
			n = n->rb_right;
 | 
						|
		else
 | 
						|
			return n;
 | 
						|
	}
 | 
						|
 | 
						|
	if (prev_ret) {
 | 
						|
		orig_prev = prev;
 | 
						|
		while (prev && offset > prev_entry->end) {
 | 
						|
			prev = rb_next(prev);
 | 
						|
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 | 
						|
		}
 | 
						|
		*prev_ret = prev;
 | 
						|
		prev = orig_prev;
 | 
						|
	}
 | 
						|
 | 
						|
	if (next_ret) {
 | 
						|
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 | 
						|
		while (prev && offset < prev_entry->start) {
 | 
						|
			prev = rb_prev(prev);
 | 
						|
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 | 
						|
		}
 | 
						|
		*next_ret = prev;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 | 
						|
					  u64 offset)
 | 
						|
{
 | 
						|
	struct rb_node *prev = NULL;
 | 
						|
	struct rb_node *ret;
 | 
						|
 | 
						|
	ret = __etree_search(tree, offset, &prev, NULL);
 | 
						|
	if (!ret)
 | 
						|
		return prev;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 | 
						|
		     struct extent_state *other)
 | 
						|
{
 | 
						|
	if (tree->ops && tree->ops->merge_extent_hook)
 | 
						|
		tree->ops->merge_extent_hook(tree->mapping->host, new,
 | 
						|
					     other);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * utility function to look for merge candidates inside a given range.
 | 
						|
 * Any extents with matching state are merged together into a single
 | 
						|
 * extent in the tree.  Extents with EXTENT_IO in their state field
 | 
						|
 * are not merged because the end_io handlers need to be able to do
 | 
						|
 * operations on them without sleeping (or doing allocations/splits).
 | 
						|
 *
 | 
						|
 * This should be called with the tree lock held.
 | 
						|
 */
 | 
						|
static void merge_state(struct extent_io_tree *tree,
 | 
						|
		        struct extent_state *state)
 | 
						|
{
 | 
						|
	struct extent_state *other;
 | 
						|
	struct rb_node *other_node;
 | 
						|
 | 
						|
	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 | 
						|
		return;
 | 
						|
 | 
						|
	other_node = rb_prev(&state->rb_node);
 | 
						|
	if (other_node) {
 | 
						|
		other = rb_entry(other_node, struct extent_state, rb_node);
 | 
						|
		if (other->end == state->start - 1 &&
 | 
						|
		    other->state == state->state) {
 | 
						|
			merge_cb(tree, state, other);
 | 
						|
			state->start = other->start;
 | 
						|
			other->tree = NULL;
 | 
						|
			rb_erase(&other->rb_node, &tree->state);
 | 
						|
			free_extent_state(other);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	other_node = rb_next(&state->rb_node);
 | 
						|
	if (other_node) {
 | 
						|
		other = rb_entry(other_node, struct extent_state, rb_node);
 | 
						|
		if (other->start == state->end + 1 &&
 | 
						|
		    other->state == state->state) {
 | 
						|
			merge_cb(tree, state, other);
 | 
						|
			state->end = other->end;
 | 
						|
			other->tree = NULL;
 | 
						|
			rb_erase(&other->rb_node, &tree->state);
 | 
						|
			free_extent_state(other);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void set_state_cb(struct extent_io_tree *tree,
 | 
						|
			 struct extent_state *state, int *bits)
 | 
						|
{
 | 
						|
	if (tree->ops && tree->ops->set_bit_hook)
 | 
						|
		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 | 
						|
}
 | 
						|
 | 
						|
static void clear_state_cb(struct extent_io_tree *tree,
 | 
						|
			   struct extent_state *state, int *bits)
 | 
						|
{
 | 
						|
	if (tree->ops && tree->ops->clear_bit_hook)
 | 
						|
		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 | 
						|
}
 | 
						|
 | 
						|
static void set_state_bits(struct extent_io_tree *tree,
 | 
						|
			   struct extent_state *state, int *bits);
 | 
						|
 | 
						|
/*
 | 
						|
 * insert an extent_state struct into the tree.  'bits' are set on the
 | 
						|
 * struct before it is inserted.
 | 
						|
 *
 | 
						|
 * This may return -EEXIST if the extent is already there, in which case the
 | 
						|
 * state struct is freed.
 | 
						|
 *
 | 
						|
 * The tree lock is not taken internally.  This is a utility function and
 | 
						|
 * probably isn't what you want to call (see set/clear_extent_bit).
 | 
						|
 */
 | 
						|
static int insert_state(struct extent_io_tree *tree,
 | 
						|
			struct extent_state *state, u64 start, u64 end,
 | 
						|
			int *bits)
 | 
						|
{
 | 
						|
	struct rb_node *node;
 | 
						|
 | 
						|
	if (end < start) {
 | 
						|
		printk(KERN_ERR "btrfs end < start %llu %llu\n",
 | 
						|
		       (unsigned long long)end,
 | 
						|
		       (unsigned long long)start);
 | 
						|
		WARN_ON(1);
 | 
						|
	}
 | 
						|
	state->start = start;
 | 
						|
	state->end = end;
 | 
						|
 | 
						|
	set_state_bits(tree, state, bits);
 | 
						|
 | 
						|
	node = tree_insert(&tree->state, end, &state->rb_node);
 | 
						|
	if (node) {
 | 
						|
		struct extent_state *found;
 | 
						|
		found = rb_entry(node, struct extent_state, rb_node);
 | 
						|
		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 | 
						|
		       "%llu %llu\n", (unsigned long long)found->start,
 | 
						|
		       (unsigned long long)found->end,
 | 
						|
		       (unsigned long long)start, (unsigned long long)end);
 | 
						|
		return -EEXIST;
 | 
						|
	}
 | 
						|
	state->tree = tree;
 | 
						|
	merge_state(tree, state);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 | 
						|
		     u64 split)
 | 
						|
{
 | 
						|
	if (tree->ops && tree->ops->split_extent_hook)
 | 
						|
		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * split a given extent state struct in two, inserting the preallocated
 | 
						|
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 | 
						|
 * offset inside 'orig' where it should be split.
 | 
						|
 *
 | 
						|
 * Before calling,
 | 
						|
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 | 
						|
 * are two extent state structs in the tree:
 | 
						|
 * prealloc: [orig->start, split - 1]
 | 
						|
 * orig: [ split, orig->end ]
 | 
						|
 *
 | 
						|
 * The tree locks are not taken by this function. They need to be held
 | 
						|
 * by the caller.
 | 
						|
 */
 | 
						|
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 | 
						|
		       struct extent_state *prealloc, u64 split)
 | 
						|
{
 | 
						|
	struct rb_node *node;
 | 
						|
 | 
						|
	split_cb(tree, orig, split);
 | 
						|
 | 
						|
	prealloc->start = orig->start;
 | 
						|
	prealloc->end = split - 1;
 | 
						|
	prealloc->state = orig->state;
 | 
						|
	orig->start = split;
 | 
						|
 | 
						|
	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 | 
						|
	if (node) {
 | 
						|
		free_extent_state(prealloc);
 | 
						|
		return -EEXIST;
 | 
						|
	}
 | 
						|
	prealloc->tree = tree;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * utility function to clear some bits in an extent state struct.
 | 
						|
 * it will optionally wake up any one waiting on this state (wake == 1), or
 | 
						|
 * forcibly remove the state from the tree (delete == 1).
 | 
						|
 *
 | 
						|
 * If no bits are set on the state struct after clearing things, the
 | 
						|
 * struct is freed and removed from the tree
 | 
						|
 */
 | 
						|
static int clear_state_bit(struct extent_io_tree *tree,
 | 
						|
			    struct extent_state *state,
 | 
						|
			    int *bits, int wake)
 | 
						|
{
 | 
						|
	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
 | 
						|
	int ret = state->state & bits_to_clear;
 | 
						|
 | 
						|
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 | 
						|
		u64 range = state->end - state->start + 1;
 | 
						|
		WARN_ON(range > tree->dirty_bytes);
 | 
						|
		tree->dirty_bytes -= range;
 | 
						|
	}
 | 
						|
	clear_state_cb(tree, state, bits);
 | 
						|
	state->state &= ~bits_to_clear;
 | 
						|
	if (wake)
 | 
						|
		wake_up(&state->wq);
 | 
						|
	if (state->state == 0) {
 | 
						|
		if (state->tree) {
 | 
						|
			rb_erase(&state->rb_node, &tree->state);
 | 
						|
			state->tree = NULL;
 | 
						|
			free_extent_state(state);
 | 
						|
		} else {
 | 
						|
			WARN_ON(1);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		merge_state(tree, state);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct extent_state *
 | 
						|
alloc_extent_state_atomic(struct extent_state *prealloc)
 | 
						|
{
 | 
						|
	if (!prealloc)
 | 
						|
		prealloc = alloc_extent_state(GFP_ATOMIC);
 | 
						|
 | 
						|
	return prealloc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * clear some bits on a range in the tree.  This may require splitting
 | 
						|
 * or inserting elements in the tree, so the gfp mask is used to
 | 
						|
 * indicate which allocations or sleeping are allowed.
 | 
						|
 *
 | 
						|
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 | 
						|
 * the given range from the tree regardless of state (ie for truncate).
 | 
						|
 *
 | 
						|
 * the range [start, end] is inclusive.
 | 
						|
 *
 | 
						|
 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
 | 
						|
 * bits were already set, or zero if none of the bits were already set.
 | 
						|
 */
 | 
						|
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		     int bits, int wake, int delete,
 | 
						|
		     struct extent_state **cached_state,
 | 
						|
		     gfp_t mask)
 | 
						|
{
 | 
						|
	struct extent_state *state;
 | 
						|
	struct extent_state *cached;
 | 
						|
	struct extent_state *prealloc = NULL;
 | 
						|
	struct rb_node *next_node;
 | 
						|
	struct rb_node *node;
 | 
						|
	u64 last_end;
 | 
						|
	int err;
 | 
						|
	int set = 0;
 | 
						|
	int clear = 0;
 | 
						|
 | 
						|
	if (delete)
 | 
						|
		bits |= ~EXTENT_CTLBITS;
 | 
						|
	bits |= EXTENT_FIRST_DELALLOC;
 | 
						|
 | 
						|
	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 | 
						|
		clear = 1;
 | 
						|
again:
 | 
						|
	if (!prealloc && (mask & __GFP_WAIT)) {
 | 
						|
		prealloc = alloc_extent_state(mask);
 | 
						|
		if (!prealloc)
 | 
						|
			return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
	if (cached_state) {
 | 
						|
		cached = *cached_state;
 | 
						|
 | 
						|
		if (clear) {
 | 
						|
			*cached_state = NULL;
 | 
						|
			cached_state = NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		if (cached && cached->tree && cached->start <= start &&
 | 
						|
		    cached->end > start) {
 | 
						|
			if (clear)
 | 
						|
				atomic_dec(&cached->refs);
 | 
						|
			state = cached;
 | 
						|
			goto hit_next;
 | 
						|
		}
 | 
						|
		if (clear)
 | 
						|
			free_extent_state(cached);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * this search will find the extents that end after
 | 
						|
	 * our range starts
 | 
						|
	 */
 | 
						|
	node = tree_search(tree, start);
 | 
						|
	if (!node)
 | 
						|
		goto out;
 | 
						|
	state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
hit_next:
 | 
						|
	if (state->start > end)
 | 
						|
		goto out;
 | 
						|
	WARN_ON(state->end < start);
 | 
						|
	last_end = state->end;
 | 
						|
 | 
						|
	/*
 | 
						|
	 *     | ---- desired range ---- |
 | 
						|
	 *  | state | or
 | 
						|
	 *  | ------------- state -------------- |
 | 
						|
	 *
 | 
						|
	 * We need to split the extent we found, and may flip
 | 
						|
	 * bits on second half.
 | 
						|
	 *
 | 
						|
	 * If the extent we found extends past our range, we
 | 
						|
	 * just split and search again.  It'll get split again
 | 
						|
	 * the next time though.
 | 
						|
	 *
 | 
						|
	 * If the extent we found is inside our range, we clear
 | 
						|
	 * the desired bit on it.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (state->start < start) {
 | 
						|
		prealloc = alloc_extent_state_atomic(prealloc);
 | 
						|
		BUG_ON(!prealloc);
 | 
						|
		err = split_state(tree, state, prealloc, start);
 | 
						|
		BUG_ON(err == -EEXIST);
 | 
						|
		prealloc = NULL;
 | 
						|
		if (err)
 | 
						|
			goto out;
 | 
						|
		if (state->end <= end) {
 | 
						|
			set |= clear_state_bit(tree, state, &bits, wake);
 | 
						|
			if (last_end == (u64)-1)
 | 
						|
				goto out;
 | 
						|
			start = last_end + 1;
 | 
						|
		}
 | 
						|
		goto search_again;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * | ---- desired range ---- |
 | 
						|
	 *                        | state |
 | 
						|
	 * We need to split the extent, and clear the bit
 | 
						|
	 * on the first half
 | 
						|
	 */
 | 
						|
	if (state->start <= end && state->end > end) {
 | 
						|
		prealloc = alloc_extent_state_atomic(prealloc);
 | 
						|
		BUG_ON(!prealloc);
 | 
						|
		err = split_state(tree, state, prealloc, end + 1);
 | 
						|
		BUG_ON(err == -EEXIST);
 | 
						|
		if (wake)
 | 
						|
			wake_up(&state->wq);
 | 
						|
 | 
						|
		set |= clear_state_bit(tree, prealloc, &bits, wake);
 | 
						|
 | 
						|
		prealloc = NULL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (state->end < end && prealloc && !need_resched())
 | 
						|
		next_node = rb_next(&state->rb_node);
 | 
						|
	else
 | 
						|
		next_node = NULL;
 | 
						|
 | 
						|
	set |= clear_state_bit(tree, state, &bits, wake);
 | 
						|
	if (last_end == (u64)-1)
 | 
						|
		goto out;
 | 
						|
	start = last_end + 1;
 | 
						|
	if (start <= end && next_node) {
 | 
						|
		state = rb_entry(next_node, struct extent_state,
 | 
						|
				 rb_node);
 | 
						|
		if (state->start == start)
 | 
						|
			goto hit_next;
 | 
						|
	}
 | 
						|
	goto search_again;
 | 
						|
 | 
						|
out:
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	if (prealloc)
 | 
						|
		free_extent_state(prealloc);
 | 
						|
 | 
						|
	return set;
 | 
						|
 | 
						|
search_again:
 | 
						|
	if (start > end)
 | 
						|
		goto out;
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	if (mask & __GFP_WAIT)
 | 
						|
		cond_resched();
 | 
						|
	goto again;
 | 
						|
}
 | 
						|
 | 
						|
static int wait_on_state(struct extent_io_tree *tree,
 | 
						|
			 struct extent_state *state)
 | 
						|
		__releases(tree->lock)
 | 
						|
		__acquires(tree->lock)
 | 
						|
{
 | 
						|
	DEFINE_WAIT(wait);
 | 
						|
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	schedule();
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
	finish_wait(&state->wq, &wait);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * waits for one or more bits to clear on a range in the state tree.
 | 
						|
 * The range [start, end] is inclusive.
 | 
						|
 * The tree lock is taken by this function
 | 
						|
 */
 | 
						|
int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
 | 
						|
{
 | 
						|
	struct extent_state *state;
 | 
						|
	struct rb_node *node;
 | 
						|
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
again:
 | 
						|
	while (1) {
 | 
						|
		/*
 | 
						|
		 * this search will find all the extents that end after
 | 
						|
		 * our range starts
 | 
						|
		 */
 | 
						|
		node = tree_search(tree, start);
 | 
						|
		if (!node)
 | 
						|
			break;
 | 
						|
 | 
						|
		state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
 | 
						|
		if (state->start > end)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		if (state->state & bits) {
 | 
						|
			start = state->start;
 | 
						|
			atomic_inc(&state->refs);
 | 
						|
			wait_on_state(tree, state);
 | 
						|
			free_extent_state(state);
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		start = state->end + 1;
 | 
						|
 | 
						|
		if (start > end)
 | 
						|
			break;
 | 
						|
 | 
						|
		cond_resched_lock(&tree->lock);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void set_state_bits(struct extent_io_tree *tree,
 | 
						|
			   struct extent_state *state,
 | 
						|
			   int *bits)
 | 
						|
{
 | 
						|
	int bits_to_set = *bits & ~EXTENT_CTLBITS;
 | 
						|
 | 
						|
	set_state_cb(tree, state, bits);
 | 
						|
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 | 
						|
		u64 range = state->end - state->start + 1;
 | 
						|
		tree->dirty_bytes += range;
 | 
						|
	}
 | 
						|
	state->state |= bits_to_set;
 | 
						|
}
 | 
						|
 | 
						|
static void cache_state(struct extent_state *state,
 | 
						|
			struct extent_state **cached_ptr)
 | 
						|
{
 | 
						|
	if (cached_ptr && !(*cached_ptr)) {
 | 
						|
		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 | 
						|
			*cached_ptr = state;
 | 
						|
			atomic_inc(&state->refs);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void uncache_state(struct extent_state **cached_ptr)
 | 
						|
{
 | 
						|
	if (cached_ptr && (*cached_ptr)) {
 | 
						|
		struct extent_state *state = *cached_ptr;
 | 
						|
		*cached_ptr = NULL;
 | 
						|
		free_extent_state(state);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * set some bits on a range in the tree.  This may require allocations or
 | 
						|
 * sleeping, so the gfp mask is used to indicate what is allowed.
 | 
						|
 *
 | 
						|
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 | 
						|
 * part of the range already has the desired bits set.  The start of the
 | 
						|
 * existing range is returned in failed_start in this case.
 | 
						|
 *
 | 
						|
 * [start, end] is inclusive This takes the tree lock.
 | 
						|
 */
 | 
						|
 | 
						|
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		   int bits, int exclusive_bits, u64 *failed_start,
 | 
						|
		   struct extent_state **cached_state, gfp_t mask)
 | 
						|
{
 | 
						|
	struct extent_state *state;
 | 
						|
	struct extent_state *prealloc = NULL;
 | 
						|
	struct rb_node *node;
 | 
						|
	int err = 0;
 | 
						|
	u64 last_start;
 | 
						|
	u64 last_end;
 | 
						|
 | 
						|
	bits |= EXTENT_FIRST_DELALLOC;
 | 
						|
again:
 | 
						|
	if (!prealloc && (mask & __GFP_WAIT)) {
 | 
						|
		prealloc = alloc_extent_state(mask);
 | 
						|
		BUG_ON(!prealloc);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
	if (cached_state && *cached_state) {
 | 
						|
		state = *cached_state;
 | 
						|
		if (state->start <= start && state->end > start &&
 | 
						|
		    state->tree) {
 | 
						|
			node = &state->rb_node;
 | 
						|
			goto hit_next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * this search will find all the extents that end after
 | 
						|
	 * our range starts.
 | 
						|
	 */
 | 
						|
	node = tree_search(tree, start);
 | 
						|
	if (!node) {
 | 
						|
		prealloc = alloc_extent_state_atomic(prealloc);
 | 
						|
		BUG_ON(!prealloc);
 | 
						|
		err = insert_state(tree, prealloc, start, end, &bits);
 | 
						|
		prealloc = NULL;
 | 
						|
		BUG_ON(err == -EEXIST);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
hit_next:
 | 
						|
	last_start = state->start;
 | 
						|
	last_end = state->end;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * | ---- desired range ---- |
 | 
						|
	 * | state |
 | 
						|
	 *
 | 
						|
	 * Just lock what we found and keep going
 | 
						|
	 */
 | 
						|
	if (state->start == start && state->end <= end) {
 | 
						|
		struct rb_node *next_node;
 | 
						|
		if (state->state & exclusive_bits) {
 | 
						|
			*failed_start = state->start;
 | 
						|
			err = -EEXIST;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		set_state_bits(tree, state, &bits);
 | 
						|
 | 
						|
		cache_state(state, cached_state);
 | 
						|
		merge_state(tree, state);
 | 
						|
		if (last_end == (u64)-1)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		start = last_end + 1;
 | 
						|
		next_node = rb_next(&state->rb_node);
 | 
						|
		if (next_node && start < end && prealloc && !need_resched()) {
 | 
						|
			state = rb_entry(next_node, struct extent_state,
 | 
						|
					 rb_node);
 | 
						|
			if (state->start == start)
 | 
						|
				goto hit_next;
 | 
						|
		}
 | 
						|
		goto search_again;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 *     | ---- desired range ---- |
 | 
						|
	 * | state |
 | 
						|
	 *   or
 | 
						|
	 * | ------------- state -------------- |
 | 
						|
	 *
 | 
						|
	 * We need to split the extent we found, and may flip bits on
 | 
						|
	 * second half.
 | 
						|
	 *
 | 
						|
	 * If the extent we found extends past our
 | 
						|
	 * range, we just split and search again.  It'll get split
 | 
						|
	 * again the next time though.
 | 
						|
	 *
 | 
						|
	 * If the extent we found is inside our range, we set the
 | 
						|
	 * desired bit on it.
 | 
						|
	 */
 | 
						|
	if (state->start < start) {
 | 
						|
		if (state->state & exclusive_bits) {
 | 
						|
			*failed_start = start;
 | 
						|
			err = -EEXIST;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		prealloc = alloc_extent_state_atomic(prealloc);
 | 
						|
		BUG_ON(!prealloc);
 | 
						|
		err = split_state(tree, state, prealloc, start);
 | 
						|
		BUG_ON(err == -EEXIST);
 | 
						|
		prealloc = NULL;
 | 
						|
		if (err)
 | 
						|
			goto out;
 | 
						|
		if (state->end <= end) {
 | 
						|
			set_state_bits(tree, state, &bits);
 | 
						|
			cache_state(state, cached_state);
 | 
						|
			merge_state(tree, state);
 | 
						|
			if (last_end == (u64)-1)
 | 
						|
				goto out;
 | 
						|
			start = last_end + 1;
 | 
						|
		}
 | 
						|
		goto search_again;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * | ---- desired range ---- |
 | 
						|
	 *     | state | or               | state |
 | 
						|
	 *
 | 
						|
	 * There's a hole, we need to insert something in it and
 | 
						|
	 * ignore the extent we found.
 | 
						|
	 */
 | 
						|
	if (state->start > start) {
 | 
						|
		u64 this_end;
 | 
						|
		if (end < last_start)
 | 
						|
			this_end = end;
 | 
						|
		else
 | 
						|
			this_end = last_start - 1;
 | 
						|
 | 
						|
		prealloc = alloc_extent_state_atomic(prealloc);
 | 
						|
		BUG_ON(!prealloc);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Avoid to free 'prealloc' if it can be merged with
 | 
						|
		 * the later extent.
 | 
						|
		 */
 | 
						|
		err = insert_state(tree, prealloc, start, this_end,
 | 
						|
				   &bits);
 | 
						|
		BUG_ON(err == -EEXIST);
 | 
						|
		if (err) {
 | 
						|
			free_extent_state(prealloc);
 | 
						|
			prealloc = NULL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		cache_state(prealloc, cached_state);
 | 
						|
		prealloc = NULL;
 | 
						|
		start = this_end + 1;
 | 
						|
		goto search_again;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * | ---- desired range ---- |
 | 
						|
	 *                        | state |
 | 
						|
	 * We need to split the extent, and set the bit
 | 
						|
	 * on the first half
 | 
						|
	 */
 | 
						|
	if (state->start <= end && state->end > end) {
 | 
						|
		if (state->state & exclusive_bits) {
 | 
						|
			*failed_start = start;
 | 
						|
			err = -EEXIST;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		prealloc = alloc_extent_state_atomic(prealloc);
 | 
						|
		BUG_ON(!prealloc);
 | 
						|
		err = split_state(tree, state, prealloc, end + 1);
 | 
						|
		BUG_ON(err == -EEXIST);
 | 
						|
 | 
						|
		set_state_bits(tree, prealloc, &bits);
 | 
						|
		cache_state(prealloc, cached_state);
 | 
						|
		merge_state(tree, prealloc);
 | 
						|
		prealloc = NULL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	goto search_again;
 | 
						|
 | 
						|
out:
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	if (prealloc)
 | 
						|
		free_extent_state(prealloc);
 | 
						|
 | 
						|
	return err;
 | 
						|
 | 
						|
search_again:
 | 
						|
	if (start > end)
 | 
						|
		goto out;
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	if (mask & __GFP_WAIT)
 | 
						|
		cond_resched();
 | 
						|
	goto again;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * convert_extent - convert all bits in a given range from one bit to another
 | 
						|
 * @tree:	the io tree to search
 | 
						|
 * @start:	the start offset in bytes
 | 
						|
 * @end:	the end offset in bytes (inclusive)
 | 
						|
 * @bits:	the bits to set in this range
 | 
						|
 * @clear_bits:	the bits to clear in this range
 | 
						|
 * @mask:	the allocation mask
 | 
						|
 *
 | 
						|
 * This will go through and set bits for the given range.  If any states exist
 | 
						|
 * already in this range they are set with the given bit and cleared of the
 | 
						|
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 | 
						|
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 | 
						|
 * boundary bits like LOCK.
 | 
						|
 */
 | 
						|
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		       int bits, int clear_bits, gfp_t mask)
 | 
						|
{
 | 
						|
	struct extent_state *state;
 | 
						|
	struct extent_state *prealloc = NULL;
 | 
						|
	struct rb_node *node;
 | 
						|
	int err = 0;
 | 
						|
	u64 last_start;
 | 
						|
	u64 last_end;
 | 
						|
 | 
						|
again:
 | 
						|
	if (!prealloc && (mask & __GFP_WAIT)) {
 | 
						|
		prealloc = alloc_extent_state(mask);
 | 
						|
		if (!prealloc)
 | 
						|
			return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
	/*
 | 
						|
	 * this search will find all the extents that end after
 | 
						|
	 * our range starts.
 | 
						|
	 */
 | 
						|
	node = tree_search(tree, start);
 | 
						|
	if (!node) {
 | 
						|
		prealloc = alloc_extent_state_atomic(prealloc);
 | 
						|
		if (!prealloc) {
 | 
						|
			err = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		err = insert_state(tree, prealloc, start, end, &bits);
 | 
						|
		prealloc = NULL;
 | 
						|
		BUG_ON(err == -EEXIST);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
hit_next:
 | 
						|
	last_start = state->start;
 | 
						|
	last_end = state->end;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * | ---- desired range ---- |
 | 
						|
	 * | state |
 | 
						|
	 *
 | 
						|
	 * Just lock what we found and keep going
 | 
						|
	 */
 | 
						|
	if (state->start == start && state->end <= end) {
 | 
						|
		struct rb_node *next_node;
 | 
						|
 | 
						|
		set_state_bits(tree, state, &bits);
 | 
						|
		clear_state_bit(tree, state, &clear_bits, 0);
 | 
						|
 | 
						|
		merge_state(tree, state);
 | 
						|
		if (last_end == (u64)-1)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		start = last_end + 1;
 | 
						|
		next_node = rb_next(&state->rb_node);
 | 
						|
		if (next_node && start < end && prealloc && !need_resched()) {
 | 
						|
			state = rb_entry(next_node, struct extent_state,
 | 
						|
					 rb_node);
 | 
						|
			if (state->start == start)
 | 
						|
				goto hit_next;
 | 
						|
		}
 | 
						|
		goto search_again;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 *     | ---- desired range ---- |
 | 
						|
	 * | state |
 | 
						|
	 *   or
 | 
						|
	 * | ------------- state -------------- |
 | 
						|
	 *
 | 
						|
	 * We need to split the extent we found, and may flip bits on
 | 
						|
	 * second half.
 | 
						|
	 *
 | 
						|
	 * If the extent we found extends past our
 | 
						|
	 * range, we just split and search again.  It'll get split
 | 
						|
	 * again the next time though.
 | 
						|
	 *
 | 
						|
	 * If the extent we found is inside our range, we set the
 | 
						|
	 * desired bit on it.
 | 
						|
	 */
 | 
						|
	if (state->start < start) {
 | 
						|
		prealloc = alloc_extent_state_atomic(prealloc);
 | 
						|
		if (!prealloc) {
 | 
						|
			err = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		err = split_state(tree, state, prealloc, start);
 | 
						|
		BUG_ON(err == -EEXIST);
 | 
						|
		prealloc = NULL;
 | 
						|
		if (err)
 | 
						|
			goto out;
 | 
						|
		if (state->end <= end) {
 | 
						|
			set_state_bits(tree, state, &bits);
 | 
						|
			clear_state_bit(tree, state, &clear_bits, 0);
 | 
						|
			merge_state(tree, state);
 | 
						|
			if (last_end == (u64)-1)
 | 
						|
				goto out;
 | 
						|
			start = last_end + 1;
 | 
						|
		}
 | 
						|
		goto search_again;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * | ---- desired range ---- |
 | 
						|
	 *     | state | or               | state |
 | 
						|
	 *
 | 
						|
	 * There's a hole, we need to insert something in it and
 | 
						|
	 * ignore the extent we found.
 | 
						|
	 */
 | 
						|
	if (state->start > start) {
 | 
						|
		u64 this_end;
 | 
						|
		if (end < last_start)
 | 
						|
			this_end = end;
 | 
						|
		else
 | 
						|
			this_end = last_start - 1;
 | 
						|
 | 
						|
		prealloc = alloc_extent_state_atomic(prealloc);
 | 
						|
		if (!prealloc) {
 | 
						|
			err = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Avoid to free 'prealloc' if it can be merged with
 | 
						|
		 * the later extent.
 | 
						|
		 */
 | 
						|
		err = insert_state(tree, prealloc, start, this_end,
 | 
						|
				   &bits);
 | 
						|
		BUG_ON(err == -EEXIST);
 | 
						|
		if (err) {
 | 
						|
			free_extent_state(prealloc);
 | 
						|
			prealloc = NULL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		prealloc = NULL;
 | 
						|
		start = this_end + 1;
 | 
						|
		goto search_again;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * | ---- desired range ---- |
 | 
						|
	 *                        | state |
 | 
						|
	 * We need to split the extent, and set the bit
 | 
						|
	 * on the first half
 | 
						|
	 */
 | 
						|
	if (state->start <= end && state->end > end) {
 | 
						|
		prealloc = alloc_extent_state_atomic(prealloc);
 | 
						|
		if (!prealloc) {
 | 
						|
			err = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		err = split_state(tree, state, prealloc, end + 1);
 | 
						|
		BUG_ON(err == -EEXIST);
 | 
						|
 | 
						|
		set_state_bits(tree, prealloc, &bits);
 | 
						|
		clear_state_bit(tree, prealloc, &clear_bits, 0);
 | 
						|
 | 
						|
		merge_state(tree, prealloc);
 | 
						|
		prealloc = NULL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	goto search_again;
 | 
						|
 | 
						|
out:
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	if (prealloc)
 | 
						|
		free_extent_state(prealloc);
 | 
						|
 | 
						|
	return err;
 | 
						|
 | 
						|
search_again:
 | 
						|
	if (start > end)
 | 
						|
		goto out;
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	if (mask & __GFP_WAIT)
 | 
						|
		cond_resched();
 | 
						|
	goto again;
 | 
						|
}
 | 
						|
 | 
						|
/* wrappers around set/clear extent bit */
 | 
						|
int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		     gfp_t mask)
 | 
						|
{
 | 
						|
	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
 | 
						|
			      NULL, mask);
 | 
						|
}
 | 
						|
 | 
						|
int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		    int bits, gfp_t mask)
 | 
						|
{
 | 
						|
	return set_extent_bit(tree, start, end, bits, 0, NULL,
 | 
						|
			      NULL, mask);
 | 
						|
}
 | 
						|
 | 
						|
int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		      int bits, gfp_t mask)
 | 
						|
{
 | 
						|
	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
 | 
						|
}
 | 
						|
 | 
						|
int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
			struct extent_state **cached_state, gfp_t mask)
 | 
						|
{
 | 
						|
	return set_extent_bit(tree, start, end,
 | 
						|
			      EXTENT_DELALLOC | EXTENT_UPTODATE,
 | 
						|
			      0, NULL, cached_state, mask);
 | 
						|
}
 | 
						|
 | 
						|
int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		       gfp_t mask)
 | 
						|
{
 | 
						|
	return clear_extent_bit(tree, start, end,
 | 
						|
				EXTENT_DIRTY | EXTENT_DELALLOC |
 | 
						|
				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
 | 
						|
}
 | 
						|
 | 
						|
int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		     gfp_t mask)
 | 
						|
{
 | 
						|
	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
 | 
						|
			      NULL, mask);
 | 
						|
}
 | 
						|
 | 
						|
int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
			struct extent_state **cached_state, gfp_t mask)
 | 
						|
{
 | 
						|
	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
 | 
						|
			      NULL, cached_state, mask);
 | 
						|
}
 | 
						|
 | 
						|
static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
 | 
						|
				 u64 end, struct extent_state **cached_state,
 | 
						|
				 gfp_t mask)
 | 
						|
{
 | 
						|
	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
 | 
						|
				cached_state, mask);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * either insert or lock state struct between start and end use mask to tell
 | 
						|
 * us if waiting is desired.
 | 
						|
 */
 | 
						|
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		     int bits, struct extent_state **cached_state, gfp_t mask)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	u64 failed_start;
 | 
						|
	while (1) {
 | 
						|
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
 | 
						|
				     EXTENT_LOCKED, &failed_start,
 | 
						|
				     cached_state, mask);
 | 
						|
		if (err == -EEXIST && (mask & __GFP_WAIT)) {
 | 
						|
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
 | 
						|
			start = failed_start;
 | 
						|
		} else {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		WARN_ON(start > end);
 | 
						|
	}
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
 | 
						|
{
 | 
						|
	return lock_extent_bits(tree, start, end, 0, NULL, mask);
 | 
						|
}
 | 
						|
 | 
						|
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		    gfp_t mask)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	u64 failed_start;
 | 
						|
 | 
						|
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
 | 
						|
			     &failed_start, NULL, mask);
 | 
						|
	if (err == -EEXIST) {
 | 
						|
		if (failed_start > start)
 | 
						|
			clear_extent_bit(tree, start, failed_start - 1,
 | 
						|
					 EXTENT_LOCKED, 1, 0, NULL, mask);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
			 struct extent_state **cached, gfp_t mask)
 | 
						|
{
 | 
						|
	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
 | 
						|
				mask);
 | 
						|
}
 | 
						|
 | 
						|
int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
 | 
						|
{
 | 
						|
	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
 | 
						|
				mask);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper function to set both pages and extents in the tree writeback
 | 
						|
 */
 | 
						|
static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
 | 
						|
{
 | 
						|
	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | 
						|
	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	while (index <= end_index) {
 | 
						|
		page = find_get_page(tree->mapping, index);
 | 
						|
		BUG_ON(!page);
 | 
						|
		set_page_writeback(page);
 | 
						|
		page_cache_release(page);
 | 
						|
		index++;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* find the first state struct with 'bits' set after 'start', and
 | 
						|
 * return it.  tree->lock must be held.  NULL will returned if
 | 
						|
 * nothing was found after 'start'
 | 
						|
 */
 | 
						|
struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
 | 
						|
						 u64 start, int bits)
 | 
						|
{
 | 
						|
	struct rb_node *node;
 | 
						|
	struct extent_state *state;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * this search will find all the extents that end after
 | 
						|
	 * our range starts.
 | 
						|
	 */
 | 
						|
	node = tree_search(tree, start);
 | 
						|
	if (!node)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
		if (state->end >= start && (state->state & bits))
 | 
						|
			return state;
 | 
						|
 | 
						|
		node = rb_next(node);
 | 
						|
		if (!node)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * find the first offset in the io tree with 'bits' set. zero is
 | 
						|
 * returned if we find something, and *start_ret and *end_ret are
 | 
						|
 * set to reflect the state struct that was found.
 | 
						|
 *
 | 
						|
 * If nothing was found, 1 is returned, < 0 on error
 | 
						|
 */
 | 
						|
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
 | 
						|
			  u64 *start_ret, u64 *end_ret, int bits)
 | 
						|
{
 | 
						|
	struct extent_state *state;
 | 
						|
	int ret = 1;
 | 
						|
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
	state = find_first_extent_bit_state(tree, start, bits);
 | 
						|
	if (state) {
 | 
						|
		*start_ret = state->start;
 | 
						|
		*end_ret = state->end;
 | 
						|
		ret = 0;
 | 
						|
	}
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * find a contiguous range of bytes in the file marked as delalloc, not
 | 
						|
 * more than 'max_bytes'.  start and end are used to return the range,
 | 
						|
 *
 | 
						|
 * 1 is returned if we find something, 0 if nothing was in the tree
 | 
						|
 */
 | 
						|
static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
 | 
						|
					u64 *start, u64 *end, u64 max_bytes,
 | 
						|
					struct extent_state **cached_state)
 | 
						|
{
 | 
						|
	struct rb_node *node;
 | 
						|
	struct extent_state *state;
 | 
						|
	u64 cur_start = *start;
 | 
						|
	u64 found = 0;
 | 
						|
	u64 total_bytes = 0;
 | 
						|
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * this search will find all the extents that end after
 | 
						|
	 * our range starts.
 | 
						|
	 */
 | 
						|
	node = tree_search(tree, cur_start);
 | 
						|
	if (!node) {
 | 
						|
		if (!found)
 | 
						|
			*end = (u64)-1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
		if (found && (state->start != cur_start ||
 | 
						|
			      (state->state & EXTENT_BOUNDARY))) {
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (!(state->state & EXTENT_DELALLOC)) {
 | 
						|
			if (!found)
 | 
						|
				*end = state->end;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (!found) {
 | 
						|
			*start = state->start;
 | 
						|
			*cached_state = state;
 | 
						|
			atomic_inc(&state->refs);
 | 
						|
		}
 | 
						|
		found++;
 | 
						|
		*end = state->end;
 | 
						|
		cur_start = state->end + 1;
 | 
						|
		node = rb_next(node);
 | 
						|
		if (!node)
 | 
						|
			break;
 | 
						|
		total_bytes += state->end - state->start + 1;
 | 
						|
		if (total_bytes >= max_bytes)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	return found;
 | 
						|
}
 | 
						|
 | 
						|
static noinline int __unlock_for_delalloc(struct inode *inode,
 | 
						|
					  struct page *locked_page,
 | 
						|
					  u64 start, u64 end)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct page *pages[16];
 | 
						|
	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | 
						|
	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | 
						|
	unsigned long nr_pages = end_index - index + 1;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (index == locked_page->index && end_index == index)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	while (nr_pages > 0) {
 | 
						|
		ret = find_get_pages_contig(inode->i_mapping, index,
 | 
						|
				     min_t(unsigned long, nr_pages,
 | 
						|
				     ARRAY_SIZE(pages)), pages);
 | 
						|
		for (i = 0; i < ret; i++) {
 | 
						|
			if (pages[i] != locked_page)
 | 
						|
				unlock_page(pages[i]);
 | 
						|
			page_cache_release(pages[i]);
 | 
						|
		}
 | 
						|
		nr_pages -= ret;
 | 
						|
		index += ret;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static noinline int lock_delalloc_pages(struct inode *inode,
 | 
						|
					struct page *locked_page,
 | 
						|
					u64 delalloc_start,
 | 
						|
					u64 delalloc_end)
 | 
						|
{
 | 
						|
	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
 | 
						|
	unsigned long start_index = index;
 | 
						|
	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
 | 
						|
	unsigned long pages_locked = 0;
 | 
						|
	struct page *pages[16];
 | 
						|
	unsigned long nrpages;
 | 
						|
	int ret;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* the caller is responsible for locking the start index */
 | 
						|
	if (index == locked_page->index && index == end_index)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* skip the page at the start index */
 | 
						|
	nrpages = end_index - index + 1;
 | 
						|
	while (nrpages > 0) {
 | 
						|
		ret = find_get_pages_contig(inode->i_mapping, index,
 | 
						|
				     min_t(unsigned long,
 | 
						|
				     nrpages, ARRAY_SIZE(pages)), pages);
 | 
						|
		if (ret == 0) {
 | 
						|
			ret = -EAGAIN;
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
		/* now we have an array of pages, lock them all */
 | 
						|
		for (i = 0; i < ret; i++) {
 | 
						|
			/*
 | 
						|
			 * the caller is taking responsibility for
 | 
						|
			 * locked_page
 | 
						|
			 */
 | 
						|
			if (pages[i] != locked_page) {
 | 
						|
				lock_page(pages[i]);
 | 
						|
				if (!PageDirty(pages[i]) ||
 | 
						|
				    pages[i]->mapping != inode->i_mapping) {
 | 
						|
					ret = -EAGAIN;
 | 
						|
					unlock_page(pages[i]);
 | 
						|
					page_cache_release(pages[i]);
 | 
						|
					goto done;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			page_cache_release(pages[i]);
 | 
						|
			pages_locked++;
 | 
						|
		}
 | 
						|
		nrpages -= ret;
 | 
						|
		index += ret;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
done:
 | 
						|
	if (ret && pages_locked) {
 | 
						|
		__unlock_for_delalloc(inode, locked_page,
 | 
						|
			      delalloc_start,
 | 
						|
			      ((u64)(start_index + pages_locked - 1)) <<
 | 
						|
			      PAGE_CACHE_SHIFT);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * find a contiguous range of bytes in the file marked as delalloc, not
 | 
						|
 * more than 'max_bytes'.  start and end are used to return the range,
 | 
						|
 *
 | 
						|
 * 1 is returned if we find something, 0 if nothing was in the tree
 | 
						|
 */
 | 
						|
static noinline u64 find_lock_delalloc_range(struct inode *inode,
 | 
						|
					     struct extent_io_tree *tree,
 | 
						|
					     struct page *locked_page,
 | 
						|
					     u64 *start, u64 *end,
 | 
						|
					     u64 max_bytes)
 | 
						|
{
 | 
						|
	u64 delalloc_start;
 | 
						|
	u64 delalloc_end;
 | 
						|
	u64 found;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	int ret;
 | 
						|
	int loops = 0;
 | 
						|
 | 
						|
again:
 | 
						|
	/* step one, find a bunch of delalloc bytes starting at start */
 | 
						|
	delalloc_start = *start;
 | 
						|
	delalloc_end = 0;
 | 
						|
	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 | 
						|
				    max_bytes, &cached_state);
 | 
						|
	if (!found || delalloc_end <= *start) {
 | 
						|
		*start = delalloc_start;
 | 
						|
		*end = delalloc_end;
 | 
						|
		free_extent_state(cached_state);
 | 
						|
		return found;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * start comes from the offset of locked_page.  We have to lock
 | 
						|
	 * pages in order, so we can't process delalloc bytes before
 | 
						|
	 * locked_page
 | 
						|
	 */
 | 
						|
	if (delalloc_start < *start)
 | 
						|
		delalloc_start = *start;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * make sure to limit the number of pages we try to lock down
 | 
						|
	 * if we're looping.
 | 
						|
	 */
 | 
						|
	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
 | 
						|
		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
 | 
						|
 | 
						|
	/* step two, lock all the pages after the page that has start */
 | 
						|
	ret = lock_delalloc_pages(inode, locked_page,
 | 
						|
				  delalloc_start, delalloc_end);
 | 
						|
	if (ret == -EAGAIN) {
 | 
						|
		/* some of the pages are gone, lets avoid looping by
 | 
						|
		 * shortening the size of the delalloc range we're searching
 | 
						|
		 */
 | 
						|
		free_extent_state(cached_state);
 | 
						|
		if (!loops) {
 | 
						|
			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
 | 
						|
			max_bytes = PAGE_CACHE_SIZE - offset;
 | 
						|
			loops = 1;
 | 
						|
			goto again;
 | 
						|
		} else {
 | 
						|
			found = 0;
 | 
						|
			goto out_failed;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	BUG_ON(ret);
 | 
						|
 | 
						|
	/* step three, lock the state bits for the whole range */
 | 
						|
	lock_extent_bits(tree, delalloc_start, delalloc_end,
 | 
						|
			 0, &cached_state, GFP_NOFS);
 | 
						|
 | 
						|
	/* then test to make sure it is all still delalloc */
 | 
						|
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 | 
						|
			     EXTENT_DELALLOC, 1, cached_state);
 | 
						|
	if (!ret) {
 | 
						|
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
 | 
						|
				     &cached_state, GFP_NOFS);
 | 
						|
		__unlock_for_delalloc(inode, locked_page,
 | 
						|
			      delalloc_start, delalloc_end);
 | 
						|
		cond_resched();
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	free_extent_state(cached_state);
 | 
						|
	*start = delalloc_start;
 | 
						|
	*end = delalloc_end;
 | 
						|
out_failed:
 | 
						|
	return found;
 | 
						|
}
 | 
						|
 | 
						|
int extent_clear_unlock_delalloc(struct inode *inode,
 | 
						|
				struct extent_io_tree *tree,
 | 
						|
				u64 start, u64 end, struct page *locked_page,
 | 
						|
				unsigned long op)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct page *pages[16];
 | 
						|
	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | 
						|
	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | 
						|
	unsigned long nr_pages = end_index - index + 1;
 | 
						|
	int i;
 | 
						|
	int clear_bits = 0;
 | 
						|
 | 
						|
	if (op & EXTENT_CLEAR_UNLOCK)
 | 
						|
		clear_bits |= EXTENT_LOCKED;
 | 
						|
	if (op & EXTENT_CLEAR_DIRTY)
 | 
						|
		clear_bits |= EXTENT_DIRTY;
 | 
						|
 | 
						|
	if (op & EXTENT_CLEAR_DELALLOC)
 | 
						|
		clear_bits |= EXTENT_DELALLOC;
 | 
						|
 | 
						|
	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
 | 
						|
	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
 | 
						|
		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
 | 
						|
		    EXTENT_SET_PRIVATE2)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	while (nr_pages > 0) {
 | 
						|
		ret = find_get_pages_contig(inode->i_mapping, index,
 | 
						|
				     min_t(unsigned long,
 | 
						|
				     nr_pages, ARRAY_SIZE(pages)), pages);
 | 
						|
		for (i = 0; i < ret; i++) {
 | 
						|
 | 
						|
			if (op & EXTENT_SET_PRIVATE2)
 | 
						|
				SetPagePrivate2(pages[i]);
 | 
						|
 | 
						|
			if (pages[i] == locked_page) {
 | 
						|
				page_cache_release(pages[i]);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			if (op & EXTENT_CLEAR_DIRTY)
 | 
						|
				clear_page_dirty_for_io(pages[i]);
 | 
						|
			if (op & EXTENT_SET_WRITEBACK)
 | 
						|
				set_page_writeback(pages[i]);
 | 
						|
			if (op & EXTENT_END_WRITEBACK)
 | 
						|
				end_page_writeback(pages[i]);
 | 
						|
			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
 | 
						|
				unlock_page(pages[i]);
 | 
						|
			page_cache_release(pages[i]);
 | 
						|
		}
 | 
						|
		nr_pages -= ret;
 | 
						|
		index += ret;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * count the number of bytes in the tree that have a given bit(s)
 | 
						|
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 | 
						|
 * cached.  The total number found is returned.
 | 
						|
 */
 | 
						|
u64 count_range_bits(struct extent_io_tree *tree,
 | 
						|
		     u64 *start, u64 search_end, u64 max_bytes,
 | 
						|
		     unsigned long bits, int contig)
 | 
						|
{
 | 
						|
	struct rb_node *node;
 | 
						|
	struct extent_state *state;
 | 
						|
	u64 cur_start = *start;
 | 
						|
	u64 total_bytes = 0;
 | 
						|
	u64 last = 0;
 | 
						|
	int found = 0;
 | 
						|
 | 
						|
	if (search_end <= cur_start) {
 | 
						|
		WARN_ON(1);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
 | 
						|
		total_bytes = tree->dirty_bytes;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * this search will find all the extents that end after
 | 
						|
	 * our range starts.
 | 
						|
	 */
 | 
						|
	node = tree_search(tree, cur_start);
 | 
						|
	if (!node)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
		if (state->start > search_end)
 | 
						|
			break;
 | 
						|
		if (contig && found && state->start > last + 1)
 | 
						|
			break;
 | 
						|
		if (state->end >= cur_start && (state->state & bits) == bits) {
 | 
						|
			total_bytes += min(search_end, state->end) + 1 -
 | 
						|
				       max(cur_start, state->start);
 | 
						|
			if (total_bytes >= max_bytes)
 | 
						|
				break;
 | 
						|
			if (!found) {
 | 
						|
				*start = max(cur_start, state->start);
 | 
						|
				found = 1;
 | 
						|
			}
 | 
						|
			last = state->end;
 | 
						|
		} else if (contig && found) {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		node = rb_next(node);
 | 
						|
		if (!node)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	return total_bytes;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * set the private field for a given byte offset in the tree.  If there isn't
 | 
						|
 * an extent_state there already, this does nothing.
 | 
						|
 */
 | 
						|
int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
 | 
						|
{
 | 
						|
	struct rb_node *node;
 | 
						|
	struct extent_state *state;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
	/*
 | 
						|
	 * this search will find all the extents that end after
 | 
						|
	 * our range starts.
 | 
						|
	 */
 | 
						|
	node = tree_search(tree, start);
 | 
						|
	if (!node) {
 | 
						|
		ret = -ENOENT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
	if (state->start != start) {
 | 
						|
		ret = -ENOENT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	state->private = private;
 | 
						|
out:
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
 | 
						|
{
 | 
						|
	struct rb_node *node;
 | 
						|
	struct extent_state *state;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
	/*
 | 
						|
	 * this search will find all the extents that end after
 | 
						|
	 * our range starts.
 | 
						|
	 */
 | 
						|
	node = tree_search(tree, start);
 | 
						|
	if (!node) {
 | 
						|
		ret = -ENOENT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
	if (state->start != start) {
 | 
						|
		ret = -ENOENT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	*private = state->private;
 | 
						|
out:
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * searches a range in the state tree for a given mask.
 | 
						|
 * If 'filled' == 1, this returns 1 only if every extent in the tree
 | 
						|
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 | 
						|
 * range is found set.
 | 
						|
 */
 | 
						|
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | 
						|
		   int bits, int filled, struct extent_state *cached)
 | 
						|
{
 | 
						|
	struct extent_state *state = NULL;
 | 
						|
	struct rb_node *node;
 | 
						|
	int bitset = 0;
 | 
						|
 | 
						|
	spin_lock(&tree->lock);
 | 
						|
	if (cached && cached->tree && cached->start <= start &&
 | 
						|
	    cached->end > start)
 | 
						|
		node = &cached->rb_node;
 | 
						|
	else
 | 
						|
		node = tree_search(tree, start);
 | 
						|
	while (node && start <= end) {
 | 
						|
		state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
 | 
						|
		if (filled && state->start > start) {
 | 
						|
			bitset = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (state->start > end)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (state->state & bits) {
 | 
						|
			bitset = 1;
 | 
						|
			if (!filled)
 | 
						|
				break;
 | 
						|
		} else if (filled) {
 | 
						|
			bitset = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (state->end == (u64)-1)
 | 
						|
			break;
 | 
						|
 | 
						|
		start = state->end + 1;
 | 
						|
		if (start > end)
 | 
						|
			break;
 | 
						|
		node = rb_next(node);
 | 
						|
		if (!node) {
 | 
						|
			if (filled)
 | 
						|
				bitset = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock(&tree->lock);
 | 
						|
	return bitset;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper function to set a given page up to date if all the
 | 
						|
 * extents in the tree for that page are up to date
 | 
						|
 */
 | 
						|
static int check_page_uptodate(struct extent_io_tree *tree,
 | 
						|
			       struct page *page)
 | 
						|
{
 | 
						|
	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | 
						|
	u64 end = start + PAGE_CACHE_SIZE - 1;
 | 
						|
	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
 | 
						|
		SetPageUptodate(page);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper function to unlock a page if all the extents in the tree
 | 
						|
 * for that page are unlocked
 | 
						|
 */
 | 
						|
static int check_page_locked(struct extent_io_tree *tree,
 | 
						|
			     struct page *page)
 | 
						|
{
 | 
						|
	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | 
						|
	u64 end = start + PAGE_CACHE_SIZE - 1;
 | 
						|
	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
 | 
						|
		unlock_page(page);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper function to end page writeback if all the extents
 | 
						|
 * in the tree for that page are done with writeback
 | 
						|
 */
 | 
						|
static int check_page_writeback(struct extent_io_tree *tree,
 | 
						|
			     struct page *page)
 | 
						|
{
 | 
						|
	end_page_writeback(page);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When IO fails, either with EIO or csum verification fails, we
 | 
						|
 * try other mirrors that might have a good copy of the data.  This
 | 
						|
 * io_failure_record is used to record state as we go through all the
 | 
						|
 * mirrors.  If another mirror has good data, the page is set up to date
 | 
						|
 * and things continue.  If a good mirror can't be found, the original
 | 
						|
 * bio end_io callback is called to indicate things have failed.
 | 
						|
 */
 | 
						|
struct io_failure_record {
 | 
						|
	struct page *page;
 | 
						|
	u64 start;
 | 
						|
	u64 len;
 | 
						|
	u64 logical;
 | 
						|
	unsigned long bio_flags;
 | 
						|
	int this_mirror;
 | 
						|
	int failed_mirror;
 | 
						|
	int in_validation;
 | 
						|
};
 | 
						|
 | 
						|
static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
 | 
						|
				int did_repair)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	int err = 0;
 | 
						|
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
 | 
						|
 | 
						|
	set_state_private(failure_tree, rec->start, 0);
 | 
						|
	ret = clear_extent_bits(failure_tree, rec->start,
 | 
						|
				rec->start + rec->len - 1,
 | 
						|
				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
 | 
						|
	if (ret)
 | 
						|
		err = ret;
 | 
						|
 | 
						|
	if (did_repair) {
 | 
						|
		ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
 | 
						|
					rec->start + rec->len - 1,
 | 
						|
					EXTENT_DAMAGED, GFP_NOFS);
 | 
						|
		if (ret && !err)
 | 
						|
			err = ret;
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(rec);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static void repair_io_failure_callback(struct bio *bio, int err)
 | 
						|
{
 | 
						|
	complete(bio->bi_private);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this bypasses the standard btrfs submit functions deliberately, as
 | 
						|
 * the standard behavior is to write all copies in a raid setup. here we only
 | 
						|
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 | 
						|
 * submit_bio directly.
 | 
						|
 * to avoid any synchonization issues, wait for the data after writing, which
 | 
						|
 * actually prevents the read that triggered the error from finishing.
 | 
						|
 * currently, there can be no more than two copies of every data bit. thus,
 | 
						|
 * exactly one rewrite is required.
 | 
						|
 */
 | 
						|
int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
 | 
						|
			u64 length, u64 logical, struct page *page,
 | 
						|
			int mirror_num)
 | 
						|
{
 | 
						|
	struct bio *bio;
 | 
						|
	struct btrfs_device *dev;
 | 
						|
	DECLARE_COMPLETION_ONSTACK(compl);
 | 
						|
	u64 map_length = 0;
 | 
						|
	u64 sector;
 | 
						|
	struct btrfs_bio *bbio = NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	BUG_ON(!mirror_num);
 | 
						|
 | 
						|
	bio = bio_alloc(GFP_NOFS, 1);
 | 
						|
	if (!bio)
 | 
						|
		return -EIO;
 | 
						|
	bio->bi_private = &compl;
 | 
						|
	bio->bi_end_io = repair_io_failure_callback;
 | 
						|
	bio->bi_size = 0;
 | 
						|
	map_length = length;
 | 
						|
 | 
						|
	ret = btrfs_map_block(map_tree, WRITE, logical,
 | 
						|
			      &map_length, &bbio, mirror_num);
 | 
						|
	if (ret) {
 | 
						|
		bio_put(bio);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
	BUG_ON(mirror_num != bbio->mirror_num);
 | 
						|
	sector = bbio->stripes[mirror_num-1].physical >> 9;
 | 
						|
	bio->bi_sector = sector;
 | 
						|
	dev = bbio->stripes[mirror_num-1].dev;
 | 
						|
	kfree(bbio);
 | 
						|
	if (!dev || !dev->bdev || !dev->writeable) {
 | 
						|
		bio_put(bio);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
	bio->bi_bdev = dev->bdev;
 | 
						|
	bio_add_page(bio, page, length, start-page_offset(page));
 | 
						|
	btrfsic_submit_bio(WRITE_SYNC, bio);
 | 
						|
	wait_for_completion(&compl);
 | 
						|
 | 
						|
	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
 | 
						|
		/* try to remap that extent elsewhere? */
 | 
						|
		bio_put(bio);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
 | 
						|
			"sector %llu)\n", page->mapping->host->i_ino, start,
 | 
						|
			dev->name, sector);
 | 
						|
 | 
						|
	bio_put(bio);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * each time an IO finishes, we do a fast check in the IO failure tree
 | 
						|
 * to see if we need to process or clean up an io_failure_record
 | 
						|
 */
 | 
						|
static int clean_io_failure(u64 start, struct page *page)
 | 
						|
{
 | 
						|
	u64 private;
 | 
						|
	u64 private_failure;
 | 
						|
	struct io_failure_record *failrec;
 | 
						|
	struct btrfs_mapping_tree *map_tree;
 | 
						|
	struct extent_state *state;
 | 
						|
	int num_copies;
 | 
						|
	int did_repair = 0;
 | 
						|
	int ret;
 | 
						|
	struct inode *inode = page->mapping->host;
 | 
						|
 | 
						|
	private = 0;
 | 
						|
	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
 | 
						|
				(u64)-1, 1, EXTENT_DIRTY, 0);
 | 
						|
	if (!ret)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
 | 
						|
				&private_failure);
 | 
						|
	if (ret)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	failrec = (struct io_failure_record *)(unsigned long) private_failure;
 | 
						|
	BUG_ON(!failrec->this_mirror);
 | 
						|
 | 
						|
	if (failrec->in_validation) {
 | 
						|
		/* there was no real error, just free the record */
 | 
						|
		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
 | 
						|
			 failrec->start);
 | 
						|
		did_repair = 1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&BTRFS_I(inode)->io_tree.lock);
 | 
						|
	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
 | 
						|
					    failrec->start,
 | 
						|
					    EXTENT_LOCKED);
 | 
						|
	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
 | 
						|
 | 
						|
	if (state && state->start == failrec->start) {
 | 
						|
		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
 | 
						|
		num_copies = btrfs_num_copies(map_tree, failrec->logical,
 | 
						|
						failrec->len);
 | 
						|
		if (num_copies > 1)  {
 | 
						|
			ret = repair_io_failure(map_tree, start, failrec->len,
 | 
						|
						failrec->logical, page,
 | 
						|
						failrec->failed_mirror);
 | 
						|
			did_repair = !ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	if (!ret)
 | 
						|
		ret = free_io_failure(inode, failrec, did_repair);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this is a generic handler for readpage errors (default
 | 
						|
 * readpage_io_failed_hook). if other copies exist, read those and write back
 | 
						|
 * good data to the failed position. does not investigate in remapping the
 | 
						|
 * failed extent elsewhere, hoping the device will be smart enough to do this as
 | 
						|
 * needed
 | 
						|
 */
 | 
						|
 | 
						|
static int bio_readpage_error(struct bio *failed_bio, struct page *page,
 | 
						|
				u64 start, u64 end, int failed_mirror,
 | 
						|
				struct extent_state *state)
 | 
						|
{
 | 
						|
	struct io_failure_record *failrec = NULL;
 | 
						|
	u64 private;
 | 
						|
	struct extent_map *em;
 | 
						|
	struct inode *inode = page->mapping->host;
 | 
						|
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
 | 
						|
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 | 
						|
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 | 
						|
	struct bio *bio;
 | 
						|
	int num_copies;
 | 
						|
	int ret;
 | 
						|
	int read_mode;
 | 
						|
	u64 logical;
 | 
						|
 | 
						|
	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
 | 
						|
 | 
						|
	ret = get_state_private(failure_tree, start, &private);
 | 
						|
	if (ret) {
 | 
						|
		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
 | 
						|
		if (!failrec)
 | 
						|
			return -ENOMEM;
 | 
						|
		failrec->start = start;
 | 
						|
		failrec->len = end - start + 1;
 | 
						|
		failrec->this_mirror = 0;
 | 
						|
		failrec->bio_flags = 0;
 | 
						|
		failrec->in_validation = 0;
 | 
						|
 | 
						|
		read_lock(&em_tree->lock);
 | 
						|
		em = lookup_extent_mapping(em_tree, start, failrec->len);
 | 
						|
		if (!em) {
 | 
						|
			read_unlock(&em_tree->lock);
 | 
						|
			kfree(failrec);
 | 
						|
			return -EIO;
 | 
						|
		}
 | 
						|
 | 
						|
		if (em->start > start || em->start + em->len < start) {
 | 
						|
			free_extent_map(em);
 | 
						|
			em = NULL;
 | 
						|
		}
 | 
						|
		read_unlock(&em_tree->lock);
 | 
						|
 | 
						|
		if (!em || IS_ERR(em)) {
 | 
						|
			kfree(failrec);
 | 
						|
			return -EIO;
 | 
						|
		}
 | 
						|
		logical = start - em->start;
 | 
						|
		logical = em->block_start + logical;
 | 
						|
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
 | 
						|
			logical = em->block_start;
 | 
						|
			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
 | 
						|
			extent_set_compress_type(&failrec->bio_flags,
 | 
						|
						 em->compress_type);
 | 
						|
		}
 | 
						|
		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
 | 
						|
			 "len=%llu\n", logical, start, failrec->len);
 | 
						|
		failrec->logical = logical;
 | 
						|
		free_extent_map(em);
 | 
						|
 | 
						|
		/* set the bits in the private failure tree */
 | 
						|
		ret = set_extent_bits(failure_tree, start, end,
 | 
						|
					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
 | 
						|
		if (ret >= 0)
 | 
						|
			ret = set_state_private(failure_tree, start,
 | 
						|
						(u64)(unsigned long)failrec);
 | 
						|
		/* set the bits in the inode's tree */
 | 
						|
		if (ret >= 0)
 | 
						|
			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
 | 
						|
						GFP_NOFS);
 | 
						|
		if (ret < 0) {
 | 
						|
			kfree(failrec);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		failrec = (struct io_failure_record *)(unsigned long)private;
 | 
						|
		pr_debug("bio_readpage_error: (found) logical=%llu, "
 | 
						|
			 "start=%llu, len=%llu, validation=%d\n",
 | 
						|
			 failrec->logical, failrec->start, failrec->len,
 | 
						|
			 failrec->in_validation);
 | 
						|
		/*
 | 
						|
		 * when data can be on disk more than twice, add to failrec here
 | 
						|
		 * (e.g. with a list for failed_mirror) to make
 | 
						|
		 * clean_io_failure() clean all those errors at once.
 | 
						|
		 */
 | 
						|
	}
 | 
						|
	num_copies = btrfs_num_copies(
 | 
						|
			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
 | 
						|
			      failrec->logical, failrec->len);
 | 
						|
	if (num_copies == 1) {
 | 
						|
		/*
 | 
						|
		 * we only have a single copy of the data, so don't bother with
 | 
						|
		 * all the retry and error correction code that follows. no
 | 
						|
		 * matter what the error is, it is very likely to persist.
 | 
						|
		 */
 | 
						|
		pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
 | 
						|
			 "state=%p, num_copies=%d, next_mirror %d, "
 | 
						|
			 "failed_mirror %d\n", state, num_copies,
 | 
						|
			 failrec->this_mirror, failed_mirror);
 | 
						|
		free_io_failure(inode, failrec, 0);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!state) {
 | 
						|
		spin_lock(&tree->lock);
 | 
						|
		state = find_first_extent_bit_state(tree, failrec->start,
 | 
						|
						    EXTENT_LOCKED);
 | 
						|
		if (state && state->start != failrec->start)
 | 
						|
			state = NULL;
 | 
						|
		spin_unlock(&tree->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * there are two premises:
 | 
						|
	 *	a) deliver good data to the caller
 | 
						|
	 *	b) correct the bad sectors on disk
 | 
						|
	 */
 | 
						|
	if (failed_bio->bi_vcnt > 1) {
 | 
						|
		/*
 | 
						|
		 * to fulfill b), we need to know the exact failing sectors, as
 | 
						|
		 * we don't want to rewrite any more than the failed ones. thus,
 | 
						|
		 * we need separate read requests for the failed bio
 | 
						|
		 *
 | 
						|
		 * if the following BUG_ON triggers, our validation request got
 | 
						|
		 * merged. we need separate requests for our algorithm to work.
 | 
						|
		 */
 | 
						|
		BUG_ON(failrec->in_validation);
 | 
						|
		failrec->in_validation = 1;
 | 
						|
		failrec->this_mirror = failed_mirror;
 | 
						|
		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * we're ready to fulfill a) and b) alongside. get a good copy
 | 
						|
		 * of the failed sector and if we succeed, we have setup
 | 
						|
		 * everything for repair_io_failure to do the rest for us.
 | 
						|
		 */
 | 
						|
		if (failrec->in_validation) {
 | 
						|
			BUG_ON(failrec->this_mirror != failed_mirror);
 | 
						|
			failrec->in_validation = 0;
 | 
						|
			failrec->this_mirror = 0;
 | 
						|
		}
 | 
						|
		failrec->failed_mirror = failed_mirror;
 | 
						|
		failrec->this_mirror++;
 | 
						|
		if (failrec->this_mirror == failed_mirror)
 | 
						|
			failrec->this_mirror++;
 | 
						|
		read_mode = READ_SYNC;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!state || failrec->this_mirror > num_copies) {
 | 
						|
		pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
 | 
						|
			 "next_mirror %d, failed_mirror %d\n", state,
 | 
						|
			 num_copies, failrec->this_mirror, failed_mirror);
 | 
						|
		free_io_failure(inode, failrec, 0);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	bio = bio_alloc(GFP_NOFS, 1);
 | 
						|
	bio->bi_private = state;
 | 
						|
	bio->bi_end_io = failed_bio->bi_end_io;
 | 
						|
	bio->bi_sector = failrec->logical >> 9;
 | 
						|
	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 | 
						|
	bio->bi_size = 0;
 | 
						|
 | 
						|
	bio_add_page(bio, page, failrec->len, start - page_offset(page));
 | 
						|
 | 
						|
	pr_debug("bio_readpage_error: submitting new read[%#x] to "
 | 
						|
		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
 | 
						|
		 failrec->this_mirror, num_copies, failrec->in_validation);
 | 
						|
 | 
						|
	tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
 | 
						|
					failrec->bio_flags, 0);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* lots and lots of room for performance fixes in the end_bio funcs */
 | 
						|
 | 
						|
/*
 | 
						|
 * after a writepage IO is done, we need to:
 | 
						|
 * clear the uptodate bits on error
 | 
						|
 * clear the writeback bits in the extent tree for this IO
 | 
						|
 * end_page_writeback if the page has no more pending IO
 | 
						|
 *
 | 
						|
 * Scheduling is not allowed, so the extent state tree is expected
 | 
						|
 * to have one and only one object corresponding to this IO.
 | 
						|
 */
 | 
						|
static void end_bio_extent_writepage(struct bio *bio, int err)
 | 
						|
{
 | 
						|
	int uptodate = err == 0;
 | 
						|
	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
 | 
						|
	struct extent_io_tree *tree;
 | 
						|
	u64 start;
 | 
						|
	u64 end;
 | 
						|
	int whole_page;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	do {
 | 
						|
		struct page *page = bvec->bv_page;
 | 
						|
		tree = &BTRFS_I(page->mapping->host)->io_tree;
 | 
						|
 | 
						|
		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
 | 
						|
			 bvec->bv_offset;
 | 
						|
		end = start + bvec->bv_len - 1;
 | 
						|
 | 
						|
		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
 | 
						|
			whole_page = 1;
 | 
						|
		else
 | 
						|
			whole_page = 0;
 | 
						|
 | 
						|
		if (--bvec >= bio->bi_io_vec)
 | 
						|
			prefetchw(&bvec->bv_page->flags);
 | 
						|
		if (tree->ops && tree->ops->writepage_end_io_hook) {
 | 
						|
			ret = tree->ops->writepage_end_io_hook(page, start,
 | 
						|
						       end, NULL, uptodate);
 | 
						|
			if (ret)
 | 
						|
				uptodate = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!uptodate && tree->ops &&
 | 
						|
		    tree->ops->writepage_io_failed_hook) {
 | 
						|
			ret = tree->ops->writepage_io_failed_hook(bio, page,
 | 
						|
							 start, end, NULL);
 | 
						|
			if (ret == 0) {
 | 
						|
				uptodate = (err == 0);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (!uptodate) {
 | 
						|
			clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
 | 
						|
			ClearPageUptodate(page);
 | 
						|
			SetPageError(page);
 | 
						|
		}
 | 
						|
 | 
						|
		if (whole_page)
 | 
						|
			end_page_writeback(page);
 | 
						|
		else
 | 
						|
			check_page_writeback(tree, page);
 | 
						|
	} while (bvec >= bio->bi_io_vec);
 | 
						|
 | 
						|
	bio_put(bio);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * after a readpage IO is done, we need to:
 | 
						|
 * clear the uptodate bits on error
 | 
						|
 * set the uptodate bits if things worked
 | 
						|
 * set the page up to date if all extents in the tree are uptodate
 | 
						|
 * clear the lock bit in the extent tree
 | 
						|
 * unlock the page if there are no other extents locked for it
 | 
						|
 *
 | 
						|
 * Scheduling is not allowed, so the extent state tree is expected
 | 
						|
 * to have one and only one object corresponding to this IO.
 | 
						|
 */
 | 
						|
static void end_bio_extent_readpage(struct bio *bio, int err)
 | 
						|
{
 | 
						|
	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 | 
						|
	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
 | 
						|
	struct bio_vec *bvec = bio->bi_io_vec;
 | 
						|
	struct extent_io_tree *tree;
 | 
						|
	u64 start;
 | 
						|
	u64 end;
 | 
						|
	int whole_page;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (err)
 | 
						|
		uptodate = 0;
 | 
						|
 | 
						|
	do {
 | 
						|
		struct page *page = bvec->bv_page;
 | 
						|
		struct extent_state *cached = NULL;
 | 
						|
		struct extent_state *state;
 | 
						|
 | 
						|
		pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
 | 
						|
			 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
 | 
						|
			 (long int)bio->bi_bdev);
 | 
						|
		tree = &BTRFS_I(page->mapping->host)->io_tree;
 | 
						|
 | 
						|
		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
 | 
						|
			bvec->bv_offset;
 | 
						|
		end = start + bvec->bv_len - 1;
 | 
						|
 | 
						|
		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
 | 
						|
			whole_page = 1;
 | 
						|
		else
 | 
						|
			whole_page = 0;
 | 
						|
 | 
						|
		if (++bvec <= bvec_end)
 | 
						|
			prefetchw(&bvec->bv_page->flags);
 | 
						|
 | 
						|
		spin_lock(&tree->lock);
 | 
						|
		state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
 | 
						|
		if (state && state->start == start) {
 | 
						|
			/*
 | 
						|
			 * take a reference on the state, unlock will drop
 | 
						|
			 * the ref
 | 
						|
			 */
 | 
						|
			cache_state(state, &cached);
 | 
						|
		}
 | 
						|
		spin_unlock(&tree->lock);
 | 
						|
 | 
						|
		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
 | 
						|
			ret = tree->ops->readpage_end_io_hook(page, start, end,
 | 
						|
							      state);
 | 
						|
			if (ret)
 | 
						|
				uptodate = 0;
 | 
						|
			else
 | 
						|
				clean_io_failure(start, page);
 | 
						|
		}
 | 
						|
		if (!uptodate) {
 | 
						|
			int failed_mirror;
 | 
						|
			failed_mirror = (int)(unsigned long)bio->bi_bdev;
 | 
						|
			/*
 | 
						|
			 * The generic bio_readpage_error handles errors the
 | 
						|
			 * following way: If possible, new read requests are
 | 
						|
			 * created and submitted and will end up in
 | 
						|
			 * end_bio_extent_readpage as well (if we're lucky, not
 | 
						|
			 * in the !uptodate case). In that case it returns 0 and
 | 
						|
			 * we just go on with the next page in our bio. If it
 | 
						|
			 * can't handle the error it will return -EIO and we
 | 
						|
			 * remain responsible for that page.
 | 
						|
			 */
 | 
						|
			ret = bio_readpage_error(bio, page, start, end,
 | 
						|
							failed_mirror, NULL);
 | 
						|
			if (ret == 0) {
 | 
						|
error_handled:
 | 
						|
				uptodate =
 | 
						|
					test_bit(BIO_UPTODATE, &bio->bi_flags);
 | 
						|
				if (err)
 | 
						|
					uptodate = 0;
 | 
						|
				uncache_state(&cached);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			if (tree->ops && tree->ops->readpage_io_failed_hook) {
 | 
						|
				ret = tree->ops->readpage_io_failed_hook(
 | 
						|
							bio, page, start, end,
 | 
						|
							failed_mirror, state);
 | 
						|
				if (ret == 0)
 | 
						|
					goto error_handled;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (uptodate) {
 | 
						|
			set_extent_uptodate(tree, start, end, &cached,
 | 
						|
					    GFP_ATOMIC);
 | 
						|
		}
 | 
						|
		unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
 | 
						|
 | 
						|
		if (whole_page) {
 | 
						|
			if (uptodate) {
 | 
						|
				SetPageUptodate(page);
 | 
						|
			} else {
 | 
						|
				ClearPageUptodate(page);
 | 
						|
				SetPageError(page);
 | 
						|
			}
 | 
						|
			unlock_page(page);
 | 
						|
		} else {
 | 
						|
			if (uptodate) {
 | 
						|
				check_page_uptodate(tree, page);
 | 
						|
			} else {
 | 
						|
				ClearPageUptodate(page);
 | 
						|
				SetPageError(page);
 | 
						|
			}
 | 
						|
			check_page_locked(tree, page);
 | 
						|
		}
 | 
						|
	} while (bvec <= bvec_end);
 | 
						|
 | 
						|
	bio_put(bio);
 | 
						|
}
 | 
						|
 | 
						|
struct bio *
 | 
						|
btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
 | 
						|
		gfp_t gfp_flags)
 | 
						|
{
 | 
						|
	struct bio *bio;
 | 
						|
 | 
						|
	bio = bio_alloc(gfp_flags, nr_vecs);
 | 
						|
 | 
						|
	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
 | 
						|
		while (!bio && (nr_vecs /= 2))
 | 
						|
			bio = bio_alloc(gfp_flags, nr_vecs);
 | 
						|
	}
 | 
						|
 | 
						|
	if (bio) {
 | 
						|
		bio->bi_size = 0;
 | 
						|
		bio->bi_bdev = bdev;
 | 
						|
		bio->bi_sector = first_sector;
 | 
						|
	}
 | 
						|
	return bio;
 | 
						|
}
 | 
						|
 | 
						|
static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
 | 
						|
			  unsigned long bio_flags)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
 | 
						|
	struct page *page = bvec->bv_page;
 | 
						|
	struct extent_io_tree *tree = bio->bi_private;
 | 
						|
	u64 start;
 | 
						|
 | 
						|
	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
 | 
						|
 | 
						|
	bio->bi_private = NULL;
 | 
						|
 | 
						|
	bio_get(bio);
 | 
						|
 | 
						|
	if (tree->ops && tree->ops->submit_bio_hook)
 | 
						|
		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
 | 
						|
					   mirror_num, bio_flags, start);
 | 
						|
	else
 | 
						|
		btrfsic_submit_bio(rw, bio);
 | 
						|
 | 
						|
	if (bio_flagged(bio, BIO_EOPNOTSUPP))
 | 
						|
		ret = -EOPNOTSUPP;
 | 
						|
	bio_put(bio);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int submit_extent_page(int rw, struct extent_io_tree *tree,
 | 
						|
			      struct page *page, sector_t sector,
 | 
						|
			      size_t size, unsigned long offset,
 | 
						|
			      struct block_device *bdev,
 | 
						|
			      struct bio **bio_ret,
 | 
						|
			      unsigned long max_pages,
 | 
						|
			      bio_end_io_t end_io_func,
 | 
						|
			      int mirror_num,
 | 
						|
			      unsigned long prev_bio_flags,
 | 
						|
			      unsigned long bio_flags)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct bio *bio;
 | 
						|
	int nr;
 | 
						|
	int contig = 0;
 | 
						|
	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
 | 
						|
	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
 | 
						|
	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
 | 
						|
 | 
						|
	if (bio_ret && *bio_ret) {
 | 
						|
		bio = *bio_ret;
 | 
						|
		if (old_compressed)
 | 
						|
			contig = bio->bi_sector == sector;
 | 
						|
		else
 | 
						|
			contig = bio->bi_sector + (bio->bi_size >> 9) ==
 | 
						|
				sector;
 | 
						|
 | 
						|
		if (prev_bio_flags != bio_flags || !contig ||
 | 
						|
		    (tree->ops && tree->ops->merge_bio_hook &&
 | 
						|
		     tree->ops->merge_bio_hook(page, offset, page_size, bio,
 | 
						|
					       bio_flags)) ||
 | 
						|
		    bio_add_page(bio, page, page_size, offset) < page_size) {
 | 
						|
			ret = submit_one_bio(rw, bio, mirror_num,
 | 
						|
					     prev_bio_flags);
 | 
						|
			bio = NULL;
 | 
						|
		} else {
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (this_compressed)
 | 
						|
		nr = BIO_MAX_PAGES;
 | 
						|
	else
 | 
						|
		nr = bio_get_nr_vecs(bdev);
 | 
						|
 | 
						|
	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
 | 
						|
	if (!bio)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	bio_add_page(bio, page, page_size, offset);
 | 
						|
	bio->bi_end_io = end_io_func;
 | 
						|
	bio->bi_private = tree;
 | 
						|
 | 
						|
	if (bio_ret)
 | 
						|
		*bio_ret = bio;
 | 
						|
	else
 | 
						|
		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void set_page_extent_mapped(struct page *page)
 | 
						|
{
 | 
						|
	if (!PagePrivate(page)) {
 | 
						|
		SetPagePrivate(page);
 | 
						|
		page_cache_get(page);
 | 
						|
		set_page_private(page, EXTENT_PAGE_PRIVATE);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void set_page_extent_head(struct page *page, unsigned long len)
 | 
						|
{
 | 
						|
	WARN_ON(!PagePrivate(page));
 | 
						|
	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * basic readpage implementation.  Locked extent state structs are inserted
 | 
						|
 * into the tree that are removed when the IO is done (by the end_io
 | 
						|
 * handlers)
 | 
						|
 */
 | 
						|
static int __extent_read_full_page(struct extent_io_tree *tree,
 | 
						|
				   struct page *page,
 | 
						|
				   get_extent_t *get_extent,
 | 
						|
				   struct bio **bio, int mirror_num,
 | 
						|
				   unsigned long *bio_flags)
 | 
						|
{
 | 
						|
	struct inode *inode = page->mapping->host;
 | 
						|
	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | 
						|
	u64 page_end = start + PAGE_CACHE_SIZE - 1;
 | 
						|
	u64 end;
 | 
						|
	u64 cur = start;
 | 
						|
	u64 extent_offset;
 | 
						|
	u64 last_byte = i_size_read(inode);
 | 
						|
	u64 block_start;
 | 
						|
	u64 cur_end;
 | 
						|
	sector_t sector;
 | 
						|
	struct extent_map *em;
 | 
						|
	struct block_device *bdev;
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
	int ret;
 | 
						|
	int nr = 0;
 | 
						|
	size_t pg_offset = 0;
 | 
						|
	size_t iosize;
 | 
						|
	size_t disk_io_size;
 | 
						|
	size_t blocksize = inode->i_sb->s_blocksize;
 | 
						|
	unsigned long this_bio_flag = 0;
 | 
						|
 | 
						|
	set_page_extent_mapped(page);
 | 
						|
 | 
						|
	if (!PageUptodate(page)) {
 | 
						|
		if (cleancache_get_page(page) == 0) {
 | 
						|
			BUG_ON(blocksize != PAGE_SIZE);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	end = page_end;
 | 
						|
	while (1) {
 | 
						|
		lock_extent(tree, start, end, GFP_NOFS);
 | 
						|
		ordered = btrfs_lookup_ordered_extent(inode, start);
 | 
						|
		if (!ordered)
 | 
						|
			break;
 | 
						|
		unlock_extent(tree, start, end, GFP_NOFS);
 | 
						|
		btrfs_start_ordered_extent(inode, ordered, 1);
 | 
						|
		btrfs_put_ordered_extent(ordered);
 | 
						|
	}
 | 
						|
 | 
						|
	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
 | 
						|
		char *userpage;
 | 
						|
		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
 | 
						|
 | 
						|
		if (zero_offset) {
 | 
						|
			iosize = PAGE_CACHE_SIZE - zero_offset;
 | 
						|
			userpage = kmap_atomic(page, KM_USER0);
 | 
						|
			memset(userpage + zero_offset, 0, iosize);
 | 
						|
			flush_dcache_page(page);
 | 
						|
			kunmap_atomic(userpage, KM_USER0);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	while (cur <= end) {
 | 
						|
		if (cur >= last_byte) {
 | 
						|
			char *userpage;
 | 
						|
			struct extent_state *cached = NULL;
 | 
						|
 | 
						|
			iosize = PAGE_CACHE_SIZE - pg_offset;
 | 
						|
			userpage = kmap_atomic(page, KM_USER0);
 | 
						|
			memset(userpage + pg_offset, 0, iosize);
 | 
						|
			flush_dcache_page(page);
 | 
						|
			kunmap_atomic(userpage, KM_USER0);
 | 
						|
			set_extent_uptodate(tree, cur, cur + iosize - 1,
 | 
						|
					    &cached, GFP_NOFS);
 | 
						|
			unlock_extent_cached(tree, cur, cur + iosize - 1,
 | 
						|
					     &cached, GFP_NOFS);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		em = get_extent(inode, page, pg_offset, cur,
 | 
						|
				end - cur + 1, 0);
 | 
						|
		if (IS_ERR_OR_NULL(em)) {
 | 
						|
			SetPageError(page);
 | 
						|
			unlock_extent(tree, cur, end, GFP_NOFS);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		extent_offset = cur - em->start;
 | 
						|
		BUG_ON(extent_map_end(em) <= cur);
 | 
						|
		BUG_ON(end < cur);
 | 
						|
 | 
						|
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
 | 
						|
			this_bio_flag = EXTENT_BIO_COMPRESSED;
 | 
						|
			extent_set_compress_type(&this_bio_flag,
 | 
						|
						 em->compress_type);
 | 
						|
		}
 | 
						|
 | 
						|
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 | 
						|
		cur_end = min(extent_map_end(em) - 1, end);
 | 
						|
		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
 | 
						|
		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
 | 
						|
			disk_io_size = em->block_len;
 | 
						|
			sector = em->block_start >> 9;
 | 
						|
		} else {
 | 
						|
			sector = (em->block_start + extent_offset) >> 9;
 | 
						|
			disk_io_size = iosize;
 | 
						|
		}
 | 
						|
		bdev = em->bdev;
 | 
						|
		block_start = em->block_start;
 | 
						|
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
 | 
						|
			block_start = EXTENT_MAP_HOLE;
 | 
						|
		free_extent_map(em);
 | 
						|
		em = NULL;
 | 
						|
 | 
						|
		/* we've found a hole, just zero and go on */
 | 
						|
		if (block_start == EXTENT_MAP_HOLE) {
 | 
						|
			char *userpage;
 | 
						|
			struct extent_state *cached = NULL;
 | 
						|
 | 
						|
			userpage = kmap_atomic(page, KM_USER0);
 | 
						|
			memset(userpage + pg_offset, 0, iosize);
 | 
						|
			flush_dcache_page(page);
 | 
						|
			kunmap_atomic(userpage, KM_USER0);
 | 
						|
 | 
						|
			set_extent_uptodate(tree, cur, cur + iosize - 1,
 | 
						|
					    &cached, GFP_NOFS);
 | 
						|
			unlock_extent_cached(tree, cur, cur + iosize - 1,
 | 
						|
			                     &cached, GFP_NOFS);
 | 
						|
			cur = cur + iosize;
 | 
						|
			pg_offset += iosize;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		/* the get_extent function already copied into the page */
 | 
						|
		if (test_range_bit(tree, cur, cur_end,
 | 
						|
				   EXTENT_UPTODATE, 1, NULL)) {
 | 
						|
			check_page_uptodate(tree, page);
 | 
						|
			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
 | 
						|
			cur = cur + iosize;
 | 
						|
			pg_offset += iosize;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		/* we have an inline extent but it didn't get marked up
 | 
						|
		 * to date.  Error out
 | 
						|
		 */
 | 
						|
		if (block_start == EXTENT_MAP_INLINE) {
 | 
						|
			SetPageError(page);
 | 
						|
			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
 | 
						|
			cur = cur + iosize;
 | 
						|
			pg_offset += iosize;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = 0;
 | 
						|
		if (tree->ops && tree->ops->readpage_io_hook) {
 | 
						|
			ret = tree->ops->readpage_io_hook(page, cur,
 | 
						|
							  cur + iosize - 1);
 | 
						|
		}
 | 
						|
		if (!ret) {
 | 
						|
			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
 | 
						|
			pnr -= page->index;
 | 
						|
			ret = submit_extent_page(READ, tree, page,
 | 
						|
					 sector, disk_io_size, pg_offset,
 | 
						|
					 bdev, bio, pnr,
 | 
						|
					 end_bio_extent_readpage, mirror_num,
 | 
						|
					 *bio_flags,
 | 
						|
					 this_bio_flag);
 | 
						|
			nr++;
 | 
						|
			*bio_flags = this_bio_flag;
 | 
						|
		}
 | 
						|
		if (ret)
 | 
						|
			SetPageError(page);
 | 
						|
		cur = cur + iosize;
 | 
						|
		pg_offset += iosize;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	if (!nr) {
 | 
						|
		if (!PageError(page))
 | 
						|
			SetPageUptodate(page);
 | 
						|
		unlock_page(page);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
 | 
						|
			    get_extent_t *get_extent, int mirror_num)
 | 
						|
{
 | 
						|
	struct bio *bio = NULL;
 | 
						|
	unsigned long bio_flags = 0;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
 | 
						|
				      &bio_flags);
 | 
						|
	if (bio)
 | 
						|
		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static noinline void update_nr_written(struct page *page,
 | 
						|
				      struct writeback_control *wbc,
 | 
						|
				      unsigned long nr_written)
 | 
						|
{
 | 
						|
	wbc->nr_to_write -= nr_written;
 | 
						|
	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
 | 
						|
	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
 | 
						|
		page->mapping->writeback_index = page->index + nr_written;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * the writepage semantics are similar to regular writepage.  extent
 | 
						|
 * records are inserted to lock ranges in the tree, and as dirty areas
 | 
						|
 * are found, they are marked writeback.  Then the lock bits are removed
 | 
						|
 * and the end_io handler clears the writeback ranges
 | 
						|
 */
 | 
						|
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
 | 
						|
			      void *data)
 | 
						|
{
 | 
						|
	struct inode *inode = page->mapping->host;
 | 
						|
	struct extent_page_data *epd = data;
 | 
						|
	struct extent_io_tree *tree = epd->tree;
 | 
						|
	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | 
						|
	u64 delalloc_start;
 | 
						|
	u64 page_end = start + PAGE_CACHE_SIZE - 1;
 | 
						|
	u64 end;
 | 
						|
	u64 cur = start;
 | 
						|
	u64 extent_offset;
 | 
						|
	u64 last_byte = i_size_read(inode);
 | 
						|
	u64 block_start;
 | 
						|
	u64 iosize;
 | 
						|
	sector_t sector;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct extent_map *em;
 | 
						|
	struct block_device *bdev;
 | 
						|
	int ret;
 | 
						|
	int nr = 0;
 | 
						|
	size_t pg_offset = 0;
 | 
						|
	size_t blocksize;
 | 
						|
	loff_t i_size = i_size_read(inode);
 | 
						|
	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
 | 
						|
	u64 nr_delalloc;
 | 
						|
	u64 delalloc_end;
 | 
						|
	int page_started;
 | 
						|
	int compressed;
 | 
						|
	int write_flags;
 | 
						|
	unsigned long nr_written = 0;
 | 
						|
	bool fill_delalloc = true;
 | 
						|
 | 
						|
	if (wbc->sync_mode == WB_SYNC_ALL)
 | 
						|
		write_flags = WRITE_SYNC;
 | 
						|
	else
 | 
						|
		write_flags = WRITE;
 | 
						|
 | 
						|
	trace___extent_writepage(page, inode, wbc);
 | 
						|
 | 
						|
	WARN_ON(!PageLocked(page));
 | 
						|
 | 
						|
	ClearPageError(page);
 | 
						|
 | 
						|
	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
 | 
						|
	if (page->index > end_index ||
 | 
						|
	   (page->index == end_index && !pg_offset)) {
 | 
						|
		page->mapping->a_ops->invalidatepage(page, 0);
 | 
						|
		unlock_page(page);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (page->index == end_index) {
 | 
						|
		char *userpage;
 | 
						|
 | 
						|
		userpage = kmap_atomic(page, KM_USER0);
 | 
						|
		memset(userpage + pg_offset, 0,
 | 
						|
		       PAGE_CACHE_SIZE - pg_offset);
 | 
						|
		kunmap_atomic(userpage, KM_USER0);
 | 
						|
		flush_dcache_page(page);
 | 
						|
	}
 | 
						|
	pg_offset = 0;
 | 
						|
 | 
						|
	set_page_extent_mapped(page);
 | 
						|
 | 
						|
	if (!tree->ops || !tree->ops->fill_delalloc)
 | 
						|
		fill_delalloc = false;
 | 
						|
 | 
						|
	delalloc_start = start;
 | 
						|
	delalloc_end = 0;
 | 
						|
	page_started = 0;
 | 
						|
	if (!epd->extent_locked && fill_delalloc) {
 | 
						|
		u64 delalloc_to_write = 0;
 | 
						|
		/*
 | 
						|
		 * make sure the wbc mapping index is at least updated
 | 
						|
		 * to this page.
 | 
						|
		 */
 | 
						|
		update_nr_written(page, wbc, 0);
 | 
						|
 | 
						|
		while (delalloc_end < page_end) {
 | 
						|
			nr_delalloc = find_lock_delalloc_range(inode, tree,
 | 
						|
						       page,
 | 
						|
						       &delalloc_start,
 | 
						|
						       &delalloc_end,
 | 
						|
						       128 * 1024 * 1024);
 | 
						|
			if (nr_delalloc == 0) {
 | 
						|
				delalloc_start = delalloc_end + 1;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			tree->ops->fill_delalloc(inode, page, delalloc_start,
 | 
						|
						 delalloc_end, &page_started,
 | 
						|
						 &nr_written);
 | 
						|
			/*
 | 
						|
			 * delalloc_end is already one less than the total
 | 
						|
			 * length, so we don't subtract one from
 | 
						|
			 * PAGE_CACHE_SIZE
 | 
						|
			 */
 | 
						|
			delalloc_to_write += (delalloc_end - delalloc_start +
 | 
						|
					      PAGE_CACHE_SIZE) >>
 | 
						|
					      PAGE_CACHE_SHIFT;
 | 
						|
			delalloc_start = delalloc_end + 1;
 | 
						|
		}
 | 
						|
		if (wbc->nr_to_write < delalloc_to_write) {
 | 
						|
			int thresh = 8192;
 | 
						|
 | 
						|
			if (delalloc_to_write < thresh * 2)
 | 
						|
				thresh = delalloc_to_write;
 | 
						|
			wbc->nr_to_write = min_t(u64, delalloc_to_write,
 | 
						|
						 thresh);
 | 
						|
		}
 | 
						|
 | 
						|
		/* did the fill delalloc function already unlock and start
 | 
						|
		 * the IO?
 | 
						|
		 */
 | 
						|
		if (page_started) {
 | 
						|
			ret = 0;
 | 
						|
			/*
 | 
						|
			 * we've unlocked the page, so we can't update
 | 
						|
			 * the mapping's writeback index, just update
 | 
						|
			 * nr_to_write.
 | 
						|
			 */
 | 
						|
			wbc->nr_to_write -= nr_written;
 | 
						|
			goto done_unlocked;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (tree->ops && tree->ops->writepage_start_hook) {
 | 
						|
		ret = tree->ops->writepage_start_hook(page, start,
 | 
						|
						      page_end);
 | 
						|
		if (ret == -EAGAIN) {
 | 
						|
			redirty_page_for_writepage(wbc, page);
 | 
						|
			update_nr_written(page, wbc, nr_written);
 | 
						|
			unlock_page(page);
 | 
						|
			ret = 0;
 | 
						|
			goto done_unlocked;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we don't want to touch the inode after unlocking the page,
 | 
						|
	 * so we update the mapping writeback index now
 | 
						|
	 */
 | 
						|
	update_nr_written(page, wbc, nr_written + 1);
 | 
						|
 | 
						|
	end = page_end;
 | 
						|
	if (last_byte <= start) {
 | 
						|
		if (tree->ops && tree->ops->writepage_end_io_hook)
 | 
						|
			tree->ops->writepage_end_io_hook(page, start,
 | 
						|
							 page_end, NULL, 1);
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
 | 
						|
	blocksize = inode->i_sb->s_blocksize;
 | 
						|
 | 
						|
	while (cur <= end) {
 | 
						|
		if (cur >= last_byte) {
 | 
						|
			if (tree->ops && tree->ops->writepage_end_io_hook)
 | 
						|
				tree->ops->writepage_end_io_hook(page, cur,
 | 
						|
							 page_end, NULL, 1);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		em = epd->get_extent(inode, page, pg_offset, cur,
 | 
						|
				     end - cur + 1, 1);
 | 
						|
		if (IS_ERR_OR_NULL(em)) {
 | 
						|
			SetPageError(page);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		extent_offset = cur - em->start;
 | 
						|
		BUG_ON(extent_map_end(em) <= cur);
 | 
						|
		BUG_ON(end < cur);
 | 
						|
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 | 
						|
		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
 | 
						|
		sector = (em->block_start + extent_offset) >> 9;
 | 
						|
		bdev = em->bdev;
 | 
						|
		block_start = em->block_start;
 | 
						|
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 | 
						|
		free_extent_map(em);
 | 
						|
		em = NULL;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * compressed and inline extents are written through other
 | 
						|
		 * paths in the FS
 | 
						|
		 */
 | 
						|
		if (compressed || block_start == EXTENT_MAP_HOLE ||
 | 
						|
		    block_start == EXTENT_MAP_INLINE) {
 | 
						|
			/*
 | 
						|
			 * end_io notification does not happen here for
 | 
						|
			 * compressed extents
 | 
						|
			 */
 | 
						|
			if (!compressed && tree->ops &&
 | 
						|
			    tree->ops->writepage_end_io_hook)
 | 
						|
				tree->ops->writepage_end_io_hook(page, cur,
 | 
						|
							 cur + iosize - 1,
 | 
						|
							 NULL, 1);
 | 
						|
			else if (compressed) {
 | 
						|
				/* we don't want to end_page_writeback on
 | 
						|
				 * a compressed extent.  this happens
 | 
						|
				 * elsewhere
 | 
						|
				 */
 | 
						|
				nr++;
 | 
						|
			}
 | 
						|
 | 
						|
			cur += iosize;
 | 
						|
			pg_offset += iosize;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		/* leave this out until we have a page_mkwrite call */
 | 
						|
		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
 | 
						|
				   EXTENT_DIRTY, 0, NULL)) {
 | 
						|
			cur = cur + iosize;
 | 
						|
			pg_offset += iosize;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (tree->ops && tree->ops->writepage_io_hook) {
 | 
						|
			ret = tree->ops->writepage_io_hook(page, cur,
 | 
						|
						cur + iosize - 1);
 | 
						|
		} else {
 | 
						|
			ret = 0;
 | 
						|
		}
 | 
						|
		if (ret) {
 | 
						|
			SetPageError(page);
 | 
						|
		} else {
 | 
						|
			unsigned long max_nr = end_index + 1;
 | 
						|
 | 
						|
			set_range_writeback(tree, cur, cur + iosize - 1);
 | 
						|
			if (!PageWriteback(page)) {
 | 
						|
				printk(KERN_ERR "btrfs warning page %lu not "
 | 
						|
				       "writeback, cur %llu end %llu\n",
 | 
						|
				       page->index, (unsigned long long)cur,
 | 
						|
				       (unsigned long long)end);
 | 
						|
			}
 | 
						|
 | 
						|
			ret = submit_extent_page(write_flags, tree, page,
 | 
						|
						 sector, iosize, pg_offset,
 | 
						|
						 bdev, &epd->bio, max_nr,
 | 
						|
						 end_bio_extent_writepage,
 | 
						|
						 0, 0, 0);
 | 
						|
			if (ret)
 | 
						|
				SetPageError(page);
 | 
						|
		}
 | 
						|
		cur = cur + iosize;
 | 
						|
		pg_offset += iosize;
 | 
						|
		nr++;
 | 
						|
	}
 | 
						|
done:
 | 
						|
	if (nr == 0) {
 | 
						|
		/* make sure the mapping tag for page dirty gets cleared */
 | 
						|
		set_page_writeback(page);
 | 
						|
		end_page_writeback(page);
 | 
						|
	}
 | 
						|
	unlock_page(page);
 | 
						|
 | 
						|
done_unlocked:
 | 
						|
 | 
						|
	/* drop our reference on any cached states */
 | 
						|
	free_extent_state(cached_state);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 | 
						|
 * @mapping: address space structure to write
 | 
						|
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 | 
						|
 * @writepage: function called for each page
 | 
						|
 * @data: data passed to writepage function
 | 
						|
 *
 | 
						|
 * If a page is already under I/O, write_cache_pages() skips it, even
 | 
						|
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 | 
						|
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 | 
						|
 * and msync() need to guarantee that all the data which was dirty at the time
 | 
						|
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 | 
						|
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 | 
						|
 * existing IO to complete.
 | 
						|
 */
 | 
						|
static int extent_write_cache_pages(struct extent_io_tree *tree,
 | 
						|
			     struct address_space *mapping,
 | 
						|
			     struct writeback_control *wbc,
 | 
						|
			     writepage_t writepage, void *data,
 | 
						|
			     void (*flush_fn)(void *))
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	int done = 0;
 | 
						|
	int nr_to_write_done = 0;
 | 
						|
	struct pagevec pvec;
 | 
						|
	int nr_pages;
 | 
						|
	pgoff_t index;
 | 
						|
	pgoff_t end;		/* Inclusive */
 | 
						|
	int scanned = 0;
 | 
						|
	int tag;
 | 
						|
 | 
						|
	pagevec_init(&pvec, 0);
 | 
						|
	if (wbc->range_cyclic) {
 | 
						|
		index = mapping->writeback_index; /* Start from prev offset */
 | 
						|
		end = -1;
 | 
						|
	} else {
 | 
						|
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
 | 
						|
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 | 
						|
		scanned = 1;
 | 
						|
	}
 | 
						|
	if (wbc->sync_mode == WB_SYNC_ALL)
 | 
						|
		tag = PAGECACHE_TAG_TOWRITE;
 | 
						|
	else
 | 
						|
		tag = PAGECACHE_TAG_DIRTY;
 | 
						|
retry:
 | 
						|
	if (wbc->sync_mode == WB_SYNC_ALL)
 | 
						|
		tag_pages_for_writeback(mapping, index, end);
 | 
						|
	while (!done && !nr_to_write_done && (index <= end) &&
 | 
						|
	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
 | 
						|
			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
 | 
						|
		unsigned i;
 | 
						|
 | 
						|
		scanned = 1;
 | 
						|
		for (i = 0; i < nr_pages; i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
 | 
						|
			/*
 | 
						|
			 * At this point we hold neither mapping->tree_lock nor
 | 
						|
			 * lock on the page itself: the page may be truncated or
 | 
						|
			 * invalidated (changing page->mapping to NULL), or even
 | 
						|
			 * swizzled back from swapper_space to tmpfs file
 | 
						|
			 * mapping
 | 
						|
			 */
 | 
						|
			if (tree->ops &&
 | 
						|
			    tree->ops->write_cache_pages_lock_hook) {
 | 
						|
				tree->ops->write_cache_pages_lock_hook(page,
 | 
						|
							       data, flush_fn);
 | 
						|
			} else {
 | 
						|
				if (!trylock_page(page)) {
 | 
						|
					flush_fn(data);
 | 
						|
					lock_page(page);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if (unlikely(page->mapping != mapping)) {
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!wbc->range_cyclic && page->index > end) {
 | 
						|
				done = 1;
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			if (wbc->sync_mode != WB_SYNC_NONE) {
 | 
						|
				if (PageWriteback(page))
 | 
						|
					flush_fn(data);
 | 
						|
				wait_on_page_writeback(page);
 | 
						|
			}
 | 
						|
 | 
						|
			if (PageWriteback(page) ||
 | 
						|
			    !clear_page_dirty_for_io(page)) {
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			ret = (*writepage)(page, wbc, data);
 | 
						|
 | 
						|
			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
 | 
						|
				unlock_page(page);
 | 
						|
				ret = 0;
 | 
						|
			}
 | 
						|
			if (ret)
 | 
						|
				done = 1;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * the filesystem may choose to bump up nr_to_write.
 | 
						|
			 * We have to make sure to honor the new nr_to_write
 | 
						|
			 * at any time
 | 
						|
			 */
 | 
						|
			nr_to_write_done = wbc->nr_to_write <= 0;
 | 
						|
		}
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	if (!scanned && !done) {
 | 
						|
		/*
 | 
						|
		 * We hit the last page and there is more work to be done: wrap
 | 
						|
		 * back to the start of the file
 | 
						|
		 */
 | 
						|
		scanned = 1;
 | 
						|
		index = 0;
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void flush_epd_write_bio(struct extent_page_data *epd)
 | 
						|
{
 | 
						|
	if (epd->bio) {
 | 
						|
		if (epd->sync_io)
 | 
						|
			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
 | 
						|
		else
 | 
						|
			submit_one_bio(WRITE, epd->bio, 0, 0);
 | 
						|
		epd->bio = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static noinline void flush_write_bio(void *data)
 | 
						|
{
 | 
						|
	struct extent_page_data *epd = data;
 | 
						|
	flush_epd_write_bio(epd);
 | 
						|
}
 | 
						|
 | 
						|
int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
 | 
						|
			  get_extent_t *get_extent,
 | 
						|
			  struct writeback_control *wbc)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct extent_page_data epd = {
 | 
						|
		.bio = NULL,
 | 
						|
		.tree = tree,
 | 
						|
		.get_extent = get_extent,
 | 
						|
		.extent_locked = 0,
 | 
						|
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 | 
						|
	};
 | 
						|
 | 
						|
	ret = __extent_writepage(page, wbc, &epd);
 | 
						|
 | 
						|
	flush_epd_write_bio(&epd);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
 | 
						|
			      u64 start, u64 end, get_extent_t *get_extent,
 | 
						|
			      int mode)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct address_space *mapping = inode->i_mapping;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
 | 
						|
		PAGE_CACHE_SHIFT;
 | 
						|
 | 
						|
	struct extent_page_data epd = {
 | 
						|
		.bio = NULL,
 | 
						|
		.tree = tree,
 | 
						|
		.get_extent = get_extent,
 | 
						|
		.extent_locked = 1,
 | 
						|
		.sync_io = mode == WB_SYNC_ALL,
 | 
						|
	};
 | 
						|
	struct writeback_control wbc_writepages = {
 | 
						|
		.sync_mode	= mode,
 | 
						|
		.nr_to_write	= nr_pages * 2,
 | 
						|
		.range_start	= start,
 | 
						|
		.range_end	= end + 1,
 | 
						|
	};
 | 
						|
 | 
						|
	while (start <= end) {
 | 
						|
		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
 | 
						|
		if (clear_page_dirty_for_io(page))
 | 
						|
			ret = __extent_writepage(page, &wbc_writepages, &epd);
 | 
						|
		else {
 | 
						|
			if (tree->ops && tree->ops->writepage_end_io_hook)
 | 
						|
				tree->ops->writepage_end_io_hook(page, start,
 | 
						|
						 start + PAGE_CACHE_SIZE - 1,
 | 
						|
						 NULL, 1);
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
		page_cache_release(page);
 | 
						|
		start += PAGE_CACHE_SIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	flush_epd_write_bio(&epd);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int extent_writepages(struct extent_io_tree *tree,
 | 
						|
		      struct address_space *mapping,
 | 
						|
		      get_extent_t *get_extent,
 | 
						|
		      struct writeback_control *wbc)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct extent_page_data epd = {
 | 
						|
		.bio = NULL,
 | 
						|
		.tree = tree,
 | 
						|
		.get_extent = get_extent,
 | 
						|
		.extent_locked = 0,
 | 
						|
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 | 
						|
	};
 | 
						|
 | 
						|
	ret = extent_write_cache_pages(tree, mapping, wbc,
 | 
						|
				       __extent_writepage, &epd,
 | 
						|
				       flush_write_bio);
 | 
						|
	flush_epd_write_bio(&epd);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int extent_readpages(struct extent_io_tree *tree,
 | 
						|
		     struct address_space *mapping,
 | 
						|
		     struct list_head *pages, unsigned nr_pages,
 | 
						|
		     get_extent_t get_extent)
 | 
						|
{
 | 
						|
	struct bio *bio = NULL;
 | 
						|
	unsigned page_idx;
 | 
						|
	unsigned long bio_flags = 0;
 | 
						|
 | 
						|
	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 | 
						|
		struct page *page = list_entry(pages->prev, struct page, lru);
 | 
						|
 | 
						|
		prefetchw(&page->flags);
 | 
						|
		list_del(&page->lru);
 | 
						|
		if (!add_to_page_cache_lru(page, mapping,
 | 
						|
					page->index, GFP_NOFS)) {
 | 
						|
			__extent_read_full_page(tree, page, get_extent,
 | 
						|
						&bio, 0, &bio_flags);
 | 
						|
		}
 | 
						|
		page_cache_release(page);
 | 
						|
	}
 | 
						|
	BUG_ON(!list_empty(pages));
 | 
						|
	if (bio)
 | 
						|
		submit_one_bio(READ, bio, 0, bio_flags);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * basic invalidatepage code, this waits on any locked or writeback
 | 
						|
 * ranges corresponding to the page, and then deletes any extent state
 | 
						|
 * records from the tree
 | 
						|
 */
 | 
						|
int extent_invalidatepage(struct extent_io_tree *tree,
 | 
						|
			  struct page *page, unsigned long offset)
 | 
						|
{
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
 | 
						|
	u64 end = start + PAGE_CACHE_SIZE - 1;
 | 
						|
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
 | 
						|
 | 
						|
	start += (offset + blocksize - 1) & ~(blocksize - 1);
 | 
						|
	if (start > end)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
 | 
						|
	wait_on_page_writeback(page);
 | 
						|
	clear_extent_bit(tree, start, end,
 | 
						|
			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
 | 
						|
			 EXTENT_DO_ACCOUNTING,
 | 
						|
			 1, 1, &cached_state, GFP_NOFS);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * a helper for releasepage, this tests for areas of the page that
 | 
						|
 * are locked or under IO and drops the related state bits if it is safe
 | 
						|
 * to drop the page.
 | 
						|
 */
 | 
						|
int try_release_extent_state(struct extent_map_tree *map,
 | 
						|
			     struct extent_io_tree *tree, struct page *page,
 | 
						|
			     gfp_t mask)
 | 
						|
{
 | 
						|
	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | 
						|
	u64 end = start + PAGE_CACHE_SIZE - 1;
 | 
						|
	int ret = 1;
 | 
						|
 | 
						|
	if (test_range_bit(tree, start, end,
 | 
						|
			   EXTENT_IOBITS, 0, NULL))
 | 
						|
		ret = 0;
 | 
						|
	else {
 | 
						|
		if ((mask & GFP_NOFS) == GFP_NOFS)
 | 
						|
			mask = GFP_NOFS;
 | 
						|
		/*
 | 
						|
		 * at this point we can safely clear everything except the
 | 
						|
		 * locked bit and the nodatasum bit
 | 
						|
		 */
 | 
						|
		ret = clear_extent_bit(tree, start, end,
 | 
						|
				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
 | 
						|
				 0, 0, NULL, mask);
 | 
						|
 | 
						|
		/* if clear_extent_bit failed for enomem reasons,
 | 
						|
		 * we can't allow the release to continue.
 | 
						|
		 */
 | 
						|
		if (ret < 0)
 | 
						|
			ret = 0;
 | 
						|
		else
 | 
						|
			ret = 1;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * a helper for releasepage.  As long as there are no locked extents
 | 
						|
 * in the range corresponding to the page, both state records and extent
 | 
						|
 * map records are removed
 | 
						|
 */
 | 
						|
int try_release_extent_mapping(struct extent_map_tree *map,
 | 
						|
			       struct extent_io_tree *tree, struct page *page,
 | 
						|
			       gfp_t mask)
 | 
						|
{
 | 
						|
	struct extent_map *em;
 | 
						|
	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | 
						|
	u64 end = start + PAGE_CACHE_SIZE - 1;
 | 
						|
 | 
						|
	if ((mask & __GFP_WAIT) &&
 | 
						|
	    page->mapping->host->i_size > 16 * 1024 * 1024) {
 | 
						|
		u64 len;
 | 
						|
		while (start <= end) {
 | 
						|
			len = end - start + 1;
 | 
						|
			write_lock(&map->lock);
 | 
						|
			em = lookup_extent_mapping(map, start, len);
 | 
						|
			if (IS_ERR_OR_NULL(em)) {
 | 
						|
				write_unlock(&map->lock);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
 | 
						|
			    em->start != start) {
 | 
						|
				write_unlock(&map->lock);
 | 
						|
				free_extent_map(em);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (!test_range_bit(tree, em->start,
 | 
						|
					    extent_map_end(em) - 1,
 | 
						|
					    EXTENT_LOCKED | EXTENT_WRITEBACK,
 | 
						|
					    0, NULL)) {
 | 
						|
				remove_extent_mapping(map, em);
 | 
						|
				/* once for the rb tree */
 | 
						|
				free_extent_map(em);
 | 
						|
			}
 | 
						|
			start = extent_map_end(em);
 | 
						|
			write_unlock(&map->lock);
 | 
						|
 | 
						|
			/* once for us */
 | 
						|
			free_extent_map(em);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return try_release_extent_state(map, tree, page, mask);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper function for fiemap, which doesn't want to see any holes.
 | 
						|
 * This maps until we find something past 'last'
 | 
						|
 */
 | 
						|
static struct extent_map *get_extent_skip_holes(struct inode *inode,
 | 
						|
						u64 offset,
 | 
						|
						u64 last,
 | 
						|
						get_extent_t *get_extent)
 | 
						|
{
 | 
						|
	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
 | 
						|
	struct extent_map *em;
 | 
						|
	u64 len;
 | 
						|
 | 
						|
	if (offset >= last)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	while(1) {
 | 
						|
		len = last - offset;
 | 
						|
		if (len == 0)
 | 
						|
			break;
 | 
						|
		len = (len + sectorsize - 1) & ~(sectorsize - 1);
 | 
						|
		em = get_extent(inode, NULL, 0, offset, len, 0);
 | 
						|
		if (IS_ERR_OR_NULL(em))
 | 
						|
			return em;
 | 
						|
 | 
						|
		/* if this isn't a hole return it */
 | 
						|
		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
 | 
						|
		    em->block_start != EXTENT_MAP_HOLE) {
 | 
						|
			return em;
 | 
						|
		}
 | 
						|
 | 
						|
		/* this is a hole, advance to the next extent */
 | 
						|
		offset = extent_map_end(em);
 | 
						|
		free_extent_map(em);
 | 
						|
		if (offset >= last)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 | 
						|
		__u64 start, __u64 len, get_extent_t *get_extent)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	u64 off = start;
 | 
						|
	u64 max = start + len;
 | 
						|
	u32 flags = 0;
 | 
						|
	u32 found_type;
 | 
						|
	u64 last;
 | 
						|
	u64 last_for_get_extent = 0;
 | 
						|
	u64 disko = 0;
 | 
						|
	u64 isize = i_size_read(inode);
 | 
						|
	struct btrfs_key found_key;
 | 
						|
	struct extent_map *em = NULL;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_file_extent_item *item;
 | 
						|
	int end = 0;
 | 
						|
	u64 em_start = 0;
 | 
						|
	u64 em_len = 0;
 | 
						|
	u64 em_end = 0;
 | 
						|
	unsigned long emflags;
 | 
						|
 | 
						|
	if (len == 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
	path->leave_spinning = 1;
 | 
						|
 | 
						|
	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
 | 
						|
	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * lookup the last file extent.  We're not using i_size here
 | 
						|
	 * because there might be preallocation past i_size
 | 
						|
	 */
 | 
						|
	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
 | 
						|
				       path, btrfs_ino(inode), -1, 0);
 | 
						|
	if (ret < 0) {
 | 
						|
		btrfs_free_path(path);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	WARN_ON(!ret);
 | 
						|
	path->slots[0]--;
 | 
						|
	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | 
						|
			      struct btrfs_file_extent_item);
 | 
						|
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
 | 
						|
	found_type = btrfs_key_type(&found_key);
 | 
						|
 | 
						|
	/* No extents, but there might be delalloc bits */
 | 
						|
	if (found_key.objectid != btrfs_ino(inode) ||
 | 
						|
	    found_type != BTRFS_EXTENT_DATA_KEY) {
 | 
						|
		/* have to trust i_size as the end */
 | 
						|
		last = (u64)-1;
 | 
						|
		last_for_get_extent = isize;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * remember the start of the last extent.  There are a
 | 
						|
		 * bunch of different factors that go into the length of the
 | 
						|
		 * extent, so its much less complex to remember where it started
 | 
						|
		 */
 | 
						|
		last = found_key.offset;
 | 
						|
		last_for_get_extent = last + 1;
 | 
						|
	}
 | 
						|
	btrfs_free_path(path);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we might have some extents allocated but more delalloc past those
 | 
						|
	 * extents.  so, we trust isize unless the start of the last extent is
 | 
						|
	 * beyond isize
 | 
						|
	 */
 | 
						|
	if (last < isize) {
 | 
						|
		last = (u64)-1;
 | 
						|
		last_for_get_extent = isize;
 | 
						|
	}
 | 
						|
 | 
						|
	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
 | 
						|
			 &cached_state, GFP_NOFS);
 | 
						|
 | 
						|
	em = get_extent_skip_holes(inode, start, last_for_get_extent,
 | 
						|
				   get_extent);
 | 
						|
	if (!em)
 | 
						|
		goto out;
 | 
						|
	if (IS_ERR(em)) {
 | 
						|
		ret = PTR_ERR(em);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	while (!end) {
 | 
						|
		u64 offset_in_extent;
 | 
						|
 | 
						|
		/* break if the extent we found is outside the range */
 | 
						|
		if (em->start >= max || extent_map_end(em) < off)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * get_extent may return an extent that starts before our
 | 
						|
		 * requested range.  We have to make sure the ranges
 | 
						|
		 * we return to fiemap always move forward and don't
 | 
						|
		 * overlap, so adjust the offsets here
 | 
						|
		 */
 | 
						|
		em_start = max(em->start, off);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * record the offset from the start of the extent
 | 
						|
		 * for adjusting the disk offset below
 | 
						|
		 */
 | 
						|
		offset_in_extent = em_start - em->start;
 | 
						|
		em_end = extent_map_end(em);
 | 
						|
		em_len = em_end - em_start;
 | 
						|
		emflags = em->flags;
 | 
						|
		disko = 0;
 | 
						|
		flags = 0;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * bump off for our next call to get_extent
 | 
						|
		 */
 | 
						|
		off = extent_map_end(em);
 | 
						|
		if (off >= max)
 | 
						|
			end = 1;
 | 
						|
 | 
						|
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
 | 
						|
			end = 1;
 | 
						|
			flags |= FIEMAP_EXTENT_LAST;
 | 
						|
		} else if (em->block_start == EXTENT_MAP_INLINE) {
 | 
						|
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
 | 
						|
				  FIEMAP_EXTENT_NOT_ALIGNED);
 | 
						|
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
 | 
						|
			flags |= (FIEMAP_EXTENT_DELALLOC |
 | 
						|
				  FIEMAP_EXTENT_UNKNOWN);
 | 
						|
		} else {
 | 
						|
			disko = em->block_start + offset_in_extent;
 | 
						|
		}
 | 
						|
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
 | 
						|
			flags |= FIEMAP_EXTENT_ENCODED;
 | 
						|
 | 
						|
		free_extent_map(em);
 | 
						|
		em = NULL;
 | 
						|
		if ((em_start >= last) || em_len == (u64)-1 ||
 | 
						|
		   (last == (u64)-1 && isize <= em_end)) {
 | 
						|
			flags |= FIEMAP_EXTENT_LAST;
 | 
						|
			end = 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/* now scan forward to see if this is really the last extent. */
 | 
						|
		em = get_extent_skip_holes(inode, off, last_for_get_extent,
 | 
						|
					   get_extent);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			ret = PTR_ERR(em);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (!em) {
 | 
						|
			flags |= FIEMAP_EXTENT_LAST;
 | 
						|
			end = 1;
 | 
						|
		}
 | 
						|
		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
 | 
						|
					      em_len, flags);
 | 
						|
		if (ret)
 | 
						|
			goto out_free;
 | 
						|
	}
 | 
						|
out_free:
 | 
						|
	free_extent_map(em);
 | 
						|
out:
 | 
						|
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
 | 
						|
			     &cached_state, GFP_NOFS);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
inline struct page *extent_buffer_page(struct extent_buffer *eb,
 | 
						|
					      unsigned long i)
 | 
						|
{
 | 
						|
	struct page *p;
 | 
						|
	struct address_space *mapping;
 | 
						|
 | 
						|
	if (i == 0)
 | 
						|
		return eb->first_page;
 | 
						|
	i += eb->start >> PAGE_CACHE_SHIFT;
 | 
						|
	mapping = eb->first_page->mapping;
 | 
						|
	if (!mapping)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * extent_buffer_page is only called after pinning the page
 | 
						|
	 * by increasing the reference count.  So we know the page must
 | 
						|
	 * be in the radix tree.
 | 
						|
	 */
 | 
						|
	rcu_read_lock();
 | 
						|
	p = radix_tree_lookup(&mapping->page_tree, i);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
inline unsigned long num_extent_pages(u64 start, u64 len)
 | 
						|
{
 | 
						|
	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
 | 
						|
		(start >> PAGE_CACHE_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
 | 
						|
						   u64 start,
 | 
						|
						   unsigned long len,
 | 
						|
						   gfp_t mask)
 | 
						|
{
 | 
						|
	struct extent_buffer *eb = NULL;
 | 
						|
#if LEAK_DEBUG
 | 
						|
	unsigned long flags;
 | 
						|
#endif
 | 
						|
 | 
						|
	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
 | 
						|
	if (eb == NULL)
 | 
						|
		return NULL;
 | 
						|
	eb->start = start;
 | 
						|
	eb->len = len;
 | 
						|
	rwlock_init(&eb->lock);
 | 
						|
	atomic_set(&eb->write_locks, 0);
 | 
						|
	atomic_set(&eb->read_locks, 0);
 | 
						|
	atomic_set(&eb->blocking_readers, 0);
 | 
						|
	atomic_set(&eb->blocking_writers, 0);
 | 
						|
	atomic_set(&eb->spinning_readers, 0);
 | 
						|
	atomic_set(&eb->spinning_writers, 0);
 | 
						|
	eb->lock_nested = 0;
 | 
						|
	init_waitqueue_head(&eb->write_lock_wq);
 | 
						|
	init_waitqueue_head(&eb->read_lock_wq);
 | 
						|
 | 
						|
#if LEAK_DEBUG
 | 
						|
	spin_lock_irqsave(&leak_lock, flags);
 | 
						|
	list_add(&eb->leak_list, &buffers);
 | 
						|
	spin_unlock_irqrestore(&leak_lock, flags);
 | 
						|
#endif
 | 
						|
	atomic_set(&eb->refs, 1);
 | 
						|
 | 
						|
	return eb;
 | 
						|
}
 | 
						|
 | 
						|
static void __free_extent_buffer(struct extent_buffer *eb)
 | 
						|
{
 | 
						|
#if LEAK_DEBUG
 | 
						|
	unsigned long flags;
 | 
						|
	spin_lock_irqsave(&leak_lock, flags);
 | 
						|
	list_del(&eb->leak_list);
 | 
						|
	spin_unlock_irqrestore(&leak_lock, flags);
 | 
						|
#endif
 | 
						|
	kmem_cache_free(extent_buffer_cache, eb);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper for releasing extent buffer page.
 | 
						|
 */
 | 
						|
static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
 | 
						|
						unsigned long start_idx)
 | 
						|
{
 | 
						|
	unsigned long index;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	if (!eb->first_page)
 | 
						|
		return;
 | 
						|
 | 
						|
	index = num_extent_pages(eb->start, eb->len);
 | 
						|
	if (start_idx >= index)
 | 
						|
		return;
 | 
						|
 | 
						|
	do {
 | 
						|
		index--;
 | 
						|
		page = extent_buffer_page(eb, index);
 | 
						|
		if (page)
 | 
						|
			page_cache_release(page);
 | 
						|
	} while (index != start_idx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper for releasing the extent buffer.
 | 
						|
 */
 | 
						|
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
 | 
						|
{
 | 
						|
	btrfs_release_extent_buffer_page(eb, 0);
 | 
						|
	__free_extent_buffer(eb);
 | 
						|
}
 | 
						|
 | 
						|
struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
 | 
						|
					  u64 start, unsigned long len,
 | 
						|
					  struct page *page0)
 | 
						|
{
 | 
						|
	unsigned long num_pages = num_extent_pages(start, len);
 | 
						|
	unsigned long i;
 | 
						|
	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | 
						|
	struct extent_buffer *eb;
 | 
						|
	struct extent_buffer *exists = NULL;
 | 
						|
	struct page *p;
 | 
						|
	struct address_space *mapping = tree->mapping;
 | 
						|
	int uptodate = 1;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
 | 
						|
	if (eb && atomic_inc_not_zero(&eb->refs)) {
 | 
						|
		rcu_read_unlock();
 | 
						|
		mark_page_accessed(eb->first_page);
 | 
						|
		return eb;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
 | 
						|
	if (!eb)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (page0) {
 | 
						|
		eb->first_page = page0;
 | 
						|
		i = 1;
 | 
						|
		index++;
 | 
						|
		page_cache_get(page0);
 | 
						|
		mark_page_accessed(page0);
 | 
						|
		set_page_extent_mapped(page0);
 | 
						|
		set_page_extent_head(page0, len);
 | 
						|
		uptodate = PageUptodate(page0);
 | 
						|
	} else {
 | 
						|
		i = 0;
 | 
						|
	}
 | 
						|
	for (; i < num_pages; i++, index++) {
 | 
						|
		p = find_or_create_page(mapping, index, GFP_NOFS);
 | 
						|
		if (!p) {
 | 
						|
			WARN_ON(1);
 | 
						|
			goto free_eb;
 | 
						|
		}
 | 
						|
		set_page_extent_mapped(p);
 | 
						|
		mark_page_accessed(p);
 | 
						|
		if (i == 0) {
 | 
						|
			eb->first_page = p;
 | 
						|
			set_page_extent_head(p, len);
 | 
						|
		} else {
 | 
						|
			set_page_private(p, EXTENT_PAGE_PRIVATE);
 | 
						|
		}
 | 
						|
		if (!PageUptodate(p))
 | 
						|
			uptodate = 0;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * see below about how we avoid a nasty race with release page
 | 
						|
		 * and why we unlock later
 | 
						|
		 */
 | 
						|
		if (i != 0)
 | 
						|
			unlock_page(p);
 | 
						|
	}
 | 
						|
	if (uptodate)
 | 
						|
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | 
						|
 | 
						|
	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 | 
						|
	if (ret)
 | 
						|
		goto free_eb;
 | 
						|
 | 
						|
	spin_lock(&tree->buffer_lock);
 | 
						|
	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
 | 
						|
	if (ret == -EEXIST) {
 | 
						|
		exists = radix_tree_lookup(&tree->buffer,
 | 
						|
						start >> PAGE_CACHE_SHIFT);
 | 
						|
		/* add one reference for the caller */
 | 
						|
		atomic_inc(&exists->refs);
 | 
						|
		spin_unlock(&tree->buffer_lock);
 | 
						|
		radix_tree_preload_end();
 | 
						|
		goto free_eb;
 | 
						|
	}
 | 
						|
	/* add one reference for the tree */
 | 
						|
	atomic_inc(&eb->refs);
 | 
						|
	spin_unlock(&tree->buffer_lock);
 | 
						|
	radix_tree_preload_end();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * there is a race where release page may have
 | 
						|
	 * tried to find this extent buffer in the radix
 | 
						|
	 * but failed.  It will tell the VM it is safe to
 | 
						|
	 * reclaim the, and it will clear the page private bit.
 | 
						|
	 * We must make sure to set the page private bit properly
 | 
						|
	 * after the extent buffer is in the radix tree so
 | 
						|
	 * it doesn't get lost
 | 
						|
	 */
 | 
						|
	set_page_extent_mapped(eb->first_page);
 | 
						|
	set_page_extent_head(eb->first_page, eb->len);
 | 
						|
	if (!page0)
 | 
						|
		unlock_page(eb->first_page);
 | 
						|
	return eb;
 | 
						|
 | 
						|
free_eb:
 | 
						|
	if (eb->first_page && !page0)
 | 
						|
		unlock_page(eb->first_page);
 | 
						|
 | 
						|
	if (!atomic_dec_and_test(&eb->refs))
 | 
						|
		return exists;
 | 
						|
	btrfs_release_extent_buffer(eb);
 | 
						|
	return exists;
 | 
						|
}
 | 
						|
 | 
						|
struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
 | 
						|
					 u64 start, unsigned long len)
 | 
						|
{
 | 
						|
	struct extent_buffer *eb;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
 | 
						|
	if (eb && atomic_inc_not_zero(&eb->refs)) {
 | 
						|
		rcu_read_unlock();
 | 
						|
		mark_page_accessed(eb->first_page);
 | 
						|
		return eb;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void free_extent_buffer(struct extent_buffer *eb)
 | 
						|
{
 | 
						|
	if (!eb)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!atomic_dec_and_test(&eb->refs))
 | 
						|
		return;
 | 
						|
 | 
						|
	WARN_ON(1);
 | 
						|
}
 | 
						|
 | 
						|
int clear_extent_buffer_dirty(struct extent_io_tree *tree,
 | 
						|
			      struct extent_buffer *eb)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
	unsigned long num_pages;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	num_pages = num_extent_pages(eb->start, eb->len);
 | 
						|
 | 
						|
	for (i = 0; i < num_pages; i++) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
		if (!PageDirty(page))
 | 
						|
			continue;
 | 
						|
 | 
						|
		lock_page(page);
 | 
						|
		WARN_ON(!PagePrivate(page));
 | 
						|
 | 
						|
		set_page_extent_mapped(page);
 | 
						|
		if (i == 0)
 | 
						|
			set_page_extent_head(page, eb->len);
 | 
						|
 | 
						|
		clear_page_dirty_for_io(page);
 | 
						|
		spin_lock_irq(&page->mapping->tree_lock);
 | 
						|
		if (!PageDirty(page)) {
 | 
						|
			radix_tree_tag_clear(&page->mapping->page_tree,
 | 
						|
						page_index(page),
 | 
						|
						PAGECACHE_TAG_DIRTY);
 | 
						|
		}
 | 
						|
		spin_unlock_irq(&page->mapping->tree_lock);
 | 
						|
		ClearPageError(page);
 | 
						|
		unlock_page(page);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int set_extent_buffer_dirty(struct extent_io_tree *tree,
 | 
						|
			     struct extent_buffer *eb)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
	unsigned long num_pages;
 | 
						|
	int was_dirty = 0;
 | 
						|
 | 
						|
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
 | 
						|
	num_pages = num_extent_pages(eb->start, eb->len);
 | 
						|
	for (i = 0; i < num_pages; i++)
 | 
						|
		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
 | 
						|
	return was_dirty;
 | 
						|
}
 | 
						|
 | 
						|
static int __eb_straddles_pages(u64 start, u64 len)
 | 
						|
{
 | 
						|
	if (len < PAGE_CACHE_SIZE)
 | 
						|
		return 1;
 | 
						|
	if (start & (PAGE_CACHE_SIZE - 1))
 | 
						|
		return 1;
 | 
						|
	if ((start + len) & (PAGE_CACHE_SIZE - 1))
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int eb_straddles_pages(struct extent_buffer *eb)
 | 
						|
{
 | 
						|
	return __eb_straddles_pages(eb->start, eb->len);
 | 
						|
}
 | 
						|
 | 
						|
int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
 | 
						|
				struct extent_buffer *eb,
 | 
						|
				struct extent_state **cached_state)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long num_pages;
 | 
						|
 | 
						|
	num_pages = num_extent_pages(eb->start, eb->len);
 | 
						|
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | 
						|
 | 
						|
	if (eb_straddles_pages(eb)) {
 | 
						|
		clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
 | 
						|
				      cached_state, GFP_NOFS);
 | 
						|
	}
 | 
						|
	for (i = 0; i < num_pages; i++) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
		if (page)
 | 
						|
			ClearPageUptodate(page);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int set_extent_buffer_uptodate(struct extent_io_tree *tree,
 | 
						|
				struct extent_buffer *eb)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long num_pages;
 | 
						|
 | 
						|
	num_pages = num_extent_pages(eb->start, eb->len);
 | 
						|
 | 
						|
	if (eb_straddles_pages(eb)) {
 | 
						|
		set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
 | 
						|
				    NULL, GFP_NOFS);
 | 
						|
	}
 | 
						|
	for (i = 0; i < num_pages; i++) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
 | 
						|
		    ((i == num_pages - 1) &&
 | 
						|
		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
 | 
						|
			check_page_uptodate(tree, page);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		SetPageUptodate(page);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int extent_range_uptodate(struct extent_io_tree *tree,
 | 
						|
			  u64 start, u64 end)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	int ret;
 | 
						|
	int pg_uptodate = 1;
 | 
						|
	int uptodate;
 | 
						|
	unsigned long index;
 | 
						|
 | 
						|
	if (__eb_straddles_pages(start, end - start + 1)) {
 | 
						|
		ret = test_range_bit(tree, start, end,
 | 
						|
				     EXTENT_UPTODATE, 1, NULL);
 | 
						|
		if (ret)
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
	while (start <= end) {
 | 
						|
		index = start >> PAGE_CACHE_SHIFT;
 | 
						|
		page = find_get_page(tree->mapping, index);
 | 
						|
		if (!page)
 | 
						|
			return 1;
 | 
						|
		uptodate = PageUptodate(page);
 | 
						|
		page_cache_release(page);
 | 
						|
		if (!uptodate) {
 | 
						|
			pg_uptodate = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		start += PAGE_CACHE_SIZE;
 | 
						|
	}
 | 
						|
	return pg_uptodate;
 | 
						|
}
 | 
						|
 | 
						|
int extent_buffer_uptodate(struct extent_io_tree *tree,
 | 
						|
			   struct extent_buffer *eb,
 | 
						|
			   struct extent_state *cached_state)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	unsigned long num_pages;
 | 
						|
	unsigned long i;
 | 
						|
	struct page *page;
 | 
						|
	int pg_uptodate = 1;
 | 
						|
 | 
						|
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (eb_straddles_pages(eb)) {
 | 
						|
		ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
 | 
						|
				   EXTENT_UPTODATE, 1, cached_state);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	num_pages = num_extent_pages(eb->start, eb->len);
 | 
						|
	for (i = 0; i < num_pages; i++) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
		if (!PageUptodate(page)) {
 | 
						|
			pg_uptodate = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pg_uptodate;
 | 
						|
}
 | 
						|
 | 
						|
int read_extent_buffer_pages(struct extent_io_tree *tree,
 | 
						|
			     struct extent_buffer *eb, u64 start, int wait,
 | 
						|
			     get_extent_t *get_extent, int mirror_num)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
	unsigned long start_i;
 | 
						|
	struct page *page;
 | 
						|
	int err;
 | 
						|
	int ret = 0;
 | 
						|
	int locked_pages = 0;
 | 
						|
	int all_uptodate = 1;
 | 
						|
	int inc_all_pages = 0;
 | 
						|
	unsigned long num_pages;
 | 
						|
	struct bio *bio = NULL;
 | 
						|
	unsigned long bio_flags = 0;
 | 
						|
 | 
						|
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (eb_straddles_pages(eb)) {
 | 
						|
		if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
 | 
						|
				   EXTENT_UPTODATE, 1, NULL)) {
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (start) {
 | 
						|
		WARN_ON(start < eb->start);
 | 
						|
		start_i = (start >> PAGE_CACHE_SHIFT) -
 | 
						|
			(eb->start >> PAGE_CACHE_SHIFT);
 | 
						|
	} else {
 | 
						|
		start_i = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	num_pages = num_extent_pages(eb->start, eb->len);
 | 
						|
	for (i = start_i; i < num_pages; i++) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
		if (wait == WAIT_NONE) {
 | 
						|
			if (!trylock_page(page))
 | 
						|
				goto unlock_exit;
 | 
						|
		} else {
 | 
						|
			lock_page(page);
 | 
						|
		}
 | 
						|
		locked_pages++;
 | 
						|
		if (!PageUptodate(page))
 | 
						|
			all_uptodate = 0;
 | 
						|
	}
 | 
						|
	if (all_uptodate) {
 | 
						|
		if (start_i == 0)
 | 
						|
			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | 
						|
		goto unlock_exit;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = start_i; i < num_pages; i++) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
 | 
						|
		WARN_ON(!PagePrivate(page));
 | 
						|
 | 
						|
		set_page_extent_mapped(page);
 | 
						|
		if (i == 0)
 | 
						|
			set_page_extent_head(page, eb->len);
 | 
						|
 | 
						|
		if (inc_all_pages)
 | 
						|
			page_cache_get(page);
 | 
						|
		if (!PageUptodate(page)) {
 | 
						|
			if (start_i == 0)
 | 
						|
				inc_all_pages = 1;
 | 
						|
			ClearPageError(page);
 | 
						|
			err = __extent_read_full_page(tree, page,
 | 
						|
						      get_extent, &bio,
 | 
						|
						      mirror_num, &bio_flags);
 | 
						|
			if (err)
 | 
						|
				ret = err;
 | 
						|
		} else {
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (bio)
 | 
						|
		submit_one_bio(READ, bio, mirror_num, bio_flags);
 | 
						|
 | 
						|
	if (ret || wait != WAIT_COMPLETE)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	for (i = start_i; i < num_pages; i++) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
		wait_on_page_locked(page);
 | 
						|
		if (!PageUptodate(page))
 | 
						|
			ret = -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!ret)
 | 
						|
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | 
						|
	return ret;
 | 
						|
 | 
						|
unlock_exit:
 | 
						|
	i = start_i;
 | 
						|
	while (locked_pages > 0) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
		i++;
 | 
						|
		unlock_page(page);
 | 
						|
		locked_pages--;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void read_extent_buffer(struct extent_buffer *eb, void *dstv,
 | 
						|
			unsigned long start,
 | 
						|
			unsigned long len)
 | 
						|
{
 | 
						|
	size_t cur;
 | 
						|
	size_t offset;
 | 
						|
	struct page *page;
 | 
						|
	char *kaddr;
 | 
						|
	char *dst = (char *)dstv;
 | 
						|
	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | 
						|
	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | 
						|
 | 
						|
	WARN_ON(start > eb->len);
 | 
						|
	WARN_ON(start + len > eb->start + eb->len);
 | 
						|
 | 
						|
	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
 | 
						|
 | 
						|
	while (len > 0) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
 | 
						|
		cur = min(len, (PAGE_CACHE_SIZE - offset));
 | 
						|
		kaddr = page_address(page);
 | 
						|
		memcpy(dst, kaddr + offset, cur);
 | 
						|
 | 
						|
		dst += cur;
 | 
						|
		len -= cur;
 | 
						|
		offset = 0;
 | 
						|
		i++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
 | 
						|
			       unsigned long min_len, char **map,
 | 
						|
			       unsigned long *map_start,
 | 
						|
			       unsigned long *map_len)
 | 
						|
{
 | 
						|
	size_t offset = start & (PAGE_CACHE_SIZE - 1);
 | 
						|
	char *kaddr;
 | 
						|
	struct page *p;
 | 
						|
	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | 
						|
	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | 
						|
	unsigned long end_i = (start_offset + start + min_len - 1) >>
 | 
						|
		PAGE_CACHE_SHIFT;
 | 
						|
 | 
						|
	if (i != end_i)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (i == 0) {
 | 
						|
		offset = start_offset;
 | 
						|
		*map_start = 0;
 | 
						|
	} else {
 | 
						|
		offset = 0;
 | 
						|
		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
 | 
						|
	}
 | 
						|
 | 
						|
	if (start + min_len > eb->len) {
 | 
						|
		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
 | 
						|
		       "wanted %lu %lu\n", (unsigned long long)eb->start,
 | 
						|
		       eb->len, start, min_len);
 | 
						|
		WARN_ON(1);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	p = extent_buffer_page(eb, i);
 | 
						|
	kaddr = page_address(p);
 | 
						|
	*map = kaddr + offset;
 | 
						|
	*map_len = PAGE_CACHE_SIZE - offset;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
 | 
						|
			  unsigned long start,
 | 
						|
			  unsigned long len)
 | 
						|
{
 | 
						|
	size_t cur;
 | 
						|
	size_t offset;
 | 
						|
	struct page *page;
 | 
						|
	char *kaddr;
 | 
						|
	char *ptr = (char *)ptrv;
 | 
						|
	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | 
						|
	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	WARN_ON(start > eb->len);
 | 
						|
	WARN_ON(start + len > eb->start + eb->len);
 | 
						|
 | 
						|
	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
 | 
						|
 | 
						|
	while (len > 0) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
 | 
						|
		cur = min(len, (PAGE_CACHE_SIZE - offset));
 | 
						|
 | 
						|
		kaddr = page_address(page);
 | 
						|
		ret = memcmp(ptr, kaddr + offset, cur);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		ptr += cur;
 | 
						|
		len -= cur;
 | 
						|
		offset = 0;
 | 
						|
		i++;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
 | 
						|
			 unsigned long start, unsigned long len)
 | 
						|
{
 | 
						|
	size_t cur;
 | 
						|
	size_t offset;
 | 
						|
	struct page *page;
 | 
						|
	char *kaddr;
 | 
						|
	char *src = (char *)srcv;
 | 
						|
	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | 
						|
	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | 
						|
 | 
						|
	WARN_ON(start > eb->len);
 | 
						|
	WARN_ON(start + len > eb->start + eb->len);
 | 
						|
 | 
						|
	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
 | 
						|
 | 
						|
	while (len > 0) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
		WARN_ON(!PageUptodate(page));
 | 
						|
 | 
						|
		cur = min(len, PAGE_CACHE_SIZE - offset);
 | 
						|
		kaddr = page_address(page);
 | 
						|
		memcpy(kaddr + offset, src, cur);
 | 
						|
 | 
						|
		src += cur;
 | 
						|
		len -= cur;
 | 
						|
		offset = 0;
 | 
						|
		i++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void memset_extent_buffer(struct extent_buffer *eb, char c,
 | 
						|
			  unsigned long start, unsigned long len)
 | 
						|
{
 | 
						|
	size_t cur;
 | 
						|
	size_t offset;
 | 
						|
	struct page *page;
 | 
						|
	char *kaddr;
 | 
						|
	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | 
						|
	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | 
						|
 | 
						|
	WARN_ON(start > eb->len);
 | 
						|
	WARN_ON(start + len > eb->start + eb->len);
 | 
						|
 | 
						|
	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
 | 
						|
 | 
						|
	while (len > 0) {
 | 
						|
		page = extent_buffer_page(eb, i);
 | 
						|
		WARN_ON(!PageUptodate(page));
 | 
						|
 | 
						|
		cur = min(len, PAGE_CACHE_SIZE - offset);
 | 
						|
		kaddr = page_address(page);
 | 
						|
		memset(kaddr + offset, c, cur);
 | 
						|
 | 
						|
		len -= cur;
 | 
						|
		offset = 0;
 | 
						|
		i++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 | 
						|
			unsigned long dst_offset, unsigned long src_offset,
 | 
						|
			unsigned long len)
 | 
						|
{
 | 
						|
	u64 dst_len = dst->len;
 | 
						|
	size_t cur;
 | 
						|
	size_t offset;
 | 
						|
	struct page *page;
 | 
						|
	char *kaddr;
 | 
						|
	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
 | 
						|
	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
 | 
						|
 | 
						|
	WARN_ON(src->len != dst_len);
 | 
						|
 | 
						|
	offset = (start_offset + dst_offset) &
 | 
						|
		((unsigned long)PAGE_CACHE_SIZE - 1);
 | 
						|
 | 
						|
	while (len > 0) {
 | 
						|
		page = extent_buffer_page(dst, i);
 | 
						|
		WARN_ON(!PageUptodate(page));
 | 
						|
 | 
						|
		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
 | 
						|
 | 
						|
		kaddr = page_address(page);
 | 
						|
		read_extent_buffer(src, kaddr + offset, src_offset, cur);
 | 
						|
 | 
						|
		src_offset += cur;
 | 
						|
		len -= cur;
 | 
						|
		offset = 0;
 | 
						|
		i++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void move_pages(struct page *dst_page, struct page *src_page,
 | 
						|
		       unsigned long dst_off, unsigned long src_off,
 | 
						|
		       unsigned long len)
 | 
						|
{
 | 
						|
	char *dst_kaddr = page_address(dst_page);
 | 
						|
	if (dst_page == src_page) {
 | 
						|
		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
 | 
						|
	} else {
 | 
						|
		char *src_kaddr = page_address(src_page);
 | 
						|
		char *p = dst_kaddr + dst_off + len;
 | 
						|
		char *s = src_kaddr + src_off + len;
 | 
						|
 | 
						|
		while (len--)
 | 
						|
			*--p = *--s;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
 | 
						|
{
 | 
						|
	unsigned long distance = (src > dst) ? src - dst : dst - src;
 | 
						|
	return distance < len;
 | 
						|
}
 | 
						|
 | 
						|
static void copy_pages(struct page *dst_page, struct page *src_page,
 | 
						|
		       unsigned long dst_off, unsigned long src_off,
 | 
						|
		       unsigned long len)
 | 
						|
{
 | 
						|
	char *dst_kaddr = page_address(dst_page);
 | 
						|
	char *src_kaddr;
 | 
						|
 | 
						|
	if (dst_page != src_page) {
 | 
						|
		src_kaddr = page_address(src_page);
 | 
						|
	} else {
 | 
						|
		src_kaddr = dst_kaddr;
 | 
						|
		BUG_ON(areas_overlap(src_off, dst_off, len));
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
 | 
						|
}
 | 
						|
 | 
						|
void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
 | 
						|
			   unsigned long src_offset, unsigned long len)
 | 
						|
{
 | 
						|
	size_t cur;
 | 
						|
	size_t dst_off_in_page;
 | 
						|
	size_t src_off_in_page;
 | 
						|
	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
 | 
						|
	unsigned long dst_i;
 | 
						|
	unsigned long src_i;
 | 
						|
 | 
						|
	if (src_offset + len > dst->len) {
 | 
						|
		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
 | 
						|
		       "len %lu dst len %lu\n", src_offset, len, dst->len);
 | 
						|
		BUG_ON(1);
 | 
						|
	}
 | 
						|
	if (dst_offset + len > dst->len) {
 | 
						|
		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
 | 
						|
		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
 | 
						|
		BUG_ON(1);
 | 
						|
	}
 | 
						|
 | 
						|
	while (len > 0) {
 | 
						|
		dst_off_in_page = (start_offset + dst_offset) &
 | 
						|
			((unsigned long)PAGE_CACHE_SIZE - 1);
 | 
						|
		src_off_in_page = (start_offset + src_offset) &
 | 
						|
			((unsigned long)PAGE_CACHE_SIZE - 1);
 | 
						|
 | 
						|
		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
 | 
						|
		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
 | 
						|
 | 
						|
		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
 | 
						|
					       src_off_in_page));
 | 
						|
		cur = min_t(unsigned long, cur,
 | 
						|
			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
 | 
						|
 | 
						|
		copy_pages(extent_buffer_page(dst, dst_i),
 | 
						|
			   extent_buffer_page(dst, src_i),
 | 
						|
			   dst_off_in_page, src_off_in_page, cur);
 | 
						|
 | 
						|
		src_offset += cur;
 | 
						|
		dst_offset += cur;
 | 
						|
		len -= cur;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
 | 
						|
			   unsigned long src_offset, unsigned long len)
 | 
						|
{
 | 
						|
	size_t cur;
 | 
						|
	size_t dst_off_in_page;
 | 
						|
	size_t src_off_in_page;
 | 
						|
	unsigned long dst_end = dst_offset + len - 1;
 | 
						|
	unsigned long src_end = src_offset + len - 1;
 | 
						|
	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
 | 
						|
	unsigned long dst_i;
 | 
						|
	unsigned long src_i;
 | 
						|
 | 
						|
	if (src_offset + len > dst->len) {
 | 
						|
		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
 | 
						|
		       "len %lu len %lu\n", src_offset, len, dst->len);
 | 
						|
		BUG_ON(1);
 | 
						|
	}
 | 
						|
	if (dst_offset + len > dst->len) {
 | 
						|
		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
 | 
						|
		       "len %lu len %lu\n", dst_offset, len, dst->len);
 | 
						|
		BUG_ON(1);
 | 
						|
	}
 | 
						|
	if (!areas_overlap(src_offset, dst_offset, len)) {
 | 
						|
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	while (len > 0) {
 | 
						|
		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
 | 
						|
		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
 | 
						|
 | 
						|
		dst_off_in_page = (start_offset + dst_end) &
 | 
						|
			((unsigned long)PAGE_CACHE_SIZE - 1);
 | 
						|
		src_off_in_page = (start_offset + src_end) &
 | 
						|
			((unsigned long)PAGE_CACHE_SIZE - 1);
 | 
						|
 | 
						|
		cur = min_t(unsigned long, len, src_off_in_page + 1);
 | 
						|
		cur = min(cur, dst_off_in_page + 1);
 | 
						|
		move_pages(extent_buffer_page(dst, dst_i),
 | 
						|
			   extent_buffer_page(dst, src_i),
 | 
						|
			   dst_off_in_page - cur + 1,
 | 
						|
			   src_off_in_page - cur + 1, cur);
 | 
						|
 | 
						|
		dst_end -= cur;
 | 
						|
		src_end -= cur;
 | 
						|
		len -= cur;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
 | 
						|
{
 | 
						|
	struct extent_buffer *eb =
 | 
						|
			container_of(head, struct extent_buffer, rcu_head);
 | 
						|
 | 
						|
	btrfs_release_extent_buffer(eb);
 | 
						|
}
 | 
						|
 | 
						|
int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
 | 
						|
{
 | 
						|
	u64 start = page_offset(page);
 | 
						|
	struct extent_buffer *eb;
 | 
						|
	int ret = 1;
 | 
						|
 | 
						|
	spin_lock(&tree->buffer_lock);
 | 
						|
	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
 | 
						|
	if (!eb) {
 | 
						|
		spin_unlock(&tree->buffer_lock);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
 | 
						|
		ret = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * set @eb->refs to 0 if it is already 1, and then release the @eb.
 | 
						|
	 * Or go back.
 | 
						|
	 */
 | 
						|
	if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
 | 
						|
		ret = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
 | 
						|
out:
 | 
						|
	spin_unlock(&tree->buffer_lock);
 | 
						|
 | 
						|
	/* at this point we can safely release the extent buffer */
 | 
						|
	if (atomic_read(&eb->refs) == 0)
 | 
						|
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
 | 
						|
	return ret;
 | 
						|
}
 |