 ec0d7f18ab
			
		
	
	
	ec0d7f18ab
	
	
	
		
			
			Pull fpu state cleanups from Ingo Molnar: "This tree streamlines further aspects of FPU handling by eliminating the prepare_to_copy() complication and moving that logic to arch_dup_task_struct(). It also fixes the FPU dumps in threaded core dumps, removes and old (and now invalid) assumption plus micro-optimizes the exit path by avoiding an FPU save for dead tasks." Fixed up trivial add-add conflict in arch/sh/kernel/process.c that came in because we now do the FPU handling in arch_dup_task_struct() rather than the legacy (and now gone) prepare_to_copy(). * 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86, fpu: drop the fpu state during thread exit x86, xsave: remove thread_has_fpu() bug check in __sanitize_i387_state() coredump: ensure the fpu state is flushed for proper multi-threaded core dump fork: move the real prepare_to_copy() users to arch_dup_task_struct()
		
			
				
	
	
		
			761 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			761 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/errno.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/prctl.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/user-return-notifier.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/stackprotector.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/cpuidle.h>
 | |
| #include <trace/events/power.h>
 | |
| #include <linux/hw_breakpoint.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/syscalls.h>
 | |
| #include <asm/idle.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/i387.h>
 | |
| #include <asm/fpu-internal.h>
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/nmi.h>
 | |
| 
 | |
| /*
 | |
|  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 | |
|  * no more per-task TSS's. The TSS size is kept cacheline-aligned
 | |
|  * so they are allowed to end up in the .data..cacheline_aligned
 | |
|  * section. Since TSS's are completely CPU-local, we want them
 | |
|  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 | |
|  */
 | |
| DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static DEFINE_PER_CPU(unsigned char, is_idle);
 | |
| static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 | |
| 
 | |
| void idle_notifier_register(struct notifier_block *n)
 | |
| {
 | |
| 	atomic_notifier_chain_register(&idle_notifier, n);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(idle_notifier_register);
 | |
| 
 | |
| void idle_notifier_unregister(struct notifier_block *n)
 | |
| {
 | |
| 	atomic_notifier_chain_unregister(&idle_notifier, n);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 | |
| #endif
 | |
| 
 | |
| struct kmem_cache *task_xstate_cachep;
 | |
| EXPORT_SYMBOL_GPL(task_xstate_cachep);
 | |
| 
 | |
| /*
 | |
|  * this gets called so that we can store lazy state into memory and copy the
 | |
|  * current task into the new thread.
 | |
|  */
 | |
| int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	unlazy_fpu(src);
 | |
| 
 | |
| 	*dst = *src;
 | |
| 	if (fpu_allocated(&src->thread.fpu)) {
 | |
| 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 | |
| 		ret = fpu_alloc(&dst->thread.fpu);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void free_thread_xstate(struct task_struct *tsk)
 | |
| {
 | |
| 	fpu_free(&tsk->thread.fpu);
 | |
| }
 | |
| 
 | |
| void arch_release_task_struct(struct task_struct *tsk)
 | |
| {
 | |
| 	free_thread_xstate(tsk);
 | |
| }
 | |
| 
 | |
| void arch_task_cache_init(void)
 | |
| {
 | |
|         task_xstate_cachep =
 | |
|         	kmem_cache_create("task_xstate", xstate_size,
 | |
| 				  __alignof__(union thread_xstate),
 | |
| 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 | |
| }
 | |
| 
 | |
| static inline void drop_fpu(struct task_struct *tsk)
 | |
| {
 | |
| 	/*
 | |
| 	 * Forget coprocessor state..
 | |
| 	 */
 | |
| 	tsk->fpu_counter = 0;
 | |
| 	clear_fpu(tsk);
 | |
| 	clear_used_math();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free current thread data structures etc..
 | |
|  */
 | |
| void exit_thread(void)
 | |
| {
 | |
| 	struct task_struct *me = current;
 | |
| 	struct thread_struct *t = &me->thread;
 | |
| 	unsigned long *bp = t->io_bitmap_ptr;
 | |
| 
 | |
| 	if (bp) {
 | |
| 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
 | |
| 
 | |
| 		t->io_bitmap_ptr = NULL;
 | |
| 		clear_thread_flag(TIF_IO_BITMAP);
 | |
| 		/*
 | |
| 		 * Careful, clear this in the TSS too:
 | |
| 		 */
 | |
| 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 | |
| 		t->io_bitmap_max = 0;
 | |
| 		put_cpu();
 | |
| 		kfree(bp);
 | |
| 	}
 | |
| 
 | |
| 	drop_fpu(me);
 | |
| }
 | |
| 
 | |
| void show_regs_common(void)
 | |
| {
 | |
| 	const char *vendor, *product, *board;
 | |
| 
 | |
| 	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 | |
| 	if (!vendor)
 | |
| 		vendor = "";
 | |
| 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
 | |
| 	if (!product)
 | |
| 		product = "";
 | |
| 
 | |
| 	/* Board Name is optional */
 | |
| 	board = dmi_get_system_info(DMI_BOARD_NAME);
 | |
| 
 | |
| 	printk(KERN_CONT "\n");
 | |
| 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
 | |
| 		current->pid, current->comm, print_tainted(),
 | |
| 		init_utsname()->release,
 | |
| 		(int)strcspn(init_utsname()->version, " "),
 | |
| 		init_utsname()->version);
 | |
| 	printk(KERN_CONT " %s %s", vendor, product);
 | |
| 	if (board)
 | |
| 		printk(KERN_CONT "/%s", board);
 | |
| 	printk(KERN_CONT "\n");
 | |
| }
 | |
| 
 | |
| void flush_thread(void)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	flush_ptrace_hw_breakpoint(tsk);
 | |
| 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 | |
| 	drop_fpu(tsk);
 | |
| }
 | |
| 
 | |
| static void hard_disable_TSC(void)
 | |
| {
 | |
| 	write_cr4(read_cr4() | X86_CR4_TSD);
 | |
| }
 | |
| 
 | |
| void disable_TSC(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	if (!test_and_set_thread_flag(TIF_NOTSC))
 | |
| 		/*
 | |
| 		 * Must flip the CPU state synchronously with
 | |
| 		 * TIF_NOTSC in the current running context.
 | |
| 		 */
 | |
| 		hard_disable_TSC();
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void hard_enable_TSC(void)
 | |
| {
 | |
| 	write_cr4(read_cr4() & ~X86_CR4_TSD);
 | |
| }
 | |
| 
 | |
| static void enable_TSC(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	if (test_and_clear_thread_flag(TIF_NOTSC))
 | |
| 		/*
 | |
| 		 * Must flip the CPU state synchronously with
 | |
| 		 * TIF_NOTSC in the current running context.
 | |
| 		 */
 | |
| 		hard_enable_TSC();
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| int get_tsc_mode(unsigned long adr)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	if (test_thread_flag(TIF_NOTSC))
 | |
| 		val = PR_TSC_SIGSEGV;
 | |
| 	else
 | |
| 		val = PR_TSC_ENABLE;
 | |
| 
 | |
| 	return put_user(val, (unsigned int __user *)adr);
 | |
| }
 | |
| 
 | |
| int set_tsc_mode(unsigned int val)
 | |
| {
 | |
| 	if (val == PR_TSC_SIGSEGV)
 | |
| 		disable_TSC();
 | |
| 	else if (val == PR_TSC_ENABLE)
 | |
| 		enable_TSC();
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 | |
| 		      struct tss_struct *tss)
 | |
| {
 | |
| 	struct thread_struct *prev, *next;
 | |
| 
 | |
| 	prev = &prev_p->thread;
 | |
| 	next = &next_p->thread;
 | |
| 
 | |
| 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
 | |
| 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
 | |
| 		unsigned long debugctl = get_debugctlmsr();
 | |
| 
 | |
| 		debugctl &= ~DEBUGCTLMSR_BTF;
 | |
| 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
 | |
| 			debugctl |= DEBUGCTLMSR_BTF;
 | |
| 
 | |
| 		update_debugctlmsr(debugctl);
 | |
| 	}
 | |
| 
 | |
| 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
 | |
| 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
 | |
| 		/* prev and next are different */
 | |
| 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
 | |
| 			hard_disable_TSC();
 | |
| 		else
 | |
| 			hard_enable_TSC();
 | |
| 	}
 | |
| 
 | |
| 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 | |
| 		/*
 | |
| 		 * Copy the relevant range of the IO bitmap.
 | |
| 		 * Normally this is 128 bytes or less:
 | |
| 		 */
 | |
| 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 | |
| 		       max(prev->io_bitmap_max, next->io_bitmap_max));
 | |
| 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 | |
| 		/*
 | |
| 		 * Clear any possible leftover bits:
 | |
| 		 */
 | |
| 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 | |
| 	}
 | |
| 	propagate_user_return_notify(prev_p, next_p);
 | |
| }
 | |
| 
 | |
| int sys_fork(struct pt_regs *regs)
 | |
| {
 | |
| 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is trivial, and on the face of it looks like it
 | |
|  * could equally well be done in user mode.
 | |
|  *
 | |
|  * Not so, for quite unobvious reasons - register pressure.
 | |
|  * In user mode vfork() cannot have a stack frame, and if
 | |
|  * done by calling the "clone()" system call directly, you
 | |
|  * do not have enough call-clobbered registers to hold all
 | |
|  * the information you need.
 | |
|  */
 | |
| int sys_vfork(struct pt_regs *regs)
 | |
| {
 | |
| 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
 | |
| 		       NULL, NULL);
 | |
| }
 | |
| 
 | |
| long
 | |
| sys_clone(unsigned long clone_flags, unsigned long newsp,
 | |
| 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
 | |
| {
 | |
| 	if (!newsp)
 | |
| 		newsp = regs->sp;
 | |
| 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This gets run with %si containing the
 | |
|  * function to call, and %di containing
 | |
|  * the "args".
 | |
|  */
 | |
| extern void kernel_thread_helper(void);
 | |
| 
 | |
| /*
 | |
|  * Create a kernel thread
 | |
|  */
 | |
| int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
 | |
| {
 | |
| 	struct pt_regs regs;
 | |
| 
 | |
| 	memset(®s, 0, sizeof(regs));
 | |
| 
 | |
| 	regs.si = (unsigned long) fn;
 | |
| 	regs.di = (unsigned long) arg;
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	regs.ds = __USER_DS;
 | |
| 	regs.es = __USER_DS;
 | |
| 	regs.fs = __KERNEL_PERCPU;
 | |
| 	regs.gs = __KERNEL_STACK_CANARY;
 | |
| #else
 | |
| 	regs.ss = __KERNEL_DS;
 | |
| #endif
 | |
| 
 | |
| 	regs.orig_ax = -1;
 | |
| 	regs.ip = (unsigned long) kernel_thread_helper;
 | |
| 	regs.cs = __KERNEL_CS | get_kernel_rpl();
 | |
| 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
 | |
| 
 | |
| 	/* Ok, create the new process.. */
 | |
| 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(kernel_thread);
 | |
| 
 | |
| /*
 | |
|  * sys_execve() executes a new program.
 | |
|  */
 | |
| long sys_execve(const char __user *name,
 | |
| 		const char __user *const __user *argv,
 | |
| 		const char __user *const __user *envp, struct pt_regs *regs)
 | |
| {
 | |
| 	long error;
 | |
| 	char *filename;
 | |
| 
 | |
| 	filename = getname(name);
 | |
| 	error = PTR_ERR(filename);
 | |
| 	if (IS_ERR(filename))
 | |
| 		return error;
 | |
| 	error = do_execve(filename, argv, envp, regs);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (error == 0) {
 | |
| 		/* Make sure we don't return using sysenter.. */
 | |
|                 set_thread_flag(TIF_IRET);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
| 	putname(filename);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Idle related variables and functions
 | |
|  */
 | |
| unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 | |
| EXPORT_SYMBOL(boot_option_idle_override);
 | |
| 
 | |
| /*
 | |
|  * Powermanagement idle function, if any..
 | |
|  */
 | |
| void (*pm_idle)(void);
 | |
| #ifdef CONFIG_APM_MODULE
 | |
| EXPORT_SYMBOL(pm_idle);
 | |
| #endif
 | |
| 
 | |
| static inline int hlt_use_halt(void)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| static inline void play_dead(void)
 | |
| {
 | |
| 	BUG();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| void enter_idle(void)
 | |
| {
 | |
| 	this_cpu_write(is_idle, 1);
 | |
| 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 | |
| }
 | |
| 
 | |
| static void __exit_idle(void)
 | |
| {
 | |
| 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
 | |
| 		return;
 | |
| 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
 | |
| }
 | |
| 
 | |
| /* Called from interrupts to signify idle end */
 | |
| void exit_idle(void)
 | |
| {
 | |
| 	/* idle loop has pid 0 */
 | |
| 	if (current->pid)
 | |
| 		return;
 | |
| 	__exit_idle();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The idle thread. There's no useful work to be
 | |
|  * done, so just try to conserve power and have a
 | |
|  * low exit latency (ie sit in a loop waiting for
 | |
|  * somebody to say that they'd like to reschedule)
 | |
|  */
 | |
| void cpu_idle(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we're the non-boot CPU, nothing set the stack canary up
 | |
| 	 * for us.  CPU0 already has it initialized but no harm in
 | |
| 	 * doing it again.  This is a good place for updating it, as
 | |
| 	 * we wont ever return from this function (so the invalid
 | |
| 	 * canaries already on the stack wont ever trigger).
 | |
| 	 */
 | |
| 	boot_init_stack_canary();
 | |
| 	current_thread_info()->status |= TS_POLLING;
 | |
| 
 | |
| 	while (1) {
 | |
| 		tick_nohz_idle_enter();
 | |
| 
 | |
| 		while (!need_resched()) {
 | |
| 			rmb();
 | |
| 
 | |
| 			if (cpu_is_offline(smp_processor_id()))
 | |
| 				play_dead();
 | |
| 
 | |
| 			/*
 | |
| 			 * Idle routines should keep interrupts disabled
 | |
| 			 * from here on, until they go to idle.
 | |
| 			 * Otherwise, idle callbacks can misfire.
 | |
| 			 */
 | |
| 			local_touch_nmi();
 | |
| 			local_irq_disable();
 | |
| 
 | |
| 			enter_idle();
 | |
| 
 | |
| 			/* Don't trace irqs off for idle */
 | |
| 			stop_critical_timings();
 | |
| 
 | |
| 			/* enter_idle() needs rcu for notifiers */
 | |
| 			rcu_idle_enter();
 | |
| 
 | |
| 			if (cpuidle_idle_call())
 | |
| 				pm_idle();
 | |
| 
 | |
| 			rcu_idle_exit();
 | |
| 			start_critical_timings();
 | |
| 
 | |
| 			/* In many cases the interrupt that ended idle
 | |
| 			   has already called exit_idle. But some idle
 | |
| 			   loops can be woken up without interrupt. */
 | |
| 			__exit_idle();
 | |
| 		}
 | |
| 
 | |
| 		tick_nohz_idle_exit();
 | |
| 		preempt_enable_no_resched();
 | |
| 		schedule();
 | |
| 		preempt_disable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use this if we don't have any better
 | |
|  * idle routine..
 | |
|  */
 | |
| void default_idle(void)
 | |
| {
 | |
| 	if (hlt_use_halt()) {
 | |
| 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
 | |
| 		trace_cpu_idle_rcuidle(1, smp_processor_id());
 | |
| 		current_thread_info()->status &= ~TS_POLLING;
 | |
| 		/*
 | |
| 		 * TS_POLLING-cleared state must be visible before we
 | |
| 		 * test NEED_RESCHED:
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 
 | |
| 		if (!need_resched())
 | |
| 			safe_halt();	/* enables interrupts racelessly */
 | |
| 		else
 | |
| 			local_irq_enable();
 | |
| 		current_thread_info()->status |= TS_POLLING;
 | |
| 		trace_power_end_rcuidle(smp_processor_id());
 | |
| 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 | |
| 	} else {
 | |
| 		local_irq_enable();
 | |
| 		/* loop is done by the caller */
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| }
 | |
| #ifdef CONFIG_APM_MODULE
 | |
| EXPORT_SYMBOL(default_idle);
 | |
| #endif
 | |
| 
 | |
| bool set_pm_idle_to_default(void)
 | |
| {
 | |
| 	bool ret = !!pm_idle;
 | |
| 
 | |
| 	pm_idle = default_idle;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| void stop_this_cpu(void *dummy)
 | |
| {
 | |
| 	local_irq_disable();
 | |
| 	/*
 | |
| 	 * Remove this CPU:
 | |
| 	 */
 | |
| 	set_cpu_online(smp_processor_id(), false);
 | |
| 	disable_local_APIC();
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (hlt_works(smp_processor_id()))
 | |
| 			halt();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Default MONITOR/MWAIT with no hints, used for default C1 state */
 | |
| static void mwait_idle(void)
 | |
| {
 | |
| 	if (!need_resched()) {
 | |
| 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
 | |
| 		trace_cpu_idle_rcuidle(1, smp_processor_id());
 | |
| 		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
 | |
| 			clflush((void *)¤t_thread_info()->flags);
 | |
| 
 | |
| 		__monitor((void *)¤t_thread_info()->flags, 0, 0);
 | |
| 		smp_mb();
 | |
| 		if (!need_resched())
 | |
| 			__sti_mwait(0, 0);
 | |
| 		else
 | |
| 			local_irq_enable();
 | |
| 		trace_power_end_rcuidle(smp_processor_id());
 | |
| 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 | |
| 	} else
 | |
| 		local_irq_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On SMP it's slightly faster (but much more power-consuming!)
 | |
|  * to poll the ->work.need_resched flag instead of waiting for the
 | |
|  * cross-CPU IPI to arrive. Use this option with caution.
 | |
|  */
 | |
| static void poll_idle(void)
 | |
| {
 | |
| 	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
 | |
| 	trace_cpu_idle_rcuidle(0, smp_processor_id());
 | |
| 	local_irq_enable();
 | |
| 	while (!need_resched())
 | |
| 		cpu_relax();
 | |
| 	trace_power_end_rcuidle(smp_processor_id());
 | |
| 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mwait selection logic:
 | |
|  *
 | |
|  * It depends on the CPU. For AMD CPUs that support MWAIT this is
 | |
|  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
 | |
|  * then depend on a clock divisor and current Pstate of the core. If
 | |
|  * all cores of a processor are in halt state (C1) the processor can
 | |
|  * enter the C1E (C1 enhanced) state. If mwait is used this will never
 | |
|  * happen.
 | |
|  *
 | |
|  * idle=mwait overrides this decision and forces the usage of mwait.
 | |
|  */
 | |
| 
 | |
| #define MWAIT_INFO			0x05
 | |
| #define MWAIT_ECX_EXTENDED_INFO		0x01
 | |
| #define MWAIT_EDX_C1			0xf0
 | |
| 
 | |
| int mwait_usable(const struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	u32 eax, ebx, ecx, edx;
 | |
| 
 | |
| 	/* Use mwait if idle=mwait boot option is given */
 | |
| 	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Any idle= boot option other than idle=mwait means that we must not
 | |
| 	 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
 | |
| 	 */
 | |
| 	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (c->cpuid_level < MWAIT_INFO)
 | |
| 		return 0;
 | |
| 
 | |
| 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
 | |
| 	/* Check, whether EDX has extended info about MWAIT */
 | |
| 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
 | |
| 	 * C1  supports MWAIT
 | |
| 	 */
 | |
| 	return (edx & MWAIT_EDX_C1);
 | |
| }
 | |
| 
 | |
| bool amd_e400_c1e_detected;
 | |
| EXPORT_SYMBOL(amd_e400_c1e_detected);
 | |
| 
 | |
| static cpumask_var_t amd_e400_c1e_mask;
 | |
| 
 | |
| void amd_e400_remove_cpu(int cpu)
 | |
| {
 | |
| 	if (amd_e400_c1e_mask != NULL)
 | |
| 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
 | |
|  * pending message MSR. If we detect C1E, then we handle it the same
 | |
|  * way as C3 power states (local apic timer and TSC stop)
 | |
|  */
 | |
| static void amd_e400_idle(void)
 | |
| {
 | |
| 	if (need_resched())
 | |
| 		return;
 | |
| 
 | |
| 	if (!amd_e400_c1e_detected) {
 | |
| 		u32 lo, hi;
 | |
| 
 | |
| 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 | |
| 
 | |
| 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
 | |
| 			amd_e400_c1e_detected = true;
 | |
| 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 | |
| 				mark_tsc_unstable("TSC halt in AMD C1E");
 | |
| 			printk(KERN_INFO "System has AMD C1E enabled\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (amd_e400_c1e_detected) {
 | |
| 		int cpu = smp_processor_id();
 | |
| 
 | |
| 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
 | |
| 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
 | |
| 			/*
 | |
| 			 * Force broadcast so ACPI can not interfere.
 | |
| 			 */
 | |
| 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
 | |
| 					   &cpu);
 | |
| 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
 | |
| 			       cpu);
 | |
| 		}
 | |
| 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
 | |
| 
 | |
| 		default_idle();
 | |
| 
 | |
| 		/*
 | |
| 		 * The switch back from broadcast mode needs to be
 | |
| 		 * called with interrupts disabled.
 | |
| 		 */
 | |
| 		 local_irq_disable();
 | |
| 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
 | |
| 		 local_irq_enable();
 | |
| 	} else
 | |
| 		default_idle();
 | |
| }
 | |
| 
 | |
| void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
 | |
| 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
 | |
| 			" performance may degrade.\n");
 | |
| 	}
 | |
| #endif
 | |
| 	if (pm_idle)
 | |
| 		return;
 | |
| 
 | |
| 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
 | |
| 		/*
 | |
| 		 * One CPU supports mwait => All CPUs supports mwait
 | |
| 		 */
 | |
| 		printk(KERN_INFO "using mwait in idle threads.\n");
 | |
| 		pm_idle = mwait_idle;
 | |
| 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
 | |
| 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
 | |
| 		printk(KERN_INFO "using AMD E400 aware idle routine\n");
 | |
| 		pm_idle = amd_e400_idle;
 | |
| 	} else
 | |
| 		pm_idle = default_idle;
 | |
| }
 | |
| 
 | |
| void __init init_amd_e400_c1e_mask(void)
 | |
| {
 | |
| 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
 | |
| 	if (pm_idle == amd_e400_idle)
 | |
| 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| static int __init idle_setup(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!strcmp(str, "poll")) {
 | |
| 		printk("using polling idle threads.\n");
 | |
| 		pm_idle = poll_idle;
 | |
| 		boot_option_idle_override = IDLE_POLL;
 | |
| 	} else if (!strcmp(str, "mwait")) {
 | |
| 		boot_option_idle_override = IDLE_FORCE_MWAIT;
 | |
| 		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
 | |
| 	} else if (!strcmp(str, "halt")) {
 | |
| 		/*
 | |
| 		 * When the boot option of idle=halt is added, halt is
 | |
| 		 * forced to be used for CPU idle. In such case CPU C2/C3
 | |
| 		 * won't be used again.
 | |
| 		 * To continue to load the CPU idle driver, don't touch
 | |
| 		 * the boot_option_idle_override.
 | |
| 		 */
 | |
| 		pm_idle = default_idle;
 | |
| 		boot_option_idle_override = IDLE_HALT;
 | |
| 	} else if (!strcmp(str, "nomwait")) {
 | |
| 		/*
 | |
| 		 * If the boot option of "idle=nomwait" is added,
 | |
| 		 * it means that mwait will be disabled for CPU C2/C3
 | |
| 		 * states. In such case it won't touch the variable
 | |
| 		 * of boot_option_idle_override.
 | |
| 		 */
 | |
| 		boot_option_idle_override = IDLE_NOMWAIT;
 | |
| 	} else
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("idle", idle_setup);
 | |
| 
 | |
| unsigned long arch_align_stack(unsigned long sp)
 | |
| {
 | |
| 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | |
| 		sp -= get_random_int() % 8192;
 | |
| 	return sp & ~0xf;
 | |
| }
 | |
| 
 | |
| unsigned long arch_randomize_brk(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long range_end = mm->brk + 0x02000000;
 | |
| 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 | |
| }
 | |
| 
 |