 fa2af6e4fe
			
		
	
	
	fa2af6e4fe
	
	
	
		
			
			Pull tile updates from Chris Metcalf: "These changes cover a range of new arch/tile features and optimizations. They've been through LKML review and on linux-next for a month or so. There's also one bug-fix that just missed 3.4, which I've marked for stable." Fixed up trivial conflict in arch/tile/Kconfig (new added tile Kconfig entries clashing with the generic timer/clockevents changes). * git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile: tile: default to tilegx_defconfig for ARCH=tile tile: fix bug where fls(0) was not returning 0 arch/tile: mark TILEGX as not EXPERIMENTAL tile/mm/fault.c: Port OOM changes to handle_page_fault arch/tile: add descriptive text if the kernel reports a bad trap arch/tile: allow querying cpu module information from the hypervisor arch/tile: fix hardwall for tilegx and generalize for idn and ipi arch/tile: support multiple huge page sizes dynamically mm: add new arch_make_huge_pte() method for tile support arch/tile: support kexec() for tilegx arch/tile: support <asm/cachectl.h> header for cacheflush() syscall arch/tile: Allow tilegx to build with either 16K or 64K page size arch/tile: optimize get_user/put_user and friends arch/tile: support building big-endian kernel arch/tile: allow building Linux with transparent huge pages enabled arch/tile: use interrupt critical sections less
		
			
				
	
	
		
			1609 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1609 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2010 Tilera Corporation. All Rights Reserved.
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful, but
 | |
|  *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *   NON INFRINGEMENT.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/node.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <hv/hypervisor.h>
 | |
| #include <arch/interrupts.h>
 | |
| 
 | |
| /* <linux/smp.h> doesn't provide this definition. */
 | |
| #ifndef CONFIG_SMP
 | |
| #define setup_max_cpus 1
 | |
| #endif
 | |
| 
 | |
| static inline int ABS(int x) { return x >= 0 ? x : -x; }
 | |
| 
 | |
| /* Chip information */
 | |
| char chip_model[64] __write_once;
 | |
| 
 | |
| struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
 | |
| EXPORT_SYMBOL(node_data);
 | |
| 
 | |
| /* Information on the NUMA nodes that we compute early */
 | |
| unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
 | |
| unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
 | |
| unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
 | |
| unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
 | |
| unsigned long __initdata node_free_pfn[MAX_NUMNODES];
 | |
| 
 | |
| static unsigned long __initdata node_percpu[MAX_NUMNODES];
 | |
| 
 | |
| /*
 | |
|  * per-CPU stack and boot info.
 | |
|  */
 | |
| DEFINE_PER_CPU(unsigned long, boot_sp) =
 | |
| 	(unsigned long)init_stack + THREAD_SIZE;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
 | |
| #else
 | |
| /*
 | |
|  * The variable must be __initdata since it references __init code.
 | |
|  * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
 | |
|  */
 | |
| unsigned long __initdata boot_pc = (unsigned long)start_kernel;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| /* Page frame index of end of lowmem on each controller. */
 | |
| unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
 | |
| 
 | |
| /* Number of pages that can be mapped into lowmem. */
 | |
| static unsigned long __initdata mappable_physpages;
 | |
| #endif
 | |
| 
 | |
| /* Data on which physical memory controller corresponds to which NUMA node */
 | |
| int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| /* Map information from VAs to PAs */
 | |
| unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
 | |
|   __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 | |
| EXPORT_SYMBOL(pbase_map);
 | |
| 
 | |
| /* Map information from PAs to VAs */
 | |
| void *vbase_map[NR_PA_HIGHBIT_VALUES]
 | |
|   __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 | |
| EXPORT_SYMBOL(vbase_map);
 | |
| #endif
 | |
| 
 | |
| /* Node number as a function of the high PA bits */
 | |
| int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
 | |
| EXPORT_SYMBOL(highbits_to_node);
 | |
| 
 | |
| static unsigned int __initdata maxmem_pfn = -1U;
 | |
| static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
 | |
| 	[0 ... MAX_NUMNODES-1] = -1U
 | |
| };
 | |
| static nodemask_t __initdata isolnodes;
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| enum { DEFAULT_PCI_RESERVE_MB = 64 };
 | |
| static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
 | |
| unsigned long __initdata pci_reserve_start_pfn = -1U;
 | |
| unsigned long __initdata pci_reserve_end_pfn = -1U;
 | |
| #endif
 | |
| 
 | |
| static int __init setup_maxmem(char *str)
 | |
| {
 | |
| 	unsigned long long maxmem;
 | |
| 	if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
 | |
| 	pr_info("Forcing RAM used to no more than %dMB\n",
 | |
| 	       maxmem_pfn >> (20 - PAGE_SHIFT));
 | |
| 	return 0;
 | |
| }
 | |
| early_param("maxmem", setup_maxmem);
 | |
| 
 | |
| static int __init setup_maxnodemem(char *str)
 | |
| {
 | |
| 	char *endp;
 | |
| 	unsigned long long maxnodemem;
 | |
| 	long node;
 | |
| 
 | |
| 	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
 | |
| 	if (node >= MAX_NUMNODES || *endp != ':')
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	maxnodemem = memparse(endp+1, NULL);
 | |
| 	maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
 | |
| 		(HPAGE_SHIFT - PAGE_SHIFT);
 | |
| 	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
 | |
| 	       node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
 | |
| 	return 0;
 | |
| }
 | |
| early_param("maxnodemem", setup_maxnodemem);
 | |
| 
 | |
| static int __init setup_isolnodes(char *str)
 | |
| {
 | |
| 	char buf[MAX_NUMNODES * 5];
 | |
| 	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	nodelist_scnprintf(buf, sizeof(buf), isolnodes);
 | |
| 	pr_info("Set isolnodes value to '%s'\n", buf);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("isolnodes", setup_isolnodes);
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| static int __init setup_pci_reserve(char* str)
 | |
| {
 | |
| 	unsigned long mb;
 | |
| 
 | |
| 	if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
 | |
| 	    mb > 3 * 1024)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pci_reserve_mb = mb;
 | |
| 	pr_info("Reserving %dMB for PCIE root complex mappings\n",
 | |
| 	       pci_reserve_mb);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("pci_reserve", setup_pci_reserve);
 | |
| #endif
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| /*
 | |
|  * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 | |
|  * This can be used to increase (or decrease) the vmalloc area.
 | |
|  */
 | |
| static int __init parse_vmalloc(char *arg)
 | |
| {
 | |
| 	if (!arg)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
 | |
| 
 | |
| 	/* See validate_va() for more on this test. */
 | |
| 	if ((long)_VMALLOC_START >= 0)
 | |
| 		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
 | |
| 			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("vmalloc", parse_vmalloc);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| /*
 | |
|  * Determine for each controller where its lowmem is mapped and how much of
 | |
|  * it is mapped there.  On controller zero, the first few megabytes are
 | |
|  * already mapped in as code at MEM_SV_INTRPT, so in principle we could
 | |
|  * start our data mappings higher up, but for now we don't bother, to avoid
 | |
|  * additional confusion.
 | |
|  *
 | |
|  * One question is whether, on systems with more than 768 Mb and
 | |
|  * controllers of different sizes, to map in a proportionate amount of
 | |
|  * each one, or to try to map the same amount from each controller.
 | |
|  * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 | |
|  * respectively, do we map 256MB from each, or do we map 128 MB, 512
 | |
|  * MB, and 128 MB respectively?)  For now we use a proportionate
 | |
|  * solution like the latter.
 | |
|  *
 | |
|  * The VA/PA mapping demands that we align our decisions at 16 MB
 | |
|  * boundaries so that we can rapidly convert VA to PA.
 | |
|  */
 | |
| static void *__init setup_pa_va_mapping(void)
 | |
| {
 | |
| 	unsigned long curr_pages = 0;
 | |
| 	unsigned long vaddr = PAGE_OFFSET;
 | |
| 	nodemask_t highonlynodes = isolnodes;
 | |
| 	int i, j;
 | |
| 
 | |
| 	memset(pbase_map, -1, sizeof(pbase_map));
 | |
| 	memset(vbase_map, -1, sizeof(vbase_map));
 | |
| 
 | |
| 	/* Node zero cannot be isolated for LOWMEM purposes. */
 | |
| 	node_clear(0, highonlynodes);
 | |
| 
 | |
| 	/* Count up the number of pages on non-highonlynodes controllers. */
 | |
| 	mappable_physpages = 0;
 | |
| 	for_each_online_node(i) {
 | |
| 		if (!node_isset(i, highonlynodes))
 | |
| 			mappable_physpages +=
 | |
| 				node_end_pfn[i] - node_start_pfn[i];
 | |
| 	}
 | |
| 
 | |
| 	for_each_online_node(i) {
 | |
| 		unsigned long start = node_start_pfn[i];
 | |
| 		unsigned long end = node_end_pfn[i];
 | |
| 		unsigned long size = end - start;
 | |
| 		unsigned long vaddr_end;
 | |
| 
 | |
| 		if (node_isset(i, highonlynodes)) {
 | |
| 			/* Mark this controller as having no lowmem. */
 | |
| 			node_lowmem_end_pfn[i] = start;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		curr_pages += size;
 | |
| 		if (mappable_physpages > MAXMEM_PFN) {
 | |
| 			vaddr_end = PAGE_OFFSET +
 | |
| 				(((u64)curr_pages * MAXMEM_PFN /
 | |
| 				  mappable_physpages)
 | |
| 				 << PAGE_SHIFT);
 | |
| 		} else {
 | |
| 			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
 | |
| 		}
 | |
| 		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
 | |
| 			unsigned long this_pfn =
 | |
| 				start + (j << HUGETLB_PAGE_ORDER);
 | |
| 			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
 | |
| 			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
 | |
| 			    (void *)-1)
 | |
| 				vbase_map[__pfn_to_highbits(this_pfn)] =
 | |
| 					(void *)(vaddr & HPAGE_MASK);
 | |
| 		}
 | |
| 		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
 | |
| 		BUG_ON(node_lowmem_end_pfn[i] > end);
 | |
| 	}
 | |
| 
 | |
| 	/* Return highest address of any mapped memory. */
 | |
| 	return (void *)vaddr;
 | |
| }
 | |
| #endif /* CONFIG_HIGHMEM */
 | |
| 
 | |
| /*
 | |
|  * Register our most important memory mappings with the debug stub.
 | |
|  *
 | |
|  * This is up to 4 mappings for lowmem, one mapping per memory
 | |
|  * controller, plus one for our text segment.
 | |
|  */
 | |
| static void __cpuinit store_permanent_mappings(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_node(i) {
 | |
| 		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
 | |
| #else
 | |
| 		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
 | |
| #endif
 | |
| 
 | |
| 		unsigned long pages = high_mapped_pa - node_start_pfn[i];
 | |
| 		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
 | |
| 		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
 | |
| 	}
 | |
| 
 | |
| 	hv_store_mapping((HV_VirtAddr)_stext,
 | |
| 			 (uint32_t)(_einittext - _stext), 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 | |
|  * and node_online_map, doing suitable sanity-checking.
 | |
|  * Also set min_low_pfn, max_low_pfn, and max_pfn.
 | |
|  */
 | |
| static void __init setup_memory(void)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	long highmem_pages;
 | |
| #endif
 | |
| #ifndef __tilegx__
 | |
| 	int cap;
 | |
| #endif
 | |
| #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
 | |
| 	long lowmem_pages;
 | |
| #endif
 | |
| 
 | |
| 	/* We are using a char to hold the cpu_2_node[] mapping */
 | |
| 	BUILD_BUG_ON(MAX_NUMNODES > 127);
 | |
| 
 | |
| 	/* Discover the ranges of memory available to us */
 | |
| 	for (i = 0; ; ++i) {
 | |
| 		unsigned long start, size, end, highbits;
 | |
| 		HV_PhysAddrRange range = hv_inquire_physical(i);
 | |
| 		if (range.size == 0)
 | |
| 			break;
 | |
| #ifdef CONFIG_FLATMEM
 | |
| 		if (i > 0) {
 | |
| 			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
 | |
| 			       range.size, range.start + range.size);
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| #ifndef __tilegx__
 | |
| 		if ((unsigned long)range.start) {
 | |
| 			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
 | |
| 			       range.start, range.start + range.size);
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
 | |
| 		    (range.size & (HPAGE_SIZE-1)) != 0) {
 | |
| 			unsigned long long start_pa = range.start;
 | |
| 			unsigned long long orig_size = range.size;
 | |
| 			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
 | |
| 			range.size -= (range.start - start_pa);
 | |
| 			range.size &= HPAGE_MASK;
 | |
| 			pr_err("Range not hugepage-aligned: %#llx..%#llx:"
 | |
| 			       " now %#llx-%#llx\n",
 | |
| 			       start_pa, start_pa + orig_size,
 | |
| 			       range.start, range.start + range.size);
 | |
| 		}
 | |
| 		highbits = __pa_to_highbits(range.start);
 | |
| 		if (highbits >= NR_PA_HIGHBIT_VALUES) {
 | |
| 			pr_err("PA high bits too high: %#llx..%#llx\n",
 | |
| 			       range.start, range.start + range.size);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (highbits_seen[highbits]) {
 | |
| 			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
 | |
| 			       range.start, range.start + range.size);
 | |
| 			continue;
 | |
| 		}
 | |
| 		highbits_seen[highbits] = 1;
 | |
| 		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
 | |
| 			int max_size = maxnodemem_pfn[i];
 | |
| 			if (max_size > 0) {
 | |
| 				pr_err("Maxnodemem reduced node %d to"
 | |
| 				       " %d pages\n", i, max_size);
 | |
| 				range.size = PFN_PHYS(max_size);
 | |
| 			} else {
 | |
| 				pr_err("Maxnodemem disabled node %d\n", i);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 		if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
 | |
| 			int max_size = maxmem_pfn - num_physpages;
 | |
| 			if (max_size > 0) {
 | |
| 				pr_err("Maxmem reduced node %d to %d pages\n",
 | |
| 				       i, max_size);
 | |
| 				range.size = PFN_PHYS(max_size);
 | |
| 			} else {
 | |
| 				pr_err("Maxmem disabled node %d\n", i);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 		if (i >= MAX_NUMNODES) {
 | |
| 			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
 | |
| 			       i, range.size, range.size + range.start);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		start = range.start >> PAGE_SHIFT;
 | |
| 		size = range.size >> PAGE_SHIFT;
 | |
| 		end = start + size;
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| 		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
 | |
| 		    (range.start + range.size)) {
 | |
| 			pr_err("PAs too high to represent: %#llx..%#llx\n",
 | |
| 			       range.start, range.start + range.size);
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| #ifdef CONFIG_PCI
 | |
| 		/*
 | |
| 		 * Blocks that overlap the pci reserved region must
 | |
| 		 * have enough space to hold the maximum percpu data
 | |
| 		 * region at the top of the range.  If there isn't
 | |
| 		 * enough space above the reserved region, just
 | |
| 		 * truncate the node.
 | |
| 		 */
 | |
| 		if (start <= pci_reserve_start_pfn &&
 | |
| 		    end > pci_reserve_start_pfn) {
 | |
| 			unsigned int per_cpu_size =
 | |
| 				__per_cpu_end - __per_cpu_start;
 | |
| 			unsigned int percpu_pages =
 | |
| 				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
 | |
| 			if (end < pci_reserve_end_pfn + percpu_pages) {
 | |
| 				end = pci_reserve_start_pfn;
 | |
| 				pr_err("PCI mapping region reduced node %d to"
 | |
| 				       " %ld pages\n", i, end - start);
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		for (j = __pfn_to_highbits(start);
 | |
| 		     j <= __pfn_to_highbits(end - 1); j++)
 | |
| 			highbits_to_node[j] = i;
 | |
| 
 | |
| 		node_start_pfn[i] = start;
 | |
| 		node_end_pfn[i] = end;
 | |
| 		node_controller[i] = range.controller;
 | |
| 		num_physpages += size;
 | |
| 		max_pfn = end;
 | |
| 
 | |
| 		/* Mark node as online */
 | |
| 		node_set(i, node_online_map);
 | |
| 		node_set(i, node_possible_map);
 | |
| 	}
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| 	/*
 | |
| 	 * For 4KB pages, mem_map "struct page" data is 1% of the size
 | |
| 	 * of the physical memory, so can be quite big (640 MB for
 | |
| 	 * four 16G zones).  These structures must be mapped in
 | |
| 	 * lowmem, and since we currently cap out at about 768 MB,
 | |
| 	 * it's impractical to try to use this much address space.
 | |
| 	 * For now, arbitrarily cap the amount of physical memory
 | |
| 	 * we're willing to use at 8 million pages (32GB of 4KB pages).
 | |
| 	 */
 | |
| 	cap = 8 * 1024 * 1024;  /* 8 million pages */
 | |
| 	if (num_physpages > cap) {
 | |
| 		int num_nodes = num_online_nodes();
 | |
| 		int cap_each = cap / num_nodes;
 | |
| 		unsigned long dropped_pages = 0;
 | |
| 		for (i = 0; i < num_nodes; ++i) {
 | |
| 			int size = node_end_pfn[i] - node_start_pfn[i];
 | |
| 			if (size > cap_each) {
 | |
| 				dropped_pages += (size - cap_each);
 | |
| 				node_end_pfn[i] = node_start_pfn[i] + cap_each;
 | |
| 			}
 | |
| 		}
 | |
| 		num_physpages -= dropped_pages;
 | |
| 		pr_warning("Only using %ldMB memory;"
 | |
| 		       " ignoring %ldMB.\n",
 | |
| 		       num_physpages >> (20 - PAGE_SHIFT),
 | |
| 		       dropped_pages >> (20 - PAGE_SHIFT));
 | |
| 		pr_warning("Consider using a larger page size.\n");
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Heap starts just above the last loaded address. */
 | |
| 	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	/* Find where we map lowmem from each controller. */
 | |
| 	high_memory = setup_pa_va_mapping();
 | |
| 
 | |
| 	/* Set max_low_pfn based on what node 0 can directly address. */
 | |
| 	max_low_pfn = node_lowmem_end_pfn[0];
 | |
| 
 | |
| 	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
 | |
| 		MAXMEM_PFN : mappable_physpages;
 | |
| 	highmem_pages = (long) (num_physpages - lowmem_pages);
 | |
| 
 | |
| 	pr_notice("%ldMB HIGHMEM available.\n",
 | |
| 	       pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
 | |
| 	pr_notice("%ldMB LOWMEM available.\n",
 | |
| 			pages_to_mb(lowmem_pages));
 | |
| #else
 | |
| 	/* Set max_low_pfn based on what node 0 can directly address. */
 | |
| 	max_low_pfn = node_end_pfn[0];
 | |
| 
 | |
| #ifndef __tilegx__
 | |
| 	if (node_end_pfn[0] > MAXMEM_PFN) {
 | |
| 		pr_warning("Only using %ldMB LOWMEM.\n",
 | |
| 		       MAXMEM>>20);
 | |
| 		pr_warning("Use a HIGHMEM enabled kernel.\n");
 | |
| 		max_low_pfn = MAXMEM_PFN;
 | |
| 		max_pfn = MAXMEM_PFN;
 | |
| 		num_physpages = MAXMEM_PFN;
 | |
| 		node_end_pfn[0] = MAXMEM_PFN;
 | |
| 	} else {
 | |
| 		pr_notice("%ldMB memory available.\n",
 | |
| 		       pages_to_mb(node_end_pfn[0]));
 | |
| 	}
 | |
| 	for (i = 1; i < MAX_NUMNODES; ++i) {
 | |
| 		node_start_pfn[i] = 0;
 | |
| 		node_end_pfn[i] = 0;
 | |
| 	}
 | |
| 	high_memory = __va(node_end_pfn[0]);
 | |
| #else
 | |
| 	lowmem_pages = 0;
 | |
| 	for (i = 0; i < MAX_NUMNODES; ++i) {
 | |
| 		int pages = node_end_pfn[i] - node_start_pfn[i];
 | |
| 		lowmem_pages += pages;
 | |
| 		if (pages)
 | |
| 			high_memory = pfn_to_kaddr(node_end_pfn[i]);
 | |
| 	}
 | |
| 	pr_notice("%ldMB memory available.\n",
 | |
| 	       pages_to_mb(lowmem_pages));
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On 32-bit machines, we only put bootmem on the low controller,
 | |
|  * since PAs > 4GB can't be used in bootmem.  In principle one could
 | |
|  * imagine, e.g., multiple 1 GB controllers all of which could support
 | |
|  * bootmem, but in practice using controllers this small isn't a
 | |
|  * particularly interesting scenario, so we just keep it simple and
 | |
|  * use only the first controller for bootmem on 32-bit machines.
 | |
|  */
 | |
| static inline int node_has_bootmem(int nid)
 | |
| {
 | |
| #ifdef CONFIG_64BIT
 | |
| 	return 1;
 | |
| #else
 | |
| 	return nid == 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline unsigned long alloc_bootmem_pfn(int nid,
 | |
| 					      unsigned long size,
 | |
| 					      unsigned long goal)
 | |
| {
 | |
| 	void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
 | |
| 					 PAGE_SIZE, goal);
 | |
| 	unsigned long pfn = kaddr_to_pfn(kva);
 | |
| 	BUG_ON(goal && PFN_PHYS(pfn) != goal);
 | |
| 	return pfn;
 | |
| }
 | |
| 
 | |
| static void __init setup_bootmem_allocator_node(int i)
 | |
| {
 | |
| 	unsigned long start, end, mapsize, mapstart;
 | |
| 
 | |
| 	if (node_has_bootmem(i)) {
 | |
| 		NODE_DATA(i)->bdata = &bootmem_node_data[i];
 | |
| 	} else {
 | |
| 		/* Share controller zero's bdata for now. */
 | |
| 		NODE_DATA(i)->bdata = &bootmem_node_data[0];
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip up to after the bss in node 0. */
 | |
| 	start = (i == 0) ? min_low_pfn : node_start_pfn[i];
 | |
| 
 | |
| 	/* Only lowmem, if we're a HIGHMEM build. */
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	end = node_lowmem_end_pfn[i];
 | |
| #else
 | |
| 	end = node_end_pfn[i];
 | |
| #endif
 | |
| 
 | |
| 	/* No memory here. */
 | |
| 	if (end == start)
 | |
| 		return;
 | |
| 
 | |
| 	/* Figure out where the bootmem bitmap is located. */
 | |
| 	mapsize = bootmem_bootmap_pages(end - start);
 | |
| 	if (i == 0) {
 | |
| 		/* Use some space right before the heap on node 0. */
 | |
| 		mapstart = start;
 | |
| 		start += mapsize;
 | |
| 	} else {
 | |
| 		/* Allocate bitmap on node 0 to avoid page table issues. */
 | |
| 		mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize a node. */
 | |
| 	init_bootmem_node(NODE_DATA(i), mapstart, start, end);
 | |
| 
 | |
| 	/* Free all the space back into the allocator. */
 | |
| 	free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
 | |
| 
 | |
| #if defined(CONFIG_PCI)
 | |
| 	/*
 | |
| 	 * Throw away any memory aliased by the PCI region.  FIXME: this
 | |
| 	 * is a temporary hack to work around bug 10502, and needs to be
 | |
| 	 * fixed properly.
 | |
| 	 */
 | |
| 	if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start)
 | |
| 		reserve_bootmem(PFN_PHYS(pci_reserve_start_pfn),
 | |
| 				PFN_PHYS(pci_reserve_end_pfn -
 | |
| 					 pci_reserve_start_pfn),
 | |
| 				BOOTMEM_EXCLUSIVE);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init setup_bootmem_allocator(void)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < MAX_NUMNODES; ++i)
 | |
| 		setup_bootmem_allocator_node(i);
 | |
| 
 | |
| #ifdef CONFIG_KEXEC
 | |
| 	if (crashk_res.start != crashk_res.end)
 | |
| 		reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void *__init alloc_remap(int nid, unsigned long size)
 | |
| {
 | |
| 	int pages = node_end_pfn[nid] - node_start_pfn[nid];
 | |
| 	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
 | |
| 	BUG_ON(size != pages * sizeof(struct page));
 | |
| 	memset(map, 0, size);
 | |
| 	return map;
 | |
| }
 | |
| 
 | |
| static int __init percpu_size(void)
 | |
| {
 | |
| 	int size = __per_cpu_end - __per_cpu_start;
 | |
| 	size += PERCPU_MODULE_RESERVE;
 | |
| 	size += PERCPU_DYNAMIC_EARLY_SIZE;
 | |
| 	if (size < PCPU_MIN_UNIT_SIZE)
 | |
| 		size = PCPU_MIN_UNIT_SIZE;
 | |
| 	size = roundup(size, PAGE_SIZE);
 | |
| 
 | |
| 	/* In several places we assume the per-cpu data fits on a huge page. */
 | |
| 	BUG_ON(kdata_huge && size > HPAGE_SIZE);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static void __init zone_sizes_init(void)
 | |
| {
 | |
| 	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
 | |
| 	int size = percpu_size();
 | |
| 	int num_cpus = smp_height * smp_width;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < num_cpus; ++i)
 | |
| 		node_percpu[cpu_to_node(i)] += size;
 | |
| 
 | |
| 	for_each_online_node(i) {
 | |
| 		unsigned long start = node_start_pfn[i];
 | |
| 		unsigned long end = node_end_pfn[i];
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 		unsigned long lowmem_end = node_lowmem_end_pfn[i];
 | |
| #else
 | |
| 		unsigned long lowmem_end = end;
 | |
| #endif
 | |
| 		int memmap_size = (end - start) * sizeof(struct page);
 | |
| 		node_free_pfn[i] = start;
 | |
| 
 | |
| 		/*
 | |
| 		 * Set aside pages for per-cpu data and the mem_map array.
 | |
| 		 *
 | |
| 		 * Since the per-cpu data requires special homecaching,
 | |
| 		 * if we are in kdata_huge mode, we put it at the end of
 | |
| 		 * the lowmem region.  If we're not in kdata_huge mode,
 | |
| 		 * we take the per-cpu pages from the bottom of the
 | |
| 		 * controller, since that avoids fragmenting a huge page
 | |
| 		 * that users might want.  We always take the memmap
 | |
| 		 * from the bottom of the controller, since with
 | |
| 		 * kdata_huge that lets it be under a huge TLB entry.
 | |
| 		 *
 | |
| 		 * If the user has requested isolnodes for a controller,
 | |
| 		 * though, there'll be no lowmem, so we just alloc_bootmem
 | |
| 		 * the memmap.  There will be no percpu memory either.
 | |
| 		 */
 | |
| 		if (i != 0 && cpu_isset(i, isolnodes)) {
 | |
| 			node_memmap_pfn[i] =
 | |
| 				alloc_bootmem_pfn(0, memmap_size, 0);
 | |
| 			BUG_ON(node_percpu[i] != 0);
 | |
| 		} else if (node_has_bootmem(start)) {
 | |
| 			unsigned long goal = 0;
 | |
| 			node_memmap_pfn[i] =
 | |
| 				alloc_bootmem_pfn(i, memmap_size, 0);
 | |
| 			if (kdata_huge)
 | |
| 				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
 | |
| 			if (node_percpu[i])
 | |
| 				node_percpu_pfn[i] =
 | |
| 					alloc_bootmem_pfn(i, node_percpu[i],
 | |
| 							  goal);
 | |
| 		} else {
 | |
| 			/* In non-bootmem zones, just reserve some pages. */
 | |
| 			node_memmap_pfn[i] = node_free_pfn[i];
 | |
| 			node_free_pfn[i] += PFN_UP(memmap_size);
 | |
| 			if (!kdata_huge) {
 | |
| 				node_percpu_pfn[i] = node_free_pfn[i];
 | |
| 				node_free_pfn[i] += PFN_UP(node_percpu[i]);
 | |
| 			} else {
 | |
| 				node_percpu_pfn[i] =
 | |
| 					lowmem_end - PFN_UP(node_percpu[i]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 		if (start > lowmem_end) {
 | |
| 			zones_size[ZONE_NORMAL] = 0;
 | |
| 			zones_size[ZONE_HIGHMEM] = end - start;
 | |
| 		} else {
 | |
| 			zones_size[ZONE_NORMAL] = lowmem_end - start;
 | |
| 			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
 | |
| 		}
 | |
| #else
 | |
| 		zones_size[ZONE_NORMAL] = end - start;
 | |
| #endif
 | |
| 
 | |
| 		/* Take zone metadata from controller 0 if we're isolnode. */
 | |
| 		if (node_isset(i, isolnodes))
 | |
| 			NODE_DATA(i)->bdata = &bootmem_node_data[0];
 | |
| 
 | |
| 		free_area_init_node(i, zones_size, start, NULL);
 | |
| 		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
 | |
| 		       PFN_UP(node_percpu[i]));
 | |
| 
 | |
| 		/* Track the type of memory on each node */
 | |
| 		if (zones_size[ZONE_NORMAL])
 | |
| 			node_set_state(i, N_NORMAL_MEMORY);
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 		if (end != start)
 | |
| 			node_set_state(i, N_HIGH_MEMORY);
 | |
| #endif
 | |
| 
 | |
| 		node_set_online(i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 
 | |
| /* which logical CPUs are on which nodes */
 | |
| struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
 | |
| EXPORT_SYMBOL(node_2_cpu_mask);
 | |
| 
 | |
| /* which node each logical CPU is on */
 | |
| char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 | |
| EXPORT_SYMBOL(cpu_2_node);
 | |
| 
 | |
| /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
 | |
| static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
 | |
| {
 | |
| 	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
 | |
| 		return -1;
 | |
| 	else
 | |
| 		return cpu_to_node(cpu);
 | |
| }
 | |
| 
 | |
| /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
 | |
| static int __init node_neighbors(int node, int cpu,
 | |
| 				 struct cpumask *unbound_cpus)
 | |
| {
 | |
| 	int neighbors = 0;
 | |
| 	int w = smp_width;
 | |
| 	int h = smp_height;
 | |
| 	int x = cpu % w;
 | |
| 	int y = cpu / w;
 | |
| 	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
 | |
| 		++neighbors;
 | |
| 	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
 | |
| 		++neighbors;
 | |
| 	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
 | |
| 		++neighbors;
 | |
| 	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
 | |
| 		++neighbors;
 | |
| 	return neighbors;
 | |
| }
 | |
| 
 | |
| static void __init setup_numa_mapping(void)
 | |
| {
 | |
| 	int distance[MAX_NUMNODES][NR_CPUS];
 | |
| 	HV_Coord coord;
 | |
| 	int cpu, node, cpus, i, x, y;
 | |
| 	int num_nodes = num_online_nodes();
 | |
| 	struct cpumask unbound_cpus;
 | |
| 	nodemask_t default_nodes;
 | |
| 
 | |
| 	cpumask_clear(&unbound_cpus);
 | |
| 
 | |
| 	/* Get set of nodes we will use for defaults */
 | |
| 	nodes_andnot(default_nodes, node_online_map, isolnodes);
 | |
| 	if (nodes_empty(default_nodes)) {
 | |
| 		BUG_ON(!node_isset(0, node_online_map));
 | |
| 		pr_err("Forcing NUMA node zero available as a default node\n");
 | |
| 		node_set(0, default_nodes);
 | |
| 	}
 | |
| 
 | |
| 	/* Populate the distance[] array */
 | |
| 	memset(distance, -1, sizeof(distance));
 | |
| 	cpu = 0;
 | |
| 	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
 | |
| 		for (coord.x = 0; coord.x < smp_width;
 | |
| 		     ++coord.x, ++cpu) {
 | |
| 			BUG_ON(cpu >= nr_cpu_ids);
 | |
| 			if (!cpu_possible(cpu)) {
 | |
| 				cpu_2_node[cpu] = -1;
 | |
| 				continue;
 | |
| 			}
 | |
| 			for_each_node_mask(node, default_nodes) {
 | |
| 				HV_MemoryControllerInfo info =
 | |
| 					hv_inquire_memory_controller(
 | |
| 						coord, node_controller[node]);
 | |
| 				distance[node][cpu] =
 | |
| 					ABS(info.coord.x) + ABS(info.coord.y);
 | |
| 			}
 | |
| 			cpumask_set_cpu(cpu, &unbound_cpus);
 | |
| 		}
 | |
| 	}
 | |
| 	cpus = cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Round-robin through the NUMA nodes until all the cpus are
 | |
| 	 * assigned.  We could be more clever here (e.g. create four
 | |
| 	 * sorted linked lists on the same set of cpu nodes, and pull
 | |
| 	 * off them in round-robin sequence, removing from all four
 | |
| 	 * lists each time) but given the relatively small numbers
 | |
| 	 * involved, O(n^2) seem OK for a one-time cost.
 | |
| 	 */
 | |
| 	node = first_node(default_nodes);
 | |
| 	while (!cpumask_empty(&unbound_cpus)) {
 | |
| 		int best_cpu = -1;
 | |
| 		int best_distance = INT_MAX;
 | |
| 		for (cpu = 0; cpu < cpus; ++cpu) {
 | |
| 			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
 | |
| 				/*
 | |
| 				 * Compute metric, which is how much
 | |
| 				 * closer the cpu is to this memory
 | |
| 				 * controller than the others, shifted
 | |
| 				 * up, and then the number of
 | |
| 				 * neighbors already in the node as an
 | |
| 				 * epsilon adjustment to try to keep
 | |
| 				 * the nodes compact.
 | |
| 				 */
 | |
| 				int d = distance[node][cpu] * num_nodes;
 | |
| 				for_each_node_mask(i, default_nodes) {
 | |
| 					if (i != node)
 | |
| 						d -= distance[i][cpu];
 | |
| 				}
 | |
| 				d *= 8;  /* allow space for epsilon */
 | |
| 				d -= node_neighbors(node, cpu, &unbound_cpus);
 | |
| 				if (d < best_distance) {
 | |
| 					best_cpu = cpu;
 | |
| 					best_distance = d;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		BUG_ON(best_cpu < 0);
 | |
| 		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
 | |
| 		cpu_2_node[best_cpu] = node;
 | |
| 		cpumask_clear_cpu(best_cpu, &unbound_cpus);
 | |
| 		node = next_node(node, default_nodes);
 | |
| 		if (node == MAX_NUMNODES)
 | |
| 			node = first_node(default_nodes);
 | |
| 	}
 | |
| 
 | |
| 	/* Print out node assignments and set defaults for disabled cpus */
 | |
| 	cpu = 0;
 | |
| 	for (y = 0; y < smp_height; ++y) {
 | |
| 		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
 | |
| 		for (x = 0; x < smp_width; ++x, ++cpu) {
 | |
| 			if (cpu_to_node(cpu) < 0) {
 | |
| 				pr_cont(" -");
 | |
| 				cpu_2_node[cpu] = first_node(default_nodes);
 | |
| 			} else {
 | |
| 				pr_cont(" %d", cpu_to_node(cpu));
 | |
| 			}
 | |
| 		}
 | |
| 		pr_cont("\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct cpu cpu_devices[NR_CPUS];
 | |
| 
 | |
| static int __init topology_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_node(i)
 | |
| 		register_one_node(i);
 | |
| 
 | |
| 	for (i = 0; i < smp_height * smp_width; ++i)
 | |
| 		register_cpu(&cpu_devices[i], i);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| subsys_initcall(topology_init);
 | |
| 
 | |
| #else /* !CONFIG_NUMA */
 | |
| 
 | |
| #define setup_numa_mapping() do { } while (0)
 | |
| 
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| /*
 | |
|  * Initialize hugepage support on this cpu.  We do this on all cores
 | |
|  * early in boot: before argument parsing for the boot cpu, and after
 | |
|  * argument parsing but before the init functions run on the secondaries.
 | |
|  * So the values we set up here in the hypervisor may be overridden on
 | |
|  * the boot cpu as arguments are parsed.
 | |
|  */
 | |
| static __cpuinit void init_super_pages(void)
 | |
| {
 | |
| #ifdef CONFIG_HUGETLB_SUPER_PAGES
 | |
| 	int i;
 | |
| 	for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
 | |
| 		hv_set_pte_super_shift(i, huge_shift[i]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
 | |
|  * @boot: Is this the boot cpu?
 | |
|  *
 | |
|  * Called from setup_arch() on the boot cpu, or online_secondary().
 | |
|  */
 | |
| void __cpuinit setup_cpu(int boot)
 | |
| {
 | |
| 	/* The boot cpu sets up its permanent mappings much earlier. */
 | |
| 	if (!boot)
 | |
| 		store_permanent_mappings();
 | |
| 
 | |
| 	/* Allow asynchronous TLB interrupts. */
 | |
| #if CHIP_HAS_TILE_DMA()
 | |
| 	arch_local_irq_unmask(INT_DMATLB_MISS);
 | |
| 	arch_local_irq_unmask(INT_DMATLB_ACCESS);
 | |
| #endif
 | |
| #if CHIP_HAS_SN_PROC()
 | |
| 	arch_local_irq_unmask(INT_SNITLB_MISS);
 | |
| #endif
 | |
| #ifdef __tilegx__
 | |
| 	arch_local_irq_unmask(INT_SINGLE_STEP_K);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow user access to many generic SPRs, like the cycle
 | |
| 	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
 | |
| 	 */
 | |
| 	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
 | |
| 
 | |
| #if CHIP_HAS_SN()
 | |
| 	/* Static network is not restricted. */
 | |
| 	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
 | |
| #endif
 | |
| #if CHIP_HAS_SN_PROC()
 | |
| 	__insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
 | |
| 	__insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the MPL for interrupt control 0 & 1 to the corresponding
 | |
| 	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
 | |
| 	 * SPRs, as well as the interrupt mask.
 | |
| 	 */
 | |
| 	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
 | |
| 	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
 | |
| 
 | |
| 	/* Initialize IRQ support for this cpu. */
 | |
| 	setup_irq_regs();
 | |
| 
 | |
| #ifdef CONFIG_HARDWALL
 | |
| 	/* Reset the network state on this cpu. */
 | |
| 	reset_network_state();
 | |
| #endif
 | |
| 
 | |
| 	init_super_pages();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 
 | |
| /*
 | |
|  * Note that the kernel can potentially support other compression
 | |
|  * techniques than gz, though we don't do so by default.  If we ever
 | |
|  * decide to do so we can either look for other filename extensions,
 | |
|  * or just allow a file with this name to be compressed with an
 | |
|  * arbitrary compressor (somewhat counterintuitively).
 | |
|  */
 | |
| static int __initdata set_initramfs_file;
 | |
| static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
 | |
| 
 | |
| static int __init setup_initramfs_file(char *str)
 | |
| {
 | |
| 	if (str == NULL)
 | |
| 		return -EINVAL;
 | |
| 	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
 | |
| 	set_initramfs_file = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("initramfs_file", setup_initramfs_file);
 | |
| 
 | |
| /*
 | |
|  * We look for an "initramfs.cpio.gz" file in the hvfs.
 | |
|  * If there is one, we allocate some memory for it and it will be
 | |
|  * unpacked to the initramfs.
 | |
|  */
 | |
| static void __init load_hv_initrd(void)
 | |
| {
 | |
| 	HV_FS_StatInfo stat;
 | |
| 	int fd, rc;
 | |
| 	void *initrd;
 | |
| 
 | |
| 	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
 | |
| 	if (fd == HV_ENOENT) {
 | |
| 		if (set_initramfs_file)
 | |
| 			pr_warning("No such hvfs initramfs file '%s'\n",
 | |
| 				   initramfs_file);
 | |
| 		return;
 | |
| 	}
 | |
| 	BUG_ON(fd < 0);
 | |
| 	stat = hv_fs_fstat(fd);
 | |
| 	BUG_ON(stat.size < 0);
 | |
| 	if (stat.flags & HV_FS_ISDIR) {
 | |
| 		pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
 | |
| 			   initramfs_file);
 | |
| 		return;
 | |
| 	}
 | |
| 	initrd = alloc_bootmem_pages(stat.size);
 | |
| 	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
 | |
| 	if (rc != stat.size) {
 | |
| 		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
 | |
| 		       stat.size, initramfs_file, rc);
 | |
| 		free_initrd_mem((unsigned long) initrd, stat.size);
 | |
| 		return;
 | |
| 	}
 | |
| 	initrd_start = (unsigned long) initrd;
 | |
| 	initrd_end = initrd_start + stat.size;
 | |
| }
 | |
| 
 | |
| void __init free_initrd_mem(unsigned long begin, unsigned long end)
 | |
| {
 | |
| 	free_bootmem(__pa(begin), end - begin);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void load_hv_initrd(void) {}
 | |
| #endif /* CONFIG_BLK_DEV_INITRD */
 | |
| 
 | |
| static void __init validate_hv(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * It may already be too late, but let's check our built-in
 | |
| 	 * configuration against what the hypervisor is providing.
 | |
| 	 */
 | |
| 	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
 | |
| 	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
 | |
| 	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
 | |
| 	HV_ASIDRange asid_range;
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| 	HV_Topology topology = hv_inquire_topology();
 | |
| 	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
 | |
| 	if (topology.width != 1 || topology.height != 1) {
 | |
| 		pr_warning("Warning: booting UP kernel on %dx%d grid;"
 | |
| 			   " will ignore all but first tile.\n",
 | |
| 			   topology.width, topology.height);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
 | |
| 		early_panic("Hypervisor glue size %ld is too big!\n",
 | |
| 			    glue_size);
 | |
| 	if (hv_page_size != PAGE_SIZE)
 | |
| 		early_panic("Hypervisor page size %#x != our %#lx\n",
 | |
| 			    hv_page_size, PAGE_SIZE);
 | |
| 	if (hv_hpage_size != HPAGE_SIZE)
 | |
| 		early_panic("Hypervisor huge page size %#x != our %#lx\n",
 | |
| 			    hv_hpage_size, HPAGE_SIZE);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * Some hypervisor APIs take a pointer to a bitmap array
 | |
| 	 * whose size is at least the number of cpus on the chip.
 | |
| 	 * We use a struct cpumask for this, so it must be big enough.
 | |
| 	 */
 | |
| 	if ((smp_height * smp_width) > nr_cpu_ids)
 | |
| 		early_panic("Hypervisor %d x %d grid too big for Linux"
 | |
| 			    " NR_CPUS %d\n", smp_height, smp_width,
 | |
| 			    nr_cpu_ids);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that we're using allowed ASIDs, and initialize the
 | |
| 	 * various asid variables to their appropriate initial states.
 | |
| 	 */
 | |
| 	asid_range = hv_inquire_asid(0);
 | |
| 	__get_cpu_var(current_asid) = min_asid = asid_range.start;
 | |
| 	max_asid = asid_range.start + asid_range.size - 1;
 | |
| 
 | |
| 	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
 | |
| 		       sizeof(chip_model)) < 0) {
 | |
| 		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
 | |
| 		strlcpy(chip_model, "unknown", sizeof(chip_model));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init validate_va(void)
 | |
| {
 | |
| #ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
 | |
| 	/*
 | |
| 	 * Similarly, make sure we're only using allowed VAs.
 | |
| 	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
 | |
| 	 * and 0 .. KERNEL_HIGH_VADDR.
 | |
| 	 * In addition, make sure we CAN'T use the end of memory, since
 | |
| 	 * we use the last chunk of each pgd for the pgd_list.
 | |
| 	 */
 | |
| 	int i, user_kernel_ok = 0;
 | |
| 	unsigned long max_va = 0;
 | |
| 	unsigned long list_va =
 | |
| 		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
 | |
| 
 | |
| 	for (i = 0; ; ++i) {
 | |
| 		HV_VirtAddrRange range = hv_inquire_virtual(i);
 | |
| 		if (range.size == 0)
 | |
| 			break;
 | |
| 		if (range.start <= MEM_USER_INTRPT &&
 | |
| 		    range.start + range.size >= MEM_HV_INTRPT)
 | |
| 			user_kernel_ok = 1;
 | |
| 		if (range.start == 0)
 | |
| 			max_va = range.size;
 | |
| 		BUG_ON(range.start + range.size > list_va);
 | |
| 	}
 | |
| 	if (!user_kernel_ok)
 | |
| 		early_panic("Hypervisor not configured for user/kernel VAs\n");
 | |
| 	if (max_va == 0)
 | |
| 		early_panic("Hypervisor not configured for low VAs\n");
 | |
| 	if (max_va < KERNEL_HIGH_VADDR)
 | |
| 		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
 | |
| 			    max_va, KERNEL_HIGH_VADDR);
 | |
| 
 | |
| 	/* Kernel PCs must have their high bit set; see intvec.S. */
 | |
| 	if ((long)VMALLOC_START >= 0)
 | |
| 		early_panic(
 | |
| 			"Linux VMALLOC region below the 2GB line (%#lx)!\n"
 | |
| 			"Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
 | |
| 			"or smaller VMALLOC_RESERVE.\n",
 | |
| 			VMALLOC_START);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpu_lotar_map lists all the cpus that are valid for the supervisor
 | |
|  * to cache data on at a page level, i.e. what cpus can be placed in
 | |
|  * the LOTAR field of a PTE.  It is equivalent to the set of possible
 | |
|  * cpus plus any other cpus that are willing to share their cache.
 | |
|  * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
 | |
|  */
 | |
| struct cpumask __write_once cpu_lotar_map;
 | |
| EXPORT_SYMBOL(cpu_lotar_map);
 | |
| 
 | |
| #if CHIP_HAS_CBOX_HOME_MAP()
 | |
| /*
 | |
|  * hash_for_home_map lists all the tiles that hash-for-home data
 | |
|  * will be cached on.  Note that this may includes tiles that are not
 | |
|  * valid for this supervisor to use otherwise (e.g. if a hypervisor
 | |
|  * device is being shared between multiple supervisors).
 | |
|  * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
 | |
|  */
 | |
| struct cpumask hash_for_home_map;
 | |
| EXPORT_SYMBOL(hash_for_home_map);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
 | |
|  * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
 | |
|  * hash_for_home_map, and it is what should be passed to
 | |
|  * hv_flush_remote() to flush all caches.  Note that if there are
 | |
|  * dedicated hypervisor driver tiles that have authorized use of their
 | |
|  * cache, those tiles will only appear in cpu_lotar_map, NOT in
 | |
|  * cpu_cacheable_map, as they are a special case.
 | |
|  */
 | |
| struct cpumask __write_once cpu_cacheable_map;
 | |
| EXPORT_SYMBOL(cpu_cacheable_map);
 | |
| 
 | |
| static __initdata struct cpumask disabled_map;
 | |
| 
 | |
| static int __init disabled_cpus(char *str)
 | |
| {
 | |
| 	int boot_cpu = smp_processor_id();
 | |
| 
 | |
| 	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
 | |
| 		return -EINVAL;
 | |
| 	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
 | |
| 		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
 | |
| 		cpumask_clear_cpu(boot_cpu, &disabled_map);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| early_param("disabled_cpus", disabled_cpus);
 | |
| 
 | |
| void __init print_disabled_cpus(void)
 | |
| {
 | |
| 	if (!cpumask_empty(&disabled_map)) {
 | |
| 		char buf[100];
 | |
| 		cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
 | |
| 		pr_info("CPUs not available for Linux: %s\n", buf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init setup_cpu_maps(void)
 | |
| {
 | |
| 	struct cpumask hv_disabled_map, cpu_possible_init;
 | |
| 	int boot_cpu = smp_processor_id();
 | |
| 	int cpus, i, rc;
 | |
| 
 | |
| 	/* Learn which cpus are allowed by the hypervisor. */
 | |
| 	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
 | |
| 			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
 | |
| 			      sizeof(cpu_cacheable_map));
 | |
| 	if (rc < 0)
 | |
| 		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
 | |
| 	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
 | |
| 		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
 | |
| 
 | |
| 	/* Compute the cpus disabled by the hvconfig file. */
 | |
| 	cpumask_complement(&hv_disabled_map, &cpu_possible_init);
 | |
| 
 | |
| 	/* Include them with the cpus disabled by "disabled_cpus". */
 | |
| 	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable every cpu after "setup_max_cpus".  But don't mark
 | |
| 	 * as disabled the cpus that are outside of our initial rectangle,
 | |
| 	 * since that turns out to be confusing.
 | |
| 	 */
 | |
| 	cpus = 1;                          /* this cpu */
 | |
| 	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
 | |
| 	for (i = 0; cpus < setup_max_cpus; ++i)
 | |
| 		if (!cpumask_test_cpu(i, &disabled_map))
 | |
| 			++cpus;
 | |
| 	for (; i < smp_height * smp_width; ++i)
 | |
| 		cpumask_set_cpu(i, &disabled_map);
 | |
| 	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
 | |
| 	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
 | |
| 		cpumask_clear_cpu(i, &disabled_map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup cpu_possible map as every cpu allocated to us, minus
 | |
| 	 * the results of any "disabled_cpus" settings.
 | |
| 	 */
 | |
| 	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
 | |
| 	init_cpu_possible(&cpu_possible_init);
 | |
| 
 | |
| 	/* Learn which cpus are valid for LOTAR caching. */
 | |
| 	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
 | |
| 			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
 | |
| 			      sizeof(cpu_lotar_map));
 | |
| 	if (rc < 0) {
 | |
| 		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
 | |
| 		cpu_lotar_map = *cpu_possible_mask;
 | |
| 	}
 | |
| 
 | |
| #if CHIP_HAS_CBOX_HOME_MAP()
 | |
| 	/* Retrieve set of CPUs used for hash-for-home caching */
 | |
| 	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
 | |
| 			      (HV_VirtAddr) hash_for_home_map.bits,
 | |
| 			      sizeof(hash_for_home_map));
 | |
| 	if (rc < 0)
 | |
| 		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
 | |
| 	cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
 | |
| #else
 | |
| 	cpu_cacheable_map = *cpu_possible_mask;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __init dataplane(char *str)
 | |
| {
 | |
| 	pr_warning("WARNING: dataplane support disabled in this kernel\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| early_param("dataplane", dataplane);
 | |
| 
 | |
| #ifdef CONFIG_CMDLINE_BOOL
 | |
| static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 | |
| #endif
 | |
| 
 | |
| void __init setup_arch(char **cmdline_p)
 | |
| {
 | |
| 	int len;
 | |
| 
 | |
| #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
 | |
| 	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
 | |
| 				  COMMAND_LINE_SIZE);
 | |
| 	if (boot_command_line[0])
 | |
| 		pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
 | |
| 			   boot_command_line);
 | |
| 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 | |
| #else
 | |
| 	char *hv_cmdline;
 | |
| #if defined(CONFIG_CMDLINE_BOOL)
 | |
| 	if (builtin_cmdline[0]) {
 | |
| 		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
 | |
| 					  COMMAND_LINE_SIZE);
 | |
| 		if (builtin_len < COMMAND_LINE_SIZE-1)
 | |
| 			boot_command_line[builtin_len++] = ' ';
 | |
| 		hv_cmdline = &boot_command_line[builtin_len];
 | |
| 		len = COMMAND_LINE_SIZE - builtin_len;
 | |
| 	} else
 | |
| #endif
 | |
| 	{
 | |
| 		hv_cmdline = boot_command_line;
 | |
| 		len = COMMAND_LINE_SIZE;
 | |
| 	}
 | |
| 	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
 | |
| 	if (len < 0 || len > COMMAND_LINE_SIZE)
 | |
| 		early_panic("hv_get_command_line failed: %d\n", len);
 | |
| #endif
 | |
| 
 | |
| 	*cmdline_p = boot_command_line;
 | |
| 
 | |
| 	/* Set disabled_map and setup_max_cpus very early */
 | |
| 	parse_early_param();
 | |
| 
 | |
| 	/* Make sure the kernel is compatible with the hypervisor. */
 | |
| 	validate_hv();
 | |
| 	validate_va();
 | |
| 
 | |
| 	setup_cpu_maps();
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 	/*
 | |
| 	 * Initialize the PCI structures.  This is done before memory
 | |
| 	 * setup so that we know whether or not a pci_reserve region
 | |
| 	 * is necessary.
 | |
| 	 */
 | |
| 	if (tile_pci_init() == 0)
 | |
| 		pci_reserve_mb = 0;
 | |
| 
 | |
| 	/* PCI systems reserve a region just below 4GB for mapping iomem. */
 | |
| 	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
 | |
| 	pci_reserve_start_pfn = pci_reserve_end_pfn -
 | |
| 		(pci_reserve_mb << (20 - PAGE_SHIFT));
 | |
| #endif
 | |
| 
 | |
| 	init_mm.start_code = (unsigned long) _text;
 | |
| 	init_mm.end_code = (unsigned long) _etext;
 | |
| 	init_mm.end_data = (unsigned long) _edata;
 | |
| 	init_mm.brk = (unsigned long) _end;
 | |
| 
 | |
| 	setup_memory();
 | |
| 	store_permanent_mappings();
 | |
| 	setup_bootmem_allocator();
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE: before this point _nobody_ is allowed to allocate
 | |
| 	 * any memory using the bootmem allocator.
 | |
| 	 */
 | |
| 
 | |
| 	paging_init();
 | |
| 	setup_numa_mapping();
 | |
| 	zone_sizes_init();
 | |
| 	set_page_homes();
 | |
| 	setup_cpu(1);
 | |
| 	setup_clock();
 | |
| 	load_hv_initrd();
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Set up per-cpu memory.
 | |
|  */
 | |
| 
 | |
| unsigned long __per_cpu_offset[NR_CPUS] __write_once;
 | |
| EXPORT_SYMBOL(__per_cpu_offset);
 | |
| 
 | |
| static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
 | |
| static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
 | |
| 
 | |
| /*
 | |
|  * As the percpu code allocates pages, we return the pages from the
 | |
|  * end of the node for the specified cpu.
 | |
|  */
 | |
| static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
 | |
| {
 | |
| 	int nid = cpu_to_node(cpu);
 | |
| 	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
 | |
| 
 | |
| 	BUG_ON(size % PAGE_SIZE != 0);
 | |
| 	pfn_offset[nid] += size / PAGE_SIZE;
 | |
| 	BUG_ON(node_percpu[nid] < size);
 | |
| 	node_percpu[nid] -= size;
 | |
| 	if (percpu_pfn[cpu] == 0)
 | |
| 		percpu_pfn[cpu] = pfn;
 | |
| 	return pfn_to_kaddr(pfn);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pages reserved for percpu memory are not freeable, and in any case we are
 | |
|  * on a short path to panic() in setup_per_cpu_area() at this point anyway.
 | |
|  */
 | |
| static void __init pcpu_fc_free(void *ptr, size_t size)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up vmalloc page tables using bootmem for the percpu code.
 | |
|  */
 | |
| static void __init pcpu_fc_populate_pte(unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	BUG_ON(pgd_addr_invalid(addr));
 | |
| 	if (addr < VMALLOC_START || addr >= VMALLOC_END)
 | |
| 		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
 | |
| 		      " try increasing CONFIG_VMALLOC_RESERVE\n",
 | |
| 		      addr, VMALLOC_START, VMALLOC_END);
 | |
| 
 | |
| 	pgd = swapper_pg_dir + pgd_index(addr);
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	BUG_ON(!pud_present(*pud));
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_present(*pmd)) {
 | |
| 		BUG_ON(pmd_huge_page(*pmd));
 | |
| 	} else {
 | |
| 		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
 | |
| 				      HV_PAGE_TABLE_ALIGN, 0);
 | |
| 		pmd_populate_kernel(&init_mm, pmd, pte);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init setup_per_cpu_areas(void)
 | |
| {
 | |
| 	struct page *pg;
 | |
| 	unsigned long delta, pfn, lowmem_va;
 | |
| 	unsigned long size = percpu_size();
 | |
| 	char *ptr;
 | |
| 	int rc, cpu, i;
 | |
| 
 | |
| 	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
 | |
| 				   pcpu_fc_free, pcpu_fc_populate_pte);
 | |
| 	if (rc < 0)
 | |
| 		panic("Cannot initialize percpu area (err=%d)", rc);
 | |
| 
 | |
| 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
 | |
| 
 | |
| 		/* finv the copy out of cache so we can change homecache */
 | |
| 		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
 | |
| 		__finv_buffer(ptr, size);
 | |
| 		pfn = percpu_pfn[cpu];
 | |
| 
 | |
| 		/* Rewrite the page tables to cache on that cpu */
 | |
| 		pg = pfn_to_page(pfn);
 | |
| 		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
 | |
| 
 | |
| 			/* Update the vmalloc mapping and page home. */
 | |
| 			unsigned long addr = (unsigned long)ptr + i;
 | |
| 			pte_t *ptep = virt_to_pte(NULL, addr);
 | |
| 			pte_t pte = *ptep;
 | |
| 			BUG_ON(pfn != pte_pfn(pte));
 | |
| 			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
 | |
| 			pte = set_remote_cache_cpu(pte, cpu);
 | |
| 			set_pte_at(&init_mm, addr, ptep, pte);
 | |
| 
 | |
| 			/* Update the lowmem mapping for consistency. */
 | |
| 			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
 | |
| 			ptep = virt_to_pte(NULL, lowmem_va);
 | |
| 			if (pte_huge(*ptep)) {
 | |
| 				printk(KERN_DEBUG "early shatter of huge page"
 | |
| 				       " at %#lx\n", lowmem_va);
 | |
| 				shatter_pmd((pmd_t *)ptep);
 | |
| 				ptep = virt_to_pte(NULL, lowmem_va);
 | |
| 				BUG_ON(pte_huge(*ptep));
 | |
| 			}
 | |
| 			BUG_ON(pfn != pte_pfn(*ptep));
 | |
| 			set_pte_at(&init_mm, lowmem_va, ptep, pte);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set our thread pointer appropriately. */
 | |
| 	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
 | |
| 
 | |
| 	/* Make sure the finv's have completed. */
 | |
| 	mb_incoherent();
 | |
| 
 | |
| 	/* Flush the TLB so we reference it properly from here on out. */
 | |
| 	local_flush_tlb_all();
 | |
| }
 | |
| 
 | |
| static struct resource data_resource = {
 | |
| 	.name	= "Kernel data",
 | |
| 	.start	= 0,
 | |
| 	.end	= 0,
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 | |
| };
 | |
| 
 | |
| static struct resource code_resource = {
 | |
| 	.name	= "Kernel code",
 | |
| 	.start	= 0,
 | |
| 	.end	= 0,
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * We reserve all resources above 4GB so that PCI won't try to put
 | |
|  * mappings above 4GB; the standard allows that for some devices but
 | |
|  * the probing code trunates values to 32 bits.
 | |
|  */
 | |
| #ifdef CONFIG_PCI
 | |
| static struct resource* __init
 | |
| insert_non_bus_resource(void)
 | |
| {
 | |
| 	struct resource *res =
 | |
| 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
 | |
| 	res->name = "Non-Bus Physical Address Space";
 | |
| 	res->start = (1ULL << 32);
 | |
| 	res->end = -1LL;
 | |
| 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
 | |
| 	if (insert_resource(&iomem_resource, res)) {
 | |
| 		kfree(res);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct resource* __init
 | |
| insert_ram_resource(u64 start_pfn, u64 end_pfn)
 | |
| {
 | |
| 	struct resource *res =
 | |
| 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
 | |
| 	res->name = "System RAM";
 | |
| 	res->start = start_pfn << PAGE_SHIFT;
 | |
| 	res->end = (end_pfn << PAGE_SHIFT) - 1;
 | |
| 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
 | |
| 	if (insert_resource(&iomem_resource, res)) {
 | |
| 		kfree(res);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Request address space for all standard resources
 | |
|  *
 | |
|  * If the system includes PCI root complex drivers, we need to create
 | |
|  * a window just below 4GB where PCI BARs can be mapped.
 | |
|  */
 | |
| static int __init request_standard_resources(void)
 | |
| {
 | |
| 	int i;
 | |
| 	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
 | |
| 
 | |
| 	iomem_resource.end = -1LL;
 | |
| #ifdef CONFIG_PCI
 | |
| 	insert_non_bus_resource();
 | |
| #endif
 | |
| 
 | |
| 	for_each_online_node(i) {
 | |
| 		u64 start_pfn = node_start_pfn[i];
 | |
| 		u64 end_pfn = node_end_pfn[i];
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 		if (start_pfn <= pci_reserve_start_pfn &&
 | |
| 		    end_pfn > pci_reserve_start_pfn) {
 | |
| 			if (end_pfn > pci_reserve_end_pfn)
 | |
| 				insert_ram_resource(pci_reserve_end_pfn,
 | |
| 						     end_pfn);
 | |
| 			end_pfn = pci_reserve_start_pfn;
 | |
| 		}
 | |
| #endif
 | |
| 		insert_ram_resource(start_pfn, end_pfn);
 | |
| 	}
 | |
| 
 | |
| 	code_resource.start = __pa(_text - CODE_DELTA);
 | |
| 	code_resource.end = __pa(_etext - CODE_DELTA)-1;
 | |
| 	data_resource.start = __pa(_sdata);
 | |
| 	data_resource.end = __pa(_end)-1;
 | |
| 
 | |
| 	insert_resource(&iomem_resource, &code_resource);
 | |
| 	insert_resource(&iomem_resource, &data_resource);
 | |
| 
 | |
| #ifdef CONFIG_KEXEC
 | |
| 	insert_resource(&iomem_resource, &crashk_res);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| subsys_initcall(request_standard_resources);
 |