 05ef1b79d4
			
		
	
	
	05ef1b79d4
	
	
	
		
			
			They were marked __devinit by mistake, causing some warnings at link time. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
		
			
				
	
	
		
			632 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			632 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2011 Tilera Corporation. All Rights Reserved.
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful, but
 | |
|  *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *   NON INFRINGEMENT.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/export.h>
 | |
| 
 | |
| #include <asm/processor.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <asm/hv_driver.h>
 | |
| #include <hv/drv_pcie_rc_intf.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Initialization flow and process
 | |
|  * -------------------------------
 | |
|  *
 | |
|  * This files contains the routines to search for PCI buses,
 | |
|  * enumerate the buses, and configure any attached devices.
 | |
|  *
 | |
|  * There are two entry points here:
 | |
|  * 1) tile_pci_init
 | |
|  *    This sets up the pci_controller structs, and opens the
 | |
|  *    FDs to the hypervisor.  This is called from setup_arch() early
 | |
|  *    in the boot process.
 | |
|  * 2) pcibios_init
 | |
|  *    This probes the PCI bus(es) for any attached hardware.  It's
 | |
|  *    called by subsys_initcall.  All of the real work is done by the
 | |
|  *    generic Linux PCI layer.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This flag tells if the platform is TILEmpower that needs
 | |
|  * special configuration for the PLX switch chip.
 | |
|  */
 | |
| int __write_once tile_plx_gen1;
 | |
| 
 | |
| static struct pci_controller controllers[TILE_NUM_PCIE];
 | |
| static int num_controllers;
 | |
| static int pci_scan_flags[TILE_NUM_PCIE];
 | |
| 
 | |
| static struct pci_ops tile_cfg_ops;
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * We don't need to worry about the alignment of resources.
 | |
|  */
 | |
| resource_size_t pcibios_align_resource(void *data, const struct resource *res,
 | |
| 			    resource_size_t size, resource_size_t align)
 | |
| {
 | |
| 	return res->start;
 | |
| }
 | |
| EXPORT_SYMBOL(pcibios_align_resource);
 | |
| 
 | |
| /*
 | |
|  * Open a FD to the hypervisor PCI device.
 | |
|  *
 | |
|  * controller_id is the controller number, config type is 0 or 1 for
 | |
|  * config0 or config1 operations.
 | |
|  */
 | |
| static int __devinit tile_pcie_open(int controller_id, int config_type)
 | |
| {
 | |
| 	char filename[32];
 | |
| 	int fd;
 | |
| 
 | |
| 	sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
 | |
| 
 | |
| 	fd = hv_dev_open((HV_VirtAddr)filename, 0);
 | |
| 
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Get the IRQ numbers from the HV and set up the handlers for them.
 | |
|  */
 | |
| static int __devinit tile_init_irqs(int controller_id,
 | |
| 				 struct pci_controller *controller)
 | |
| {
 | |
| 	char filename[32];
 | |
| 	int fd;
 | |
| 	int ret;
 | |
| 	int x;
 | |
| 	struct pcie_rc_config rc_config;
 | |
| 
 | |
| 	sprintf(filename, "pcie/%d/ctl", controller_id);
 | |
| 	fd = hv_dev_open((HV_VirtAddr)filename, 0);
 | |
| 	if (fd < 0) {
 | |
| 		pr_err("PCI: hv_dev_open(%s) failed\n", filename);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
 | |
| 			   sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
 | |
| 	hv_dev_close(fd);
 | |
| 	if (ret != sizeof(rc_config)) {
 | |
| 		pr_err("PCI: wanted %zd bytes, got %d\n",
 | |
| 		       sizeof(rc_config), ret);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	/* Record irq_base so that we can map INTx to IRQ # later. */
 | |
| 	controller->irq_base = rc_config.intr;
 | |
| 
 | |
| 	for (x = 0; x < 4; x++)
 | |
| 		tile_irq_activate(rc_config.intr + x,
 | |
| 				  TILE_IRQ_HW_CLEAR);
 | |
| 
 | |
| 	if (rc_config.plx_gen1)
 | |
| 		controller->plx_gen1 = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * First initialization entry point, called from setup_arch().
 | |
|  *
 | |
|  * Find valid controllers and fill in pci_controller structs for each
 | |
|  * of them.
 | |
|  *
 | |
|  * Returns the number of controllers discovered.
 | |
|  */
 | |
| int __init tile_pci_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pr_info("PCI: Searching for controllers...\n");
 | |
| 
 | |
| 	/* Re-init number of PCIe controllers to support hot-plug feature. */
 | |
| 	num_controllers = 0;
 | |
| 
 | |
| 	/* Do any configuration we need before using the PCIe */
 | |
| 
 | |
| 	for (i = 0; i < TILE_NUM_PCIE; i++) {
 | |
| 		/*
 | |
| 		 * To see whether we need a real config op based on
 | |
| 		 * the results of pcibios_init(), to support PCIe hot-plug.
 | |
| 		 */
 | |
| 		if (pci_scan_flags[i] == 0) {
 | |
| 			int hv_cfg_fd0 = -1;
 | |
| 			int hv_cfg_fd1 = -1;
 | |
| 			int hv_mem_fd = -1;
 | |
| 			char name[32];
 | |
| 			struct pci_controller *controller;
 | |
| 
 | |
| 			/*
 | |
| 			 * Open the fd to the HV.  If it fails then this
 | |
| 			 * device doesn't exist.
 | |
| 			 */
 | |
| 			hv_cfg_fd0 = tile_pcie_open(i, 0);
 | |
| 			if (hv_cfg_fd0 < 0)
 | |
| 				continue;
 | |
| 			hv_cfg_fd1 = tile_pcie_open(i, 1);
 | |
| 			if (hv_cfg_fd1 < 0) {
 | |
| 				pr_err("PCI: Couldn't open config fd to HV "
 | |
| 				    "for controller %d\n", i);
 | |
| 				goto err_cont;
 | |
| 			}
 | |
| 
 | |
| 			sprintf(name, "pcie/%d/mem", i);
 | |
| 			hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
 | |
| 			if (hv_mem_fd < 0) {
 | |
| 				pr_err("PCI: Could not open mem fd to HV!\n");
 | |
| 				goto err_cont;
 | |
| 			}
 | |
| 
 | |
| 			pr_info("PCI: Found PCI controller #%d\n", i);
 | |
| 
 | |
| 			controller = &controllers[i];
 | |
| 
 | |
| 			controller->index = i;
 | |
| 			controller->hv_cfg_fd[0] = hv_cfg_fd0;
 | |
| 			controller->hv_cfg_fd[1] = hv_cfg_fd1;
 | |
| 			controller->hv_mem_fd = hv_mem_fd;
 | |
| 			controller->first_busno = 0;
 | |
| 			controller->last_busno = 0xff;
 | |
| 			controller->ops = &tile_cfg_ops;
 | |
| 
 | |
| 			num_controllers++;
 | |
| 			continue;
 | |
| 
 | |
| err_cont:
 | |
| 			if (hv_cfg_fd0 >= 0)
 | |
| 				hv_dev_close(hv_cfg_fd0);
 | |
| 			if (hv_cfg_fd1 >= 0)
 | |
| 				hv_dev_close(hv_cfg_fd1);
 | |
| 			if (hv_mem_fd >= 0)
 | |
| 				hv_dev_close(hv_mem_fd);
 | |
| 			continue;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Before using the PCIe, see if we need to do any platform-specific
 | |
| 	 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
 | |
| 	 */
 | |
| 	for (i = 0; i < num_controllers; i++) {
 | |
| 		struct pci_controller *controller = &controllers[i];
 | |
| 
 | |
| 		if (controller->plx_gen1)
 | |
| 			tile_plx_gen1 = 1;
 | |
| 	}
 | |
| 
 | |
| 	return num_controllers;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * (pin - 1) converts from the PCI standard's [1:4] convention to
 | |
|  * a normal [0:3] range.
 | |
|  */
 | |
| static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
 | |
| {
 | |
| 	struct pci_controller *controller =
 | |
| 		(struct pci_controller *)dev->sysdata;
 | |
| 	return (pin - 1) + controller->irq_base;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __devinit fixup_read_and_payload_sizes(void)
 | |
| {
 | |
| 	struct pci_dev *dev = NULL;
 | |
| 	int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
 | |
| 	int max_read_size = 0x2; /* Limit to 512 byte reads. */
 | |
| 	u16 new_values;
 | |
| 
 | |
| 	/* Scan for the smallest maximum payload size. */
 | |
| 	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
 | |
| 		int pcie_caps_offset;
 | |
| 		u32 devcap;
 | |
| 		int max_payload;
 | |
| 
 | |
| 		pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
 | |
| 		if (pcie_caps_offset == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP,
 | |
| 				      &devcap);
 | |
| 		max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
 | |
| 		if (max_payload < smallest_max_payload)
 | |
| 			smallest_max_payload = max_payload;
 | |
| 	}
 | |
| 
 | |
| 	/* Now, set the max_payload_size for all devices to that value. */
 | |
| 	new_values = (max_read_size << 12) | (smallest_max_payload << 5);
 | |
| 	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
 | |
| 		int pcie_caps_offset;
 | |
| 		u16 devctl;
 | |
| 
 | |
| 		pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
 | |
| 		if (pcie_caps_offset == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
 | |
| 				     &devctl);
 | |
| 		devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ);
 | |
| 		devctl |= new_values;
 | |
| 		pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
 | |
| 				      devctl);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Second PCI initialization entry point, called by subsys_initcall.
 | |
|  *
 | |
|  * The controllers have been set up by the time we get here, by a call to
 | |
|  * tile_pci_init.
 | |
|  */
 | |
| int __init pcibios_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pr_info("PCI: Probing PCI hardware\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Delay a bit in case devices aren't ready.  Some devices are
 | |
| 	 * known to require at least 20ms here, but we use a more
 | |
| 	 * conservative value.
 | |
| 	 */
 | |
| 	mdelay(250);
 | |
| 
 | |
| 	/* Scan all of the recorded PCI controllers.  */
 | |
| 	for (i = 0; i < TILE_NUM_PCIE; i++) {
 | |
| 		/*
 | |
| 		 * Do real pcibios init ops if the controller is initialized
 | |
| 		 * by tile_pci_init() successfully and not initialized by
 | |
| 		 * pcibios_init() yet to support PCIe hot-plug.
 | |
| 		 */
 | |
| 		if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
 | |
| 			struct pci_controller *controller = &controllers[i];
 | |
| 			struct pci_bus *bus;
 | |
| 
 | |
| 			if (tile_init_irqs(i, controller)) {
 | |
| 				pr_err("PCI: Could not initialize IRQs\n");
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			pr_info("PCI: initializing controller #%d\n", i);
 | |
| 
 | |
| 			/*
 | |
| 			 * This comes from the generic Linux PCI driver.
 | |
| 			 *
 | |
| 			 * It reads the PCI tree for this bus into the Linux
 | |
| 			 * data structures.
 | |
| 			 *
 | |
| 			 * This is inlined in linux/pci.h and calls into
 | |
| 			 * pci_scan_bus_parented() in probe.c.
 | |
| 			 */
 | |
| 			bus = pci_scan_bus(0, controller->ops, controller);
 | |
| 			controller->root_bus = bus;
 | |
| 			controller->last_busno = bus->subordinate;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Do machine dependent PCI interrupt routing */
 | |
| 	pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
 | |
| 
 | |
| 	/*
 | |
| 	 * This comes from the generic Linux PCI driver.
 | |
| 	 *
 | |
| 	 * It allocates all of the resources (I/O memory, etc)
 | |
| 	 * associated with the devices read in above.
 | |
| 	 */
 | |
| 	pci_assign_unassigned_resources();
 | |
| 
 | |
| 	/* Configure the max_read_size and max_payload_size values. */
 | |
| 	fixup_read_and_payload_sizes();
 | |
| 
 | |
| 	/* Record the I/O resources in the PCI controller structure. */
 | |
| 	for (i = 0; i < TILE_NUM_PCIE; i++) {
 | |
| 		/*
 | |
| 		 * Do real pcibios init ops if the controller is initialized
 | |
| 		 * by tile_pci_init() successfully and not initialized by
 | |
| 		 * pcibios_init() yet to support PCIe hot-plug.
 | |
| 		 */
 | |
| 		if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
 | |
| 			struct pci_bus *root_bus = controllers[i].root_bus;
 | |
| 			struct pci_bus *next_bus;
 | |
| 			struct pci_dev *dev;
 | |
| 
 | |
| 			list_for_each_entry(dev, &root_bus->devices, bus_list) {
 | |
| 				/*
 | |
| 				 * Find the PCI host controller, ie. the 1st
 | |
| 				 * bridge.
 | |
| 				 */
 | |
| 				if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
 | |
| 					(PCI_SLOT(dev->devfn) == 0)) {
 | |
| 					next_bus = dev->subordinate;
 | |
| 					controllers[i].mem_resources[0] =
 | |
| 						*next_bus->resource[0];
 | |
| 					controllers[i].mem_resources[1] =
 | |
| 						 *next_bus->resource[1];
 | |
| 					controllers[i].mem_resources[2] =
 | |
| 						 *next_bus->resource[2];
 | |
| 
 | |
| 					/* Setup flags. */
 | |
| 					pci_scan_flags[i] = 1;
 | |
| 
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(pcibios_init);
 | |
| 
 | |
| /*
 | |
|  * No bus fixups needed.
 | |
|  */
 | |
| void __devinit pcibios_fixup_bus(struct pci_bus *bus)
 | |
| {
 | |
| 	/* Nothing needs to be done. */
 | |
| }
 | |
| 
 | |
| void pcibios_set_master(struct pci_dev *dev)
 | |
| {
 | |
| 	/* No special bus mastering setup handling. */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This can be called from the generic PCI layer, but doesn't need to
 | |
|  * do anything.
 | |
|  */
 | |
| char __devinit *pcibios_setup(char *str)
 | |
| {
 | |
| 	/* Nothing needs to be done. */
 | |
| 	return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called from the generic Linux layer.
 | |
|  */
 | |
| void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
 | |
| {
 | |
| 	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable memory and/or address decoding, as appropriate, for the
 | |
|  * device described by the 'dev' struct.
 | |
|  *
 | |
|  * This is called from the generic PCI layer, and can be called
 | |
|  * for bridges or endpoints.
 | |
|  */
 | |
| int pcibios_enable_device(struct pci_dev *dev, int mask)
 | |
| {
 | |
| 	u16 cmd, old_cmd;
 | |
| 	u8 header_type;
 | |
| 	int i;
 | |
| 	struct resource *r;
 | |
| 
 | |
| 	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
 | |
| 
 | |
| 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
 | |
| 	old_cmd = cmd;
 | |
| 	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 | |
| 		/*
 | |
| 		 * For bridges, we enable both memory and I/O decoding
 | |
| 		 * in call cases.
 | |
| 		 */
 | |
| 		cmd |= PCI_COMMAND_IO;
 | |
| 		cmd |= PCI_COMMAND_MEMORY;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * For endpoints, we enable memory and/or I/O decoding
 | |
| 		 * only if they have a memory resource of that type.
 | |
| 		 */
 | |
| 		for (i = 0; i < 6; i++) {
 | |
| 			r = &dev->resource[i];
 | |
| 			if (r->flags & IORESOURCE_UNSET) {
 | |
| 				pr_err("PCI: Device %s not available "
 | |
| 				       "because of resource collisions\n",
 | |
| 				       pci_name(dev));
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			if (r->flags & IORESOURCE_IO)
 | |
| 				cmd |= PCI_COMMAND_IO;
 | |
| 			if (r->flags & IORESOURCE_MEM)
 | |
| 				cmd |= PCI_COMMAND_MEMORY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We only write the command if it changed.
 | |
| 	 */
 | |
| 	if (cmd != old_cmd)
 | |
| 		pci_write_config_word(dev, PCI_COMMAND, cmd);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /****************************************************************
 | |
|  *
 | |
|  * Tile PCI config space read/write routines
 | |
|  *
 | |
|  ****************************************************************/
 | |
| 
 | |
| /*
 | |
|  * These are the normal read and write ops
 | |
|  * These are expanded with macros from  pci_bus_read_config_byte() etc.
 | |
|  *
 | |
|  * devfn is the combined PCI slot & function.
 | |
|  *
 | |
|  * offset is in bytes, from the start of config space for the
 | |
|  * specified bus & slot.
 | |
|  */
 | |
| 
 | |
| static int __devinit tile_cfg_read(struct pci_bus *bus,
 | |
| 				   unsigned int devfn,
 | |
| 				   int offset,
 | |
| 				   int size,
 | |
| 				   u32 *val)
 | |
| {
 | |
| 	struct pci_controller *controller = bus->sysdata;
 | |
| 	int busnum = bus->number & 0xff;
 | |
| 	int slot = (devfn >> 3) & 0x1f;
 | |
| 	int function = devfn & 0x7;
 | |
| 	u32 addr;
 | |
| 	int config_mode = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no bridge between the Tile and bus 0, so we
 | |
| 	 * use config0 to talk to bus 0.
 | |
| 	 *
 | |
| 	 * If we're talking to a bus other than zero then we
 | |
| 	 * must have found a bridge.
 | |
| 	 */
 | |
| 	if (busnum == 0) {
 | |
| 		/*
 | |
| 		 * We fake an empty slot for (busnum == 0) && (slot > 0),
 | |
| 		 * since there is only one slot on bus 0.
 | |
| 		 */
 | |
| 		if (slot) {
 | |
| 			*val = 0xFFFFFFFF;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		config_mode = 0;
 | |
| 	}
 | |
| 
 | |
| 	addr = busnum << 20;		/* Bus in 27:20 */
 | |
| 	addr |= slot << 15;		/* Slot (device) in 19:15 */
 | |
| 	addr |= function << 12;		/* Function is in 14:12 */
 | |
| 	addr |= (offset & 0xFFF);	/* byte address in 0:11 */
 | |
| 
 | |
| 	return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
 | |
| 			    (HV_VirtAddr)(val), size, addr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * See tile_cfg_read() for relevant comments.
 | |
|  * Note that "val" is the value to write, not a pointer to that value.
 | |
|  */
 | |
| static int __devinit tile_cfg_write(struct pci_bus *bus,
 | |
| 				    unsigned int devfn,
 | |
| 				    int offset,
 | |
| 				    int size,
 | |
| 				    u32 val)
 | |
| {
 | |
| 	struct pci_controller *controller = bus->sysdata;
 | |
| 	int busnum = bus->number & 0xff;
 | |
| 	int slot = (devfn >> 3) & 0x1f;
 | |
| 	int function = devfn & 0x7;
 | |
| 	u32 addr;
 | |
| 	int config_mode = 1;
 | |
| 	HV_VirtAddr valp = (HV_VirtAddr)&val;
 | |
| 
 | |
| 	/*
 | |
| 	 * For bus 0 slot 0 we use config 0 accesses.
 | |
| 	 */
 | |
| 	if (busnum == 0) {
 | |
| 		/*
 | |
| 		 * We fake an empty slot for (busnum == 0) && (slot > 0),
 | |
| 		 * since there is only one slot on bus 0.
 | |
| 		 */
 | |
| 		if (slot)
 | |
| 			return 0;
 | |
| 		config_mode = 0;
 | |
| 	}
 | |
| 
 | |
| 	addr = busnum << 20;		/* Bus in 27:20 */
 | |
| 	addr |= slot << 15;		/* Slot (device) in 19:15 */
 | |
| 	addr |= function << 12;		/* Function is in 14:12 */
 | |
| 	addr |= (offset & 0xFFF);	/* byte address in 0:11 */
 | |
| 
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	/* Point to the correct part of the 32-bit "val". */
 | |
| 	valp += 4 - size;
 | |
| #endif
 | |
| 
 | |
| 	return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
 | |
| 			     valp, size, addr);
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct pci_ops tile_cfg_ops = {
 | |
| 	.read =         tile_cfg_read,
 | |
| 	.write =        tile_cfg_write,
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * In the following, each PCI controller's mem_resources[1]
 | |
|  * represents its (non-prefetchable) PCI memory resource.
 | |
|  * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
 | |
|  * prefetchable PCI memory resources, respectively.
 | |
|  * For more details, see pci_setup_bridge() in setup-bus.c.
 | |
|  * By comparing the target PCI memory address against the
 | |
|  * end address of controller 0, we can determine the controller
 | |
|  * that should accept the PCI memory access.
 | |
|  */
 | |
| #define TILE_READ(size, type)						\
 | |
| type _tile_read##size(unsigned long addr)				\
 | |
| {									\
 | |
| 	type val;							\
 | |
| 	int idx = 0;							\
 | |
| 	if (addr > controllers[0].mem_resources[1].end &&		\
 | |
| 	    addr > controllers[0].mem_resources[2].end)			\
 | |
| 		idx = 1;                                                \
 | |
| 	if (hv_dev_pread(controllers[idx].hv_mem_fd, 0,			\
 | |
| 			 (HV_VirtAddr)(&val), sizeof(type), addr))	\
 | |
| 		pr_err("PCI: read %zd bytes at 0x%lX failed\n",		\
 | |
| 		       sizeof(type), addr);				\
 | |
| 	return val;							\
 | |
| }									\
 | |
| EXPORT_SYMBOL(_tile_read##size)
 | |
| 
 | |
| TILE_READ(b, u8);
 | |
| TILE_READ(w, u16);
 | |
| TILE_READ(l, u32);
 | |
| TILE_READ(q, u64);
 | |
| 
 | |
| #define TILE_WRITE(size, type)						\
 | |
| void _tile_write##size(type val, unsigned long addr)			\
 | |
| {									\
 | |
| 	int idx = 0;							\
 | |
| 	if (addr > controllers[0].mem_resources[1].end &&		\
 | |
| 	    addr > controllers[0].mem_resources[2].end)			\
 | |
| 		idx = 1;                                                \
 | |
| 	if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0,		\
 | |
| 			  (HV_VirtAddr)(&val), sizeof(type), addr))	\
 | |
| 		pr_err("PCI: write %zd bytes at 0x%lX failed\n",	\
 | |
| 		       sizeof(type), addr);				\
 | |
| }									\
 | |
| EXPORT_SYMBOL(_tile_write##size)
 | |
| 
 | |
| TILE_WRITE(b, u8);
 | |
| TILE_WRITE(w, u16);
 | |
| TILE_WRITE(l, u32);
 | |
| TILE_WRITE(q, u64);
 |