 3989efb770
			
		
	
	
	3989efb770
	
	
	
		
			
			The empty_zero_page[] export is required for ZERO_PAGE() module references. The #includes are due to changes in implicit inclusion, and should of course have been in the sources from the beginning. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
		
			
				
	
	
		
			252 lines
		
	
	
	
		
			6.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			252 lines
		
	
	
	
		
			6.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2010 Tilera Corporation. All Rights Reserved.
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful, but
 | |
|  *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *   NON INFRINGEMENT.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/export.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/homecache.h>
 | |
| 
 | |
| /* Generic DMA mapping functions: */
 | |
| 
 | |
| /*
 | |
|  * Allocate what Linux calls "coherent" memory, which for us just
 | |
|  * means uncached.
 | |
|  */
 | |
| void *dma_alloc_coherent(struct device *dev,
 | |
| 			 size_t size,
 | |
| 			 dma_addr_t *dma_handle,
 | |
| 			 gfp_t gfp)
 | |
| {
 | |
| 	u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
 | |
| 	int node = dev_to_node(dev);
 | |
| 	int order = get_order(size);
 | |
| 	struct page *pg;
 | |
| 	dma_addr_t addr;
 | |
| 
 | |
| 	gfp |= __GFP_ZERO;
 | |
| 
 | |
| 	/*
 | |
| 	 * By forcing NUMA node 0 for 32-bit masks we ensure that the
 | |
| 	 * high 32 bits of the resulting PA will be zero.  If the mask
 | |
| 	 * size is, e.g., 24, we may still not be able to guarantee a
 | |
| 	 * suitable memory address, in which case we will return NULL.
 | |
| 	 * But such devices are uncommon.
 | |
| 	 */
 | |
| 	if (dma_mask <= DMA_BIT_MASK(32))
 | |
| 		node = 0;
 | |
| 
 | |
| 	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
 | |
| 	if (pg == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	addr = page_to_phys(pg);
 | |
| 	if (addr + size > dma_mask) {
 | |
| 		homecache_free_pages(addr, order);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	*dma_handle = addr;
 | |
| 	return page_address(pg);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_alloc_coherent);
 | |
| 
 | |
| /*
 | |
|  * Free memory that was allocated with dma_alloc_coherent.
 | |
|  */
 | |
| void dma_free_coherent(struct device *dev, size_t size,
 | |
| 		  void *vaddr, dma_addr_t dma_handle)
 | |
| {
 | |
| 	homecache_free_pages((unsigned long)vaddr, get_order(size));
 | |
| }
 | |
| EXPORT_SYMBOL(dma_free_coherent);
 | |
| 
 | |
| /*
 | |
|  * The map routines "map" the specified address range for DMA
 | |
|  * accesses.  The memory belongs to the device after this call is
 | |
|  * issued, until it is unmapped with dma_unmap_single.
 | |
|  *
 | |
|  * We don't need to do any mapping, we just flush the address range
 | |
|  * out of the cache and return a DMA address.
 | |
|  *
 | |
|  * The unmap routines do whatever is necessary before the processor
 | |
|  * accesses the memory again, and must be called before the driver
 | |
|  * touches the memory.  We can get away with a cache invalidate if we
 | |
|  * can count on nothing having been touched.
 | |
|  */
 | |
| 
 | |
| /* Flush a PA range from cache page by page. */
 | |
| static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size)
 | |
| {
 | |
| 	struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
 | |
| 	size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1));
 | |
| 
 | |
| 	while ((ssize_t)size > 0) {
 | |
| 		/* Flush the page. */
 | |
| 		homecache_flush_cache(page++, 0);
 | |
| 
 | |
| 		/* Figure out if we need to continue on the next page. */
 | |
| 		size -= bytesleft;
 | |
| 		bytesleft = PAGE_SIZE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dma_map_single can be passed any memory address, and there appear
 | |
|  * to be no alignment constraints.
 | |
|  *
 | |
|  * There is a chance that the start of the buffer will share a cache
 | |
|  * line with some other data that has been touched in the meantime.
 | |
|  */
 | |
| dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
 | |
| 	       enum dma_data_direction direction)
 | |
| {
 | |
| 	dma_addr_t dma_addr = __pa(ptr);
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(direction));
 | |
| 	WARN_ON(size == 0);
 | |
| 
 | |
| 	__dma_map_pa_range(dma_addr, size);
 | |
| 
 | |
| 	return dma_addr;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_map_single);
 | |
| 
 | |
| void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
 | |
| 		 enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(!valid_dma_direction(direction));
 | |
| }
 | |
| EXPORT_SYMBOL(dma_unmap_single);
 | |
| 
 | |
| int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
 | |
| 	   enum dma_data_direction direction)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(direction));
 | |
| 
 | |
| 	WARN_ON(nents == 0 || sglist->length == 0);
 | |
| 
 | |
| 	for_each_sg(sglist, sg, nents, i) {
 | |
| 		sg->dma_address = sg_phys(sg);
 | |
| 		__dma_map_pa_range(sg->dma_address, sg->length);
 | |
| 	}
 | |
| 
 | |
| 	return nents;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_map_sg);
 | |
| 
 | |
| void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
 | |
| 	     enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(!valid_dma_direction(direction));
 | |
| }
 | |
| EXPORT_SYMBOL(dma_unmap_sg);
 | |
| 
 | |
| dma_addr_t dma_map_page(struct device *dev, struct page *page,
 | |
| 			unsigned long offset, size_t size,
 | |
| 			enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(!valid_dma_direction(direction));
 | |
| 
 | |
| 	BUG_ON(offset + size > PAGE_SIZE);
 | |
| 	homecache_flush_cache(page, 0);
 | |
| 
 | |
| 	return page_to_pa(page) + offset;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_map_page);
 | |
| 
 | |
| void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
 | |
| 	       enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(!valid_dma_direction(direction));
 | |
| }
 | |
| EXPORT_SYMBOL(dma_unmap_page);
 | |
| 
 | |
| void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
 | |
| 			     size_t size, enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(!valid_dma_direction(direction));
 | |
| }
 | |
| EXPORT_SYMBOL(dma_sync_single_for_cpu);
 | |
| 
 | |
| void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
 | |
| 				size_t size, enum dma_data_direction direction)
 | |
| {
 | |
| 	unsigned long start = PFN_DOWN(dma_handle);
 | |
| 	unsigned long end = PFN_DOWN(dma_handle + size - 1);
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(direction));
 | |
| 	for (i = start; i <= end; ++i)
 | |
| 		homecache_flush_cache(pfn_to_page(i), 0);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_sync_single_for_device);
 | |
| 
 | |
| void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
 | |
| 		    enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(!valid_dma_direction(direction));
 | |
| 	WARN_ON(nelems == 0 || sg[0].length == 0);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_sync_sg_for_cpu);
 | |
| 
 | |
| /*
 | |
|  * Flush and invalidate cache for scatterlist.
 | |
|  */
 | |
| void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
 | |
| 			    int nelems, enum dma_data_direction direction)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(!valid_dma_direction(direction));
 | |
| 	WARN_ON(nelems == 0 || sglist->length == 0);
 | |
| 
 | |
| 	for_each_sg(sglist, sg, nelems, i) {
 | |
| 		dma_sync_single_for_device(dev, sg->dma_address,
 | |
| 					   sg_dma_len(sg), direction);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(dma_sync_sg_for_device);
 | |
| 
 | |
| void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
 | |
| 				   unsigned long offset, size_t size,
 | |
| 				   enum dma_data_direction direction)
 | |
| {
 | |
| 	dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
 | |
| 
 | |
| void dma_sync_single_range_for_device(struct device *dev,
 | |
| 				      dma_addr_t dma_handle,
 | |
| 				      unsigned long offset, size_t size,
 | |
| 				      enum dma_data_direction direction)
 | |
| {
 | |
| 	dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_sync_single_range_for_device);
 | |
| 
 | |
| /*
 | |
|  * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
 | |
|  * need to do any flushing here.
 | |
|  */
 | |
| void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 | |
| 		    enum dma_data_direction direction)
 | |
| {
 | |
| }
 | |
| EXPORT_SYMBOL(dma_cache_sync);
 |