 4b16f8e2d6
			
		
	
	
	4b16f8e2d6
	
	
	
		
			
			All these files were including module.h just for the basic EXPORT_SYMBOL infrastructure. We can shift them off to the export.h header which is a way smaller footprint and thus realize some compile time gains. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
		
			
				
	
	
		
			734 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			734 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * address space "slices" (meta-segments) support
 | |
|  *
 | |
|  * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
 | |
|  *
 | |
|  * Based on hugetlb implementation
 | |
|  *
 | |
|  * Copyright (C) 2003 David Gibson, IBM Corporation.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| 
 | |
| #undef DEBUG
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/export.h>
 | |
| #include <asm/mman.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/spu.h>
 | |
| 
 | |
| static DEFINE_SPINLOCK(slice_convert_lock);
 | |
| 
 | |
| 
 | |
| #ifdef DEBUG
 | |
| int _slice_debug = 1;
 | |
| 
 | |
| static void slice_print_mask(const char *label, struct slice_mask mask)
 | |
| {
 | |
| 	char	*p, buf[16 + 3 + 16 + 1];
 | |
| 	int	i;
 | |
| 
 | |
| 	if (!_slice_debug)
 | |
| 		return;
 | |
| 	p = buf;
 | |
| 	for (i = 0; i < SLICE_NUM_LOW; i++)
 | |
| 		*(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
 | |
| 	*(p++) = ' ';
 | |
| 	*(p++) = '-';
 | |
| 	*(p++) = ' ';
 | |
| 	for (i = 0; i < SLICE_NUM_HIGH; i++)
 | |
| 		*(p++) = (mask.high_slices & (1 << i)) ? '1' : '0';
 | |
| 	*(p++) = 0;
 | |
| 
 | |
| 	printk(KERN_DEBUG "%s:%s\n", label, buf);
 | |
| }
 | |
| 
 | |
| #define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
 | |
| 
 | |
| #else
 | |
| 
 | |
| static void slice_print_mask(const char *label, struct slice_mask mask) {}
 | |
| #define slice_dbg(fmt...)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static struct slice_mask slice_range_to_mask(unsigned long start,
 | |
| 					     unsigned long len)
 | |
| {
 | |
| 	unsigned long end = start + len - 1;
 | |
| 	struct slice_mask ret = { 0, 0 };
 | |
| 
 | |
| 	if (start < SLICE_LOW_TOP) {
 | |
| 		unsigned long mend = min(end, SLICE_LOW_TOP);
 | |
| 		unsigned long mstart = min(start, SLICE_LOW_TOP);
 | |
| 
 | |
| 		ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
 | |
| 			- (1u << GET_LOW_SLICE_INDEX(mstart));
 | |
| 	}
 | |
| 
 | |
| 	if ((start + len) > SLICE_LOW_TOP)
 | |
| 		ret.high_slices = (1u << (GET_HIGH_SLICE_INDEX(end) + 1))
 | |
| 			- (1u << GET_HIGH_SLICE_INDEX(start));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
 | |
| 			      unsigned long len)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	if ((mm->task_size - len) < addr)
 | |
| 		return 0;
 | |
| 	vma = find_vma(mm, addr);
 | |
| 	return (!vma || (addr + len) <= vma->vm_start);
 | |
| }
 | |
| 
 | |
| static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
 | |
| {
 | |
| 	return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
 | |
| 				   1ul << SLICE_LOW_SHIFT);
 | |
| }
 | |
| 
 | |
| static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
 | |
| {
 | |
| 	unsigned long start = slice << SLICE_HIGH_SHIFT;
 | |
| 	unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
 | |
| 
 | |
| 	/* Hack, so that each addresses is controlled by exactly one
 | |
| 	 * of the high or low area bitmaps, the first high area starts
 | |
| 	 * at 4GB, not 0 */
 | |
| 	if (start == 0)
 | |
| 		start = SLICE_LOW_TOP;
 | |
| 
 | |
| 	return !slice_area_is_free(mm, start, end - start);
 | |
| }
 | |
| 
 | |
| static struct slice_mask slice_mask_for_free(struct mm_struct *mm)
 | |
| {
 | |
| 	struct slice_mask ret = { 0, 0 };
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < SLICE_NUM_LOW; i++)
 | |
| 		if (!slice_low_has_vma(mm, i))
 | |
| 			ret.low_slices |= 1u << i;
 | |
| 
 | |
| 	if (mm->task_size <= SLICE_LOW_TOP)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; i < SLICE_NUM_HIGH; i++)
 | |
| 		if (!slice_high_has_vma(mm, i))
 | |
| 			ret.high_slices |= 1u << i;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize)
 | |
| {
 | |
| 	struct slice_mask ret = { 0, 0 };
 | |
| 	unsigned long i;
 | |
| 	u64 psizes;
 | |
| 
 | |
| 	psizes = mm->context.low_slices_psize;
 | |
| 	for (i = 0; i < SLICE_NUM_LOW; i++)
 | |
| 		if (((psizes >> (i * 4)) & 0xf) == psize)
 | |
| 			ret.low_slices |= 1u << i;
 | |
| 
 | |
| 	psizes = mm->context.high_slices_psize;
 | |
| 	for (i = 0; i < SLICE_NUM_HIGH; i++)
 | |
| 		if (((psizes >> (i * 4)) & 0xf) == psize)
 | |
| 			ret.high_slices |= 1u << i;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
 | |
| {
 | |
| 	return (mask.low_slices & available.low_slices) == mask.low_slices &&
 | |
| 		(mask.high_slices & available.high_slices) == mask.high_slices;
 | |
| }
 | |
| 
 | |
| static void slice_flush_segments(void *parm)
 | |
| {
 | |
| 	struct mm_struct *mm = parm;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (mm != current->active_mm)
 | |
| 		return;
 | |
| 
 | |
| 	/* update the paca copy of the context struct */
 | |
| 	get_paca()->context = current->active_mm->context;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	slb_flush_and_rebolt();
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
 | |
| {
 | |
| 	/* Write the new slice psize bits */
 | |
| 	u64 lpsizes, hpsizes;
 | |
| 	unsigned long i, flags;
 | |
| 
 | |
| 	slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
 | |
| 	slice_print_mask(" mask", mask);
 | |
| 
 | |
| 	/* We need to use a spinlock here to protect against
 | |
| 	 * concurrent 64k -> 4k demotion ...
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&slice_convert_lock, flags);
 | |
| 
 | |
| 	lpsizes = mm->context.low_slices_psize;
 | |
| 	for (i = 0; i < SLICE_NUM_LOW; i++)
 | |
| 		if (mask.low_slices & (1u << i))
 | |
| 			lpsizes = (lpsizes & ~(0xful << (i * 4))) |
 | |
| 				(((unsigned long)psize) << (i * 4));
 | |
| 
 | |
| 	hpsizes = mm->context.high_slices_psize;
 | |
| 	for (i = 0; i < SLICE_NUM_HIGH; i++)
 | |
| 		if (mask.high_slices & (1u << i))
 | |
| 			hpsizes = (hpsizes & ~(0xful << (i * 4))) |
 | |
| 				(((unsigned long)psize) << (i * 4));
 | |
| 
 | |
| 	mm->context.low_slices_psize = lpsizes;
 | |
| 	mm->context.high_slices_psize = hpsizes;
 | |
| 
 | |
| 	slice_dbg(" lsps=%lx, hsps=%lx\n",
 | |
| 		  mm->context.low_slices_psize,
 | |
| 		  mm->context.high_slices_psize);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&slice_convert_lock, flags);
 | |
| 
 | |
| #ifdef CONFIG_SPU_BASE
 | |
| 	spu_flush_all_slbs(mm);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
 | |
| 					      unsigned long len,
 | |
| 					      struct slice_mask available,
 | |
| 					      int psize, int use_cache)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long start_addr, addr;
 | |
| 	struct slice_mask mask;
 | |
| 	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
 | |
| 
 | |
| 	if (use_cache) {
 | |
| 		if (len <= mm->cached_hole_size) {
 | |
| 			start_addr = addr = TASK_UNMAPPED_BASE;
 | |
| 			mm->cached_hole_size = 0;
 | |
| 		} else
 | |
| 			start_addr = addr = mm->free_area_cache;
 | |
| 	} else
 | |
| 		start_addr = addr = TASK_UNMAPPED_BASE;
 | |
| 
 | |
| full_search:
 | |
| 	for (;;) {
 | |
| 		addr = _ALIGN_UP(addr, 1ul << pshift);
 | |
| 		if ((TASK_SIZE - len) < addr)
 | |
| 			break;
 | |
| 		vma = find_vma(mm, addr);
 | |
| 		BUG_ON(vma && (addr >= vma->vm_end));
 | |
| 
 | |
| 		mask = slice_range_to_mask(addr, len);
 | |
| 		if (!slice_check_fit(mask, available)) {
 | |
| 			if (addr < SLICE_LOW_TOP)
 | |
| 				addr = _ALIGN_UP(addr + 1,  1ul << SLICE_LOW_SHIFT);
 | |
| 			else
 | |
| 				addr = _ALIGN_UP(addr + 1,  1ul << SLICE_HIGH_SHIFT);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!vma || addr + len <= vma->vm_start) {
 | |
| 			/*
 | |
| 			 * Remember the place where we stopped the search:
 | |
| 			 */
 | |
| 			if (use_cache)
 | |
| 				mm->free_area_cache = addr + len;
 | |
| 			return addr;
 | |
| 		}
 | |
| 		if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start)
 | |
| 		        mm->cached_hole_size = vma->vm_start - addr;
 | |
| 		addr = vma->vm_end;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure we didn't miss any holes */
 | |
| 	if (use_cache && start_addr != TASK_UNMAPPED_BASE) {
 | |
| 		start_addr = addr = TASK_UNMAPPED_BASE;
 | |
| 		mm->cached_hole_size = 0;
 | |
| 		goto full_search;
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static unsigned long slice_find_area_topdown(struct mm_struct *mm,
 | |
| 					     unsigned long len,
 | |
| 					     struct slice_mask available,
 | |
| 					     int psize, int use_cache)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long addr;
 | |
| 	struct slice_mask mask;
 | |
| 	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
 | |
| 
 | |
| 	/* check if free_area_cache is useful for us */
 | |
| 	if (use_cache) {
 | |
| 		if (len <= mm->cached_hole_size) {
 | |
| 			mm->cached_hole_size = 0;
 | |
| 			mm->free_area_cache = mm->mmap_base;
 | |
| 		}
 | |
| 
 | |
| 		/* either no address requested or can't fit in requested
 | |
| 		 * address hole
 | |
| 		 */
 | |
| 		addr = mm->free_area_cache;
 | |
| 
 | |
| 		/* make sure it can fit in the remaining address space */
 | |
| 		if (addr > len) {
 | |
| 			addr = _ALIGN_DOWN(addr - len, 1ul << pshift);
 | |
| 			mask = slice_range_to_mask(addr, len);
 | |
| 			if (slice_check_fit(mask, available) &&
 | |
| 			    slice_area_is_free(mm, addr, len))
 | |
| 					/* remember the address as a hint for
 | |
| 					 * next time
 | |
| 					 */
 | |
| 					return (mm->free_area_cache = addr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	addr = mm->mmap_base;
 | |
| 	while (addr > len) {
 | |
| 		/* Go down by chunk size */
 | |
| 		addr = _ALIGN_DOWN(addr - len, 1ul << pshift);
 | |
| 
 | |
| 		/* Check for hit with different page size */
 | |
| 		mask = slice_range_to_mask(addr, len);
 | |
| 		if (!slice_check_fit(mask, available)) {
 | |
| 			if (addr < SLICE_LOW_TOP)
 | |
| 				addr = _ALIGN_DOWN(addr, 1ul << SLICE_LOW_SHIFT);
 | |
| 			else if (addr < (1ul << SLICE_HIGH_SHIFT))
 | |
| 				addr = SLICE_LOW_TOP;
 | |
| 			else
 | |
| 				addr = _ALIGN_DOWN(addr, 1ul << SLICE_HIGH_SHIFT);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Lookup failure means no vma is above this address,
 | |
| 		 * else if new region fits below vma->vm_start,
 | |
| 		 * return with success:
 | |
| 		 */
 | |
| 		vma = find_vma(mm, addr);
 | |
| 		if (!vma || (addr + len) <= vma->vm_start) {
 | |
| 			/* remember the address as a hint for next time */
 | |
| 			if (use_cache)
 | |
| 				mm->free_area_cache = addr;
 | |
| 			return addr;
 | |
| 		}
 | |
| 
 | |
| 		/* remember the largest hole we saw so far */
 | |
| 		if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start)
 | |
| 		        mm->cached_hole_size = vma->vm_start - addr;
 | |
| 
 | |
| 		/* try just below the current vma->vm_start */
 | |
| 		addr = vma->vm_start;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A failed mmap() very likely causes application failure,
 | |
| 	 * so fall back to the bottom-up function here. This scenario
 | |
| 	 * can happen with large stack limits and large mmap()
 | |
| 	 * allocations.
 | |
| 	 */
 | |
| 	addr = slice_find_area_bottomup(mm, len, available, psize, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore the topdown base:
 | |
| 	 */
 | |
| 	if (use_cache) {
 | |
| 		mm->free_area_cache = mm->mmap_base;
 | |
| 		mm->cached_hole_size = ~0UL;
 | |
| 	}
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| 
 | |
| static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
 | |
| 				     struct slice_mask mask, int psize,
 | |
| 				     int topdown, int use_cache)
 | |
| {
 | |
| 	if (topdown)
 | |
| 		return slice_find_area_topdown(mm, len, mask, psize, use_cache);
 | |
| 	else
 | |
| 		return slice_find_area_bottomup(mm, len, mask, psize, use_cache);
 | |
| }
 | |
| 
 | |
| #define or_mask(dst, src)	do {			\
 | |
| 	(dst).low_slices |= (src).low_slices;		\
 | |
| 	(dst).high_slices |= (src).high_slices;		\
 | |
| } while (0)
 | |
| 
 | |
| #define andnot_mask(dst, src)	do {			\
 | |
| 	(dst).low_slices &= ~(src).low_slices;		\
 | |
| 	(dst).high_slices &= ~(src).high_slices;	\
 | |
| } while (0)
 | |
| 
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| #define MMU_PAGE_BASE	MMU_PAGE_64K
 | |
| #else
 | |
| #define MMU_PAGE_BASE	MMU_PAGE_4K
 | |
| #endif
 | |
| 
 | |
| unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
 | |
| 				      unsigned long flags, unsigned int psize,
 | |
| 				      int topdown, int use_cache)
 | |
| {
 | |
| 	struct slice_mask mask = {0, 0};
 | |
| 	struct slice_mask good_mask;
 | |
| 	struct slice_mask potential_mask = {0,0} /* silence stupid warning */;
 | |
| 	struct slice_mask compat_mask = {0, 0};
 | |
| 	int fixed = (flags & MAP_FIXED);
 | |
| 	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	unsigned long newaddr;
 | |
| 
 | |
| 	/* Sanity checks */
 | |
| 	BUG_ON(mm->task_size == 0);
 | |
| 
 | |
| 	slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
 | |
| 	slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d, use_cache=%d\n",
 | |
| 		  addr, len, flags, topdown, use_cache);
 | |
| 
 | |
| 	if (len > mm->task_size)
 | |
| 		return -ENOMEM;
 | |
| 	if (len & ((1ul << pshift) - 1))
 | |
| 		return -EINVAL;
 | |
| 	if (fixed && (addr & ((1ul << pshift) - 1)))
 | |
| 		return -EINVAL;
 | |
| 	if (fixed && addr > (mm->task_size - len))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* If hint, make sure it matches our alignment restrictions */
 | |
| 	if (!fixed && addr) {
 | |
| 		addr = _ALIGN_UP(addr, 1ul << pshift);
 | |
| 		slice_dbg(" aligned addr=%lx\n", addr);
 | |
| 		/* Ignore hint if it's too large or overlaps a VMA */
 | |
| 		if (addr > mm->task_size - len ||
 | |
| 		    !slice_area_is_free(mm, addr, len))
 | |
| 			addr = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* First make up a "good" mask of slices that have the right size
 | |
| 	 * already
 | |
| 	 */
 | |
| 	good_mask = slice_mask_for_size(mm, psize);
 | |
| 	slice_print_mask(" good_mask", good_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Here "good" means slices that are already the right page size,
 | |
| 	 * "compat" means slices that have a compatible page size (i.e.
 | |
| 	 * 4k in a 64k pagesize kernel), and "free" means slices without
 | |
| 	 * any VMAs.
 | |
| 	 *
 | |
| 	 * If MAP_FIXED:
 | |
| 	 *	check if fits in good | compat => OK
 | |
| 	 *	check if fits in good | compat | free => convert free
 | |
| 	 *	else bad
 | |
| 	 * If have hint:
 | |
| 	 *	check if hint fits in good => OK
 | |
| 	 *	check if hint fits in good | free => convert free
 | |
| 	 * Otherwise:
 | |
| 	 *	search in good, found => OK
 | |
| 	 *	search in good | free, found => convert free
 | |
| 	 *	search in good | compat | free, found => convert free.
 | |
| 	 */
 | |
| 
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	/* If we support combo pages, we can allow 64k pages in 4k slices */
 | |
| 	if (psize == MMU_PAGE_64K) {
 | |
| 		compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
 | |
| 		if (fixed)
 | |
| 			or_mask(good_mask, compat_mask);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* First check hint if it's valid or if we have MAP_FIXED */
 | |
| 	if (addr != 0 || fixed) {
 | |
| 		/* Build a mask for the requested range */
 | |
| 		mask = slice_range_to_mask(addr, len);
 | |
| 		slice_print_mask(" mask", mask);
 | |
| 
 | |
| 		/* Check if we fit in the good mask. If we do, we just return,
 | |
| 		 * nothing else to do
 | |
| 		 */
 | |
| 		if (slice_check_fit(mask, good_mask)) {
 | |
| 			slice_dbg(" fits good !\n");
 | |
| 			return addr;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Now let's see if we can find something in the existing
 | |
| 		 * slices for that size
 | |
| 		 */
 | |
| 		newaddr = slice_find_area(mm, len, good_mask, psize, topdown,
 | |
| 					  use_cache);
 | |
| 		if (newaddr != -ENOMEM) {
 | |
| 			/* Found within the good mask, we don't have to setup,
 | |
| 			 * we thus return directly
 | |
| 			 */
 | |
| 			slice_dbg(" found area at 0x%lx\n", newaddr);
 | |
| 			return newaddr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We don't fit in the good mask, check what other slices are
 | |
| 	 * empty and thus can be converted
 | |
| 	 */
 | |
| 	potential_mask = slice_mask_for_free(mm);
 | |
| 	or_mask(potential_mask, good_mask);
 | |
| 	slice_print_mask(" potential", potential_mask);
 | |
| 
 | |
| 	if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) {
 | |
| 		slice_dbg(" fits potential !\n");
 | |
| 		goto convert;
 | |
| 	}
 | |
| 
 | |
| 	/* If we have MAP_FIXED and failed the above steps, then error out */
 | |
| 	if (fixed)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	slice_dbg(" search...\n");
 | |
| 
 | |
| 	/* If we had a hint that didn't work out, see if we can fit
 | |
| 	 * anywhere in the good area.
 | |
| 	 */
 | |
| 	if (addr) {
 | |
| 		addr = slice_find_area(mm, len, good_mask, psize, topdown,
 | |
| 				       use_cache);
 | |
| 		if (addr != -ENOMEM) {
 | |
| 			slice_dbg(" found area at 0x%lx\n", addr);
 | |
| 			return addr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Now let's see if we can find something in the existing slices
 | |
| 	 * for that size plus free slices
 | |
| 	 */
 | |
| 	addr = slice_find_area(mm, len, potential_mask, psize, topdown,
 | |
| 			       use_cache);
 | |
| 
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
 | |
| 		/* retry the search with 4k-page slices included */
 | |
| 		or_mask(potential_mask, compat_mask);
 | |
| 		addr = slice_find_area(mm, len, potential_mask, psize,
 | |
| 				       topdown, use_cache);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (addr == -ENOMEM)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mask = slice_range_to_mask(addr, len);
 | |
| 	slice_dbg(" found potential area at 0x%lx\n", addr);
 | |
| 	slice_print_mask(" mask", mask);
 | |
| 
 | |
|  convert:
 | |
| 	andnot_mask(mask, good_mask);
 | |
| 	andnot_mask(mask, compat_mask);
 | |
| 	if (mask.low_slices || mask.high_slices) {
 | |
| 		slice_convert(mm, mask, psize);
 | |
| 		if (psize > MMU_PAGE_BASE)
 | |
| 			on_each_cpu(slice_flush_segments, mm, 1);
 | |
| 	}
 | |
| 	return addr;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
 | |
| 
 | |
| unsigned long arch_get_unmapped_area(struct file *filp,
 | |
| 				     unsigned long addr,
 | |
| 				     unsigned long len,
 | |
| 				     unsigned long pgoff,
 | |
| 				     unsigned long flags)
 | |
| {
 | |
| 	return slice_get_unmapped_area(addr, len, flags,
 | |
| 				       current->mm->context.user_psize,
 | |
| 				       0, 1);
 | |
| }
 | |
| 
 | |
| unsigned long arch_get_unmapped_area_topdown(struct file *filp,
 | |
| 					     const unsigned long addr0,
 | |
| 					     const unsigned long len,
 | |
| 					     const unsigned long pgoff,
 | |
| 					     const unsigned long flags)
 | |
| {
 | |
| 	return slice_get_unmapped_area(addr0, len, flags,
 | |
| 				       current->mm->context.user_psize,
 | |
| 				       1, 1);
 | |
| }
 | |
| 
 | |
| unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	u64 psizes;
 | |
| 	int index;
 | |
| 
 | |
| 	if (addr < SLICE_LOW_TOP) {
 | |
| 		psizes = mm->context.low_slices_psize;
 | |
| 		index = GET_LOW_SLICE_INDEX(addr);
 | |
| 	} else {
 | |
| 		psizes = mm->context.high_slices_psize;
 | |
| 		index = GET_HIGH_SLICE_INDEX(addr);
 | |
| 	}
 | |
| 
 | |
| 	return (psizes >> (index * 4)) & 0xf;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_slice_psize);
 | |
| 
 | |
| /*
 | |
|  * This is called by hash_page when it needs to do a lazy conversion of
 | |
|  * an address space from real 64K pages to combo 4K pages (typically
 | |
|  * when hitting a non cacheable mapping on a processor or hypervisor
 | |
|  * that won't allow them for 64K pages).
 | |
|  *
 | |
|  * This is also called in init_new_context() to change back the user
 | |
|  * psize from whatever the parent context had it set to
 | |
|  * N.B. This may be called before mm->context.id has been set.
 | |
|  *
 | |
|  * This function will only change the content of the {low,high)_slice_psize
 | |
|  * masks, it will not flush SLBs as this shall be handled lazily by the
 | |
|  * caller.
 | |
|  */
 | |
| void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
 | |
| {
 | |
| 	unsigned long flags, lpsizes, hpsizes;
 | |
| 	unsigned int old_psize;
 | |
| 	int i;
 | |
| 
 | |
| 	slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
 | |
| 
 | |
| 	spin_lock_irqsave(&slice_convert_lock, flags);
 | |
| 
 | |
| 	old_psize = mm->context.user_psize;
 | |
| 	slice_dbg(" old_psize=%d\n", old_psize);
 | |
| 	if (old_psize == psize)
 | |
| 		goto bail;
 | |
| 
 | |
| 	mm->context.user_psize = psize;
 | |
| 	wmb();
 | |
| 
 | |
| 	lpsizes = mm->context.low_slices_psize;
 | |
| 	for (i = 0; i < SLICE_NUM_LOW; i++)
 | |
| 		if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
 | |
| 			lpsizes = (lpsizes & ~(0xful << (i * 4))) |
 | |
| 				(((unsigned long)psize) << (i * 4));
 | |
| 
 | |
| 	hpsizes = mm->context.high_slices_psize;
 | |
| 	for (i = 0; i < SLICE_NUM_HIGH; i++)
 | |
| 		if (((hpsizes >> (i * 4)) & 0xf) == old_psize)
 | |
| 			hpsizes = (hpsizes & ~(0xful << (i * 4))) |
 | |
| 				(((unsigned long)psize) << (i * 4));
 | |
| 
 | |
| 	mm->context.low_slices_psize = lpsizes;
 | |
| 	mm->context.high_slices_psize = hpsizes;
 | |
| 
 | |
| 	slice_dbg(" lsps=%lx, hsps=%lx\n",
 | |
| 		  mm->context.low_slices_psize,
 | |
| 		  mm->context.high_slices_psize);
 | |
| 
 | |
|  bail:
 | |
| 	spin_unlock_irqrestore(&slice_convert_lock, flags);
 | |
| }
 | |
| 
 | |
| void slice_set_psize(struct mm_struct *mm, unsigned long address,
 | |
| 		     unsigned int psize)
 | |
| {
 | |
| 	unsigned long i, flags;
 | |
| 	u64 *p;
 | |
| 
 | |
| 	spin_lock_irqsave(&slice_convert_lock, flags);
 | |
| 	if (address < SLICE_LOW_TOP) {
 | |
| 		i = GET_LOW_SLICE_INDEX(address);
 | |
| 		p = &mm->context.low_slices_psize;
 | |
| 	} else {
 | |
| 		i = GET_HIGH_SLICE_INDEX(address);
 | |
| 		p = &mm->context.high_slices_psize;
 | |
| 	}
 | |
| 	*p = (*p & ~(0xful << (i * 4))) | ((unsigned long) psize << (i * 4));
 | |
| 	spin_unlock_irqrestore(&slice_convert_lock, flags);
 | |
| 
 | |
| #ifdef CONFIG_SPU_BASE
 | |
| 	spu_flush_all_slbs(mm);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
 | |
| 			   unsigned long len, unsigned int psize)
 | |
| {
 | |
| 	struct slice_mask mask = slice_range_to_mask(start, len);
 | |
| 
 | |
| 	slice_convert(mm, mask, psize);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * is_hugepage_only_range() is used by generic code to verify wether
 | |
|  * a normal mmap mapping (non hugetlbfs) is valid on a given area.
 | |
|  *
 | |
|  * until the generic code provides a more generic hook and/or starts
 | |
|  * calling arch get_unmapped_area for MAP_FIXED (which our implementation
 | |
|  * here knows how to deal with), we hijack it to keep standard mappings
 | |
|  * away from us.
 | |
|  *
 | |
|  * because of that generic code limitation, MAP_FIXED mapping cannot
 | |
|  * "convert" back a slice with no VMAs to the standard page size, only
 | |
|  * get_unmapped_area() can. It would be possible to fix it here but I
 | |
|  * prefer working on fixing the generic code instead.
 | |
|  *
 | |
|  * WARNING: This will not work if hugetlbfs isn't enabled since the
 | |
|  * generic code will redefine that function as 0 in that. This is ok
 | |
|  * for now as we only use slices with hugetlbfs enabled. This should
 | |
|  * be fixed as the generic code gets fixed.
 | |
|  */
 | |
| int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
 | |
| 			   unsigned long len)
 | |
| {
 | |
| 	struct slice_mask mask, available;
 | |
| 	unsigned int psize = mm->context.user_psize;
 | |
| 
 | |
| 	mask = slice_range_to_mask(addr, len);
 | |
| 	available = slice_mask_for_size(mm, psize);
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	/* We need to account for 4k slices too */
 | |
| 	if (psize == MMU_PAGE_64K) {
 | |
| 		struct slice_mask compat_mask;
 | |
| 		compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
 | |
| 		or_mask(available, compat_mask);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #if 0 /* too verbose */
 | |
| 	slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
 | |
| 		 mm, addr, len);
 | |
| 	slice_print_mask(" mask", mask);
 | |
| 	slice_print_mask(" available", available);
 | |
| #endif
 | |
| 	return !slice_check_fit(mask, available);
 | |
| }
 | |
| 
 |